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Abstract 

The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to 
share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most 
of the devices are mobile; therefore, the impact of mobility can be seen in terms of low-device utilization. Thus, most 
of the time, the available resources are underutilized. Therefore, the inception of the fog computing model in IIoT has 
reduced the communication delay in executing complex tasks. However, it is not feasible to cover the entire region 
through fog nodes; therefore, fog node selection and placement is still the challenging task. This paper proposes a 
multi-level hierarchical fog node deployment model for the industrial environment. Moreover, the scheme utilized 
the IoT devices as a fog node; however, the selection depends on energy, path/location, network properties, storage, 
and available computing resources. Therefore, the scheme used the location-aware module before engaging the 
device for task computation. The framework is evaluated in terms of memory, CPU, scalability, and system efficiency; 
also compared with the existing approach in terms of task acceptance rate. The scheme is compared with xFogSim 
framework that is capable to handle workload upto 1000 devices. However, the task acceptance ratio is higher in the 
proposed framework due to its multi-tier model. The workload acceptance ratio is 85% reported with 3000 devices; 
whereas, in xFogsim the ratio is reduced to approx. 68%. The primary reason for high workload acceptation is that the 
proposed solution utilizes the unused resources of the user devices for computations.
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Introduction
The rapid growth in digital technology has brought a fast 
transition in almost every aspect of life. Real-time data 
access, automation, and device-to-device connectiv-
ity bring a rapid change in current industrial practices. 
In network science, scientists strive to bring intelligence 
closer to the source  [1]. Therefore, the concept of fog 
computing has been proposed in recent trends. A con-
ventional fog computing framework generally includes 

three layers; the lower level is the IoT device layer, where 
data is being generated. The next layer comprises fog bro-
kers that deliver computation, storage, networking ser-
vices, and the last cloud tier. The recent adoption of IoT 
is in the industrial environment, sometimes referred to as 
Industrial IoT (IIoT). It is the concept of effectively using 
the devices in such a way that they combine to give better 
yield  [2]. In an industrial environment, resource utiliza-
tion is a very common problem [3] where the few devices 
are overburdened compared to others. In the traditional 
industrial environment, most devices are static or move 
within a range. These devices stay in a predefined area; 
however, there are devices, such as robots and automo-
biles, that move freely inside the entire workshop.

The primary motivation behind this work is the tech-
nology adoption in IIoT, to facilitate delay-sensitive 

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

†Tariq Qayyum, Zouheir Trabelsi, Asad Waqar Malik and Kadhim Hayawi 
contributed equally to this work.

*Correspondence:  trabelsi@uaeu.ac.ae

1 College of Information Technology, United Arab Emirates University, Al 
Ain 17551, Abu Dhabi, United Arab Emirates
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3561-9674
http://orcid.org/0000-0001-8686-8975
http://orcid.org/0000-0003-3804-997X
http://orcid.org/0000-0002-8092-4590
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00345-y&domain=pdf


Page 2 of 17Qayyum et al. Journal of Cloud Computing           (2022) 11:72 

computation systems to manage the quality of services. 
Unfortunately, using the traditional cloud to support 
autonomous devices is not viable for many reasons, such 
as security, communication delay, and cloud data center 
scheduling policies. Also, the efficient resource utiliza-
tion is another motive of this research. In IIoT, many 
resources get wasted due to poor resource management 
strategies.

Thus, the inception of highspeed wireless data rate 
and Multi-access Edge Computing (MEC) technologies 
impersonates a baseline for more advanced development 
for the IIoT environment [4]. A massive amount of data 
can be transferred to edge servers to train machine learn-
ing models, perform complex computations, and tempo-
rarily cache the data [5–8].

Furthermore, in existing work, fog nodes are placed 
at fixed locations to support the delay-sensitive applica-
tions  [9, 10] or a federated approach is used for balanc-
ing workload [11–13]. Thus, fixed location deployment of 
a fog node can cause a single point of failure, and such 
solutions are not scalable.

In an IIoT environment, most of the resources always 
remain underutilized [14]; therefore, predicting the loca-
tion of mobile nodes is very important to ensure the 
proper utilization of under-utilized resources [15]. Thus, 
the scalable approach can help improve the entire factory 
process, including assembly logistics and supply chain. 
Fog computing has emerged as the latest technology 
where edge and fog servers can help bring the computing 
infrastructure close to the IIoT devices and improve the 
Industry 4.0 architecture design [16].

