
Ullah et al. Journal of Cloud Computing (2022) 11:75
https://doi.org/10.1186/s13677-022-00349-8

RESEARCH

A malware detection system using a hybrid
approach of multi‑heads attention‑based
control flow traces and image visualization
Farhan Ullah1, Gautam Srivastava2,3,4* and Shamsher Ullah1 

Abstract 

Android is the most widely used mobile platform, making it a prime target for malicious attacks. Therefore, it is
imperative to effectively circumvent these attacks. Recently, machine learning has been a promising solution for
malware detection, which relies on distinguishing features. While machine learning-based malware scanners have
a large number of features, adversaries can avoid detection by using feature-related expertise. Therefore, one of the
main tasks of the Android security industry is to consistently propose cutting-edge features that can detect suspicious
activity. This study presents a novel feature representation approach for malware detection that combines API-Call
Graphs (ACGs) with byte-level image representation. First, the reverse engineering procedure is used to obtain the
Java programming codes and Dalvik Executable (DEX) file from Android Package Kit (APK). Second, to depict Android
apps with high-level features, we develop ACGs by mining API-Calls and API sequences from Control Flow Graph
(CFG). The ACGs can act as a digital fingerprint of the actions taken by Android apps. Next, the multi-head attention-
based transfer learning method is used to extract trained features vector from ACGs. Third, the DEX file is converted to
a malware image, and the texture features are extracted and highlighted using a combination of FAST (Features from
Accelerated Segment Test) and BRIEF (Binary Robust Independent Elementary Features). Finally, the ACGs and texture
features are combined for effective malware detection and classification. The proposed method uses a customized
dataset prepared from the CIC-InvesAndMal2019 dataset and outperforms state-of-the-art methods with 99.27%
accuracy.

Keywords:  Android malware, Control flow graph, Malware visualization, Transfer learning, Ensemble learning,
Cybersecurity

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The prolific growth of the Android platform has encour-
aged the development of an active developer commu-
nity. Numerous Android app markets enable the instant
download of hundreds of millions of apps. The preva-
lence of mobile malware threats increases alongside the
emergence of Android smartphones and tablets [1]. The
Android platform has evolved into the main attack target

of malware due to the widespread adoption of the use
of Android apps. According to a recent survey [2], the
amount of malicious mobile apps and attacks reported
in the wild has increased exponentially, posing a signifi-
cant threat to mobile app markets and users. As a result,
there is an urgent need to effectively mitigate them. To
combat this challenge, researchers from both industry
and academia have developed several methods for detect-
ing malware such as graph-based features using CFG [3,
4], behavior-based [5], signature-based [6], image-based
[7], and machine learning approaches [8], etc. Currently,
machine learning-based methods are a viable method
for malware detection and classification. It can prevent

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: srivastavag@brandonu.ca

4 Department of Computer Science and Math, Lebanese American University,
1102 Beirut, Lebanon
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00349-8&domain=pdf

Page 2 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

zero-day threats and emerge with malware quickly. How-
ever, machine learning-assisted strategies rely heavily on
features and classification methods. This study focuses
on the effects of features on the effectiveness and perfor-
mance of malware detection systems.Several methods for
extracting features from malware have been developed,
including manual and automatic feature engineering
techniques. These methods are classified into three cat-
egories: static, dynamic, and hybrid. Such features can be
used by the models to detect malicious apps and identify
their type and class. In addition, it can help to alert users
of affected devices about a potential security and privacy
breach promptly. Static analysis examines the disassem-
bled script without executing the app to extract syntactic
and semantic information by leveraging call graphs [4]
and API sequences [3]. Such data can be utilized to gener-
ate an archive of signatures needed to recognize common
threats and adversarial behaviour patterns. Obfuscation
and encryption reduce the effectiveness of static-based
techniques by producing multiple variants. Dynamic anal-
ysis is based on the concept of observing app activities
and behaviour while they are running in virtualization.
The mobile OS is a common target for numerous dynamic
methods that aim to screen and retrieve personal data.
These techniques are effective, but they require a signifi-
cant amount of computing resources to explore all poten-
tial app behaviours [9, 10]. The recent survey [11] on
developing features for detecting malicious Android apps
thoroughly represented the advantages and shortcomings
of cutting-edge techniques. Overall, each feature can only
provide a localized view of Android app behaviour and
frequently targets a particular type of malware.

