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Abstract 

Mobile edge computing (MEC) allows a mobile device to offload tasks to the nearby server for remote execution to 
enhance the performance of user equipment. A major challenge of MEC is to design an efficient algorithm for task 
allocation. In contrast to previous work on MEC, which mainly focuses on single-task allocation for a mobile device 
with only one task to be completed, this paper considers a mobile device with multiple tasks or an application with 
multiple tasks. This assumption does not hold in real settings because a mobile device may have multiple tasks 
waiting to execute. We address the problem of task allocation with minimum total energy consumption consider-
ing multi-task settings in MEC, in which a mobile device has one or more tasks. We consider the binary computation 
offloading mode and formulate multi-task allocation as an integer programming problem that is strongly NP-hard. We 
propose an approximation algorithm and show it is a polynomial-time approximation scheme that saves the maxi-
mum energy. Therefore, our proposed algorithm achieves a tradeoff between optimality loss and time complexity. We 
analyze the performance of the proposed algorithm by performing extensive experiments. The results of the experi-
ments demonstrate that our proposed approximation algorithm is capable of finding near-optimal solutions, and 
achieves a good balance of speed and quality.

Keywords:  Mobile edge computing, Energy efficient, Computation offloading, Polynomial time approximation 
scheme
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Introduction
With the rapid development of the smartphone and the 
Internet of Things, mobile applications such as facial rec-
ognition, natural language processing, mobile social media, 
vehicular systems, and interactive gaming require exten-
sive computing power and abundant energy. However, 
mobile devices generally have limited computing power 
and battery life, and cannot meet the demands of such 
tasks. Cloud computing, such as Amazon Web Services 
and Microsoft Azure, has many hardware resources, but 
usually cannot provide latency-sensitive quality of service 
at scale. Sitting at the edge of the internet, the edge cloud 
can provide service with lower latency than cloud com-
puting and more powerful hardware than mobile devices, 

thereby enhancing the user experience [1, 2]. Mobile 
devices can reduce their computing time by offload-
ing tasks to nearby servers for processing at the network 
edge[3]. Mobile edge computing (MEC) solves the prob-
lem of running resource-intensive applications with the 
limited capability of mobile devices [4]. However, unlike 
cloud computing, with its abundant hardware resources, 
the MEC server with limited resources sometimes cannot 
satisfy the requirements of all mobile devices. In this study, 
we consider task allocation in MEC and minimize the total 
energy consumption, which is the sum of the local energy 
consumption and the remote energy consumption.

Research on MEC has focused on one mobile device with 
one task. This assumption may not fit well for MEC in a real-
istic environment, for two reasons. First, a mobile device may 
have multiple tasks waiting to execute at the same time, such 
as interactive gaming and speech communication, where the 
first is resource-intensive and the second is latency-sensitive. 
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Second, a mobile application always has the main task and 
other small tasks. For example, a user identification applica-
tion may include a facial recognition task and some process-
ing tasks. Therefore, it is necessary to consider multi-task 
allocation in MEC. Unfortunately, no algorithms have been 
designed to consider this problem in the existing literature. 
Motivated by this scenario, we consider in this paper the 
multi-task allocation setting. We assume a mobile device 
can offload at most one task for remote execution, such as 
a resource-hungry task, while other tasks execute locally to 
meet latency and reduce energy consumption. It is to ensure 
fairness so that each mobile device has the opportunity to 
upload one resource-hungry task for remote execution. By 
considering multi-task allocation, the remote resources of 
an MEC server and local resources of mobile devices can be 
utilized effectively to execute more tasks and significantly 
reduce total energy consumption.

We consider the binary computation offloading mode, 
in which a task cannot be partitioned, and is either locally 
executed or completely offloaded to the MEC server [5]. 
Some tasks can execute successfully as a whole locally or 
on an MEC server, and some cannot be divided into smaller 
units. If some mobile devices transmit data at the same time, 
this operation may cause wireless interference with each 
other, thereby increasing transmission delay and energy 
loss. Hence, we consider limited frequency subchannels, 
i.e., only a certain number of mobile devices are allowed to 
transmit data at the same time to improve transmission effi-
ciency and save energy consumption. In addition, a latency-
intensive task must be finished before its deadline, so we 
also consider the deadline constraints. However, the multi-
task allocation problem cannot be modeled by any knapsack 
problem. Unfortunately, there are no existing algorithms to 
consider binary computation offloading mode, limited fre-
quency subchannels, and deadline constraints. Thus, exist-
ing algorithms cannot be directly applied to the multi-task 
allocation problem. The multi-task allocation problem with-
out deadline constraints can be considered as a multiple-
choice knapsack problem with cardinality constraints. It is 
the integer programming problem that is strongly NP-hard, 
and there is no fully polynomial time approximation scheme 
(FPTAS) for solving it, unless P = NP [6]. Obtaining the 
optimal allocation is computationally difficult; hence, 
designing an efficient algorithm to solve the multi-task allo-
cation problem is of major interest.

