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Abstract 

Android is the most widely used mobile platform, making it a prime target for malicious attacks. Therefore, it is 
imperative to effectively circumvent these attacks. Recently, machine learning has been a promising solution for 
malware detection, which relies on distinguishing features. While machine learning-based malware scanners have 
a large number of features, adversaries can avoid detection by using feature-related expertise. Therefore, one of the 
main tasks of the Android security industry is to consistently propose cutting-edge features that can detect suspicious 
activity. This study presents a novel feature representation approach for malware detection that combines API-Call 
Graphs (ACGs) with byte-level image representation. First, the reverse engineering procedure is used to obtain the 
Java programming codes and Dalvik Executable (DEX) file from Android Package Kit (APK). Second, to depict Android 
apps with high-level features, we develop ACGs by mining API-Calls and API sequences from Control Flow Graph 
(CFG). The ACGs can act as a digital fingerprint of the actions taken by Android apps. Next, the multi-head attention-
based transfer learning method is used to extract trained features vector from ACGs. Third, the DEX file is converted to 
a malware image, and the texture features are extracted and highlighted using a combination of FAST (Features from 
Accelerated Segment Test) and BRIEF (Binary Robust Independent Elementary Features). Finally, the ACGs and texture 
features are combined for effective malware detection and classification. The proposed method uses a customized 
dataset prepared from the CIC-InvesAndMal2019 dataset and outperforms state-of-the-art methods with 99.27% 
accuracy.
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Introduction
The prolific growth of the Android platform has encour-
aged the development of an active developer commu-
nity. Numerous Android app markets enable the instant 
download of hundreds of millions of apps. The preva-
lence of mobile malware threats increases alongside the 
emergence of Android smartphones and tablets [1]. The 
Android platform has evolved into the main attack target 

of malware due to the widespread adoption of the use 
of Android apps. According to a recent survey [2], the 
amount of malicious mobile apps and attacks reported 
in the wild has increased exponentially, posing a signifi-
cant threat to mobile app markets and users. As a result, 
there is an urgent need to effectively mitigate them. To 
combat this challenge, researchers from both industry 
and academia have developed several methods for detect-
ing malware such as graph-based features using CFG [3, 
4], behavior-based [5], signature-based [6], image-based 
[7], and machine learning approaches [8], etc. Currently, 
machine learning-based methods are a viable method 
for malware detection and classification. It can prevent 
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zero-day threats and emerge with malware quickly. How-
ever, machine learning-assisted strategies rely heavily on 
features and classification methods. This study focuses 
on the effects of features on the effectiveness and perfor-
mance of malware detection systems.Several methods for 
extracting features from malware have been developed, 
including manual and automatic feature engineering 
techniques. These methods are classified into three cat-
egories: static, dynamic, and hybrid. Such features can be 
used by the models to detect malicious apps and identify 
their type and class. In addition, it can help to alert users 
of affected devices about a potential security and privacy 
breach promptly. Static analysis examines the disassem-
bled script without executing the app to extract syntactic 
and semantic information by leveraging call graphs [4] 
and API sequences [3]. Such data can be utilized to gener-
ate an archive of signatures needed to recognize common 
threats and adversarial behaviour patterns. Obfuscation 
and encryption reduce the effectiveness of static-based 
techniques by producing multiple variants. Dynamic anal-
ysis is based on the concept of observing app activities 
and behaviour while they are running in virtualization. 
The mobile OS is a common target for numerous dynamic 
methods that aim to screen and retrieve personal data. 
These techniques are effective, but they require a signifi-
cant amount of computing resources to explore all poten-
tial app behaviours [9, 10]. The recent survey [11] on 
developing features for detecting malicious Android apps 
thoroughly represented the advantages and shortcomings 
of cutting-edge techniques. Overall, each feature can only 
provide a localized view of Android app behaviour and 
frequently targets a particular type of malware.

In addition, the strength of various features to differen-
tiate between malicious activity varies significantly. As a 
result, most existing malware detection systems intended 
to gather a detailed view by utilizing hybrid features 
rather than a single type. Furthermore, attackers use the 
existing feature-related experience to develop malware 
variants to avoid detection. As a result, it is beneficial to 
build an innovative feature space to supplement existing 
knowledge and broaden the feature combination space so 
that attackers have a difficult time evading detection.

Problem statement
In this research. we combine call-graph and image-based 
features to develop a novel hybrid feature extraction 
approach. The Android source code may contain mali-
cious scripts or URLs that compromise the functionali-
ties of the app. CFG-based behavioural segmentation can 
extract semantic flow from call graphs to target a specific 
script. Figure 1 depicts a malicious code snippet from the 
dowgin family for adware. It can be seen that the “airpush” 
API posts the malicious ads using “static void a (PushAds 

pushAds, String str)”. Such API can also attempt to obtain 
detailed information about a genuine app to fully utilize 
its functions, such as “appId, apikey, url, campId, createId”. 
Furthermore, the malicious URL1 is being used as a host 
app URL to push the malicious ads. Such semantic pat-
terns cannot be obtained solely via image visualization. 
Nevertheless, the call-graph evaluation may be affected 
by code obfuscation, insertion, reshuffling, etc. Image-
based malware categorization is extensively employed as it 
can gather all kinds of structural data, including memory, 
process, header, etc. Thus, visual images can be utilized to 
fetch any type of dynamic or obfuscated data. However, it 
can change the overall hierarchy of an Android file, making 
it impossible to target a particular malicious code snippet, 
URL, etc. Aside from that, this technique is entirely based 
on image characteristics. For instance, hackers can attack 
the malware images, affecting classification performance. 
As a result, we combined call-graph features to detect 
potentially malicious scripts/URLs with textural image 
features to detect other potentially hazardous tendencies 
such as memory or resource usage. A hybrid strategy can 
effectively utilize and classify malicious and benign files.

The main contributions of the paper are the following:

•	 A reverse engineering method is proposed to prepare 
a customized dataset. Our custom dataset contains 
Java sour codes, DEX, and additional resource files.