Contribution – In this work, we removed the limita-
tion of FogNetSim [17] where only selected devices can 
act as broker nodes to schedule the incoming comput-
ing requests. In FogNetSim, a framework followed the 
standard definition of fog computing where a selected 
number of devices located at the edge of the network 
act as fog nodes. However, such a system fails to per-
form well with many IoT devices. On the contrary, 
the current work focuses on scalability issues where 
every IoT device in the network can act as a fog node 
depending on the availability and certain constraints 
like energy level, computation power, etc. Also, the 
previous work focuses on the parallel placement of fog 
nodes at a second-tier, whereas this work proposed a 
hierarchical placement scheme. In the proposed multi-
layer fog framework for IIoT, every device can work as 
an autonomous fog broker. Thus, the scalability issue 
raised in conventional fog networks is addressed with 
distributed systems. Here, we proposed the concept 
of multi-functional devices as fog nodes. Other salient 
features of the work are:

•	 Propose a multi-layer fog deployment framework for 
task scheduling and big data processing in an indus-
trial environment.

•	 A probabilistic model is adopted to improve the effi-
ciency of heretical placement of fog servers over tra-
ditional flat conventional placement in terms of com-
putation and communication delay.

•	 A priority queuing technique is used to schedule the 
IIoT data and tasks in a multi-layer fog network.

•	 In the proposed scheme, the IoT device layer act as a 
fog device to perform complex computation tasks to 
minimize the communication overhead.

•	 A multi-layer scheduling algorithm that uses all lay-
ers to schedule incoming tasks.

•	 The localization module is the proposed work that 
enables the fog brokers to predict the location of 
mobile nodes.

•	 The proposed simulation framework is evaluated in 
terms of memory, CPU, communication delays, com-
putation delays, and energy. It is further compared 
with other existing solutions regarding workload 
acceptance/completion ratio.

The rest of the paper is structured as follows: Section 2 
covers the state of the art literature review about existing 
fog based IIoT frameworks; Section  3 cover the system 
model; system components are discussed in Section  4; 
results are discussed in Section 5.

Literature review
In this section, a state-of-the-art literature review is con-
ducted to cover the existing fog solutions for IIoT, includ-
ing the location-aware schemes to determine the location 
of moving nodes in an IIoT environment.

Fog computing in an industrial IoT – Kumar 
et  al.  [18] proposed a fog framework for IIoT networks 
that combines the technologies like blockchain and edge 
computing to solve the current IIoT problems like latency, 
task computation, and security. First, however, they evalu-
ated the efficiency of the proposed framework in terms of 
network usage, power consumption, and latency with the 
simulation of a non-blockchain environment.

Chen et al.  [19] proposed a Kronecker-supported fog-
based optimized compression scheme for IIoT data that 
achieves better results. The proposed scheme first uses 
a k-means clustering algorithm to calculate the spatial 
correlation among IoT data to obtain better compres-
sion results with a low communication overhead. Then, 
the two-dimensional Kronecker-supported data com-
pression mechanism at the fog node recovers data back 
to its original shape with high precision and accuracy. 
The communication overhead between fog and cloud 
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is also minimized with this mechanism. Finally, an effi-
cient algorithm is proposed to evaluate the simulation 
framework. The results show that the proposed scheme is 
energy efficient with good quality of service.

Chekired et al.  [20] proposed a hierarchical technique 
for fog server placements for the IIoT. The requests are 
classified into two categories; high priority and low pri-
ority. The high-priority requests demand an urgent 
response. A workload scheduling algorithm is also pro-
posed to offload requests to fog servers in different 
hierarchy tiers. The solution is evaluated using actual 
industrial data from the Bosch group and comparing the 
proposed solution with conventional strategies.

Liu et  al.  [21] proposed a multilevel indexing model 
for service discovery in the fog layer of IIoT. Service dis-
covery is crucial because an efficient service discovery 
system can efficiently accommodate user requests. The 
proposed model is based on equivalence relation and 
named as “distributed multilevel (DM)-index model” for 
fog layer retrieval and service maintenance in IIoT to 
reduce redundancy and minimize retrieval and traverse 
time. It also narrows down the search space. The model 
is evaluated experimentally and theoretically and shows 
its effectiveness compared to the inverted index and 
sequence models.

Mubeen et  al.  [22] developed a prototype to offload 
controller tasks to fog or cloud in industrial control sys-
tems. Many experiments are performed to instigate the 
interplay of fog computing, cloud computing, and the 
IIoT. A mitigation mechanism is also applied to reduce 
network delay when controllers are offloaded to cloud or 
fog infrastructures.

