
Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71
https://doi.org/10.1186/s13677-022-00342-1

RESEARCH

Energy‑efficient allocation for multiple tasks
in mobile edge computing
Jun Liu1 and Xi Liu2*    

Abstract 

Mobile edge computing (MEC) allows a mobile device to offload tasks to the nearby server for remote execution to
enhance the performance of user equipment. A major challenge of MEC is to design an efficient algorithm for task
allocation. In contrast to previous work on MEC, which mainly focuses on single-task allocation for a mobile device
with only one task to be completed, this paper considers a mobile device with multiple tasks or an application with
multiple tasks. This assumption does not hold in real settings because a mobile device may have multiple tasks
waiting to execute. We address the problem of task allocation with minimum total energy consumption consider-
ing multi-task settings in MEC, in which a mobile device has one or more tasks. We consider the binary computation
offloading mode and formulate multi-task allocation as an integer programming problem that is strongly NP-hard. We
propose an approximation algorithm and show it is a polynomial-time approximation scheme that saves the maxi-
mum energy. Therefore, our proposed algorithm achieves a tradeoff between optimality loss and time complexity. We
analyze the performance of the proposed algorithm by performing extensive experiments. The results of the experi-
ments demonstrate that our proposed approximation algorithm is capable of finding near-optimal solutions, and
achieves a good balance of speed and quality.

Keywords:  Mobile edge computing, Energy efficient, Computation offloading, Polynomial time approximation
scheme

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the rapid development of the smartphone and the
Internet of Things, mobile applications such as facial rec-
ognition, natural language processing, mobile social media,
vehicular systems, and interactive gaming require exten-
sive computing power and abundant energy. However,
mobile devices generally have limited computing power
and battery life, and cannot meet the demands of such
tasks. Cloud computing, such as Amazon Web Services
and Microsoft Azure, has many hardware resources, but
usually cannot provide latency-sensitive quality of service
at scale. Sitting at the edge of the internet, the edge cloud
can provide service with lower latency than cloud com-
puting and more powerful hardware than mobile devices,

thereby enhancing the user experience [1, 2]. Mobile
devices can reduce their computing time by offload-
ing tasks to nearby servers for processing at the network
edge[3]. Mobile edge computing (MEC) solves the prob-
lem of running resource-intensive applications with the
limited capability of mobile devices [4]. However, unlike
cloud computing, with its abundant hardware resources,
the MEC server with limited resources sometimes cannot
satisfy the requirements of all mobile devices. In this study,
we consider task allocation in MEC and minimize the total
energy consumption, which is the sum of the local energy
consumption and the remote energy consumption.

Research on MEC has focused on one mobile device with
one task. This assumption may not fit well for MEC in a real-
istic environment, for two reasons. First, a mobile device may
have multiple tasks waiting to execute at the same time, such
as interactive gaming and speech communication, where the
first is resource-intensive and the second is latency-sensitive.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: lxghost@126.com

2 School of Information Engineering, Qujing Normal University, Qujing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8011-5419
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00342-1&domain=pdf

Page 2 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

Second, a mobile application always has the main task and
other small tasks. For example, a user identification applica-
tion may include a facial recognition task and some process-
ing tasks. Therefore, it is necessary to consider multi-task
allocation in MEC. Unfortunately, no algorithms have been
designed to consider this problem in the existing literature.
Motivated by this scenario, we consider in this paper the
multi-task allocation setting. We assume a mobile device
can offload at most one task for remote execution, such as
a resource-hungry task, while other tasks execute locally to
meet latency and reduce energy consumption. It is to ensure
fairness so that each mobile device has the opportunity to
upload one resource-hungry task for remote execution. By
considering multi-task allocation, the remote resources of
an MEC server and local resources of mobile devices can be
utilized effectively to execute more tasks and significantly
reduce total energy consumption.

We consider the binary computation offloading mode,
in which a task cannot be partitioned, and is either locally
executed or completely offloaded to the MEC server [5].
Some tasks can execute successfully as a whole locally or
on an MEC server, and some cannot be divided into smaller
units. If some mobile devices transmit data at the same time,
this operation may cause wireless interference with each
other, thereby increasing transmission delay and energy
loss. Hence, we consider limited frequency subchannels,
i.e., only a certain number of mobile devices are allowed to
transmit data at the same time to improve transmission effi-
ciency and save energy consumption. In addition, a latency-
intensive task must be finished before its deadline, so we
also consider the deadline constraints. However, the multi-
task allocation problem cannot be modeled by any knapsack
problem. Unfortunately, there are no existing algorithms to
consider binary computation offloading mode, limited fre-
quency subchannels, and deadline constraints. Thus, exist-
ing algorithms cannot be directly applied to the multi-task
allocation problem. The multi-task allocation problem with-
out deadline constraints can be considered as a multiple-
choice knapsack problem with cardinality constraints. It is
the integer programming problem that is strongly NP-hard,
and there is no fully polynomial time approximation scheme
(FPTAS) for solving it, unless P = NP [6]. Obtaining the
optimal allocation is computationally difficult; hence,
designing an efficient algorithm to solve the multi-task allo-
cation problem is of major interest.

In this paper, we address the problem of multi-task
allocation in mobile edge computing (MAMEC). We
believe this is the first study to design a PTAS algorithm
for multi-task allocation in MEC. The key contributions
of this paper are summarized as follows.

•	 A multi-task allocation environment is introduced,
where each mobile device with one or more tasks

can offload at most one resource-intensive task to an
MEC server for remote execution. This goes beyond
the bulk of the current research, which primarily
addresses the problem of one task per mobile device.

•	 We model the problem of multi-task allocation in
an accurate mathematical model. By considering
the binary computation offloading mode and lim-
ited frequency subchannels, the MAMEC problem
is an integer programming problem that is strongly
NP-hard. In the absence of computationally tractable
optimal algorithms to solve this problem, we design
an efficient allocation algorithm to obtain the near-
optimal solutions, whose key property is to con-
sider mobile devices with one or more tasks, which
is the case in a real MEC setting. We show our pro-
posed approximation algorithm is a polynomial time
approximation scheme (PTAS), which is by far the
strongest approximation result that can be achieved
for this problem, unless P = NP.

•	 Extensive experiments investigate the performance
of our proposed approximation algorithm compared
to the optimal solutions. The results show that our
proposed algorithm can find near-optimal solutions
and achieve a good balance of speed and quality.