•	 The API-Call Graphs (ACGs) features are examined 
by extraction of CFGs from Java programming code. 
To extract train features from ACG, the multi-head 
attention using the Bidirectional Encoder Represen-
tations from Transformers (BERT) approach is then 
proposed.

•	 The malware-to-image conversion algorithm is 
intended to convert DEX files to images to analyze 
the structure of an Android app. The important tex-
tural features are extracted and marked using a com-
bination of FAST and BRIEF descriptors.

•	 The hybrid approach is developed by combining train 
features extracted from call graphs and textural fea-
tures for effective malware detection and classification.

The paper is organized as follows: The Section 2 discusses 
the related work. A detailed explanation of the proposed 
research work is discussed in the Section 3. The Section 4 
explains the experimental implementation of the pro-
posed work with CFG analysis, and multiple comparisons 
of this research work with different state-of-the-art, and 
published works. Finally, the Section  5 concludes this 
paper and discusses further study.

1  http://​api.​airpu​sh.​com/​v2/​api.​php

http://api.airpush.com/v2/api.php
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Literature review
Currently, the Android platform includes several security 
mechanisms, the most notable of which is the Android 
permission system, which assists in avoiding malicious 
programs [12, 13]. Each app must explicitly seek permis-
sion from the user during configuration or running time 
to perform a specific task that requires Android permis-
sion, such as location permission. Nevertheless, in the 
apparent lack of a better knowledge of Android permis-
sions, users frequently grant permission to unidentified 
apps. As a result, the permission system cannot pro-
vide feasible protection. The development of static and 
dynamic analysis has increased our understanding of 
malicious behaviours and improved the efficiency and 
interpretability of the model by reducing the prevalence 
of arbitrary features. One of the most popular static anal-
ysis-based methods for analyzing and classifying malware 
is to use abstract graph structures such as CFG [14]. It 
has previously been demonstrated that CFG-based analy-
sis can be combined with machine learning techniques to 
produce strong malware classification tools [4].

Arslan et  al. [15] suggested developing a graphical 
Android malware detection tool. A one-or-zero vector is 
extracted from the features of Androidmanifest.xml. To 

train the CNN network, the feature vector is encoded in 
two dimensions. These low-level features examine mobile 
apps in real-time. In terms of detecting malware, the 
detection rate is 96.2%, with precision at 97.9%, recall at 
98.2%, and F-scores at 98.1%. Kumar et  al. [16] used bit-
wise samples for sequentially labelling using the AVClass 
tool and a clustering method. The malicious program 
is depicted in grayscale so that local and global textural 
characteristics can be extracted. The stacking ensemble is 
then used to classify the malware based on visual features 
extracted from descriptors. The recommended method 
has a 98.34% test accuracy. Ma et al. described a technique 
based on machine learning for detecting Android malware. 
The features of the CFG are obtained to obtain API details. 
API calls, frequency, and sequence are used to develop 
three detection algorithms for Android malware. After 
that, the graphical features are then fed into the ensem-
ble for malware classification. The detection model has a 
98.98% detection accuracy. Frenklach et al. [17] suggested 
a method for analyzing static Android apps using an app 
similarity graph (ASG). It is assumed that the key to clas-
sifying an app’s activity lies in its generic, reusable major 
components, such as its functions. The proposed work 
achieved an accuracy of 97.5% and an AUC score of 98.7% 

Fig. 1  Malicious code snippet in dowgin family of adware
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in balanced settings using the Drebin benchmark dataset 
and a dataset supplied by VirusTotal. Fan et  al. [4] used 
static sensitive sub-graph features for Android malware 
classification. The proposed method extended a function 
call graph by labelling sensitive vertices to depict high-
level characteristics of Android apps. To determine which 
nodes are vulnerable, a malignant score is calculated. 
Then, to identify suspicious app patterns, a large num-
ber of sensitive subgraphs and their neighbour subgraphs 
are extracted. After removing the redundant graphs, the 
remaining graphs are embedded into a feature vector that 
represents each app. The model achieved a 97.04 malware 
detection rate as an F1 score.

Nguyen et  al. [18] recommended using a technique 
known as PSI-Graph, which examines function-call 
graphs for each executable file to spot IoT botnets. When 
tested on 11,200 ELF files containing 7199 IoT botnet 
samples and 4001 benign samples, the method achieves 
98.7% accuracy. Pektas et al. [19] utilized an API call graph 
to illustrate all possible malware execution paths. API call 
graphs are embedded as low-dimensional embeddings in 
deep networks. This research focuses on improving net-
work performance by investigating various encoding algo-
rithms and tuning network system parameters to achieve 
the best hyper-parameter combination and highest met-
ric value. The suggested technique has an accuracy of 
98.86%, an F-measure of 98.65%, a recall of 98.47%, and 
a precision of 98.84%. Kumar et al. [20] proposed a deep 
transfer learning-based method for malware image clas-
sification using ImageNet-trained CNN. Windows port-
able executable files (PEs) are transformed into grayscale 
images because related malware communities have simi-
lar visual attributes. After that, these visual features are 
fed into the customized deep CNN model. The method 
achieved 93.19% test accuracy for Microsoft datasets and 
98.92% test accuracy for Malimg datasets. Vu et  al. [7] 
suggested a malware classification method for encoding 
and organizing binary file bytes into images. The pixels in 
these evolved images are filled with space-filling curves 
and comprise statistical and syntactic features. The image-
based features are then fed into the CNN model, which is 
used to classify malware. By incorporating entropy encod-
ing and character class strategies, the proposed method 
achieved 93.01% accuracy on the Hilbert curve. A more 
powerful malware detection and classification system can 
be developed by combining the control flow and visual 
features.

Proposed method
Figure  2 depicts the proposed method for classifying 
Android malware, which combines ACGs with texture 
features. Reverse engineering tools are used to extract 

Java source codes and DEX files from Android APKs. 
To extract CFG features from Java code, the graph-
based method is used. When dealing with malware 
detection, these are high-level features that should be 
traversed each time. As a result, instead of using com-
plete CFG features, this method focused on ACGs fea-
tures that can reduce execution load and extract more 
specific features. Following that, ACGs and texture 
features are extracted from Java source code and DEX 
files for effective malware detection and classifica-
tion. The detailed steps are explained in the following 
sections.