Chen et  al.  [23] proposed an energy-efficient offload-
ing for IIoT in fog network environments. The purpose 
is to minimize the energy consumption while offload-
ing dynamic computation requests to the fog layer. The 
energy minimization computation offloading problem is 
formulated with energy, delay, and other network param-
eters. However, an algorithm is proposed to address the 
optimization problem with joint optimization of offload-
ing ratio and transmission time. The dynamic voltage 
scaling technique is also used with the above solution to 
reduce energy consumption during offloading. The pro-
posed solution jointly optimized transmission time, local 
CPU, transmission power, and offloading ratio.

Yu et al. [24] proposed a secure data deletion technique 
in industrial fog environments. However, this area is rela-
tively less explored. This research proposes a framework 
where the IoT devices, fog, and cloud combine to form 
an industrial environment. Further, better control of the 
data is proposed in the fog-cloud architecture of IIoT. 
The proposed protocol takes advantage of the feature of 

attribute-based encryption. The theoretical evaluation 
shows good performance with the proposed protocol.

Mukherjee et  al.  [25] formulated the problem of task 
offloading in fog computing for the IIoT. In IIoT, the 
latency-driven applications are very challenging because, 
most of the time, IoT sensors work in an automated envi-
ronment, and the control signal with minimum latency is 
necessary for such environments. The proposed strategy 
is evaluated through simulations, and the results show 
that the proposed strategy is effective and scalable.

Fu et  al.  [26] proposed a data storage and search 
scheme for IIoT utilizing fog-cloud technologies. How-
ever, the IIoT devices are placed in isolated and remote 
areas and hence are vulnerable. In this proposed tech-
nique, the data is first processed at edge servers, delay-
sensitive data is stored locally in edge servers, and then 
data is processed in cloud servers and stored. The simula-
tion results proved the efficiency of the proposed scheme.

Aazam et al. [27] proposed a fog-based framework that 
uses industry 4.0 where many IoT devices, machines, 
business processes, appliances, and personals interact 
with each other and generate a massive amount of data. 
To process this data in a time-sensitive manner, they pro-
posed a fog-based solution where a middle layer called 
fog communicate with all devices and process data at the 
edge of the industry. Many use cases are also presented, 
and research changes are discussed.

Lin et al. [28] proposed a cost-efficient strategy for fog 
servers deployment in Industry 4.0 at logistic centers. 
The work investigates the placement of fog servers, gate-
ways, edge servers, sensors, and clouds in Industry 4.0 to 
minimize the deployment cost. This NP-hard problem of 
facility location is also solved with a metaheuristic algo-
rithm that uses a genetic algorithm to enhance computa-
tional efficiency and a discrete monkey algorithm to find 
quality solutions.

To summarize, the existing fog solutions focus on the 
horizontal placement of the resources that can lead to 
high delay when the tasks are large and split into multi-
ple smaller tasks. Also, they do not focus on the energy, 
mobility, and IIoT devices aspects of the system.

Localization – In this section, we cover the literature 
review to explore the existing techniques used to find 
the location of mobile nodes in a fog computing plat-
form. In a fog-cloud integrated environment, static and 
mobile IoT devices generate data to be processed at fog 
nodes or cloud; therefore, location is an essential decision 
parameter.

Chen et  al.  [29] proposed a weighted factors localiza-
tion algorithm for fog computing. The proposed solu-
tion includes both specific and general localization. The 
evaluation is performed by comparing the proposed 



Page 4 of 17Qayyum et al. Journal of Cloud Computing           (2022) 11:72 

algorithm with the other two algorithms in a simulation 
environment, and positive results are observed.

Guidara et  al.  [30] investigated the localization of 
mobile nodes in an indoor environment. The wireless 
nodes are placed inside a building or a premise, and 
these IoT devices collect data. The data is sent to a cen-
tral processing node called fog, where the position of the 
unknown node is estimated. The proposed algorithm 
finds the location of a node with the shortest delay and 
without incorporating powerful processing nodes.

FogLight [31] is a localization solution for IoT devices 
that depends on visible light and relies on spatial encod-
ing. Spatial encoding is produced when mechanical mir-
rors are flipped based on binary images inside a projector. 
It employs simple light sensors that can be used with gas 
meters, light switches, or thermometers with a discover-
able location. In the proposed solution, the sensors units 
can perform localization with high accuracy and with 
minimum processing overhead and computation effi-
ciency, finding the location of any low-power IoT device. 
The results show that FogLight finds a device’s location 
with an accuracy of 1.8 mm.

Femminella et al. [32] proposed a distributed signaling 
protocol for service function localization. The different 
functions of the protocol include the peer discovery in 
the transport layer and signaling distribution which are 
then divided into two parts of signaling delivery, down-
stream and reverse path. Finally, the protocol is evaluated 
via natural experiments.