Related Work
Early research mainly focused on a single device or sin-
gle user. Cheng et al. [7] considered the code offloading
problem and proposed a heuristic algorithm based on the
Genetic Algorithm. Zhang et al. [8] considered the collabo-
rative task execution problem and proposed the algorithms
to obtain the optimal and approximation solutions. Munoz
et al. [9] presented a general framework to optimize com-
munication and computational resources usage. Zhang
et al. [10] proposed the particle swarm optimization algo-
rithm to schedule the tasks. However, only a single mobile
device was taken into consideration in the above works.

Recently, researchers investigated task allocation
among multiple devices [11–13]. Some works focused on
equilibrium [14, 15]. Pu et al. [16] formulated an online
task offloading problem and proposed a framework
based on network-assisted device-to-device collabora-
tion. Some works considered the Nash equilibrium [17,
18]. Chen et al. [17] proposed a decentralized computa-
tion offloading mechanism. Chen et al. [18] proposed a
game-theoretic approach for task offloading. Liu et al.
[19] proposed a multi-resource allocation approach.
Lyu et al. [20] proposed asymptotically optimal offload-
ing schedules based on Lyapunov optimization tech-
niques. Lyu et al. [21] considered the task admission and
resource allocation problem. Wang et al. [22] consid-
ered an MEC server with a base station and proposed a

Page 3 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

joint optimization allocation problem. Chen et al. [23]
designed software defined task offloading for the task
offloading problem. Chen et al. [24] considered the joint
task scheduling and energy management problem in het-
erogeneous MEC. Wang et al. [25] considered the real-
time online resource allocation problem. Zhang et al.
[26] formulated the computing resource management as
profit maximization problems. Park et al. [27] considered
the multi-type users with different computation task sizes
and provided the framework for MEC-enabled heteroge-
neous networks. Liu et al. [28] considered task allocation
with many-to-one mapping in crowd sensing systems.
However, some of the above works did not consider lim-
ited frequency subchannels, nor multi-task allocation.

Researchers approached the problem of multiple users
or multiple tasks [29–31]. Elgendy et al. [32] considered
the security layer in the MEC and proposed the lineari-
zation and binary relaxation approaches. Chen et al. [33]
considered the MEC system consisting of multiple mobile
devices and one server. Huang et al. [34] considered the
network’s quality of service and proposed the algorithm
based on a linear programming relaxation. Chen et al. [35]
considered a renewable mobile edge cloud system and pro-
posed centralized and distributed greedy scheduling algo-
rithms. However, they did not consider limited frequency
subchannels or deadline constraints. Our work is different
from all previous works. In this paper, we consider multi-
task allocation with binary computation offloading mode
and limited frequency subchannels and design an approxi-
mation algorithm to solve the MAMEC problem. Table 1
summarizes the differences between the existing works.

Organization
The remainder of this paper is organized as follows. Sec-
tion 2 describes the system model. Section 3 introduces
our approximation algorithm and characterizes its prop-
erties. Section 4 evaluates the performance of the algo-
rithm. Section 5 summarizes the results.

Problem Formulation
System Model
The MEC system consists of an access point (AP) and the
MEC server, where the AP and the MEC server are con-
nected using high-throughput optical fiber. Hence, the
transmission delay between them can be ignored [37].
We assume that the mobile devices associated with the
AP by non-orthogonal multiple access (NOMA) proto-
col. NOMA enables all the mobile devices to simultane-
ously offload their tasks so that offloading throughput can
be improved. We assume the MEC system can support up
to K mobile devices to transmit data at the same time. We
assume each mobile device can offload at most one task
to increase wireless access efficiency. We consider a set of

collocated mobile devices, N = {1, ...,N } , where mobile
device i ∈ N has some latency- or computing-intensive
tasks to be completed. Let Ti be the set of tasks of mobile
device i ∈ N  . Note that one mobile device can have one or
more tasks ( |Ti| ≥ 1 ). We assume task tij ∈ Ti needs to be
completed before deadline runtime

req
ij .

We first consider a task computed locally. Let bij be the
required number of CPU cycles to accomplish task tij . The
information of bij can be obtained by applying program
profiler [38]. Let f li be the local computational capability of
mobile device i ∈ N in cycles per second, and runtimelij the
time consumed to locally process task tij,

where dlij is the number of local CPU cycles assigned
to task tij in each second. Note that dlij is unknown and
is decided by the allocation algorithm. For example,
we assume a task tij needs 100 CPU cycles to meet the
deadline. If the algorithm allocates dlij = 200 CPU cycles
to task tij , it can finish in a shorter time. However, if
the algorithm allocates dlij = 50 , it cannot finish by the
deadline.

The energy consumption of each CPU cycle can be
denoted by κ(f li)

2 , where κ is the energy coefficient [17].
Let El

ij be the energy consumption of task tij locally calcu-
lated [39],

where κ = 10−28 [22].
Second, we consider remote computing. Let hi be the chan-

nel gain between the AP and mobile device i ( ∀i ∈ N  ). We
assume that the mobile device will not move too much while
uploading tasks. Hence, hi is a constant [36]. The uplink data
rate of mobile device i ( ∀i ∈ N  ) can be given by [30]

runtimelij = bij/d
l
ij ,

El
ij = κ(f li)

2bij ,

ri = B log2(1+
ρihi

1+ j∈N ρjhj ∐ (hj > hi)
),

Table 1  Comparison of existing works

Reference Multi-task Deadline Optimality

[14] ×
√

Optimal

[18] × × Approx.

[21] ×
√

Approx.

[22] ×
√

Optimal

[24] × × Optimal

[25] ×
√

Optimal

[28] × × Approx.

[36] ×
√

PTAS approx.

This paper
√ √

PTAS approx.

Page 4 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

where B is the channel bandwidth, ρi is the transmission
power of the mobile device, and ∐ is the indicator func-
tion which takes the value 1 if its argument is correct and
takes the zero value, otherwise.