In addition, the strength of various features to differen-
tiate between malicious activity varies significantly. As a
result, most existing malware detection systems intended
to gather a detailed view by utilizing hybrid features
rather than a single type. Furthermore, attackers use the
existing feature-related experience to develop malware
variants to avoid detection. As a result, it is beneficial to
build an innovative feature space to supplement existing
knowledge and broaden the feature combination space so
that attackers have a difficult time evading detection.

Problem statement
In this research. we combine call-graph and image-based
features to develop a novel hybrid feature extraction
approach. The Android source code may contain mali-
cious scripts or URLs that compromise the functionali-
ties of the app. CFG-based behavioural segmentation can
extract semantic flow from call graphs to target a specific
script. Figure 1 depicts a malicious code snippet from the
dowgin family for adware. It can be seen that the “airpush”
API posts the malicious ads using “static void a (PushAds

pushAds, String str)”. Such API can also attempt to obtain
detailed information about a genuine app to fully utilize
its functions, such as “appId, apikey, url, campId, createId”.
Furthermore, the malicious URL1 is being used as a host
app URL to push the malicious ads. Such semantic pat-
terns cannot be obtained solely via image visualization.
Nevertheless, the call-graph evaluation may be affected
by code obfuscation, insertion, reshuffling, etc. Image-
based malware categorization is extensively employed as it
can gather all kinds of structural data, including memory,
process, header, etc. Thus, visual images can be utilized to
fetch any type of dynamic or obfuscated data. However, it
can change the overall hierarchy of an Android file, making
it impossible to target a particular malicious code snippet,
URL, etc. Aside from that, this technique is entirely based
on image characteristics. For instance, hackers can attack
the malware images, affecting classification performance.
As a result, we combined call-graph features to detect
potentially malicious scripts/URLs with textural image
features to detect other potentially hazardous tendencies
such as memory or resource usage. A hybrid strategy can
effectively utilize and classify malicious and benign files.

The main contributions of the paper are the following:

•	 A reverse engineering method is proposed to prepare
a customized dataset. Our custom dataset contains
Java sour codes, DEX, and additional resource files.

•	 The API-Call Graphs (ACGs) features are examined
by extraction of CFGs from Java programming code.
To extract train features from ACG, the multi-head
attention using the Bidirectional Encoder Represen-
tations from Transformers (BERT) approach is then
proposed.

•	 The malware-to-image conversion algorithm is
intended to convert DEX files to images to analyze
the structure of an Android app. The important tex-
tural features are extracted and marked using a com-
bination of FAST and BRIEF descriptors.

•	 The hybrid approach is developed by combining train
features extracted from call graphs and textural fea-
tures for effective malware detection and classification.

The paper is organized as follows: The Section 2 discusses
the related work. A detailed explanation of the proposed
research work is discussed in the Section 3. The Section 4
explains the experimental implementation of the pro-
posed work with CFG analysis, and multiple comparisons
of this research work with different state-of-the-art, and
published works. Finally, the Section 5 concludes this
paper and discusses further study.

1  http://​api.​airpu​sh.​com/​v2/​api.​php

http://api.airpush.com/v2/api.php

Page 3 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

Literature review
Currently, the Android platform includes several security
mechanisms, the most notable of which is the Android
permission system, which assists in avoiding malicious
programs [12, 13]. Each app must explicitly seek permis-
sion from the user during configuration or running time
to perform a specific task that requires Android permis-
sion, such as location permission. Nevertheless, in the
apparent lack of a better knowledge of Android permis-
sions, users frequently grant permission to unidentified
apps. As a result, the permission system cannot pro-
vide feasible protection. The development of static and
dynamic analysis has increased our understanding of
malicious behaviours and improved the efficiency and
interpretability of the model by reducing the prevalence
of arbitrary features. One of the most popular static anal-
ysis-based methods for analyzing and classifying malware
is to use abstract graph structures such as CFG [14]. It
has previously been demonstrated that CFG-based analy-
sis can be combined with machine learning techniques to
produce strong malware classification tools [4].