In this paper, we address the problem of multi-task 
allocation in mobile edge computing (MAMEC). We 
believe this is the first study to design a PTAS algorithm 
for multi-task allocation in MEC. The key contributions 
of this paper are summarized as follows.

•	 A multi-task allocation environment is introduced, 
where each mobile device with one or more tasks 

can offload at most one resource-intensive task to an 
MEC server for remote execution. This goes beyond 
the bulk of the current research, which primarily 
addresses the problem of one task per mobile device.

•	 We model the problem of multi-task allocation in 
an accurate mathematical model. By considering 
the binary computation offloading mode and lim-
ited frequency subchannels, the MAMEC problem 
is an integer programming problem that is strongly 
NP-hard. In the absence of computationally tractable 
optimal algorithms to solve this problem, we design 
an efficient allocation algorithm to obtain the near-
optimal solutions, whose key property is to con-
sider mobile devices with one or more tasks, which 
is the case in a real MEC setting. We show our pro-
posed approximation algorithm is a polynomial time 
approximation scheme (PTAS), which is by far the 
strongest approximation result that can be achieved 
for this problem, unless P = NP.

•	 Extensive experiments investigate the performance 
of our proposed approximation algorithm compared 
to the optimal solutions. The results show that our 
proposed algorithm can find near-optimal solutions 
and achieve a good balance of speed and quality.

Related Work
Early research mainly focused on a single device or sin-
gle user. Cheng et  al. [7] considered the code offloading 
problem and proposed a heuristic algorithm based on the 
Genetic Algorithm. Zhang et al. [8] considered the collabo-
rative task execution problem and proposed the algorithms 
to obtain the optimal and approximation solutions. Munoz 
et al. [9] presented a general framework to optimize com-
munication and computational resources usage. Zhang 
et al. [10] proposed the particle swarm optimization algo-
rithm to schedule the tasks. However, only a single mobile 
device was taken into consideration in the above works.

Recently, researchers investigated task allocation 
among multiple devices [11–13]. Some works focused on 
equilibrium [14, 15]. Pu et al. [16] formulated an online 
task offloading problem and proposed a framework 
based on network-assisted device-to-device collabora-
tion. Some works considered the Nash equilibrium [17, 
18]. Chen et al. [17] proposed a decentralized computa-
tion offloading mechanism. Chen et  al. [18] proposed a 
game-theoretic approach for task offloading. Liu et  al. 
[19] proposed a multi-resource allocation approach. 
Lyu et  al. [20] proposed asymptotically optimal offload-
ing schedules based on Lyapunov optimization tech-
niques. Lyu et al. [21] considered the task admission and 
resource allocation problem. Wang et  al. [22] consid-
ered an MEC server with a base station and proposed a 
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joint optimization allocation problem. Chen et  al. [23] 
designed software defined task offloading for the task 
offloading problem. Chen et al. [24] considered the joint 
task scheduling and energy management problem in het-
erogeneous MEC. Wang et  al. [25] considered the real-
time online resource allocation problem. Zhang et  al. 
[26] formulated the computing resource management as 
profit maximization problems. Park et al. [27] considered 
the multi-type users with different computation task sizes 
and provided the framework for MEC-enabled heteroge-
neous networks. Liu et al. [28] considered task allocation 
with many-to-one mapping in crowd sensing systems. 
However, some of the above works did not consider lim-
ited frequency subchannels, nor multi-task allocation.

Researchers approached the problem of multiple users 
or multiple tasks [29–31]. Elgendy et  al. [32] considered 
the security layer in the MEC and proposed the lineari-
zation and binary relaxation approaches. Chen et al. [33] 
considered the MEC system consisting of multiple mobile 
devices and one server. Huang et  al. [34] considered the 
network’s quality of service and proposed the algorithm 
based on a linear programming relaxation. Chen et al. [35] 
considered a renewable mobile edge cloud system and pro-
posed centralized and distributed greedy scheduling algo-
rithms. However, they did not consider limited frequency 
subchannels or deadline constraints. Our work is different 
from all previous works. In this paper, we consider multi-
task allocation with binary computation offloading mode 
and limited frequency subchannels and design an approxi-
mation algorithm to solve the MAMEC problem. Table 1 
summarizes the differences between the existing works.

Organization
The remainder of this paper is organized as follows. Sec-
tion 2 describes the system model. Section 3 introduces 
our approximation algorithm and characterizes its prop-
erties. Section  4 evaluates the performance of the algo-
rithm. Section 5 summarizes the results.

Problem Formulation
System Model
The MEC system consists of an access point (AP) and the 
MEC server, where the AP and the MEC server are con-
nected using high-throughput optical fiber. Hence, the 
transmission delay between them can be ignored [37]. 
We assume that the mobile devices associated with the 
AP by non-orthogonal multiple access (NOMA) proto-
col. NOMA enables all the mobile devices to simultane-
ously offload their tasks so that offloading throughput can 
be improved. We assume the MEC system can support up 
to K mobile devices to transmit data at the same time. We 
assume each mobile device can offload at most one task 
to increase wireless access efficiency. We consider a set of 

collocated mobile devices, N = {1, ...,N } , where mobile 
device i ∈ N  has some latency- or computing-intensive 
tasks to be completed. Let Ti be the set of tasks of mobile 
device i ∈ N  . Note that one mobile device can have one or 
more tasks ( |Ti| ≥ 1 ). We assume task tij ∈ Ti needs to be 
completed before deadline runtime

req
ij .