Reverse engineering of APKs
Figure  3 depicts the reverse engineering procedure 
for retrieving Java codes and DEX files. To reverse-
engineer the application, we would need its APK. 
The APK Extractor file explorer is used to open the 
extracted APKs folder in the Internal Storage direc-
tory. The chosen APKs are copied to system storage 
so they can be further processed. These APKs are 
then reversed to reveal the code. This can help us 
understand the structure of the code and identify the 
security measures they have implemented to avoid 
a reverse engineering attack. The [app].apk file is 
renamed to [app].zip and then unzip it up and retrieve 
it. The classes.dex file, which includes the app code, 
can be found within the retrieved repository. A Dal-
vik Executable, or DEX file, is an executable file that 
runs on the Android OS and contains the compiled 
script. The Jadx decompiler is then used to decompile 
the DEX file to extract the Java codes. In the proposed 
work, the java programming codes and DEX files are 
used together to extract features [21]. The reverse 
engineering process is shown in Algorithm 1.

Algorithm 1:  Reverse engineering of APKs
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Further, we found URLs in Java codes that can be 
used to detect malicious activities as shown in Table  1. 
These URLs highlight interactions transmitted to the 

advertising network. To monitor the apps that are used 
and distribute related ads to the device, advertising com-
panies gather this data to build a profile for the device. 

Fig. 2  Malware detection system using ACGs-based multi-heads attention and image representation

Fig. 3  Reverse Engineering of Android APKs for hunting of Dex file and Java sources codes
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An individual phone can be tracked using the UDID, 
which is a special identification number.

Graph‑based features analysis
The CFG includes graph-based features for converting 
Java code via logical paths. These paths are then used to 
represent the semantics of codes. It uses graph numer-
als to represent all paths that a code may take during 
implementation. Each node in the graph represents a 
basic block, such as a code statement that may or may 
not include a jump. The jump highlights the start and 
end of a block of statements. The directed edges rep-
resent the Java code execution order. As a result, the 
combined effect of nodes and edges represents the code 
layout. In a general sense, there are two blocks: the 
input block, which regulates the start of the flow, and 
the departure block, which leaves the control flow [4, 
22, 23]. For a given Android app, this technique employs 
an ACG to interpret the global behaviour of the app via 
CFG. Considering that system APIs rather than devel-
oper-defined functions are always employed to invoke 
access to users’ data and system resource management. 
Malicious behaviour should always involve structured 
APIs. As a result, the ACG generation component aims 
to consciously tag specific APIs to describe malicious 
activities. Rather than employing a heuristic approach 
to examining key characteristics of malware functional-
ity, we examined a large volume of benign and malware 
apps and converted each app into the appropriate ACG. 
A CFG is a directed graph G = (N , E, entry) as shown in 
Fig. 4, where N is the node set and each API in the code 
(such as system API and user-defined API) denotes one 
node; E = {n1 > n2 |n1, n2 ∈ N  and n2 may be imme-
diately executed after n1} ; and entry is the entry point as 
a node. Because every App has an entry function called 
main(), we can consider main() to be the entry point. 

The Java code is examined further to identify malicious 
APIs. Malicious apps use threatening APIs to achieve 
their objectives. For instance, obtaining personal infor-
mation using SMS APIs and sending it through a sub-
net with network APIs can cause confidentiality leaks. 
Examining API usage can help identify this type of mal-
ware. Furthermore, some suspicious behaviour would 
make extensive use of standard APIs. For instance, if 
network APIs are frequently used, a DOS attack may 
happen. The frequency of APIs can thus be used to 
identify such types of malware. Although this type of 
evidence helps with malware detection, it is insuffi-
ciently precise. A benign application will use the same 
APIs infrequently throughout its lifetime, making it dif-
ficult to detect malware by evaluating recurrence. How-
ever, we can easily solve this problem by examining the 
API sequence. The logical execution paths of CFGs can 
be used to determine the order of APIs. Thus, by explor-
ing the chronological API trend, we can learn about its 
behaviour. Table 2 shows some APIs found in the codes. 
These APIs can be used for malicious activities to con-
trol the functionalities of Android apps. For instance, 
“android.permission.USE_CREDENTIALS” API is used 
to steal the user credentials to get access to the genuine 
account over the Android app. Similarly, the “android.
permission.ACCESS_COARSE_LOCATION” API can be 
used the access the location of the genuine user to fur-
ther perform malicious activities.

Transfer learning with multi‑heads attention
We used the multi-head attention concept using the 
BERT-large model to extract train features from ACGs. 
A contextual model called BERT can produce multi-
ple definitions for words in a sentence based on the 
relationships between those words [24, 25]. It is also 

Table 1  Malicious URLs found in Java source codes (adware APKs)

Source URL

airpush http://​api.​airpu​sh.​com/​api.​php

airpush http://​api.​airpu​sh.​com/​model/​user/​getap​pinfo.​php?​packa​geName=
airpush http://​api.​airpu​sh.​com/​redir​ect.​php?​market=
airpush http://​api.​airpu​sh.​com/​testi​con.​php

airpush http://​api.​airpu​sh.​com/​testm​sg2.​php

airpush http://​api.​airpu​sh.​com/​v2/​api.​php

airpush http://​api.​airpu​sh.​com/​v2/​api.​php?​apikey=
adwhirl http://​cus.​adwhi​rl.​com/​custom.​php?​appid=%​s&​nid=%​s&​uuid=%​s&​count​ry_​code=
adwhirl http://​met.​adwhi​rl.​com/​excli​ck.​php?​appid=%​s&​nid=%​s&​type=%​d&​uuid=
adwhirl http://​met.​adwhi​rl.​com/​exmet.​php?​appid=%​s&​nid=%​s&​type=%​d&​uuid=
adwhirl http://​cus.​adwhi​rl.​com/​custom.​php?​appid=%​s&​nid=%​s&​uuid=