Arslan et al. [15] suggested developing a graphical
Android malware detection tool. A one-or-zero vector is
extracted from the features of Androidmanifest.xml. To

train the CNN network, the feature vector is encoded in
two dimensions. These low-level features examine mobile
apps in real-time. In terms of detecting malware, the
detection rate is 96.2%, with precision at 97.9%, recall at
98.2%, and F-scores at 98.1%. Kumar et al. [16] used bit-
wise samples for sequentially labelling using the AVClass
tool and a clustering method. The malicious program
is depicted in grayscale so that local and global textural
characteristics can be extracted. The stacking ensemble is
then used to classify the malware based on visual features
extracted from descriptors. The recommended method
has a 98.34% test accuracy. Ma et al. described a technique
based on machine learning for detecting Android malware.
The features of the CFG are obtained to obtain API details.
API calls, frequency, and sequence are used to develop
three detection algorithms for Android malware. After
that, the graphical features are then fed into the ensem-
ble for malware classification. The detection model has a
98.98% detection accuracy. Frenklach et al. [17] suggested
a method for analyzing static Android apps using an app
similarity graph (ASG). It is assumed that the key to clas-
sifying an app’s activity lies in its generic, reusable major
components, such as its functions. The proposed work
achieved an accuracy of 97.5% and an AUC score of 98.7%

Fig. 1  Malicious code snippet in dowgin family of adware

Page 4 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

in balanced settings using the Drebin benchmark dataset
and a dataset supplied by VirusTotal. Fan et al. [4] used
static sensitive sub-graph features for Android malware
classification. The proposed method extended a function
call graph by labelling sensitive vertices to depict high-
level characteristics of Android apps. To determine which
nodes are vulnerable, a malignant score is calculated.
Then, to identify suspicious app patterns, a large num-
ber of sensitive subgraphs and their neighbour subgraphs
are extracted. After removing the redundant graphs, the
remaining graphs are embedded into a feature vector that
represents each app. The model achieved a 97.04 malware
detection rate as an F1 score.

Nguyen et al. [18] recommended using a technique
known as PSI-Graph, which examines function-call
graphs for each executable file to spot IoT botnets. When
tested on 11,200 ELF files containing 7199 IoT botnet
samples and 4001 benign samples, the method achieves
98.7% accuracy. Pektas et al. [19] utilized an API call graph
to illustrate all possible malware execution paths. API call
graphs are embedded as low-dimensional embeddings in
deep networks. This research focuses on improving net-
work performance by investigating various encoding algo-
rithms and tuning network system parameters to achieve
the best hyper-parameter combination and highest met-
ric value. The suggested technique has an accuracy of
98.86%, an F-measure of 98.65%, a recall of 98.47%, and
a precision of 98.84%. Kumar et al. [20] proposed a deep
transfer learning-based method for malware image clas-
sification using ImageNet-trained CNN. Windows port-
able executable files (PEs) are transformed into grayscale
images because related malware communities have simi-
lar visual attributes. After that, these visual features are
fed into the customized deep CNN model. The method
achieved 93.19% test accuracy for Microsoft datasets and
98.92% test accuracy for Malimg datasets. Vu et al. [7]
suggested a malware classification method for encoding
and organizing binary file bytes into images. The pixels in
these evolved images are filled with space-filling curves
and comprise statistical and syntactic features. The image-
based features are then fed into the CNN model, which is
used to classify malware. By incorporating entropy encod-
ing and character class strategies, the proposed method
achieved 93.01% accuracy on the Hilbert curve. A more
powerful malware detection and classification system can
be developed by combining the control flow and visual
features.

Proposed method
Figure 2 depicts the proposed method for classifying
Android malware, which combines ACGs with texture
features. Reverse engineering tools are used to extract

Java source codes and DEX files from Android APKs.
To extract CFG features from Java code, the graph-
based method is used. When dealing with malware
detection, these are high-level features that should be
traversed each time. As a result, instead of using com-
plete CFG features, this method focused on ACGs fea-
tures that can reduce execution load and extract more
specific features. Following that, ACGs and texture
features are extracted from Java source code and DEX
files for effective malware detection and classifica-
tion. The detailed steps are explained in the following
sections.