We first consider a task computed locally. Let bij be the 
required number of CPU cycles to accomplish task tij . The 
information of bij can be obtained by applying program 
profiler [38]. Let f li  be the local computational capability of 
mobile device i ∈ N  in cycles per second, and runtimelij the 
time consumed to locally process task tij,

where dlij is the number of local CPU cycles assigned 
to task tij in each second. Note that dlij is unknown and 
is decided by the allocation algorithm. For example, 
we assume a task tij needs 100 CPU cycles to meet the 
deadline. If the algorithm allocates dlij = 200 CPU cycles 
to task tij , it can finish in a shorter time. However, if 
the algorithm allocates dlij = 50 , it cannot finish by the 
deadline.

The energy consumption of each CPU cycle can be 
denoted by κ(f li )

2 , where κ is the energy coefficient [17]. 
Let El

ij be the energy consumption of task tij locally calcu-
lated [39],

where κ = 10−28 [22].
Second, we consider remote computing. Let hi be the chan-

nel gain between the AP and mobile device i ( ∀i ∈ N  ). We 
assume that the mobile device will not move too much while 
uploading tasks. Hence, hi is a constant [36]. The uplink data 
rate of mobile device i ( ∀i ∈ N  ) can be given by [30]

runtimelij = bij/d
l
ij ,

El
ij = κ(f li )

2bij ,

ri = B log2(1+
ρihi

1+ j∈N ρjhj ∐ (hj > hi)
),

Table 1  Comparison of existing works

Reference Multi-task Deadline Optimality

[14] ×
√

Optimal

[18] × × Approx.

[21] ×
√

Approx.

[22] ×
√

Optimal

[24] × × Optimal

[25] ×
√

Optimal

[28] × × Approx.

[36] ×
√

PTAS approx.

This paper
√ √

PTAS approx.
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where B is the channel bandwidth, ρi is the transmission 
power of the mobile device, and ∐ is the indicator func-
tion which takes the value 1 if its argument is correct and 
takes the zero value, otherwise.

Let runtimetraij  be the transmission duration of task tij , as 
given by

where sizeij is the data size of task tij . The remote process-
ing duration runtime

pro
ij  can be defined as:

where drij is the number of remote CPU cycles assigned 
to task tij in each second. Since the data size of the result 
is generally small compared to the raw data [17, 22], we 
neglect the downlink transmission delay. Hence, the total 
time duration on MEC server can be defined as:

If task tij is offloaded to the MEC server for remote exe-
cution, the energy consumption is only calculated for 
transmission energy consumption. Then, the transmis-
sion energy consumption of a mobile device to send sizeij 
bits to the MEC server can be defined as:

Without loss of generality, we assume bij > 0 , sizeij > 0 
and f li > 0 , ∀i ∈ N , j ∈ Ti . The symbols used in this 
paper are summarized in Table 2.

Mathematical Formulation
The integer programming formulation of the MAMEC 
problem (called IP-MAMEC) can be formulated as 
follows:

runtimetraij = sizeij/ri,

runtime
pro
ij = bij/d

r
ij ,

runtimerij =runtimetraij + runtime
pro
ij

=sizeij/ri + bij/d
r
ij .

Er
ij = ρiruntimetraij = ρisizeij/ri.

(1)min
∑

i∈N

∑

j∈Ti

xijE
r
ij +

∑

i∈N

∑

j∈Ti

(1− xij)E
l
ij

(2)
s.t.: xijruntimerij + (1− xij)runtimelij

≤ runtime
req
ij , ∀i ∈ N , j ∈ Ti,

(3)
∑

j∈Ti

dlij(1− xij) ≤ f li , ∀i ∈ N ,

(4)
∑

i∈N

∑

j∈Ti

drijxij ≤ f r ,

The decision variable is defined as xij = 1 if task tij is pro-
cessed on the MEC server, and 0 if it is processed locally. 
The objective (1) is to minimize total energy consump-
tion. Constraints (2) guarantee that the time duration 
does not exceed the deadline. Constraints (3) guarantee 
that the allocation capacity does not exceed the available 
capacity for each mobile device. Constraints (4) guar-
antee that the allocation capacity does not exceed the 
available capacity for the MEC server. Constraints (5) 
guarantee that at most K mobile devices can be served 
by the AP. Constraints (6) guarantee that at most one 
task from each mobile device can be offered to the MEC 
server. Constraints (7) guarantee that the obtained com-
putational resources are nonnegative. Constraints (8) 
represent the integrality requirements for the decision 
variable.