http://api.airpush.com/api.php
http://api.airpush.com/model/user/getappinfo.php?packageName=
http://api.airpush.com/redirect.php?market=
http://api.airpush.com/testicon.php
http://api.airpush.com/testmsg2.php
http://api.airpush.com/v2/api.php
http://api.airpush.com/v2/api.php?apikey=
http://cus.adwhirl.com/custom.php?appid=%s&nid=%s&uuid=%s&country_code=
http://met.adwhirl.com/exclick.php?appid=%s&nid=%s&type=%d&uuid=
http://met.adwhirl.com/exmet.php?appid=%s&nid=%s&type=%d&uuid=
http://cus.adwhirl.com/custom.php?appid=%s&nid=%s&uuid=
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recognized as a bidirectional model due to its ability 
to evaluate both the right and left contexts of words. 
Regardless of how the term appears in the document, 
non-contextual models produce only a word descrip-
tion. For instance, the phrase “match the words” and 
“light the match” can be viewed similarly to the word 
“match”. The ACGs features are organized into chrono-
logical patterns of APIs. The tokenization method is 
used to divide the ACGs into small features while main-
taining order. We used the multi-head attention concept 
with the BERT-large model to obtain train features from 
ACG features.

BERT-large has 24 encoded layers, 1024 hidden sizes, 
16 self-attention heads, and 340M parameters. Fig-
ure 5(a) shows encoder and decoder transformer atten-
tion architecture. Embedding and positional encoding 
layers are used to encode and decode ACG features. 
The embedding layer stores API meaning. There are 
two embedding layers in the transformer. Input embed-
ding receives the API sequence. After moving the tar-
get one stance to the right and putting a start token at 
the first location, the target sequence is fed to the sec-
ond embedding layer. The embedding layer maps each 
API feature into an embedding vector, which is a richer 
depiction of ACGs. The position encoding is calculated 
separately from the API sequence. The embedding and 
position encoding layers work on API sequence matri-
ces. The embedding uses an API-ID matrix (APIs, API 
sequence length). Each API-ID is encoded into an APIs 
vector whose length is the embedding size, resulting in 
an (APIs, API length, embedding size) output matrix. 
The position encoding employs the same encoding size 

as the embedding size. Therefore, it generates a matrix 
with a similar shape that can be incorporated into the 
embedding matrix. Each encoder in the encoder stack 
has a multi-head attention layer and feed-forward layer. 
Each decoder has two multi-head attention layers and 
a feed-forward layer. Linear and softmax layers are 
output.

Figure  5(b) depicts the iterative and simultaneous 
computations performed by the attention module of 
the transformer. Each of these is known as an atten-
tion head. The N-way split of the query, key, and value 
parameters is handled by a separate head thanks to 
the attention module. The sum of all of these related 
attention computations results in the final attention 
score. This is known as “multi-head attention”, and it 
improves the transformer’s capacity to encode relation-
ship dynamics and refinement for each ACG feature. 
The procedure for extracting train textual features from 
ACGs is shown in Algorithm 2.

Algorithm 2:  Generating TTF from ACGs

Malware visualization and texture feature extraction
We investigated a malware detection approach based 
on texture features because it is frequently modified 
to avoid static and dynamic analysis. This approach 
can successfully counter anti-detection techniques 
like dynamic feature extraction obfuscation and fin-
gerprint exploitation. The DEX file contains the byte 
streams that demonstrate the correct APK struc-
ture. We developed a method that converts the byte 
streams to grayscale images using an 8-bit vector. Fol-
lowing this, all image dimensions are set to 256x256 
pixels. Figure  6 depicts images with a resolution of 
256x256 extracted from the DEX files of adware fami-
lies such as dowgin, ewind, feiwo, and gooligan. It is 
found that a large DEX size is shrunk down to a more 
manageable one. For instance, the DEX in the image is 
reduced from megabytes to kilobytes. Consequently, it 
may be feasible to decrease computational resources.

Table 2  Malicious activities using different permission types in 
Java source codes (adware APKs)

Activity API for different types of permission

Synchronization android.permission.READ_SYNC_SETTINGS

uninstall shortcuts com.android.launcher.permission.UNINSTALL_
SHORTCUT​

user credentials android.permission.USE_CREDENTIALS

read settings com.motorola.dlauncher.permission.READ_SET-
TINGS

access location android.permission.ACCESS_COARSE_LOCATION

install shortcut com.motorola.dlauncher.permission.INSTALL_
SHORTCUT​

Synchronization android.permission.READ_SYNC_STATS

Synchronization android.permission.WRITE_SYNC_SETTINGS

internet access android.permission.INTERNET

vendor billing com.android.vending.BILLING

install shortcut com.lge.launcher.permission.INSTALL_SHORTCUT​

send SMS android.permission.SEND_SMS
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By combining FAST, and BRIEF, texture features are then 
retrieved from DEX images [26]. The FAST extractor can 
perform calculations quickly and accurately. First, it detects 
edges by circling a pixel (p) with 1 to 16 pixels known as 
the Bresenham circle. Pixels from 1 to 16 are now identi-
fied. Examine a random sample of N labels inside the circle 
to see if any of them correspond to pixels that are brighter 
than the 16 chosen pixels. Because BRIEF is only a feature 
descriptor, features are extracted and described using the 
FAST corner extractor. For ease of use, the implementation 
procedure is divided into three phases.

•	 The image is first loaded into memory.
•	 A copy of the image is generated that is identical in 

terms of scaling and rotation.
•	 The combination of the BRIEF descriptor and FAST 

extractor is used to highlight features.

Algorithm 3 depicts the extraction of texture features.