Reverse engineering of APKs
Figure 3 depicts the reverse engineering procedure
for retrieving Java codes and DEX files. To reverse-
engineer the application, we would need its APK.
The APK Extractor file explorer is used to open the
extracted APKs folder in the Internal Storage direc-
tory. The chosen APKs are copied to system storage
so they can be further processed. These APKs are
then reversed to reveal the code. This can help us
understand the structure of the code and identify the
security measures they have implemented to avoid
a reverse engineering attack. The [app].apk file is
renamed to [app].zip and then unzip it up and retrieve
it. The classes.dex file, which includes the app code,
can be found within the retrieved repository. A Dal-
vik Executable, or DEX file, is an executable file that
runs on the Android OS and contains the compiled
script. The Jadx decompiler is then used to decompile
the DEX file to extract the Java codes. In the proposed
work, the java programming codes and DEX files are
used together to extract features [21]. The reverse
engineering process is shown in Algorithm 1.

Algorithm 1:  Reverse engineering of APKs

Page 5 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

Further, we found URLs in Java codes that can be
used to detect malicious activities as shown in Table 1.
These URLs highlight interactions transmitted to the

advertising network. To monitor the apps that are used
and distribute related ads to the device, advertising com-
panies gather this data to build a profile for the device.

Fig. 2  Malware detection system using ACGs-based multi-heads attention and image representation

Fig. 3  Reverse Engineering of Android APKs for hunting of Dex file and Java sources codes

Page 6 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

An individual phone can be tracked using the UDID,
which is a special identification number.

Graph‑based features analysis
The CFG includes graph-based features for converting
Java code via logical paths. These paths are then used to
represent the semantics of codes. It uses graph numer-
als to represent all paths that a code may take during
implementation. Each node in the graph represents a
basic block, such as a code statement that may or may
not include a jump. The jump highlights the start and
end of a block of statements. The directed edges rep-
resent the Java code execution order. As a result, the
combined effect of nodes and edges represents the code
layout. In a general sense, there are two blocks: the
input block, which regulates the start of the flow, and
the departure block, which leaves the control flow [4,
22, 23]. For a given Android app, this technique employs
an ACG to interpret the global behaviour of the app via
CFG. Considering that system APIs rather than devel-
oper-defined functions are always employed to invoke
access to users’ data and system resource management.
Malicious behaviour should always involve structured
APIs. As a result, the ACG generation component aims
to consciously tag specific APIs to describe malicious
activities. Rather than employing a heuristic approach
to examining key characteristics of malware functional-
ity, we examined a large volume of benign and malware
apps and converted each app into the appropriate ACG.
A CFG is a directed graph G = (N , E, entry) as shown in
Fig. 4, where N is the node set and each API in the code
(such as system API and user-defined API) denotes one
node; E = {n1 > n2 |n1, n2 ∈ N and n2 may be imme-
diately executed after n1} ; and entry is the entry point as
a node. Because every App has an entry function called
main(), we can consider main() to be the entry point.

The Java code is examined further to identify malicious
APIs. Malicious apps use threatening APIs to achieve
their objectives. For instance, obtaining personal infor-
mation using SMS APIs and sending it through a sub-
net with network APIs can cause confidentiality leaks.
Examining API usage can help identify this type of mal-
ware. Furthermore, some suspicious behaviour would
make extensive use of standard APIs. For instance, if
network APIs are frequently used, a DOS attack may
happen. The frequency of APIs can thus be used to
identify such types of malware. Although this type of
evidence helps with malware detection, it is insuffi-
ciently precise. A benign application will use the same
APIs infrequently throughout its lifetime, making it dif-
ficult to detect malware by evaluating recurrence. How-
ever, we can easily solve this problem by examining the
API sequence. The logical execution paths of CFGs can
be used to determine the order of APIs. Thus, by explor-
ing the chronological API trend, we can learn about its
behaviour. Table 2 shows some APIs found in the codes.
These APIs can be used for malicious activities to con-
trol the functionalities of Android apps. For instance,
“android.permission.USE_CREDENTIALS” API is used
to steal the user credentials to get access to the genuine
account over the Android app. Similarly, the “android.
permission.ACCESS_COARSE_LOCATION” API can be
used the access the location of the genuine user to fur-
ther perform malicious activities.