Bhargava et  al.  [33] Proposed a fog-based localization 
solution for ambient assistant personnel. The proposed 

system is a low-cost wsm-based wearable device and 
cloud gateway to find ambient assisted living locations. 
Using the given topology information, the distance cov-
ered by a device is calculated with direction values. The 
proposed algorithm is evaluated in both indoor and out-
door environments.

To conclude this discussion, many existing solutions 
ignore important factors like device-to-device commu-
nication, mobility, energy consideration, fog federation, 
and fog placement that can improve the performance of 
an IIoT-based simulation framework. The work proposed 
in [34–37] lacks mobility support, and allows only hori-
zontal fog placement. Whereas, none of  [17, 18, 34–42] 
support fog federation and IIoT devices as fog devices. A 
detailed comparison of these features is given in Table 1. 
The proposed work focuses on fog placement strategy 
in both directions (distributed and hierarchical), uses 
some IIoT devices as fog devices that meet certain crite-
ria, finds the location of unknown mobile IIoT devices to 
improve reliability, and incorporate distributed fog loca-
tions that can work in a federated architecture to provide 
resources on demand.

System model
The abstract view of system architecture is shown in 
Fig.  1 where the IIoT system is divided into multi-
ple layers. The first layer comprises Un number of IoT 
sensors, static, and mobile devices. These devices are 
categorized into two classes, user devices that gener-
ate data and request computations and computation-
ally strong devices that also volunteer their resources 

Table 1  Fog Simulators Comparison

H horizontal or distributed, V vertical or hierarchical

Framework Platform 
Independent

Open Source Fog Placement Mobility & 
Localization 
Support

External 
Algorithm

Energy Fog 
Federation

Cloud 
Integration

IIoT 
Devices 
as fog

SysML4IoT [34] � � H x x � x � x

CrowdSenSim [43] � � H Limited x � � � x

DPWSim [35] � � H x x x x � x

SmartSim [36] � � H x x � x � x

DISSECT-CF-
IoT [38]

� � H Limited x � x � x

SimIoT [39] � � H - x NA x � x

RECAP [40] � � H x x � x � x

MobIoTSim [41] x � - x x NA x � x

BlockEdge [18] � � H &V x x � x � x

iFogSim [42] � � H &V x x � x � x

Abuhasel et al. [37] � � H x x x x � x

FogNet-
Sim++. [17]

� � H Limited � � x � x

Proposed � � H &V � � � � � �
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to act as fog nodes. The second layer comprises fog 
devices that are classified into n number of fog devices 
placed in a hierarchical manner that receive computa-
tion requests from the lower layer and hierarchically 
execute tasks. The topmost layer is the cloud layer that 
performs complex executions. The module interactions 
of the proposed framework is explained in Fig. 2. There 
is Lm number of fog locations that are connected to a 
cloud data center. These fog nodes share the distributed 
workload in a federated way. The summary of notations 
is given in Table 2.

The M/M/c queuing model is employed [44] where the 
system has multiple servers that contribute to executing 
tasks in the queue. Using the Poisson process, the arrival 
rate � is calculated as in Eq. 1

Where �Fk is the average arrival rate at kth fog node F.
Execution delay – In the proposed system, there are 

multiple options to execute that task, and the system 
chooses the best available option. Initially, the priority is 
to execute the task on a local static/mobile device. How-
ever, the task is offloaded to lower-level fog nodes due to 
limited resources. This level of fog nodes is composed of 
volunteer devices willing to share their resources. How-
ever, if all the fog devices are busy and the system fails to 
meet the required deadline, the task is further offloaded 
to the second-tier fog nodes. Similarly, if the task has a 
delayed deadline, it is offloaded to the cloud otherwise. In 

(1)�T =

n

Fk∈Fn

�Fk .

Fig. 1  System architecture – IIoT sensors and devices offload tasks via a wireless link between devices and fog nodes. The fog nodes are placed 
in a hierarchical model classified into multiple levels. Level-1 fog nodes are the intelligent nodes that decide whether to offload tasks to volunteer 
devices, same-level fog, higher-level fog, or a nearby fog location
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case of task can be sub-divided into multiple independ-
ent sub-tasks where part of it can be executed locally and 
other to fog device; the execution delay δ is calculated as:

Where δL and δO are the execution delay for locally exe-
cuted, and remotely executed tasks respectively. These 
delays are calculated separately as follows: 

1.	 Local execution delay – The local execution delay 
is computed based on the local tasks available in the 
device queue. In such cases, there is no transmission 
delay; thus, local execution delay is computed as: 

 where ϒL is the execution rate at a local device in 
terms of millions of instructions per second (MIPS), 
and K is tasks in the local queue.