Let runtimetraij be the transmission duration of task tij , as
given by

where sizeij is the data size of task tij . The remote process-
ing duration runtime

pro
ij can be defined as:

where drij is the number of remote CPU cycles assigned
to task tij in each second. Since the data size of the result
is generally small compared to the raw data [17, 22], we
neglect the downlink transmission delay. Hence, the total
time duration on MEC server can be defined as:

If task tij is offloaded to the MEC server for remote exe-
cution, the energy consumption is only calculated for
transmission energy consumption. Then, the transmis-
sion energy consumption of a mobile device to send sizeij
bits to the MEC server can be defined as:

Without loss of generality, we assume bij > 0 , sizeij > 0
and f li > 0 , ∀i ∈ N , j ∈ Ti . The symbols used in this
paper are summarized in Table 2.

Mathematical Formulation
The integer programming formulation of the MAMEC
problem (called IP-MAMEC) can be formulated as
follows:

runtimetraij = sizeij/ri,

runtime
pro
ij = bij/d

r
ij ,

runtimerij =runtimetraij + runtime
pro
ij

=sizeij/ri + bij/d
r
ij .

Er
ij = ρiruntimetraij = ρisizeij/ri.

(1)min
∑

i∈N

∑

j∈Ti

xijE
r
ij +

∑

i∈N

∑

j∈Ti

(1− xij)E
l
ij

(2)
s.t.: xijruntimerij + (1− xij)runtimelij

≤ runtime
req
ij , ∀i ∈ N , j ∈ Ti,

(3)
∑

j∈Ti

dlij(1− xij) ≤ f li , ∀i ∈ N ,

(4)
∑

i∈N

∑

j∈Ti

drijxij ≤ f r ,

The decision variable is defined as xij = 1 if task tij is pro-
cessed on the MEC server, and 0 if it is processed locally.
The objective (1) is to minimize total energy consump-
tion. Constraints (2) guarantee that the time duration
does not exceed the deadline. Constraints (3) guarantee
that the allocation capacity does not exceed the available
capacity for each mobile device. Constraints (4) guar-
antee that the allocation capacity does not exceed the
available capacity for the MEC server. Constraints (5)
guarantee that at most K mobile devices can be served
by the AP. Constraints (6) guarantee that at most one
task from each mobile device can be offered to the MEC
server. Constraints (7) guarantee that the obtained com-
putational resources are nonnegative. Constraints (8)
represent the integrality requirements for the decision
variable.

Figure 1 shows how multi-task allocation works in the
MAMEC problem. In this scenario, we consider four
mobile devices with multiple tasks. For example, mobile
devices 1, 2, 3, and 4 have two tasks, three tasks, one

(5)
∑

i∈N

∑

j∈Ti

xij ≤ K ,

(6)
∑

j∈Ti

xij ≤ 1, ∀i ∈ N ,

(7)dlij ≥ 0, drij ≥ 0, ∀i ∈ N , j ∈ Ti,

(8)xij ∈ {0, 1},∀i ∈ N , j ∈ Ti.

Table 2  Symbols

Symbol Description

N Set of mobile devices {1, ...,N}

Ti Set of tasks of mobile device i

tij Task j of mobile device i

sizeij Data size of task tij

bij Required number of CPU cycles of task tij

dlij
Number of local CPU cycles assigned to task tij

drij Number of remote CPU cycles assigned to task tij

ri Uplink data rate of mobile device i ∈ N

f li Local computational capability of mobile device i ∈ N

f r Remote computational capability of MEC server

runtime
req
ij

Deadline of task tij

runtimelij
Local processing duration of task tij

runtimetraij
Transmission duration of task tij

runtime
pro
ij

Remote processing duration of task tij

runtimerij Total remote duration of task tij

Elij
Energy consumption of local computation for task tij

Erij Energy consumption of remote computation for task tij

Page 5 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

task, and two tasks, respectively. We assume that the AP
serves at most three mobile devices simultaneously by
the NOMA protocol. To reduce energy consumption,
tasks t11 , t22 , and t42 are offloaded to the MEC server, and
tasks t12 , t21 , t23 , t31 , and t41 execute on mobile devices.

MAMEC Allocation Algorithm
In this section, we introduce our allocation algorithm for
the MAMEC problem, called PTAS-MAMEC. The PTAS-
MAMEC algorithm is summarized in Algorithm 1. The
algorithm is run periodically by the MEC server. PTAS-
MAMEC has three phases: collecting task requests,
resource allocation, and offloading decision. In the collect-
ing task requests phase, it collects the task requests from
mobile devices (line 2). Then, it initializes the total energy
consumption V and the allocation vector X (line 3).

Algorithm 1  PTAS-MAMEC

In the resource allocation phase, PTAS-MAMEC allo-
cates the remote computational resources and selects tasks
that must be offered for remote processing. To guarantee
the deadline constraints and minimize energy consump-
tion, PTAS-MAMEC sets drij and dlij , ∀i ∈ N , j ∈ Ti as the

minimum requirements to meet task deadlines (lines 5-7).
That is, task tij can be finished before the deadline when it
obtains resources not less than dlij or drij for local or remote
execution, respectively. To make more tasks satisfy dead-
line constraints, it sorts the mobile devices in non-decreas-
ing of order of dlij′ , ∀i ∈ N  , j′ = argmaxj∈Ti d

l
ij (line 8).

Then, it considers each mobile device by turns. If the
resources of a mobile device cannot meet all demands,
then PTAS-MAMEC selects a task to offload to minimize
energy consumption (lines 11-13), and updates the
resources and the allocation vector (lines 14-18).

In the offloading decision phase, PTAS-MAMEC calls
the PTAS-ALLOC algorithm to determine the alloca-
tion (lines 20-25). Idle resources may remain on the MEC
server; these can be allocated to offloading tasks to has-
ten execution. PTAS-MAMEC allocates these resources
equally to offloading tasks (lines 26-28). Finally, it returns
the allocation result (line 29).

Algorithm 2  PTAS-ALLOC(N ,d,f,K,ǫ)

Page 6 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

PTAS‑ALLOC: Allocation Algorithm of PTAS‑MAMEC
We define “energy-saving” before describing the allo-
cation algorithm. Let Es

ij be energy-saving, where
Es
ij = El

ij − Er
ij , ∀i ∈ N , j ∈ Ti . Note that the required local

or remote resources were known in the previous phase, so
we only consider the offloading tasks that we choose. Then,
we turn the minimum problem into a maximum problem,
and the maximum energy-saving can be obtained by the
following linear programming:

Our proposed PTAS allocation algorithm, called PTAS-
ALLOC, is given in Algorithm 2. Our approximation
technique is inspired by Caprara et al. [40] and Dobzinski
et al. [41]. However, the former did not consider one user
with multiple value settings, and the latter did not con-
sider cardinality constraints. Then, we refer to the partial
allocation idea [40] and the rounding idea [41] to design
an approximation algorithm suitable for the MAMEC
problem. Parameter ǫ controls how close the solution
determined by PTAS-ALLOC is to the optimal solution.
PTAS-ALLOC has one output parameter, the allocation
vector, X . PTAS-ALLOC has three phases: initialization,
partial allocation, and approximation allocation.

max
∑

i∈N

∑

j∈Ti

xijE
s
ij

s.t.: (4), (5), (6), (8).