Transfer learning with multi‑heads attention
We used the multi-head attention concept using the
BERT-large model to extract train features from ACGs.
A contextual model called BERT can produce multi-
ple definitions for words in a sentence based on the
relationships between those words [24, 25]. It is also

Table 1  Malicious URLs found in Java source codes (adware APKs)

Source URL

airpush http://​api.​airpu​sh.​com/​api.​php

airpush http://​api.​airpu​sh.​com/​model/​user/​getap​pinfo.​php?​packa​geName=
airpush http://​api.​airpu​sh.​com/​redir​ect.​php?​market=
airpush http://​api.​airpu​sh.​com/​testi​con.​php

airpush http://​api.​airpu​sh.​com/​testm​sg2.​php

airpush http://​api.​airpu​sh.​com/​v2/​api.​php

airpush http://​api.​airpu​sh.​com/​v2/​api.​php?​apikey=
adwhirl http://​cus.​adwhi​rl.​com/​custom.​php?​appid=%​s&​nid=%​s&​uuid=%​s&​count​ry_​code=
adwhirl http://​met.​adwhi​rl.​com/​excli​ck.​php?​appid=%​s&​nid=%​s&​type=%​d&​uuid=
adwhirl http://​met.​adwhi​rl.​com/​exmet.​php?​appid=%​s&​nid=%​s&​type=%​d&​uuid=
adwhirl http://​cus.​adwhi​rl.​com/​custom.​php?​appid=%​s&​nid=%​s&​uuid=

http://api.airpush.com/api.php
http://api.airpush.com/model/user/getappinfo.php?packageName=
http://api.airpush.com/redirect.php?market=
http://api.airpush.com/testicon.php
http://api.airpush.com/testmsg2.php
http://api.airpush.com/v2/api.php
http://api.airpush.com/v2/api.php?apikey=
http://cus.adwhirl.com/custom.php?appid=%s&nid=%s&uuid=%s&country_code=
http://met.adwhirl.com/exclick.php?appid=%s&nid=%s&type=%d&uuid=
http://met.adwhirl.com/exmet.php?appid=%s&nid=%s&type=%d&uuid=
http://cus.adwhirl.com/custom.php?appid=%s&nid=%s&uuid=

Page 7 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

recognized as a bidirectional model due to its ability
to evaluate both the right and left contexts of words.
Regardless of how the term appears in the document,
non-contextual models produce only a word descrip-
tion. For instance, the phrase “match the words” and
“light the match” can be viewed similarly to the word
“match”. The ACGs features are organized into chrono-
logical patterns of APIs. The tokenization method is
used to divide the ACGs into small features while main-
taining order. We used the multi-head attention concept
with the BERT-large model to obtain train features from
ACG features.

BERT-large has 24 encoded layers, 1024 hidden sizes,
16 self-attention heads, and 340M parameters. Fig-
ure 5(a) shows encoder and decoder transformer atten-
tion architecture. Embedding and positional encoding
layers are used to encode and decode ACG features.
The embedding layer stores API meaning. There are
two embedding layers in the transformer. Input embed-
ding receives the API sequence. After moving the tar-
get one stance to the right and putting a start token at
the first location, the target sequence is fed to the sec-
ond embedding layer. The embedding layer maps each
API feature into an embedding vector, which is a richer
depiction of ACGs. The position encoding is calculated
separately from the API sequence. The embedding and
position encoding layers work on API sequence matri-
ces. The embedding uses an API-ID matrix (APIs, API
sequence length). Each API-ID is encoded into an APIs
vector whose length is the embedding size, resulting in
an (APIs, API length, embedding size) output matrix.
The position encoding employs the same encoding size

as the embedding size. Therefore, it generates a matrix
with a similar shape that can be incorporated into the
embedding matrix. Each encoder in the encoder stack
has a multi-head attention layer and feed-forward layer.
Each decoder has two multi-head attention layers and
a feed-forward layer. Linear and softmax layers are
output.