Algorithm 3:  Generating texture features

Deep features selection
The ACGs and texture features are combined for effective 
malware detection and classification. The CNN network is 

Fig. 4  Control Flow Graph of ewind family of adware
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made to mine a wide range of attributes and extract signifi-
cant and in-depth traits. This can lighten the burden and 
processing capability required by the classification model. 
To achieve this, the merged features (ACGs, texture) are 
fed into CNN. CNN model performs better with diverse 
data types, including textual, texture, and media features 
[27, 28]. For this purpose, we employ 1-D convolutional 
layers, pooling layers, dropout layers, and a fully connected 
layer. Convolution functions as a filter, commuting via the 

selected features continually to select the most suitable 
embeddings. A feature map, which is created by each fil-
ter, contains a clean set of features. The hyper-parameters 
tunning is used to find the best number of filters. Four 
convolution layers are being used, each with 64, 128, 256, 
and 512 filters. Max-pooling lessens the feature space size, 
feature variety, and model complexity. The most significant 
features from the previous set are also generated as a fea-
ture map by this layer. Additionally, we add a Keras batch 

Fig. 5  Deep view of multi-heads attentions using transformers

Fig. 6  Malware images extracted from adware families with size 256x256
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normalization layer to the CNN network for improved per-
formance. Batch normalization ensures that the resultant 
mean remains close to zero while maintaining a standard 
deviation that is close to one. Particularly, its behaviour 
changes between training and testing. This helps keep 
the learning process steady and cuts down on the time 
required to train the model. Overfitting is addressed by the 
dropout and softmax layers in the proposed CNN network. 
The yield of the CNN model is represented by Eq. 1.

where c1k is the parameter bias of the kth neuron in the 
first layer, tl−1

i  is the outcome of the ith neuron in layer 
l − 1 , Xl−1

ik  is the kernel strength from the ith neuron in 
layer l − 1 to the kth neurons in layer l, and f() is the acti-
vation function. After analyzing the deep features, we 
chose the top 250 prominent features for accurate mal-
ware classification.

Stacked generalization ensemble learning
Stacked Generalization has a multilevel framework 
that has been thoroughly examined and implemented 
for several machine learning problems [29, 30]. The 
contributions of each sub-model to the combined pre-
diction can be weighted, which can improve model 
averaging for malware detection. This can be extended 
by learning a completely new model to determine 
the best way to combine the contributions of several 
sub-models. This procedure is known as a stacked 
generalization ensemble, and it can outperform the 
predictive abilities of any single model. We develop a 
stacked generalized ensemble model to weigh the con-
tributions of each sub-model to the joint prediction 
according to the expected output of the sub-models 
as shown in Fig.  7. Individual learners are the level-0 
learners, and the combiner is the level-1 learner. Fol-
lowing is specific information regarding the stacked 
generalization. 

1	 Level-0: This is also known as base-learner. The deep 
features are divided into training and testing sets, and 
the training set is then used to generate base learn-
ers via base learning models. We combine several 
models to work as a base-learner, including Gauss-
ian Naïve Bayes (GNB), Support Vector Machine 
(SVM) with Radial Basis Function (RBF), Decision 
Tree (DT), Random Forest (RF), K-Nearest Neighbor 
(KNN), and Multi-Layer Perceptron (MLP). Using 
out-of-sample data, the prediction is made for each 
base learner.

(1)o1k = f c1k

Nl−1

i=1

Con1D Xl−1

ik , tl−1
i

2	 Level-1: This is also known as meta-learner. The 
outcome of the base learners is fed into the meta 
learner’s data, and a single meta-learner learns to 
make accurate malware detection from this data. We 
used Logistic Regression (LR) as a metal learner. To 
prevent overfitting, the meta-learner is trained on a 
different dataset than the instances used to train the 
base learners. The testing part of the deep features is 
used to train the metal learner.

When compared to individual models, we achieve better 
malware detection and classification results. It is capable 
of optimizing the best linear combinations of models. 
This enables us to obtain the optimal blend of diversity 
from each model and achieve the highest level of detec-
tion accuracy. However, the computation time for a 
stacked ensemble is longer than for any single model. 
Algorithm  4 depicts the process of detecting malware 
using hybrid features.

Algorithm 4:  Malware detection

Results and discussions
Dataset preparation
We prepared a customized dataset from CIC-Inve-
sAnd-Mal2019 [31] by using reverse engineering and 
data mining tools. Originally, the dataset is available 
in the form of APKs. It includes four types of mal-
ware such as adware, ransomware, scareware, and 
SMS. Each malware type is further subdivided into 10 
to 11 families. This dataset is been compiled to install 
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5, 000 samples on real Android devices. These samples 
originated from 42 distinct families of 342 malicious 
Android apps as shown in Table  3. These APKs are 
thoroughly analyzed to unbox and prepare our custom-
ized dataset for effective malware detection, as shown 
in Table 4. The Java programming codes and DEX files 
are obtained by reverse engineering the Android APKs. 
There are approximately 3.2K ACGs collected from 
adware and ransomware, and 3.4K ACGs collected 
from scareware and SMS, respectively. Similarly, the 
proposed method crawls the train and texture features 
with 8.4K for both adware and ransomware and 8.6K 
for scareware and SMS. These features are combined 
further to extract deep features for improved malware 
classification results.

Performance indicators
We chose an 80% to 20% training to testing ratio, which 
is a widely used benchmark. We employed six different 
types of evaluation metrics: precision, recall, F1-score, 
Matthews Correlation Coefficient (MCC), accuracy, 
and confusion matrix. The proportion of malware and 
benign apps are correctly classified as True Positives 

(TPs) and True Negatives (TNs). Likewise, the num-
ber of malware and benign apps are incorrectly classi-
fied as False Positives (FPs) and False Negatives (FNs). 
An accuracy matrix is used to evaluate general classi-
fication performance. This equals the sum of instances 
that have been correctly classified divided by the total 
number of instances. The MCC measures the degree of 
correlation between expected and actual values. It can 
produce a value ranging from −1 to +1 . The MCC can 
be +1 when the predictions are correct, and 0 when it 
performs no better than a random prediction. Further-
more, the MCC can be −1 when predictions and obser-
vations disagree. Equations 2 to 6 show the evaluation 
matrices.

(2)TPR =
TP

TP + FN
; FPR = Recall =

FP

FP + TN

(3)Precision =
TP

TP + FP

(4)F1 − Score =
2 ∗ TP

2TP + FP + FN

Fig. 7  Stacked ensemble learning using generalization concept for malware classification
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W h e r e 
�1 = (TP + FP), �2 = (TP + FN ), �3 = (TN + FP),

�4 = (TN + FN ).