The main idea is to find a partial allocation and then
allocate through dynamic programming. In the initializa-
tion phase, PTAS-ALLOC defines parameter q, the num-
ber of tasks in the partial allocation (line 2). In partial
allocation, if more tasks are considered, the quality of the
obtained solution is better, but it takes more time. When
q equals the total number of tasks, the algorithm searches
all feasible allocations and obtains the optimal one, but
the algorithm is computationally infeasible.

In the partial allocation phase, PTAS-ALLOC con-
siders the subset Q , where the number of Q is at most
q − 1 . PTAS-ALLOC iteratively considers the tasks of
subset Q executed on the MEC server and other tasks
executed locally, and confirms that these do not exceed
the resource constraints (lines 6-9). Then, it finds the
allocation that is the maximum energy-saving (lines
10-11). Note that PTAS-ALLOC searches all space in
this progress; hence, it obtains the optimal solution for
subset Q , where the number of Q is at most q − 1.

In the approximation allocation phase, PTAS-ALLOC
iterates over all subsets Q of q tasks (lines 13-34). Unlike the
second phase, PTAS-ALLOC considers not just the tasks of
the set Q but the other tasks. For each subset, if its tasks can
execute remotely and this is a feasible partial allocation, then
the remaining resources are divided into (K − q)2 parts,
each of size f̂r/(K − q)2 . Then, PTAS-ALLOC rounds the
number of required resources by the unallocated tasks, i.e.,

Fig. 1  High-level view of MAMEC of four mobile devices

Page 7 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

d̂rij = ⌈drij(K − q)2/f̂ r⌉ (lines 19-20), and uses the dynamic
programming approach to obtain an allocation.

We now describe the dynamic programming approach
to find an optimal allocation for the rounded required
resources (lines 21-28). We consider the subproblem
vi(k , c) , which includes the first i mobile devices with avail-
able subchannels k and the available capacity c in such a
way that vi(k , c) is the optimal value of the subproblem.
The dynamic programming recurrence can be defined as:

The recurrence considers two cases, local execution and
the selection of at most one task for remote execution. The
value vi−1(k , c) means all tasks of mobile device i execute
locally, and the value maxj∈Ti(vi−1(k − 1, c − d̂rij)+ Es

ij)
means selecting one task to offload. The value vi(k , c) is
the maximum between them, and then it is an optimal
value. When the final value vN (K − q, (K − q)2) is found,
PTAS-ALLOC saves the maximum allocation (lines
30-34). PTAS-ALLOC finds x by looking backward at
vN (K − q, (K − q)2) , as follows. If vi(k , c) = vi−1(k , c) ,
then the tasks of mobile device i execute locally, and
PTAS-ALLOC recursively works backward from
vi−1(k , c) . Otherwise, PTAS-ALLOC finds task tij satisfy-
ing vi(k , c) = vi−1(k − 1, c − d̂rij)+ Es

ij , which means task
tij is offloaded to the MEC server. Then, PTAS-ALLOC
recursively works backward from vi−1(k − 1, c − d̂rij) .
Finally, PTAS-ALLOC returns the best allocation (line
35).

Properties

Theorem 1  The approximation of PTAS-ALLOC is 1− ǫ.

Proof
Without loss of generality, let OPT be the optimal
value, and V the value generated by PTAS-ALLOC.
If no more than q tasks are offered to remotely pro-
cess in the optimal solution, then V is optimal, where
q = min{⌈1/ǫ⌉ − 1,K } , because PTAS-ALLOC con-
siders all subsets Q of at most q − 1 tasks in step 2 of
PTAS-ALLOC.

Otherwise, let {ti∗1 j∗i1 , ti
∗
2 j

∗
i2
, ..., ti∗qj

∗
iq
, ...} be the set of tasks in

an optimal solution ordered so that Es
i∗
1
j∗
i1

≥ Es
i∗
2
j∗
i2

≥

vi(k , c) = max{vi−1(k , c),

maxj∈Ti(vi−1(k − 1, c − d̂rij)+ Es
ij)}.

... ≥ Es
i∗
q
j∗
iq

≥ ... . In one iteration of step 3 of PTAS-ALLOC,

the algorithm considers sets Q∗ = {ti∗1 j
∗
i1
, ti∗2 j

∗
i2
, ..., ti∗qj

∗
iq
}

and S∗ =
∑

i∈N ∪Ti \Q
∗ . Let OPTS∗ be the optimal value

for S∗ . Then

The remaining resources of the MEC server can be allo-
cated to speed up execution. Without loss of generality,
we assume that all its resources are allocated in the opti-
mal allocation. Let l =

∑
ti∗ j∗∈Q

∗ dri∗j∗ . Let ti∗k j∗ik /∈ Q∗ be
the task that obtains the most resources. Then

Let VS∗ be the value generated by PTAS-ALLOC for S∗ .
PTAS-ALLOC searches all subsets Q when |Q| = q , so it
certainly searches the set Q∗ . We then have

For each task tij ∈ S∗ , we round up drij to the nearest mul-
tiple of f r−l

(K−q)2
 in PTAS-ALLOC. The rounding procedure

increases the number of required resources of unallo-
cated tasks. The algorithm selects at most K − q tasks;
hence, it adds at most (K − q) ·

f r−l

(K−q)2
=

f r−l
K−q resources

by rounding up.

This may lead to an infeasible allocation of required
resources based on the new rounded sizes. According to
(10), the resources obtained by task ti∗k j∗ik are more than
the most that PTAS-ALLOC adds. To make the alloca-
tion feasible, we can remove task ti∗k j∗ik such that it satisfies
capacity constraints while decreasing the objective func-
tion. Note that PTAS-ALLOC obtains the best solution
by removing task ti∗k j∗ik . Thus, we have

In the previous phase, the tasks were sorted in decreasing
order of energy-saving, and we have

We also have:

(9)OPT =
∑

ti∗ j∗∈Q
∗

Es
i∗j∗ + OPTS∗ .