Figure 5(b) depicts the iterative and simultaneous
computations performed by the attention module of
the transformer. Each of these is known as an atten-
tion head. The N-way split of the query, key, and value
parameters is handled by a separate head thanks to
the attention module. The sum of all of these related
attention computations results in the final attention
score. This is known as “multi-head attention”, and it
improves the transformer’s capacity to encode relation-
ship dynamics and refinement for each ACG feature.
The procedure for extracting train textual features from
ACGs is shown in Algorithm 2.

Algorithm 2:  Generating TTF from ACGs

Malware visualization and texture feature extraction
We investigated a malware detection approach based
on texture features because it is frequently modified
to avoid static and dynamic analysis. This approach
can successfully counter anti-detection techniques
like dynamic feature extraction obfuscation and fin-
gerprint exploitation. The DEX file contains the byte
streams that demonstrate the correct APK struc-
ture. We developed a method that converts the byte
streams to grayscale images using an 8-bit vector. Fol-
lowing this, all image dimensions are set to 256x256
pixels. Figure 6 depicts images with a resolution of
256x256 extracted from the DEX files of adware fami-
lies such as dowgin, ewind, feiwo, and gooligan. It is
found that a large DEX size is shrunk down to a more
manageable one. For instance, the DEX in the image is
reduced from megabytes to kilobytes. Consequently, it
may be feasible to decrease computational resources.

Table 2  Malicious activities using different permission types in
Java source codes (adware APKs)

Activity API for different types of permission

Synchronization android.permission.READ_SYNC_SETTINGS

uninstall shortcuts com.android.launcher.permission.UNINSTALL_
SHORTCUT​

user credentials android.permission.USE_CREDENTIALS

read settings com.motorola.dlauncher.permission.READ_SET-
TINGS

access location android.permission.ACCESS_COARSE_LOCATION

install shortcut com.motorola.dlauncher.permission.INSTALL_
SHORTCUT​

Synchronization android.permission.READ_SYNC_STATS

Synchronization android.permission.WRITE_SYNC_SETTINGS

internet access android.permission.INTERNET

vendor billing com.android.vending.BILLING

install shortcut com.lge.launcher.permission.INSTALL_SHORTCUT​

send SMS android.permission.SEND_SMS

Page 8 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

By combining FAST, and BRIEF, texture features are then
retrieved from DEX images [26]. The FAST extractor can
perform calculations quickly and accurately. First, it detects
edges by circling a pixel (p) with 1 to 16 pixels known as
the Bresenham circle. Pixels from 1 to 16 are now identi-
fied. Examine a random sample of N labels inside the circle
to see if any of them correspond to pixels that are brighter
than the 16 chosen pixels. Because BRIEF is only a feature
descriptor, features are extracted and described using the
FAST corner extractor. For ease of use, the implementation
procedure is divided into three phases.

•	 The image is first loaded into memory.
•	 A copy of the image is generated that is identical in

terms of scaling and rotation.
•	 The combination of the BRIEF descriptor and FAST

extractor is used to highlight features.

Algorithm 3 depicts the extraction of texture features.

Algorithm 3:  Generating texture features

Deep features selection
The ACGs and texture features are combined for effective
malware detection and classification. The CNN network is

Fig. 4  Control Flow Graph of ewind family of adware

Page 9 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

made to mine a wide range of attributes and extract signifi-
cant and in-depth traits. This can lighten the burden and
processing capability required by the classification model.
To achieve this, the merged features (ACGs, texture) are
fed into CNN. CNN model performs better with diverse
data types, including textual, texture, and media features
[27, 28]. For this purpose, we employ 1-D convolutional
layers, pooling layers, dropout layers, and a fully connected
layer. Convolution functions as a filter, commuting via the

selected features continually to select the most suitable
embeddings. A feature map, which is created by each fil-
ter, contains a clean set of features. The hyper-parameters
tunning is used to find the best number of filters. Four
convolution layers are being used, each with 64, 128, 256,
and 512 filters. Max-pooling lessens the feature space size,
feature variety, and model complexity. The most significant
features from the previous set are also generated as a fea-
ture map by this layer. Additionally, we add a Keras batch