Figure 1 shows how multi-task allocation works in the 
MAMEC problem. In this scenario, we consider four 
mobile devices with multiple tasks. For example, mobile 
devices 1, 2, 3, and 4 have two tasks, three tasks, one 

(5)
∑

i∈N

∑

j∈Ti

xij ≤ K ,

(6)
∑

j∈Ti

xij ≤ 1, ∀i ∈ N ,

(7)dlij ≥ 0, drij ≥ 0, ∀i ∈ N , j ∈ Ti,

(8)xij ∈ {0, 1},∀i ∈ N , j ∈ Ti.

Table 2  Symbols

Symbol Description

N Set of mobile devices {1, ...,N}

Ti Set of tasks of mobile device i

tij Task j of mobile device i

sizeij Data size of task tij

bij Required number of CPU cycles of task tij

dlij
Number of local CPU cycles assigned to task tij

drij Number of remote CPU cycles assigned to task tij

ri Uplink data rate of mobile device i ∈ N

f li Local computational capability of mobile device i ∈ N

f r Remote computational capability of MEC server

runtime
req
ij

Deadline of task tij

runtimelij
Local processing duration of task tij

runtimetraij
Transmission duration of task tij

runtime
pro
ij

Remote processing duration of task tij

runtimerij Total remote duration of task tij

Elij
Energy consumption of local computation for task tij

Erij Energy consumption of remote computation for task tij
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task, and two tasks, respectively. We assume that the AP 
serves at most three mobile devices simultaneously by 
the NOMA protocol. To reduce energy consumption, 
tasks t11 , t22 , and t42 are offloaded to the MEC server, and 
tasks t12 , t21 , t23 , t31 , and t41 execute on mobile devices.

MAMEC Allocation Algorithm
In this section, we introduce our allocation algorithm for 
the MAMEC problem, called PTAS-MAMEC. The PTAS-
MAMEC algorithm is summarized in Algorithm  1. The 
algorithm is run periodically by the MEC server. PTAS-
MAMEC has three phases: collecting task requests, 
resource allocation, and offloading decision. In the collect-
ing task requests phase, it collects the task requests from 
mobile devices (line 2). Then, it initializes the total energy 
consumption V and the allocation vector X (line 3).

Algorithm 1  PTAS-MAMEC

In the resource allocation phase, PTAS-MAMEC allo-
cates the remote computational resources and selects tasks 
that must be offered for remote processing. To guarantee 
the deadline constraints and minimize energy consump-
tion, PTAS-MAMEC sets drij and dlij , ∀i ∈ N , j ∈ Ti as the 

minimum requirements to meet task deadlines (lines 5-7). 
That is, task tij can be finished before the deadline when it 
obtains resources not less than dlij or drij for local or remote 
execution, respectively. To make more tasks satisfy dead-
line constraints, it sorts the mobile devices in non-decreas-
ing of order of dlij′ , ∀i ∈ N  , j′ = argmaxj∈Ti d

l
ij (line 8). 

Then, it considers each mobile device by turns. If the 
resources of a mobile device cannot meet all demands, 
then PTAS-MAMEC selects a task to offload to minimize 
energy consumption (lines 11-13), and updates the 
resources and the allocation vector (lines 14-18).

In the offloading decision phase, PTAS-MAMEC calls 
the PTAS-ALLOC algorithm to determine the alloca-
tion (lines 20-25). Idle resources may remain on the MEC 
server; these can be allocated to offloading tasks to has-
ten execution. PTAS-MAMEC allocates these resources 
equally to offloading tasks (lines 26-28). Finally, it returns 
the allocation result (line 29).

Algorithm 2  PTAS-ALLOC(N ,d,f,K,ǫ)
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PTAS‑ALLOC: Allocation Algorithm of PTAS‑MAMEC
We define “energy-saving” before describing the allo-
cation algorithm. Let Es

ij be energy-saving, where 
Es
ij = El

ij − Er
ij , ∀i ∈ N , j ∈ Ti . Note that the required local 

or remote resources were known in the previous phase, so 
we only consider the offloading tasks that we choose. Then, 
we turn the minimum problem into a maximum problem, 
and the maximum energy-saving can be obtained by the 
following linear programming:

Our proposed PTAS allocation algorithm, called PTAS-
ALLOC, is given in Algorithm  2. Our approximation 
technique is inspired by Caprara et al. [40] and Dobzinski 
et al. [41]. However, the former did not consider one user 
with multiple value settings, and the latter did not con-
sider cardinality constraints. Then, we refer to the partial 
allocation idea [40] and the rounding idea [41] to design 
an approximation algorithm suitable for the MAMEC 
problem. Parameter ǫ controls how close the solution 
determined by PTAS-ALLOC is to the optimal solution. 
PTAS-ALLOC has one output parameter, the allocation 
vector, X . PTAS-ALLOC has three phases: initialization, 
partial allocation, and approximation allocation.

max
∑

i∈N

∑

j∈Ti

xijE
s
ij

s.t.: (4), (5), (6), (8).

The main idea is to find a partial allocation and then 
allocate through dynamic programming. In the initializa-
tion phase, PTAS-ALLOC defines parameter q, the num-
ber of tasks in the partial allocation (line 2). In partial 
allocation, if more tasks are considered, the quality of the 
obtained solution is better, but it takes more time. When 
q equals the total number of tasks, the algorithm searches 
all feasible allocations and obtains the optimal one, but 
the algorithm is computationally infeasible.