(2)δ = max{δL, δO}.

(3)δL =

∑

k∈K σ L
k υk

ϒL
,

2.	 Remote execution delay – The remote execution 
delay is computed based on the offloaded tasks. Fur-
ther, the brokers share the workload with other fog 
nodes in the hierarchy and cloud servers. According 
to  [25], additional delays can be observed like wire-
less uplink delay, wireless downlink delay, and net-
work delay. 

where δCU and δFU are wireless uplink transmission 
latency of tasks processing in cloud and fog respectively. 
Correspondingly, δCD and δFD are their respective wire-
less downlink transmission latency. Furthermore, δCP and 
δFP are the processing latency of fog and cloud. Moreover, 
δfD and δfU are the downlink and uplink fronthaul latency 
of tasks processing in cloud.

According to  [45] the wireless uplink transmis-
sion latency for cloud δCU and fog δFU are calculated as 
follows:

(4)
�O = {�FU + �CU +max{�FP , �fU + �CP + �fD} + �FD + �CD}.

Fig. 2  Architecture of the proposed framework illustrating module interactions
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Similarly, the wireless downlink transmission latency for 
cloud and fog are calculated as follows:

The βD and βU are the wireless transmission rates [46] for 
uplink and downlink that can be calculated as follows:

Where ρU and ρF are the transmission power of mobile 
devices and fog devices, respectively. The ιU and ιD are 
the wireless gain for uplink and downlink, which is con-
stant and does not change with time. Moreover, ϒU and 
ϒD are the bandwidths of uplink and downlink. Finally, 
the noise power is �0 . When the computation speed 
(MIPS) at cloud and fog is defined as ζC and ζF , the cloud 

(5)δFU =

∑

k∈K σ F
k B

in
k

βU
, δCU =

∑

k∈K σC
k B

in
k

βU
,

(6)δFD =

∑

k∈K σ F
k B

out
k

βD
,TCD =

∑

k∈K σkCBout
k

βD
.

(7)

βU =ϒU log2

(

1+
ρU ι

2
U

�0

)

,

βD =ϒD log2

(

1+
ρF ι

2
D

�0

)

processing latency and fog processing latency can be cal-
culated by [47].

Finally, with ξF as the fronthaul capacity [48], the down-
link and uplink fronthaul transmission latency tasks pro-
cessed in the cloud are calculated as:

Hence, the total application latency will become

and δF , the fog execution latency, and δC , the cloud execu-
tion latency are given as:

Probabilistic model – A probabilistic model is pre-
sented in this section to evaluate the probability that the 
servers located at the lower level in the hierarchy can 
execute and schedule the received workload to the higher 
level. The σ1, σ2, ....σn are random and independent dis-
tributed variables. The probability that level-1 servers 
can successfully serve and offload the assigned workload 
is given as  [49]: P

(

σi
1 ≤ Capi

1
)

 which is calculated as 
shown below:

Where σ 1
s  is the workload received and ζs1 is the capacity 

of sth server in level-1. According to the capacity of each 
server in level-1, there are two scenarios. 

1.	 If σi1 ≤ ζi
1 , which means the workload received at ith 

server in level-1 is less than the computation capacity 
of that server, the offloaded volume of the workload 
is null.

2.	 If σi1 > ζi
1 , which means the amount of workload 

is greater than the capacity of the server, the amount 
of workload that the server will offload to the level-2 
server is: 

Hence the Cumulative Distribution Function (CDF) of 
the workload is given as:

(8)δFP =

∑

k∈K σ F
k Dk

ζF
, δCP =

∑

k∈K σC
k Dk

ζC
.

(9)δfU =

∑

k∈K σC
k B

in
k

ξF
, δfD =

∑

k∈K σC
k B

out
k

ξF
.

(10)δ = max{δL, δF, δC},

(11)
δF =δfU + δCU + δFP + δFD + TCD

δC =δFU + δCU + δfU + δCP + δfD + δFD + δCD.

(12)

P

(

σ1
1 ≤ ζ1

1, . . . , σs
1 ≤ ζs

1
)

=

s1
∏

i=1

P

(

σi
1 ≤ ζi

1
)

.

(13)Off i = σi
1 − ζi

1.

Table 2  Summary of Notations

Sr. Symbol Definition

1 U List of user IIoT devices

2 V List of volunteer IIoT devices

3 nu No. of devices in List U

4 nv No. of devices in List V

5 Vc
i Computation capacity of ith volunteer device

6 ϒL Local execution rate on mobile device

7 υk Execution required by task σk
8 σ i

s
The workload received at sth server in level-i.