Fig. 5  Deep view of multi-heads attentions using transformers

Fig. 6  Malware images extracted from adware families with size 256x256

Page 10 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

normalization layer to the CNN network for improved per-
formance. Batch normalization ensures that the resultant
mean remains close to zero while maintaining a standard
deviation that is close to one. Particularly, its behaviour
changes between training and testing. This helps keep
the learning process steady and cuts down on the time
required to train the model. Overfitting is addressed by the
dropout and softmax layers in the proposed CNN network.
The yield of the CNN model is represented by Eq. 1.

where c1k is the parameter bias of the kth neuron in the
first layer, tl−1

i is the outcome of the ith neuron in layer
l − 1 , Xl−1

ik is the kernel strength from the ith neuron in
layer l − 1 to the kth neurons in layer l, and f() is the acti-
vation function. After analyzing the deep features, we
chose the top 250 prominent features for accurate mal-
ware classification.

Stacked generalization ensemble learning
Stacked Generalization has a multilevel framework
that has been thoroughly examined and implemented
for several machine learning problems [29, 30]. The
contributions of each sub-model to the combined pre-
diction can be weighted, which can improve model
averaging for malware detection. This can be extended
by learning a completely new model to determine
the best way to combine the contributions of several
sub-models. This procedure is known as a stacked
generalization ensemble, and it can outperform the
predictive abilities of any single model. We develop a
stacked generalized ensemble model to weigh the con-
tributions of each sub-model to the joint prediction
according to the expected output of the sub-models
as shown in Fig. 7. Individual learners are the level-0
learners, and the combiner is the level-1 learner. Fol-
lowing is specific information regarding the stacked
generalization.

1	 Level-0: This is also known as base-learner. The deep
features are divided into training and testing sets, and
the training set is then used to generate base learn-
ers via base learning models. We combine several
models to work as a base-learner, including Gauss-
ian Naïve Bayes (GNB), Support Vector Machine
(SVM) with Radial Basis Function (RBF), Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbor
(KNN), and Multi-Layer Perceptron (MLP). Using
out-of-sample data, the prediction is made for each
base learner.

(1)o1k = f c1k

Nl−1

i=1

Con1D Xl−1

ik , tl−1
i

2	 Level-1: This is also known as meta-learner. The
outcome of the base learners is fed into the meta
learner’s data, and a single meta-learner learns to
make accurate malware detection from this data. We
used Logistic Regression (LR) as a metal learner. To
prevent overfitting, the meta-learner is trained on a
different dataset than the instances used to train the
base learners. The testing part of the deep features is
used to train the metal learner.

When compared to individual models, we achieve better
malware detection and classification results. It is capable
of optimizing the best linear combinations of models.
This enables us to obtain the optimal blend of diversity
from each model and achieve the highest level of detec-
tion accuracy. However, the computation time for a
stacked ensemble is longer than for any single model.
Algorithm 4 depicts the process of detecting malware
using hybrid features.

Algorithm 4:  Malware detection

Results and discussions
Dataset preparation
We prepared a customized dataset from CIC-Inve-
sAnd-Mal2019 [31] by using reverse engineering and
data mining tools. Originally, the dataset is available
in the form of APKs. It includes four types of mal-
ware such as adware, ransomware, scareware, and
SMS. Each malware type is further subdivided into 10
to 11 families. This dataset is been compiled to install

Page 11 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

5, 000 samples on real Android devices. These samples
originated from 42 distinct families of 342 malicious
Android apps as shown in Table 3. These APKs are
thoroughly analyzed to unbox and prepare our custom-
ized dataset for effective malware detection, as shown
in Table 4. The Java programming codes and DEX files
are obtained by reverse engineering the Android APKs.
There are approximately 3.2K ACGs collected from
adware and ransomware, and 3.4K ACGs collected
from scareware and SMS, respectively. Similarly, the
proposed method crawls the train and texture features
with 8.4K for both adware and ransomware and 8.6K
for scareware and SMS. These features are combined
further to extract deep features for improved malware
classification results.