In the partial allocation phase, PTAS-ALLOC con-
siders the subset Q , where the number of Q is at most 
q − 1 . PTAS-ALLOC iteratively considers the tasks of 
subset Q executed on the MEC server and other tasks 
executed locally, and confirms that these do not exceed 
the resource constraints (lines 6-9). Then, it finds the 
allocation that is the maximum energy-saving (lines 
10-11). Note that PTAS-ALLOC searches all space in 
this progress; hence, it obtains the optimal solution for 
subset Q , where the number of Q is at most q − 1.

In the approximation allocation phase, PTAS-ALLOC 
iterates over all subsets Q of q tasks (lines 13-34). Unlike the 
second phase, PTAS-ALLOC considers not just the tasks of 
the set Q but the other tasks. For each subset, if its tasks can 
execute remotely and this is a feasible partial allocation, then 
the remaining resources are divided into (K − q)2 parts, 
each of size f̂r/(K − q)2 . Then, PTAS-ALLOC rounds the 
number of required resources by the unallocated tasks, i.e., 

Fig. 1  High-level view of MAMEC of four mobile devices
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d̂rij = ⌈drij(K − q)2/f̂ r⌉ (lines 19-20), and uses the dynamic 
programming approach to obtain an allocation.

We now describe the dynamic programming approach 
to find an optimal allocation for the rounded required 
resources (lines 21-28). We consider the subproblem 
vi(k , c) , which includes the first i mobile devices with avail-
able subchannels k and the available capacity c in such a 
way that vi(k , c) is the optimal value of the subproblem. 
The dynamic programming recurrence can be defined as:

The recurrence considers two cases, local execution and 
the selection of at most one task for remote execution. The 
value vi−1(k , c) means all tasks of mobile device i execute 
locally, and the value maxj∈Ti(vi−1(k − 1, c − d̂rij)+ Es

ij) 
means selecting one task to offload. The value vi(k , c) is 
the maximum between them, and then it is an optimal 
value. When the final value vN (K − q, (K − q)2) is found, 
PTAS-ALLOC saves the maximum allocation (lines 
30-34). PTAS-ALLOC finds x by looking backward at 
vN (K − q, (K − q)2) , as follows. If vi(k , c) = vi−1(k , c) , 
then the tasks of mobile device i execute locally, and 
PTAS-ALLOC recursively works backward from 
vi−1(k , c) . Otherwise, PTAS-ALLOC finds task tij satisfy-
ing vi(k , c) = vi−1(k − 1, c − d̂rij)+ Es

ij , which means task 
tij is offloaded to the MEC server. Then, PTAS-ALLOC 
recursively works backward from vi−1(k − 1, c − d̂rij) . 
Finally, PTAS-ALLOC returns the best allocation (line 
35).

Properties

Theorem 1  The approximation of PTAS-ALLOC is 1− ǫ.

Proof
Without loss of generality, let OPT be the optimal 
value, and V the value generated by PTAS-ALLOC. 
If no more than q tasks are offered to remotely pro-
cess in the optimal solution, then V is optimal, where 
q = min{⌈1/ǫ⌉ − 1,K } , because PTAS-ALLOC con-
siders all subsets Q of at most q − 1 tasks in step 2 of 
PTAS-ALLOC.

Otherwise, let {ti∗1 j∗i1 , ti
∗
2 j

∗
i2
, ..., ti∗qj

∗
iq
, ...} be the set of tasks in 

an optimal solution ordered so that Es
i∗
1
j∗
i1

≥ Es
i∗
2
j∗
i2

≥

vi(k , c) = max{vi−1(k , c),

maxj∈Ti(vi−1(k − 1, c − d̂rij)+ Es
ij)}.

... ≥ Es
i∗
q
j∗
iq

≥ ... . In one iteration of step 3 of PTAS-ALLOC, 

the algorithm considers sets Q∗ = {ti∗1 j
∗
i1
, ti∗2 j

∗
i2
, ..., ti∗qj

∗
iq
} 

and S∗ =
∑

i∈N ∪Ti \Q
∗ . Let OPTS∗ be the optimal value 

for S∗ . Then

The remaining resources of the MEC server can be allo-
cated to speed up execution. Without loss of generality, 
we assume that all its resources are allocated in the opti-
mal allocation. Let l =

∑
ti∗ j∗∈Q

∗ dri∗j∗ . Let ti∗k j∗ik /∈ Q∗ be 
the task that obtains the most resources. Then

Let VS∗ be the value generated by PTAS-ALLOC for S∗ . 
PTAS-ALLOC searches all subsets Q when |Q| = q , so it 
certainly searches the set Q∗ . We then have

For each task tij ∈ S∗ , we round up drij to the nearest mul-
tiple of f r−l

(K−q)2
 in PTAS-ALLOC. The rounding procedure 

increases the number of required resources of unallo-
cated tasks. The algorithm selects at most K − q tasks; 
hence, it adds at most (K − q) ·

f r−l

(K−q)2
=

f r−l
K−q resources 

by rounding up.