(10)dri∗k j
∗
ik

≥
f r − l

K − q
,

(11)Ei∗k j
∗
ik
≤ OPTS∗ .

(12)V ≥
∑

ti∗ j∗∈Q
∗

Es
i∗j∗ + VS∗ .

(13)VS∗ ≥ OPTS∗ − Es
i∗k j

∗
ik

.

(14)Es
i∗k j

∗
ik

≤ minti∗ j∗∈Q∗Es
i∗j∗ .

Page 8 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

where the first inequality follows from (11) and (14); and
the third equation follows from (9).

Clearly, then,

where the first inequality follows from (12); the second
inequality follows from (13); the third equation follows
from (9); and the fourth inequality follows from (15).

Theorem 2  The time complexity of PTAS-ALLOC is
O(Tq(K − q)3) , where T is the number of tasks.

Proof
The exhaustive search to find a partial allocation is based
on the total number of allocations of q tasks which is ∑q

i=1(
T
i) ≤ Tq . The time complexity of the approximation

allocation is O(Tq(K − q)3) . Therefore, the time complex-
ity of PTAS-ALLOC is O(Tq(K − q)3).◻

Definition 1  PTAS [36] A maximization problem has
a PTAS if for every instance I and for every ǫ , it finds a
solution V for I in time polynomial in the size of I that
satisfies V (I) ≥ (1− ǫ)V ∗(I) , where V ∗(I) it the optimal
value of a solution for I.

Theorem 3  The PTAS-ALLOC algorithm is a PTAS.

Proof
The solution obtained by PTAS-ALLOC is in a (1− ǫ)
neighborhood of the optimal (Theorem 1), and the time
complexity of PTAS-ALLOC is polynomial in T (Theo-
rem 2). Therefore, PTAS-ALLOC is PTAS.◻

(15)

Es
i∗k j

∗
ik

≤
qminti∗ j∗∈Q∗Es

i∗j∗ + OPTS∗

q + 1

≤

∑
ti∗ j∗∈Q

∗ Es
i∗j∗ + OPTS∗

q + 1

=
OPT

q + 1
,

V ≥

∑

ti∗ j∗ ∈Q
∗

Es
i∗ j∗

+ VS∗

≥

∑

ti∗ j∗ ∈Q
∗

Es
i∗ j∗

+ OPTS∗ − Es
i∗
k
j∗
ik

= OPT − Es
i∗
k
j∗
ik

≥ OPT −
OPT

q + 1

= (1 −
1

q + 1
)OPT ,

Theorem 4  The time complexity of PTAS-MAMEC is
O(Tq(K − q)3) , where T is the number of tasks.

Proof
PTAS-MAMEC needs O(T 2) to allocate resources in step
2. Then, PTAS-MAMEC calls PTAS-ALLOC to determine
the allocation in step 3. Therefore, the time complexity of
PTAS-MAMEC is O(Tq(K − q)3).◻

Simulation Results
In this section, we compare the PTAS-MAMEC algo-
rithm to the All Request Admission Algorithm (ARAA)
[21] and the optimal solution obtained by the B &B algo-
rithm [42]. Note that the MEC system accepts all requests
and randomly discards more than K tasks [21]. If solving
an optimal solution that is not feasible, we ignore the
constraints (2) in the optimal solution. The experimental
platform environment uses C# in Visual Studio 2013. All
the simulations were run on a machine with Intel CPU i5
2.8 GHz and 16 GB memory.

Experimental Setup
We assume that mobile devices are uniformly distrib-
uted in a cell with radius 250 m [21]. The transmission
bandwidth B and transmitting power ρ of a mobile device
are 20 MHz and 0.5 W [36], respectively. We assume
the wireless channel gain of mobile device i ∈ N is
hi = 127+ 30 ∗ logwi , where wi is the distance between
mobile device i and the AP [36]. We assume that the AP
serves at most K = 15 mobile devices simultaneously,
and the deadline of task runtimereq , in seconds, is uni-
formly distributed over [1, 1.5] [21].

Each mobile device has a set of tasks to execute, with
a maximum of three per device. The parameters used in
the simulation are summarized in Table 3. We average
over 1000 simulations to obtain data points and eliminate
randomness.

Performance of Different Numbers of Mobile Devices
We compare the performance of PTAS-MAMEC, B
&B and ARAA for different number of mobile devices,
ranging from 15 to 25. For PTAS-MAMEC, the
selected ǫ values are 0.4, 0.5, corresponding to q equal-
ling 2, 1, respectively. Note that parameter ǫ depends
only on the accuracy of the solution, not on the spe-
cific actual problem. Figure 2a shows the total energy
consumption obtained by these algorithms. We can see
that the total energy consumption obtained by PTAS-
MAMEC is very close to the optimal solution. Note
that PTAS-MAMEC with smaller ǫ can find better

Page 9 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

solutions. This is because PTAS-MAMEC with smaller
ǫ will search more partial allocations to obtain better
solutions. Then, PTAS-MAMEC with smaller ǫ spends
more time. The main idea of ARAA is to select some
tasks at random; thus, it obtains the maximum total
energy consumption. This gap is amazing given the
fact that our proposed PTAS-MAMEC performs very
well.

Figure 2b shows the execution times of the algorithms
on a logarithmic scale. The ARAA algorithm randomly
selects tasks, and then it is very fast and there are no
bars in the plots for it. The results show that the execu-
tion time increases with the number of mobile devices.
We observe that PTAS-MAMEC with ǫ = 0.5 is the
fastest, and it spends much less time than B &B. This is
because the complexity of PTAS-MAMEC depends on
the number of tasks, and the execution time of PTAS-
MAMEC is polynomial in the number of tasks. Accord-
ing to the results of Fig. 2a and 2b, PTAS-MAMEC
with ǫ = 0.5 can obtain the near-optimal solutions very
quickly; thus, it is beneficial for MEC to use this algo-
rithm rather than PTAS-MAMEC with ǫ = 0.4.