9 σ L

k
The workload executed locally

10 σ F

k
The workload executed in Fog

11 σ C

k
The workload executed in Cloud

12 ζs
1 The capacity of sth server in level-i.

13 Off i The offloaded workload

14 δ The execution delay

15 ̥n Dedicated Fog Nodes

16 Wn Gateway Nodes

17 Un User nodes seeking computation

18 Vn User nodes volunteer resources

19 D
̥

i
Computation delay (queue + service)
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The total workload offloaded by the level-1 servers to 
level-2 servers is calculated as

Location estimation – The mobile nodes follow different 
mobility models and can be localized in the physical area. 
Therefore, the location of an unknown mobile node can 
be estimated according to the location of some known 
nodes, and these known nodes might be static nodes or 
nodes whose locations are already estimated. Let’s say 
that the coordinates of an unknown node u are (xu, yu) . 
The coordinates of a known node k are xk , yk , and there 
are n nodes with known coordinates. The location of this 
unknown node is calculated as [50]:

where duk is the distance between unknown node u and 
kth known node.

fog n number of known nodes

Suppose Qu = x2u + y2u , Rk = x2k + y2k , S = [xk , yk ,R]
T,

In matrix expression:

and

Finally, the position of unknown mobile node k in 
2-dimensional plane is given as:

(14)

FOi
1

(

Capi
1
)

=P

(

Oi
1 ≤ Capi

1
)

=

{

P
(

σi
1 ≤ Capi

1 + ζi
1
)

if Capi ≥ 0
0 otherwise

.

(15)σtotal =

s1
∑

i=1

Off i.

(16)(xu − xk)
2 + (yu − yk)

2 = d2ku

(17)















−2x1xk − 2y1yk + x2k + y2k = d2k1 − x21 − y21
−2x2xk − 2y2yk + x2k + y2k = d2k2 − x22 − y22
· · · · · · · · · · · ·

−2xnxk − 2ynyk + x2k + y2k = d2kn − x2n − y2n

X =









−2x1 − 2y1 1
−2x2 − 2y2 1
...

...
...

−2xn − 2yn 1









,

Y =











d2
k1

− Q1

d2k2 − Q2

...

d2kn − Qn











,

(18)XC = Y

(19)C = (XTX)−1XY

Proposed framework
The proposed simulation framework provides an infra-
structure where mobile and static nodes can become 
part of the simulation. The device can request resources 
from the other devices that have unused resources. Let 
us assume there is a n number of user devices that seek 
resources from m dedicated fog devices, and r represents 
the number of fixed brokers that receive these requests. 
The broker nodes find the most suitable fog device to 
offload the incoming request. Considering the device-to-
device communication, fog devices send the result directly 
to the user device to avoid extra delay. The proposed 
framework allows end devices to volunteer resources and 
acts as fog nodes. Thus, the user node in the idle state 
offers its resources to be used for the other devices. This 
scheme is adopted to resolve the problem of resource 
under-utilization in an industrial environment. This 
dynamic transition from user node to fog node depends 
on several factors: resource availability, mobility, speed, 
acceleration, energy, and other contextual information.

Design components – Multiple layers characterize the 
architecture of the proposed framework. The core com-
ponents of the proposed framework are discussed below.

IIoT device layer – The bottom-most layer is the 
device layer, also termed as IIoT-layer. It contains all 
devices available in an industrial environment, such as 
sensors, cyber-physical systems, robots, and automobiles. 
These devices have limited resources and communication 
range; some are placed at fixed locations, whereas others 
can freely move within the environment.

IIoT resource layer– In the proposed work, we have 
introduced this layer to provide cost-effective resource 
sharing. This is a virtual layer containing all IIoT devices 
that volunteer their resources. Thus, the IIoT device 
becomes part of the resource layer on accepting the 
resource sharing model. These IIoT devices share their 
idle resources to enhance system performance. As more 
devices become a part of this layer, it improves the qual-
ity of service and reduces the impact of the communica-
tion network.

IIoT fog broker  – This layer is composed of dedi-
cated fog servers/nodes placed hierarchically in multi-
ple sub-layers to facilitate complex tasks. These servers/
nodes have significantly high computation and storage 
resources and are more suitable for intelligence training 
models. These devices can also act federated to reduce 
the learning curve significantly.

Cloud-layer: This layer is composed of the cloud data 
center for batch processing, and storage of data for a 
longer duration.