This may lead to an infeasible allocation of required 
resources based on the new rounded sizes. According to 
(10), the resources obtained by task ti∗k j∗ik are more than 
the most that PTAS-ALLOC adds. To make the alloca-
tion feasible, we can remove task ti∗k j∗ik such that it satisfies 
capacity constraints while decreasing the objective func-
tion. Note that PTAS-ALLOC obtains the best solution 
by removing task ti∗k j∗ik . Thus, we have

In the previous phase, the tasks were sorted in decreasing 
order of energy-saving, and we have

We also have:

(9)OPT =
∑

ti∗ j∗∈Q
∗

Es
i∗j∗ + OPTS∗ .

(10)dri∗k j
∗
ik

≥
f r − l

K − q
,

(11)Ei∗k j
∗
ik
≤ OPTS∗ .

(12)V ≥
∑

ti∗ j∗∈Q
∗

Es
i∗j∗ + VS∗ .

(13)VS∗ ≥ OPTS∗ − Es
i∗k j

∗
ik

.

(14)Es
i∗k j

∗
ik

≤ minti∗ j∗∈Q∗Es
i∗j∗ .
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where the first inequality follows from (11) and (14); and 
the third equation follows from (9).

Clearly, then,

where the first inequality follows from (12); the second 
inequality follows from (13); the third equation follows 
from (9); and the fourth inequality follows from (15).

Theorem  2  The time complexity of PTAS-ALLOC is 
O(Tq(K − q)3) , where T is the number of tasks.

Proof
The exhaustive search to find a partial allocation is based 
on the total number of allocations of q tasks which is ∑q

i=1(
T
i ) ≤ Tq . The time complexity of the approximation 

allocation is O(Tq(K − q)3) . Therefore, the time complex-
ity of PTAS-ALLOC is O(Tq(K − q)3).◻

Definition 1  PTAS [36] A maximization problem has 
a PTAS if for every instance I and for every ǫ , it finds a 
solution V for I in time polynomial in the size of I that 
satisfies V (I) ≥ (1− ǫ)V ∗(I) , where V ∗(I) it the optimal 
value of a solution for I.

Theorem 3  The PTAS-ALLOC algorithm is a PTAS.

Proof
The solution obtained by PTAS-ALLOC is in a (1− ǫ) 
neighborhood of the optimal (Theorem  1), and the time 
complexity of PTAS-ALLOC is polynomial in T (Theo-
rem 2). Therefore, PTAS-ALLOC is PTAS.◻

(15)

Es
i∗k j

∗
ik

≤
qminti∗ j∗∈Q∗Es

i∗j∗ + OPTS∗

q + 1

≤

∑
ti∗ j∗∈Q

∗ Es
i∗j∗ + OPTS∗

q + 1

=
OPT

q + 1
,

V ≥

∑

ti∗ j∗ ∈Q
∗

Es
i∗ j∗

+ VS∗

≥

∑

ti∗ j∗ ∈Q
∗

Es
i∗ j∗

+ OPTS∗ − Es
i∗
k
j∗
ik

= OPT − Es
i∗
k
j∗
ik

≥ OPT −
OPT

q + 1

= (1 −
1

q + 1
)OPT ,

Theorem  4  The time complexity of PTAS-MAMEC is 
O(Tq(K − q)3) , where T is the number of tasks.

Proof
PTAS-MAMEC needs O(T 2) to allocate resources in step 
2. Then, PTAS-MAMEC calls PTAS-ALLOC to determine 
the allocation in step 3. Therefore, the time complexity of 
PTAS-MAMEC is O(Tq(K − q)3).◻

Simulation Results
In this section, we compare the PTAS-MAMEC algo-
rithm to the All Request Admission Algorithm (ARAA) 
[21] and the optimal solution obtained by the B &B algo-
rithm [42]. Note that the MEC system accepts all requests 
and randomly discards more than K tasks [21]. If solving 
an optimal solution that is not feasible, we ignore the 
constraints (2) in the optimal solution. The experimental 
platform environment uses C# in Visual Studio 2013. All 
the simulations were run on a machine with Intel CPU i5 
2.8 GHz and 16 GB memory.

Experimental Setup
We assume that mobile devices are uniformly distrib-
uted in a cell with radius 250 m [21]. The transmission 
bandwidth B and transmitting power ρ of a mobile device 
are 20 MHz and 0.5 W [36], respectively. We assume 
the wireless channel gain of mobile device i ∈ N  is 
hi = 127+ 30 ∗ logwi , where wi is the distance between 
mobile device i and the AP [36]. We assume that the AP 
serves at most K = 15 mobile devices simultaneously, 
and the deadline of task runtimereq , in seconds, is uni-
formly distributed over [1, 1.5] [21].

Each mobile device has a set of tasks to execute, with 
a maximum of three per device. The parameters used in 
the simulation are summarized in Table  3. We average 
over 1000 simulations to obtain data points and eliminate 
randomness.