Results analysis
These epoch curves can be used to demonstrate the 
dynamic behaviour of the model during training on each 
epoch for malware detection and classification. Fig-
ure  8 shows the training and testing epoch curves for 
malware detection using accuracy, loss, precision, and 
recall. The colours blue, red, orange, and green repre-
sent the accuracy, loss, precision, and recall, respectively. 
Using the training data in part a, the accuracy begins at 
80% and increases to 99% by the 20th epoch. The loss 
begins at 97% and gradually decreases with each epoch. 
The loss is approximately 5% on the 28th epoch and then 
becomes more or less constant. Similarly, precision and 
recall begin at 70% and 50%, respectively, and gradu-
ally increase to 98% in the 20th epoch. The inverse rela-
tionship between accuracy and loss indicates that the 

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)MCC =
TPXTN − FPXFN
√
(τ1)(τ2)(τ3)(τ4)

proposed model performs better on training data. Part b 
also shows that the accuracy and loss are inversely pro-
portional, indicating that the model performs better on 
test data. In the 15th epoch, there is a drop of up to 70% 
in accuracy, precision, and recall, with the loss increasing 
to 29%. Overall, the three performance measures provide 
99% performance on the 23rd epoch and are more or less 
constant after that. In addition, the normal behaviour of 
these dynamic curves indicates that there is a reduced 
likelihood of overfitting.

The comparison of the five malware detection perfor-
mance measures is shown in Table  5. The KNN model 
has the lowest performance with (precision, recall, 
F1-score, MCC, and accuracy), (96%, 98%, 97%, 97.42%, 
and 97.12%), respectively. However, the proposed ensem-
ble model performs best in terms of (precision, recall, 
F1-score, MCC, and accuracy), with (99%, 99%, 99%, 
99.14%, and 99.27%). While the MLP comes in second 
place after the ensemble. When compared to the base 
learners, the stacked ensemble as meta learner performs 
the best. Table 6 shows the performance compassion for 
malware detection for both malware and benign class. 
The precision, recall, and F1-score for each class are 
presented using the base learner and meta learner. The 
stacked ensemble performed the best, with (100%, 98%, 
and 98%) for malware and (97%, 99%, and 99%), respec-
tively. While the KNN performs the worst for malware 
and benign.

Figure 9 shows the training and testing epoch curves 
for malware classification using accuracy, loss, preci-
sion, and recall. In part a using training data, the accu-
racy curve starts from 50% and gradually increases to 
reach 83% on the 20th epoch. Further, it moves up and 
reaches 98% in the 40th epoch. After that, it is more 
or less constant. Conversely, the loss starts from 75% 
and then drops gradually up to 20% in the 22nd epoch. 
Further, it is more or less constant after the 40th epoch 
and drops up to 4%. The precision and recall behave 
close to accuracy which indicates that the proposed 
approach performs better for training data. In part b, 

Table 3  CIC-InvesAndMal2019 dataset

APK Type of families Description

Adware Dowgin, Ewind, Feiwo, Gooligan, Kemoge, koodous, Mobidash, 
Selfmite, Shuanet, Youmi

Adware is an unwanted app that displays ads in your browser.

Ransomware Charger, Jisut, Koler, LockerPin, Simplocker, Pletor, PornDroid, Ran-
somBO, Svpeng, WannaLocker

A malicious app that threatens to block data or a device until the 
suspect pays a ransom.

Scareware AndroidDefender, AndroidSpy, AV, AVpass, FakeApp, FakeApp.AL, 
FakeAV, FakeJobOffer, FakeTaoBao, Penetho, and VirusShield

Scares people into visiting fake or infected websites or download-
ing malicious files.

SMS BeanBot, Biige, FakeInst, FakeMart, FakeNotify, Jifake, Mazarbot, 
Nandrobox, Plankton, SMSsniffer, Zsone

It is a mobile text messaging-based phishing cybersecurity attack.

Benign — Clean apps (Not malicious)

Table 4   Our customized dataset prepared from CIC-
InvesAndMal2019

APK No. of ACGs Train 
Features 
(APIs)

Texture 
Features

Combined

Adware ∼ 3.2K ∼ 8.4K ∼ 27K ∼ 35.4K

Ransomware ∼ 3.2K ∼ 8.4K ∼ 27K ∼ 35.4K

Scareware ∼ 3.4K ∼ 8.6K ∼ 28K ∼ 36.6K

SMS ∼ 3.4K ∼ 8.6K ∼ 28K ∼ 36.6K

Benign ∼ 4.8K ∼ 12.6K ∼ 40.4K ∼ 53K



Page 13 of 21Ullah et al. Journal of Cloud Computing           (2022) 11:75 	

the same performance measures are shown for test-
ing data. The accuracy, precision, and recall behave 
abruptly sometimes but provide the best performance. 
There is a slight drop up to 75% and an increase in loss 
up to 32%, but after that, they behave normally. The 
performance comparison for malware classification is 
shown in Table 7. The ensemble provides the best clas-
sification results, with precision, recall, F1-score, MCC, 
and accuracy of 100%, 98%, 98%, 98.52%, and 99.17%, 
respectively. While the SVM-rbf achieves the lowest 
classification performance.