(20)(xk , yk) = (C(1), C(2))
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In the proposed framework, the quality of service is 
maintained through the volunteer nodes. Both static and 
mobile nodes volunteer their unused resources to their 
nearby broker at level-0. The volunteer nodes are accepted 
or rejected based on specific criteria initially set at the start 
of simulation as given in Algorithm 1. These criteria include 
a requested node’s minimum energy level and mobility. 
Energy is the most predominant factor for consideration 

because a volunteer node must have efficient energy to be 
promoted as a fog node. If the incoming node meets the 
energy criteria, the mobility is checked on second priority. 
However, for static nodes, distance is computed for accept-
ance. For the mobile node, direction plays a significant role 
in accepting the proposal. The node is rejected if moving 
away from the broker node. The accepted proposals are 
added to the list of available resources.

Algorithm 1 Fog Promotion Algorithm

Task execution algorithm – The fog node, volunteer IoT 
device, or a dedicated fog node receives the incoming work-
load, which is initially stored in the input queue. The node 

pop the workload from the top of the queue executes it and 
sends the result back to the requesting node or fog broker. 
According to [51] this process is elaborated in Algorithm 2.

Algorithm 2 Task Execution at Fog
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Resource sharing algorithm – The user nodes send 
two types of workload, high priority and low priority 
workloads. The broker nodes at the first-level fog nodes 
in the hierarchy manage two types of queues for incom-
ing tasks: low priority and high priority. Also, the bro-
ker nodes manage lists of volunteer fog devices sorted 
according to their computational resources. Further, the 
broker manages a two-dimensional list where each row 
represents a fog level, and each column represents fog 
nodes at that level. This list is also sorted according to 
each fog node’s computational resources. The volunteer 
nodes and fog nodes periodically send beacons to broker 

nodes, updating the status of its resources, whereas the 
broker node updates the lists dynamically as shown in 
Algorithm  3. In this algorithm, lines 1-9 represent the 
high-priority workload that is tried to execute at the same 
broker node that minimizes the delay. Line 10-20 indi-
cates the low-priority tasks that require QoS is the best-
effort system struggles to place it at the nearest volunteer 
node. This is because the volunteer nodes have mobility, 
and there are chances of connection loss and retransmis-
sion; hence it might add additional delay. Line 21-34 cov-
ers the guaranteed quality of service through offloading 
the task to the dedicated fog nodes in the hierarchy.

Algorithm 3 Resource Sharing Algorithm
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Evaluation
The proposed simulation framework is benchmarked 
on Ubuntu 16.04 LTC with variable sensors and IIoT 
devices that offload workloads defined in terms of Mil-
lions of Instructions Per Second (MIPS). The workload 
is offloaded to the level-1 fog device that is referred to 
as fog brokers. However, the IIoT devices also volunteer 
for their resources to level-1 fog nodes. The level-1 fog 
nodes promote these IIoT devices to fog nodes depend-
ing on multiple factors, including residual energy, com-
puting power, and available storage. The fog nodes are 

placed on three levels. In the rest of the fog levels, nodes 
are enriched regarding computation resources. The last 
level fog nodes are connected to a cloud data center. The 
network has multiple same setups, and each is denoted 
as a distributively located fog location. The framework’s 
performance is evaluated in terms of CPU & memory 
usage, delay in constructing enriched GUI, network 
delay, workload computation time, workload acceptance 
ratio, and energy. The simulation parameters and system 
specification where simulation is deployed are given in 
Table 3, and Table 4 respectively. The simulation param-
eters in the table as presented in terms of range, e.g., the 
user nodes range from 50 to 500 means the nodes are 
increased to measure the impact on the overall perfor-
mance of the proposed system. The graphs presented 
here show the total number of nodes, including level-1, 
level2, level-3, and volunteer nodes.

Initialization delay – The proposed framework is 
developed on the top of OMNeT++  [52] which pro-
vides an enriched GUI environment to view running 
simulation. However, this GUI construction is a com-
pute expensive task and creates an additional one-time 
delay computed for the proposed framework, as shown in 
Fig. 3. Furthermore, this delay increases with the number 
of network nodes.

Memory and CPU usage  – Memory and CPU usage 
are directly proportional to the number of network 
nodes. The results are obtained by combing all network 
components, including IIoT devices, Fog nodes, Cloud 
servers, and networking components like routers and 
switches. Figure  4 shows the memory and CPU usage 
increases with the number of nodes. This is because of 
the memory utilization with the increased number of dif-
ferent simulation modules and objects.

Workload completion time – The workload com-
pletion is measured for two scenarios; horizontal and 
vertical placement. The horizontal placement means 
distributed fog locations, and vertical placement means 
the hierarchical placement of fog nodes on different 
levels and in cloud data centers, as shown in Fig.  5(a). 
The arrival rate varies, and workload execution time is 
measured by varying the number of nodes as shown in 
Fig.  5(b). The task size is kept constant (2000 MIPS) in 
both scenarios.