Performance of Different Numbers of Mobile Devices
We compare the performance of PTAS-MAMEC, B 
&B and ARAA for different number of mobile devices, 
ranging from 15 to 25. For PTAS-MAMEC, the 
selected ǫ values are 0.4, 0.5, corresponding to q equal-
ling 2,  1, respectively. Note that parameter ǫ depends 
only on the accuracy of the solution, not on the spe-
cific actual problem. Figure 2a shows the total energy 
consumption obtained by these algorithms. We can see 
that the total energy consumption obtained by PTAS-
MAMEC is very close to the optimal solution. Note 
that PTAS-MAMEC with smaller ǫ can find better 
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solutions. This is because PTAS-MAMEC with smaller 
ǫ will search more partial allocations to obtain better 
solutions. Then, PTAS-MAMEC with smaller ǫ spends 
more time. The main idea of ARAA is to select some 
tasks at random; thus, it obtains the maximum total 
energy consumption. This gap is amazing given the 
fact that our proposed PTAS-MAMEC performs very 
well.

Figure 2b shows the execution times of the algorithms 
on a logarithmic scale. The ARAA algorithm randomly 
selects tasks, and then it is very fast and there are no 
bars in the plots for it. The results show that the execu-
tion time increases with the number of mobile devices. 
We observe that PTAS-MAMEC with ǫ = 0.5 is the 
fastest, and it spends much less time than B &B. This is 
because the complexity of PTAS-MAMEC depends on 
the number of tasks, and the execution time of PTAS-
MAMEC is polynomial in the number of tasks. Accord-
ing to the results of Fig.  2a and 2b, PTAS-MAMEC 
with ǫ = 0.5 can obtain the near-optimal solutions very 
quickly; thus, it is beneficial for MEC to use this algo-
rithm rather than PTAS-MAMEC with ǫ = 0.4.

Figure  2c shows the average percentage of satisfied 
tasks. We see that this is less for B &B than for PTAS-
MAMEC, because the objective of B &B is to find the 
minimum total energy consumption without consid-
ering deadlines. Obviously, almost all tasks satisfy 
deadlines when allocated by PTAS-MAMEC. This is 
can conclude that PTAS-MAMEC not only finds the 
near optimal solutions but also considers the deadline 
constraints.

Figure  3a shows the average energy consumption per 
device. The results show that the average energy con-
sumption per device increases as the number of devices 
increases. We observe that B &B has the minimum 
energy consumption per device, which is consistent 

with obtaining minimum total energy consumption. 
Obviously, the average energy consumption per device 
obtained by B &B and PTAS-MAMEC are fairly simi-
lar. From this, we can conclude that PTAS-MAMEC can 
reduce energy consumption and save the battery power 
of mobile devices.

Figure  3b shows the average runtime per task. The 
results show that the average runtime per task increases 
as the number of mobile devices increases. Note that 
for PTAS-MAMEC, this is longer for ǫ = 0.4 than for 
ǫ = 0.5 . This is because, to minimize total energy con-
sumption, with ǫ = 0.4 , just enough resources are allo-
cated to tasks to meet their deadlines.

Figure  3c shows the utilization of computational 
resources of mobile devices. ARAA obtains the high-
est resource utilization because it selects offloading tasks 
at random, without considering the demand. PTAS-
MAMEC with ǫ = 0.5 has higher utilization than PTAS-
MAMEC with ǫ = 0.4 and B &B, but they are very close. 
This can conclude that PTAS-MAMEC can better utilize 
resources.

Performance of Different Deadlines
We evaluate the performance of algorithms for dif-
ferent deadlines. The number of mobile devices is 20, 
and the deadline ranges from 0.8 s to 1.5 s. Figure  4a 
shows the total energy consumption obtained by the 
algorithms. The results show that the total energy 
consumption decreases as the deadline increases. The 
required resources decrease as the deadline increases. 
That is, tasks need more resources and consume more 
energy when the deadline is shorter. We observe that 
the total energy consumption obtained by PTAS-
MAMEC is more than that of B &B when the dead-
line is less than 1.3 s, and PTAS-MAMEC obtains the 
near-optimal solutions in other cases. This is because 

Fig. 2  PTAS-MAMEC versus B&B & ARAA: a Total energy consumption; b Execution time; c Average percentage of satisfied tasks (*B &B was not able 
to determine the allocation ranging from 23 to 25 mobile devices in feasible time, and thus, there are no bars in the plots for those cases)
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PTAS-MAMEC tries to satisfy demands to increase 
energy consumption (see Fig.  4b), and B &B has the 
objective to minimize total energy consumption while 
ignoring the deadline constraints.

Figure  4b shows the average percentage of satisfied 
tasks. The results show that the number of satisfied 
tasks increases as the deadline increases. Note that the 
average percentage of satisfied tasks obtained by PTAS-
MAMEC is greater than that of B &B and ARAA. All 
tasks execute successfully in PTAS-MAMEC when 
the deadline is more than 1.2 s, while the percentages 
of satisfied tasks obtained by B &B and ARAA are less 
than 100% when the deadline is 1.5 s. This is because 
PTAS-MAMEC can effectively increase the number of 
satisfied tasks.