Figure 2c shows the average percentage of satisfied
tasks. We see that this is less for B &B than for PTAS-
MAMEC, because the objective of B &B is to find the
minimum total energy consumption without consid-
ering deadlines. Obviously, almost all tasks satisfy
deadlines when allocated by PTAS-MAMEC. This is
can conclude that PTAS-MAMEC not only finds the
near optimal solutions but also considers the deadline
constraints.

Figure 3a shows the average energy consumption per
device. The results show that the average energy con-
sumption per device increases as the number of devices
increases. We observe that B &B has the minimum
energy consumption per device, which is consistent

with obtaining minimum total energy consumption.
Obviously, the average energy consumption per device
obtained by B &B and PTAS-MAMEC are fairly simi-
lar. From this, we can conclude that PTAS-MAMEC can
reduce energy consumption and save the battery power
of mobile devices.

Figure 3b shows the average runtime per task. The
results show that the average runtime per task increases
as the number of mobile devices increases. Note that
for PTAS-MAMEC, this is longer for ǫ = 0.4 than for
ǫ = 0.5 . This is because, to minimize total energy con-
sumption, with ǫ = 0.4 , just enough resources are allo-
cated to tasks to meet their deadlines.

Figure 3c shows the utilization of computational
resources of mobile devices. ARAA obtains the high-
est resource utilization because it selects offloading tasks
at random, without considering the demand. PTAS-
MAMEC with ǫ = 0.5 has higher utilization than PTAS-
MAMEC with ǫ = 0.4 and B &B, but they are very close.
This can conclude that PTAS-MAMEC can better utilize
resources.

Performance of Different Deadlines
We evaluate the performance of algorithms for dif-
ferent deadlines. The number of mobile devices is 20,
and the deadline ranges from 0.8 s to 1.5 s. Figure 4a
shows the total energy consumption obtained by the
algorithms. The results show that the total energy
consumption decreases as the deadline increases. The
required resources decrease as the deadline increases.
That is, tasks need more resources and consume more
energy when the deadline is shorter. We observe that
the total energy consumption obtained by PTAS-
MAMEC is more than that of B &B when the dead-
line is less than 1.3 s, and PTAS-MAMEC obtains the
near-optimal solutions in other cases. This is because

Fig. 2  PTAS-MAMEC versus B&B & ARAA: a Total energy consumption; b Execution time; c Average percentage of satisfied tasks (*B &B was not able
to determine the allocation ranging from 23 to 25 mobile devices in feasible time, and thus, there are no bars in the plots for those cases)

Page 10 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

PTAS-MAMEC tries to satisfy demands to increase
energy consumption (see Fig. 4b), and B &B has the
objective to minimize total energy consumption while
ignoring the deadline constraints.

Figure 4b shows the average percentage of satisfied
tasks. The results show that the number of satisfied
tasks increases as the deadline increases. Note that the
average percentage of satisfied tasks obtained by PTAS-
MAMEC is greater than that of B &B and ARAA. All
tasks execute successfully in PTAS-MAMEC when
the deadline is more than 1.2 s, while the percentages
of satisfied tasks obtained by B &B and ARAA are less
than 100% when the deadline is 1.5 s. This is because
PTAS-MAMEC can effectively increase the number of
satisfied tasks.

Figure 5a shows the average percentage of offloading
tasks. The result shows that the average percentage of
offloading tasks increases as the deadline increases. Fig-

ure 5b shows the utilization of computational resources
of mobile devices. The results show that the utilization
of computational resources decreases as the deadline

Fig. 3  PTAS-MAMEC versus B&B & ARAA: a Average energy consumption per device; b Average runtime per task; c Computational resource
utilization (*see note in Fig. 2)

Table 3  Simulation parameters

Parameters Description Assumptions

B Transmission bandwidth 20MHz

ρ Transmitting power of device 0.5W

runtimereq Deadline [1, 1.5]s

f l Local computational capability [1.2, 2]GHz

size Data size [100, 500]kB

f r Remote computational capability [10, 15]GHz

Fig. 4  PTAS-MAMEC versus B&B & ARAA (different deadline instances): a Total energy consumption; b Average percentage of satisfied tasks

Page 11 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

increases. This is because the loose deadline leads to
fewer demands. From this experiment, we can observe
that PTAS-MAMEC performs well in latency-sensitive
environments.

Performance of Different Numbers of Required Tasks
We evaluate the performance of PTAS-MAMEC for
different number of required tasks. We assume the
maximum number of tasks of each mobile device
ranges from 1 to 5, and the number of mobile devices
is 20. Figure 6a shows the total energy consumption

obtained by the algorithms. We observe that the gap
between optimal and approximate solutions obtained
by PTAS-MAMEC increases with the number of tasks.
However, this gap is very small. This can conclude that
PTAS-MAMEC performs very well.

Figure 6b shows the average percentage of satisfied
tasks. The results show the number of satisfied tasks
decreases as the number of required tasks increases.
We observe that the percentage of satisfied tasks
obtained by PTAS-MAMEC is larger than that of B
&B and ARAA. Note that PTAS-MAMEC can meet

Fig. 5  PTAS-MAMEC versus B&B & ARAA (different deadline instances): a Average percentage of offloading tasks; b Computational resource
utilization

Fig. 6  PTAS-MAMEC versus B&B & ARAA with different numbers of required tasks: a Total energy consumption; b Average percentage of satisfied
tasks

Page 12 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

almost all tasks when the number of required tasks is
less than 3, while B &B and ARAA cannot. According
to Fig. 6a and 6b, we can see that PTAS-MAMEC not
only obtains the near-optimal solutions but meets more
demands.

Figure 7a shows the average runtime per task. Fig-
ure 7b shows the average energy consumption per
device. The results show that the average runtime per
task and the average energy consumption per device
increase as the number of required tasks increases.
We observe that the average runtime and energy con-
sumption obtained by PTAS-MAMEC are very close
to the optimal solutions. This can conclude that PTAS-
MAMEC can efficiently use resources to save energy and
serve more tasks. From this experiment, we can observe

that PTAS-MAMEC performs well regardless of task
properties.