Figure 10 depicts the malware classification for each 
type of malware, namely adware, ransomware, scare-
ware, and SMS. The precision, recall, and F1-score 
are indicated by the blue, orange, and gray colours. 
The recall is lowest when using base and meta learn-
ers, while the F1-score is the best. However, accuracy 
yields the best results for ransomware and scareware 
when using ensemble, while it yields the worst results 
for adware when using LR and SVM-rbf. There is a 
drop in accuracy and F1-score of up to 84% when using 
SVM-rbf for adware, indicating that this base learner 
provides the worst classification results. The ensemble 

Table 5  Comparison of performance measures for malware detection

Model Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

GNB 98 98 97 97.84 98.13

SVM-rbf 97 98 98 97.62 98.06

DT 97 98 98 97.77 98.15

LR 98 98 98 97.82 98.18

RF 97 98 97 96.74 97.82

KNN 96 98 97 97.42 97.12

MLP 97 98 98 98.08 98.22

Ensemble 99 99 99 99.14 99.27

Table 6  Per-class comparison of performance measures for 
malware detection

Model App Precision (%) Recall (%) F1-score (%)

GNB Malware 100 97 98

Benign 100 96 100

SVM-rbf Malware 100 97 98

Benign 96 100 98

DT Malware 98 99 98

Benign 99 97 98

LR Malware 100 97 98

Benign 96 100 98

RF Malware 97 98 97

Benign 98 96 97

KNN Malware 97 98 98

Benign 98 96 97

MLP Malware 97 100 98

Benign 100 96 97

Ensemble Malware 100 98 98

Benign 97 99 99

Fig. 8  Epoch curves for training and testing data points for malware detection (accuracy, loss, precision, recall)
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produces the best results overall. Figure 11 depicts the 
confusion matrices, which can be used to investigate 
classification and misclassification for malware detec-
tion. The confusion matrix is provided for each base 
learner and ensemble. The blue diagonal values repre-
sent classification values, while the off-diagonal values 
represent misclassification. The ensemble model pro-
duces the best classification results of 99%, 99%, and 
1%, 1% for malware and benign, respectively. Figure 12 
depicts the confusion matrices for malware classifi-
cation. It is once again demonstrated that SVM-rbf 
has the lowest performance while the ensemble has 
the highest. For instance, the classification results for 
adware, ransomware, scareware, and SMS are 93%, 
93%, 92%, and 97%, respectively, whereas the ensem-
ble has 100%, 98%, 98%, and 100% for the same classes. 
It is shown that the proposed hybrid results using the 
ensemble model outperform the base learners for each 
malware variant.

To dig deeper, we examined the classification results 
for each adware family. Table  8 summarizes the perfor-
mance of the proposed approach for adware families, 
which include dowgin, ewind, feiwo, gooligan, kemoge, 
koodous, mobidash, selfmite, shuanet, and youmi. When 

compared to others, the feiwo, kudous, and shuanet have 
the best classification results. For feiwo, kudous, and 
shuanet, the precision, recall, and f-score are (99%, 100%, 
100%), (100%, 100%, 100%), and (100%, 99%, 100%), 
respectively. However, kemoge and youmi produce the 
fewest results. For instance, the precision, recall, and 
F1-score for kemoge and youmi are (97%, 96%, 96%), 
(98%, 96%, 97%), and (98%, 96%, 97%), respectively. Fig-
ure 13 depicts the confusion matrix using the ensemble 
model, which shows the classification and misclassifica-
tion values for each adware family. The results for adware 
are then generated by averaging the classification results 
from each family of adware. As a result, each family 
successfully fulfills its function for the parent type of 
malware.

Comparison with other methods
To demonstrate the effectiveness comprehensively, 
the proposed method is compared to other meth-
ods. The proposed method used a hybrid approach 
that combined ACGs and texture features. To classify 
malware, we only used ACG features and the BERT 
large model as shown in Fig.  14. Light blue, orange, 
grey, yellow, and dark blue represent precision, recall, 

Fig. 9  Epoch curves for training and testing data points for malware classification (accuracy, loss, precision, recall)

Table 7  Comparison of performance measures for malware classification

Model Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

GNB 98 97 97 97.16 97.41

SVM-rbf 94 94 94 91.40 93.56

DT 95 95 95 93.91 94.71

LR 98 97 97 96.59 97.42

RF 97 97 97 96.21 97.16

KNN 97 97 97 96.86 97.02

MLP 98 97 98 97.81 98.37

Ensemble 100 98 98 98.52 99.17
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F1-score, MCC, and accuracy, respectively. The SVM-
rbf produces lower classification results for precision, 
recall, F1-score, MCC, and accuracy, which are 69%, 
69%, 69%, 65.28%, and 68.89%, respectively. While the 
ensemble model provides good classification results 
(97%, 98%, 97%, 97.06%, and 97.1%), Because we are 
only using ACGs features, the results are lower than 
the hybrid features. As a result, it is demonstrated that 
hybrid features produce the best classification results. 
Furthermore, the proposed approach is compared to 
cutting-edge transfer learning approaches. Table  9 
exhibits the performance of various trained models, 
namely word2vevc, BERT-base, and BERT-large. First, 
these trained models are used for malware classifica-
tion without the texture feature. The same models are 
then combined with texture features to classify mal-
ware to demonstrate the effectiveness of the combined 
approach. Using textual features with the word2vec 
model yields the poorest results. BERT outperforms 
models such as word2vec. According to word2vec, 
every word has the same representation, even though 
the context in which a word appears can completely 
change its meaning. BERT generates dynamically influ-
enced word representations based on neighbouring 
words. For instance, using word2vec, the precision, 
recall, F1-score, MCC, and accuracy are 95%, 95%, 96%, 
95.12%, and 95.61%, respectively. The BERT-large per-
forms better than the BERT-base when only textual 
features are used. Overall, the hybrid approach using 
BERT-large and texture features produces the best 

classification results when compared to other transfer 
learning approaches.