Network latency  – The network delay and congestion 
depend on the number of users offloading workloads and 
the offloading frequency, as shown in Fig. 6. Figure 6(a) 
shows that the network latency depends on the fog place-
ment provided that workload frequency is constant. 
If the fog nodes are in a hierarchical architecture, the 
delay is minimal; however, it increases if the fog nodes 
are in horizontal architecture (distributed). The latency 
of the workloads offloaded to the cloud is the maximum 

Table 3  Simulation parameters

# Parameter Value/Description

1 Fog Locations 2

1 N. of Levels 3

2 Fist Level Fogs(Brokers) 20-25

3 Level-2 & Level-3 Fogs 10-100

4 User Nodes 50-500

5 Volunteer User Nodes 100-300

6 Fog Node Compute Capacity 1200MIPS

7 Workload Inter-arrival 0.5-1.5s

8 Workload Size γ 2048

9 Cloud Data-center(s) 1

10 Level-1 App Name BrokerApp

11 Fog App Name ComputeFogApp

12 Volunteer User App VolunteerApp

13 User App IIoTmqttApp

15 Broker queueType DropTailQueue

16 Fog queueType FIFO

17 Radio Transmitter Power 3.5-5mW

18 WLAN Channel 54Mbps

Table 4  System specifications

# Component Value/Version

Computer (Memory & CPU)

   1 Processor Intel(R) CoreTM i5 1 GHz

   2 Core(s) 4

   3 Threads 8

   4 Memory 16 GB

   5 Operating System Ubuntu 16.04 LTS

Graphics & Display

   6 Resolution 1920x1080 pixels

   7 OpenGL Renderer Mesa DRI Intel(R) UHD

   8 X11 Vendor The X.Org Foundation

Tools & Technologies

   9 Omnet++ 4.6

   10 INET 3.2.4
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because an external network (internet) is used to offload 
workloads. However, the effect of workload frequency is 
shown in Fig. 6(b). The average network latency increases 
with the increase in workload arrival rate.

Residual energy – In the simulation, every IIoT func-
tions in one mode: user mode when it offloads workloads 
or volunteer mode when executing the received work-
loads. Each device joins the network with a predefined 

Fig. 3  One time component initialization and GUI construction delay

Fig. 4  Memory and CPU usage of the system with respect to number of nodes (IIoT + Fogs + Cloud + Network Components)
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energy value that reduces over time depending on the 
usage. For example, in Fig.  7, the residual energy of a 
volunteer node and two arbitrary random user nodes 
are given. When the energy of a node reduces to 0, it 
becomes inactive.

Workload acceptance ratio – The proposed frame-
work is compared with FogNetSim++  [17] in workload 
acceptance ratio. Fig. 8 shows that the proposed frame-
work outperformed and achieved a higher acceptance 
ratio when the number of nodes was increased.

Availability
The framework is developed using Omnet++ and Inet 
framework. It is an open-sourced project and is accessi-
ble in a GitHub repository1.

Conclusion
To summarize, the inclusion of fog computing in IIoT 
shifts an IIoT system’s performance to the next genera-
tion networks. Low latency is essential in many control 
applications of an IIoT system, and fog computing can 
enhance the system efficiency and risk of damage by 
providing a quick response to the respective machin-
ery. The proposed framework provides a general frame-
work to simulate IIoT fog networks and resolve the 
resource under-utilization problem by upgrading unused 
resources to compute and fog resources at a local level 
that will reduce delay and ensure the availability of 
resources. The localization module of the framework 
helps find the location of a mobile node in the network, 
and this information helps to make better decisions by 
resource allocation algorithm. The framework’s effi-
ciency is measured in terms of CPU, Memory, and GUI 
design delays. The performance of the resource sharing 

Fig. 5  Workload completion time with different arrival rate and network setup

1  https://github.com/rtqayyum/IIoT-Fog/
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Fig. 6  Network latency time with different arrival rate and network setup

Fig. 7  Residual Energy of the IIoT devices in user mode where devices offload workloads, and volunteer mode when devices execute received 
workloads
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algorithm is compared with [17], and it is observed that 
cited framework starts dropping the incoming workloads 
after a specific time. In contrast, the proposed frame-
work can manage resources better and receive workloads 
for a more extended time. Furthermore, in the future, 
additional rejection criteria can be added for volunteer 
nodes, such as the volunteer nodes being accepted or 
rejected based on specific security criteria, such as their 
level of trust. As a result, malicious nodes will not be 
able to disturb and attack the framework’s efficiency and 
performance.
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