Figure 5a shows the average percentage of offloading 
tasks. The result shows that the average percentage of 
offloading tasks increases as the deadline increases. Fig-

ure 5b shows the utilization of computational resources 
of mobile devices. The results show that the utilization 
of computational resources decreases as the deadline 

Fig. 3  PTAS-MAMEC versus B&B & ARAA: a Average energy consumption per device; b Average runtime per task; c Computational resource 
utilization (*see note in Fig. 2)

Table 3  Simulation parameters

Parameters Description Assumptions

B Transmission bandwidth 20MHz

ρ Transmitting power of device 0.5W

runtimereq Deadline [1, 1.5]s

f l Local computational capability [1.2, 2]GHz

size Data size [100, 500]kB

f r Remote computational capability [10, 15]GHz

Fig. 4  PTAS-MAMEC versus B&B & ARAA (different deadline instances): a Total energy consumption; b Average percentage of satisfied tasks
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increases. This is because the loose deadline leads to 
fewer demands. From this experiment, we can observe 
that PTAS-MAMEC performs well in latency-sensitive 
environments.

Performance of Different Numbers of Required Tasks
We evaluate the performance of PTAS-MAMEC for 
different number of required tasks. We assume the 
maximum number of tasks of each mobile device 
ranges from 1 to 5, and the number of mobile devices 
is 20. Figure  6a shows the total energy consumption 

obtained by the algorithms. We observe that the gap 
between optimal and approximate solutions obtained 
by PTAS-MAMEC increases with the number of tasks. 
However, this gap is very small. This can conclude that 
PTAS-MAMEC performs very well.

Figure  6b shows the average percentage of satisfied 
tasks. The results show the number of satisfied tasks 
decreases as the number of required tasks increases. 
We observe that the percentage of satisfied tasks 
obtained by PTAS-MAMEC is larger than that of B 
&B and ARAA. Note that PTAS-MAMEC can meet 

Fig. 5  PTAS-MAMEC versus B&B & ARAA (different deadline instances): a Average percentage of offloading tasks; b Computational resource 
utilization

Fig. 6  PTAS-MAMEC versus B&B & ARAA with different numbers of required tasks: a Total energy consumption; b Average percentage of satisfied 
tasks
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almost all tasks when the number of required tasks is 
less than 3, while B &B and ARAA cannot. According 
to Fig. 6a and 6b, we can see that PTAS-MAMEC not 
only obtains the near-optimal solutions but meets more 
demands.

Figure  7a shows the average runtime per task. Fig-
ure  7b shows the average energy consumption per 
device. The results show that the average runtime per 
task and the average energy consumption per device 
increase as the number of required tasks increases. 
We observe that the average runtime and energy con-
sumption obtained by PTAS-MAMEC are very close 
to the optimal solutions. This can conclude that PTAS-
MAMEC can efficiently use resources to save energy and 
serve more tasks. From this experiment, we can observe 

that PTAS-MAMEC performs well regardless of task 
properties.

Performance Over Time
We evaluate the performance of algorithms over a 
period of 24 hours. This simulation runs using between 
15 and 22 mobile devices that dynamically arrive each 
hour. Figure  8a shows the total energy consumption 
by these algorithms. We observe that PTAS-MAMEC 
obtains the near-optimal solutions and the optimality 
gap is very small in all cases. Figure 8b shows the exe-
cution times of these algorithms. The results show that 
PTAS-MAMEC with ǫ = 0.5 is fast, and B &B spends 
too much time on calculations. This can conclude that 
PTAS-MAMEC with ǫ = 0.5 provides quality ser-
vice in a shorter response time and can increase cus-
tomer satisfaction. Figure  8c shows the average energy 

Fig. 7  PTAS-MAMEC versus B&B & ARAA with different numbers of required tasks: a Average runtime per task; b Average energy consumption per 
device

Fig. 8  PTAS-MAMEC versus B&B over time: a Total energy consumption; b Execution time; c Average energy consumption per device
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consumption per device. PTAS-MAMEC obtains near-
optimal solutions, and we can conclude that it is effec-
tive at reducing energy consumption and improving 
mobile device performance.

From all of the above results, we can observe that 
PTAS-MAMEC not only finds the near-optimal solutions 
but also the execution time only depends on the number 
of tasks and the selected ǫ . In addition, PTAS-MAMEC 
performs very well in different environments. As a result, 
we can conclude that PTAS-MAMEC is a good candidate 
for deployment on the current MEC.

Conclusion and Future Work
We address the problem of multi-task allocation in 
mobile edge computing Since the MAMEC problem is 
computationally difficult, we proposed an approxima-
tion algorithm using a dynamic programming approach. 
In addition, we analyzed the approximation ratio of 
our proposed algorithm and showed it is a polynomial 
time approximation scheme. Therefore, it achieves the 
tradeoff between optimality loss and time complexity. 
The objective of our proposed algorithm is to minimize 
total energy consumption on the premise that tasks can 
be completed before deadlines. Experimental results 
demonstrated that the proposed algorithm obtained 
the near-optimal solutions while meeting deadlines. 
Designing better algorithms is the focus of our next 
research.
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