Table 10 shows the performance comparisons with 
related and recently published research. Arslan et al. 
[15] proposed to create a graphical Android malware 
detection tool. The features of Androidmanifest.xml 
are extracted and converted to a one-or-zero vector. 
The CNN network is trained using the 2D-coded fea-
ture vector. The low-resource model analyzes real-
time apps on mobile devices. The malware detection 
rate (accuracy) is 96.2%, with precision, recall, and 
F-scores of 97.9%, 98.2%, and 98.1%, respectively. 
Kumar et al. [16] use an AVClass tool and a clustering 
technique to systematically label the binary samples. 
The labelled malicious program is shown in grayscale 
images so that local and global textural features can 
be extracted. The stacking of ensemble feature maps 
is generated from various image descriptors. The 
test accuracy for the suggested method is 98.34%. 
Ma et  al. [3] presented a machine-learning-based 
method for detecting Android malware. The CFG 
features are extracted to get API information. Three 
Android malware detection models are constructed 
based on API calls, frequency, and sequence. The 
final step is to create a conforming ensemble model. 
The detection model achieves 98.98% accuracy. Fren-
klach et al. [17] recommended a technique for exam-
ining static Android apps based on an app similarity 
graph (ASG). The key to categorizing an app’s activ-
ity is found in its generic, reusable key components, 

Fig. 10  Per-class comparison of performance measures for malware classification
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such as functions, it is assumed. Using the Drebin 
benchmark dataset and a dataset provided by Virus-
Total, the proposed work achieved an accuracy of 
97.5% and an AUC score of 98.7% in balanced set-
tings, respectively. Nguyen et  al. [18] suggested a 
method called PSI-Graph, which analyzes function-
call graphs for each executable file, to identify IoT 
botnets. The experimental findings show that, when 
applied to a dataset of 11,200 ELF files contain-
ing 7199 IoT botnet samples and 4001 benign sam-
ples, the suggested method attains an accuracy of 
98.7%. Pektas et  al. [19] used the API call graph to 
demonstrate all possible malware execution paths. 

Deep neural networks embed API call graphs as 
low-dimensional numeric vectors. This study con-
centrates on optimizing network performance by 
investigating distinct encoding algorithms and tun-
ing network configuration parameters to ensure the 
best hyperparameter mixture and maximum metric 
value. The proposed method achieves 98.86% accu-
racy, 98.65% F-measure, 98.47% recall, and 98.84% 
precision. Our proposed method utilized the hybrid 
features of CFG and multi-model features for mal-
ware detection and classification. It is shown that the 
proposed approach outperformed as compared to 
the recently published works.

Fig. 11  Comparison of classification/misclassification using confusion matrices for malware detection
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Fig. 12  Comparison of classification/misclassification using Confusion matrices for malware classification
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Computational complexity
Computational Complexity (CC), is concerned with cat-
egorizing computational issues based on their resource 
utilization and relating these classes to one another. We 
analyzed CC for each algorithm presented in Table  112. 
The complexity is based on the space required for the 
proposed approach.

Conclusion
Android is the most popular mobile operating sys-
tem, making it an appealing pinpoint for cyber actors. 
Consequently, it is essential to evade these threats effi-
ciently. Machine learning is a viable solution for mal-
ware detection, which is heavily reliant on features. 
Despite the numerous features of these malware analyz-
ers, cyber actors can avoid detection by understanding 
the features. Consequently, one of the main duties of 
the Android security sector is to consistently propose 
cutting-edge features that can spot fraudulent behav-
iour. This paper describes a novel feature extraction 
method for detecting attacks that combines ACGs and 
malware images. To extract the DEX file and Java source 

code from an APK, reverse engineering is used. We gen-
erate an ACG to represent Android apps with elevated 
characteristics by harvesting API-Calls from CFGs. The 
ACGs can be used to generate a digital fingerprint of 
Android app activity. The trained features vector is then 
retrieved from ACGs using the attention-based trans-
fer learning method with multiple heads. The DEX file 
is turned into a malware image, and texture features 
are extracted and outlined. Finally, the ACGs and tex-
ture features are combined to effectively detect and 

Table 8  Comparison of performance measures for malware 
family classification

Family Precision (%) Recall (%) F1-score (%)

dowgin 98 99 99

ewind 99 99 99

feiwo 99 100 100

gooligan 97 98 98

kemoge 97 96 96

koodous 100 100 100

mobidash 99 98 98

selfmite 97 98 98

shuanet 100 99 100

youmi 98 96 97

Fig. 13  Confusion matrix for adware families using ensemble

2  Where R stands for resources, .d for .dex, BL for base learner, and ML for 
machine learning.
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classify malware. The proposed method achieves the 
highest classification accuracy, 99.27%, when utilizing a 
CIC-InvesAndMal2019-customized dataset. Extensive 
experiments are also carried out to compare the pro-
posed method with state-of-the-art transfer approaches, 
as it has been demonstrated that our methods outper-
form. The BERT-base with texture features is the next 
best method for achieving good results, with 98.52% 
classification accuracy. Compared to using a single type 
of feature, it is demonstrated that hybrid features pro-
vide outstanding classification results.

In the future, the trained features can eventually be 
mined using GloVe and Fast-text trained models. In 

Fig. 14  Malware classification using BERT-large (without texture features)

Table 9  Performance comparison of transfer learning methods with the proposed approach

Method Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

word2vec 95 95 96 95.12 95.61

BERT-base 96 97 96 96.21 96.34

BERT-large 97 98 97 97.06 97.12

Texture with word2vec 98 98 99 98.13 98.38

Texture with BERT-base 98 99 98 98.21 98.52

Texture with BERT-large 99 99 99 99.14 99.27

Table 10  Performance comparison of transfer learning methods 
with the proposed approach

Reference Methods Accuracy (%)

Arslan et al. [15] CNN 96.2

Kumar et al. [16] Stacked Ensemble 98.34

Ma et al. [3] CFG & Ensemble 98.98

Frenklach et al. [17] App Similarity Graph (ASG) 97.5

Nguyen et al. [18] Function-call Graph & DCNN 98.7

Pektas et al. [19] API-call Graph & DNN 98.65

Our Proposed Hybrid (CFG & multi-model image) 99.27

Table 11  CC of our proposed approach

Algorithms APK JDEX/DEX Extractor TTF/TF/Dt/CF/DF CFG/ACG​ BL/ML

Algorithm 1 2|n| |R| + |.d| + |M| |n| − − −
Algorithm 2 − − − |n| |n| −
Algorithm 3 − − − 3|n| − −
Algorithm 4 − − − 5|n| + | n

4
| − 6|BL| + 2|ML|



Page 20 of 21Ullah et al. Journal of Cloud Computing           (2022) 11:75 

addition, the effectiveness of malware detection can be 
assessed using more sophisticated deep learning models, 
such as reinforcement learning.
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