Performance Over Time
We evaluate the performance of algorithms over a
period of 24 hours. This simulation runs using between
15 and 22 mobile devices that dynamically arrive each
hour. Figure 8a shows the total energy consumption
by these algorithms. We observe that PTAS-MAMEC
obtains the near-optimal solutions and the optimality
gap is very small in all cases. Figure 8b shows the exe-
cution times of these algorithms. The results show that
PTAS-MAMEC with ǫ = 0.5 is fast, and B &B spends
too much time on calculations. This can conclude that
PTAS-MAMEC with ǫ = 0.5 provides quality ser-
vice in a shorter response time and can increase cus-
tomer satisfaction. Figure 8c shows the average energy

Fig. 7  PTAS-MAMEC versus B&B & ARAA with different numbers of required tasks: a Average runtime per task; b Average energy consumption per
device

Fig. 8  PTAS-MAMEC versus B&B over time: a Total energy consumption; b Execution time; c Average energy consumption per device

Page 13 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71 	

consumption per device. PTAS-MAMEC obtains near-
optimal solutions, and we can conclude that it is effec-
tive at reducing energy consumption and improving
mobile device performance.

From all of the above results, we can observe that
PTAS-MAMEC not only finds the near-optimal solutions
but also the execution time only depends on the number
of tasks and the selected ǫ . In addition, PTAS-MAMEC
performs very well in different environments. As a result,
we can conclude that PTAS-MAMEC is a good candidate
for deployment on the current MEC.

Conclusion and Future Work
We address the problem of multi-task allocation in
mobile edge computing Since the MAMEC problem is
computationally difficult, we proposed an approxima-
tion algorithm using a dynamic programming approach.
In addition, we analyzed the approximation ratio of
our proposed algorithm and showed it is a polynomial
time approximation scheme. Therefore, it achieves the
tradeoff between optimality loss and time complexity.
The objective of our proposed algorithm is to minimize
total energy consumption on the premise that tasks can
be completed before deadlines. Experimental results
demonstrated that the proposed algorithm obtained
the near-optimal solutions while meeting deadlines.
Designing better algorithms is the focus of our next
research.

Abbreviations
MEC: Mobile edge computing; PTAS: Polynomial time approximation scheme;
MAMEC: Multi-task allocation in mobile edge computing; AP: Access point;
NOMA: Non-orthogonal multiple access.

Acknowledgements
The authors would like to thank all peer reviewers for their good comments.

Authors’ contributions
Xi Liu and Jun Liu have written this paper and have done the research which
supports it. Jun Liu helped with the revision and gave instructional sugges-
tions regarding experiments and writing. All authors read and approved the
final manuscript.

Authors’ information
Jun Liu received the B.E. degree in department of mathematics, from Yunnan
University in 1993. He is currently a professor with the Department of CInsti-
tute of Applied Mathematics of Qujing Normal University. His main research
interests include cloud computing and distributed systems. Xi Liu received the
Ph.D. degree in department of the School of Information Science & Engineer-
ing, from Yunnan University in 2018. He is currently with the Qujing Normal
University. His main research interests include big data, cloud computing,
mobile computing, and edge computing.

Funding
This work was supported in part by the Chinese Natural Science Foundation
under Grant 11361048, in part by the Yunnan Natural Science Foundation
under Grant 2017FH001-014, in part by the Yunnan Science Foundation under
Grant 2019J0613, and in part by the Qujing Normal University Science Foun-
dation under Grant ZDKC2016002.

Availability of data and materials
The datasets used or analysed during the current study are available from the
corresponding author on reasonable request.

Declarations

Competing interests
The authors declare there is no conflicts of interest regarding the publication
of this paper.

Author details
1 Institute of Applied Mathematics, Qujing Normal University, Qujing, China.
2 School of Information Engineering, Qujing Normal University, Qujing, China.

Received: 11 November 2021 Accepted: 5 October 2022

References
	1.	 Davy S, Famaey J, Serrat J, Gorricho LJ, Miron A, Dramitinos M, Neves MP,

Latre S, Goshen E (2014) Challenges to support edge-as-a-service. IEEE
Commun Mag 52(1):132–139

	2.	 Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile
edge computing: the communication perspective. IEEE Commun Surv
Tutor 19(4):2322–2358

	3.	 Kuang L, Tu S, Zhang Y, Yang X (2020) Providing privacy preserving in next
POI recommendation for Mobile edge computing. J Cloud Comput Adv
Syst Appl 9:10

	4.	 Zhang W, Wen Y, Wu J, Li H (2013) Toward a unified elastic computing
platform for smartphones with cloud support. IEEE Netw 27(5):34–40

	5.	 Zhou F, Hu QR (2020) Computation efficiency maximization in wireless-
powered mobile edge computing networks. IEEE Trans Wirel Commun
19(5):3170–3184

	6.	 Keller H, Pferschy U, Pisinger D (2004) Knapsack Problems. Springer, Berlin,
Heidelberg

	7.	 Cheng Z, Li P, Wang J, Guo S (2015) Just-in-time code offloading for wear-
able computing. IEEE Trans Emerg Top Comput 3(1):74–83

	8.	 Zhang W, Wen Y, Wu OD (2015) Collaborative task execution in mobile
cloud computing under a stochastic wireless channel. IEEE Trans Wirel
Commun 14(1):81–93

	9.	 Muñoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading. IEEE Trans Veh Technol 64(10):4738–4755

	10.	 Zhang Y, Liu Y, Zhou J, Sun J, Li K (2020) Slow-movement particle swarm
optimization algorithms for scheduling security-critical tasks in resource-
limited mobile edge computing. Futur Gener Comput Syst 112:148–161

	11.	 Zhan W, Luo C, Min Wang C, Zhu Q, Duan H (2020) Mobility-aware multi-
user offloading optimization for mobile edge computing. IEEE Trans Veh
Technol 69(3):3341–3356

	12.	 Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and
resource management for IoT batch jobs in mobile edge computing.
Peer Peer Netw Appl 13:1776–1787

	13.	 Liu X, Liu J, Wu H (2022) Energy-aware allocation for delay-sensitive multi-
task in mobile edge computing. J Supercomput. https://​doi.​org/​10.​1007/​
s11227-​022-​04550-z

	14.	 Apostolopoulos AP, Tsiropoulou EE, Papavassiliou S (2020) Risk-aware data
offloading in multi-server multi-access edge computing environment.
IEEE/ACM Trans Netw 28(3):1405–1418

	15.	 Chen Y, Li Z, Yang B, Nai K, Li K (2020) A stackelberg game approach to
multiple resources allocation and pricing in mobile edge computing.
Future Gener Comput Syst 108:273–287

	16.	 Pu L, Chen X, Xu J, Fu X (2016) D2D fogging: an energy-efficient and
incentive-aware task offloading framework via network-assisted d2d col-
laboration. IEEE J Sel Areas Commun 34(12):3887–3901

	17.	 Chen X (2015) Decentralized computation offloading game for mobile
cloud computing. IEEE Trans Parallel Distrib Syst 26(4):974–983

	18.	 Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw
24(5):2795–2808

https://doi.org/10.1007/s11227-022-04550-z
https://doi.org/10.1007/s11227-022-04550-z

Page 14 of 14Liu and Liu ﻿Journal of Cloud Computing (2022) 11:71

	19.	 Liu Y, Lee JM, Zheng Y (2016) Adaptive multi-resource allocation for cloudlet-based
mobile cloud computing system. IEEE Trans Mob Comput 15(10):2398–2410

	20.	 Lyu X, Ni W, Tian H, Liu PR, Wang X, Giannakis BG, Paulraj A (2017) Optimal
schedule of mobile edge computing for internet of things using partial
information. IEEE J Sel Areas Commun 35(11):2606–2615

	21.	 Lyu X, Tian H, Ni W, Zhang Y, Zhang P (2018) Energy-efficient admission
of delay-sensitive tasks for mobile edge computing. IEEE Trans Commun
66(6):2603–2616

	22.	 Wang F, Xu J, Wang X, Cui S (2018) Joint offloading and computing
optimization in wireless powered mobile-edge computing systems. IEEE
Trans Wirel Commun 17(3):1784–1797

	23.	 Chen M, Hao Y (2018) Task offloading for mobile edge computing in
software defined ultra-dense network. IEEE J Sel Areas in Commun
36(3):587–597

	24.	 Chen Y, Zhang Y, Wu Y, Qi L, Chen X, Shen X (2020) Joint task scheduling
and energy management for heterogeneous mobile edge computing
with hybrid energy supply. IEEE Internet Things J 7(9):8419–8429

	25.	 Wang F, Xing H, Xu J (2020) Real-time resource allocation for wireless
powered multiuser mobile edge computing with energy and task causal-
ity. IEEE Trans Commun 68(11):7140–7155

	26.	 Zhang Y, Lan X, Ren J, Cai L (2020) Efficient computing resource sharing
for mobile edge-cloud computing networks. IEEE/ACM Trans Netw
8(3):1227–1240

	27.	 Park C, Lee J (2021) Mobile edge computing-enabled heterogeneous
networks. IEEE Trans Wirel Commun 20(2):1038–1051

	28.	 Liu X, Liu J (2021) A truthful double auction mechanism for multi-
resource allocation in crowd sensing systems. IEEE Trans Serv Comput.
https://​doi.​org/​10.​1109/​TSC.​2021.​30755​41

	29.	 Zhao C, Lei Z, Yukui P, Chunxiao J, Liuguo Y (2022) NOMA-based multi-user
mobile edge computation offloading via cooperative multi-agent deep
reinforcement learning. IEEE Trans Cogn Commun Netw 8(1):350–364

	30.	 Nima N, Ahmadreza E, Jamshid A, Muhammad J, Alagan A (2020)
Dynamic power-latency tradeoff for mobile edge computation offload-
ing in NOMA-based networks. IEEE Internet Things J 7(4):2763–2776

	31.	 Zhao C, Xiaodong W (2020) Decentralized computation offloading for
multi-user mobile edge computing: a deep reinforcement learning
approach. EURASIP J Wireless Commun Netw 188. https://​doi.​org/​10.​
1186/​s13638-​020-​01801-6

	32.	 Elgendy AT, Zhang W, Zeng Y, He H, Tian Y, Yang Y (2020) Efficient and secure
multi-user multi-task computation offloading for mobile-edge computing
in mobile iot networks. IEEE Trans Netw Serv Manag 17(4):2410–2422

	33.	 Chen M, Liang B, Dong M (2018) Multi-user multi-task offloading and
resource allocation in mobile cloud systems. IEEE Trans Wirel Commun
17(10):6790–6805

	34.	 Huang L, Feng X, Zhang L, Qian L, Wu Y (2019) Multi-server multi-user
multi-task computation offloading for mobile edge computing networks.
Sensors (Basel) 19(6):1446

	35.	 Chen W, Wang D, Li K (2019) Multi-user multi-task computation offload-
ing in green mobile edge cloud computing. IEEE Trans Serv Comput
12(6):726–738

	36.	 Liu X, Liu J, Wu H (2021) Energy-efficient task allocation of heterogeneous
resources in mobile edge computing. IEEE Access 9:119700–119711

	37.	 Bai T, Pan C, Deng Y, Elkashlan M, Nallanathan A, Hanao L (2020) Latency
minimization for intelligent reflecting surface aided mobile edge com-
puting. IEEE J Sel Areas Commun 38(11):2666–2682

	38.	 Khan AR, Othman M, Madani SA, Khan SU (2014) A survey of mobile cloud
computing application models. IEEE Commun Surv Tutor 16(1):393–413

	39.	 Lin X, Wang Y, Xie Q, Pedram M (2015) Task scheduling with dynamic volt-
age and frequency scaling for energy minimization in the mobile cloud
computing environment. IEEE Trans Serv Comput 8(2):175–186

	40.	 Caprara A, Kellerer H, Pferschy U, Pisinger D (2000) Approximation algo-
rithms for knapsack problems with cardinality constraints. Eur J Oper Res
123(2):333–345

	41.	 Dobzinski S, Nisam N (2010) Mechanisms for multi-unit auctions. J Artif
Intell Res 37:85–98

	42.	 Garfinkel SR, Nemhauser LG (1972) Integer Programming. Wiley, New York

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TSC.2021.3075541
https://doi.org/10.1186/s13638-020-01801-6
https://doi.org/10.1186/s13638-020-01801-6

	Energy-efficient allocation for multiple tasks in mobile edge computing
	Abstract
	Introduction
	Related Work
	Organization

	Problem Formulation
	System Model
	Mathematical Formulation

	MAMEC Allocation Algorithm
	PTAS-ALLOC: Allocation Algorithm of PTAS-MAMEC
	Properties

	Simulation Results
	Experimental Setup
	Performance of Different Numbers of Mobile Devices
	Performance of Different Deadlines
	Performance of Different Numbers of Required Tasks
	Performance Over Time

	Conclusion and Future Work
	Acknowledgements
	References