Performance indicators
We chose an 80% to 20% training to testing ratio, which
is a widely used benchmark. We employed six different
types of evaluation metrics: precision, recall, F1-score,
Matthews Correlation Coefficient (MCC), accuracy,
and confusion matrix. The proportion of malware and
benign apps are correctly classified as True Positives

(TPs) and True Negatives (TNs). Likewise, the num-
ber of malware and benign apps are incorrectly classi-
fied as False Positives (FPs) and False Negatives (FNs).
An accuracy matrix is used to evaluate general classi-
fication performance. This equals the sum of instances
that have been correctly classified divided by the total
number of instances. The MCC measures the degree of
correlation between expected and actual values. It can
produce a value ranging from −1 to +1 . The MCC can
be +1 when the predictions are correct, and 0 when it
performs no better than a random prediction. Further-
more, the MCC can be −1 when predictions and obser-
vations disagree. Equations 2 to 6 show the evaluation
matrices.

(2)TPR =
TP

TP + FN
; FPR = Recall =

FP

FP + TN

(3)Precision =
TP

TP + FP

(4)F1 − Score =
2 ∗ TP

2TP + FP + FN

Fig. 7  Stacked ensemble learning using generalization concept for malware classification

Page 12 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

W h e r e
�1 = (TP + FP), �2 = (TP + FN), �3 = (TN + FP),

�4 = (TN + FN).

Results analysis
These epoch curves can be used to demonstrate the
dynamic behaviour of the model during training on each
epoch for malware detection and classification. Fig-
ure 8 shows the training and testing epoch curves for
malware detection using accuracy, loss, precision, and
recall. The colours blue, red, orange, and green repre-
sent the accuracy, loss, precision, and recall, respectively.
Using the training data in part a, the accuracy begins at
80% and increases to 99% by the 20th epoch. The loss
begins at 97% and gradually decreases with each epoch.
The loss is approximately 5% on the 28th epoch and then
becomes more or less constant. Similarly, precision and
recall begin at 70% and 50%, respectively, and gradu-
ally increase to 98% in the 20th epoch. The inverse rela-
tionship between accuracy and loss indicates that the

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)MCC =
TPXTN − FPXFN
√
(τ1)(τ2)(τ3)(τ4)

proposed model performs better on training data. Part b
also shows that the accuracy and loss are inversely pro-
portional, indicating that the model performs better on
test data. In the 15th epoch, there is a drop of up to 70%
in accuracy, precision, and recall, with the loss increasing
to 29%. Overall, the three performance measures provide
99% performance on the 23rd epoch and are more or less
constant after that. In addition, the normal behaviour of
these dynamic curves indicates that there is a reduced
likelihood of overfitting.

The comparison of the five malware detection perfor-
mance measures is shown in Table 5. The KNN model
has the lowest performance with (precision, recall,
F1-score, MCC, and accuracy), (96%, 98%, 97%, 97.42%,
and 97.12%), respectively. However, the proposed ensem-
ble model performs best in terms of (precision, recall,
F1-score, MCC, and accuracy), with (99%, 99%, 99%,
99.14%, and 99.27%). While the MLP comes in second
place after the ensemble. When compared to the base
learners, the stacked ensemble as meta learner performs
the best. Table 6 shows the performance compassion for
malware detection for both malware and benign class.
The precision, recall, and F1-score for each class are
presented using the base learner and meta learner. The
stacked ensemble performed the best, with (100%, 98%,
and 98%) for malware and (97%, 99%, and 99%), respec-
tively. While the KNN performs the worst for malware
and benign.

Figure 9 shows the training and testing epoch curves
for malware classification using accuracy, loss, preci-
sion, and recall. In part a using training data, the accu-
racy curve starts from 50% and gradually increases to
reach 83% on the 20th epoch. Further, it moves up and
reaches 98% in the 40th epoch. After that, it is more
or less constant. Conversely, the loss starts from 75%
and then drops gradually up to 20% in the 22nd epoch.
Further, it is more or less constant after the 40th epoch
and drops up to 4%. The precision and recall behave
close to accuracy which indicates that the proposed
approach performs better for training data. In part b,

Table 3  CIC-InvesAndMal2019 dataset

APK Type of families Description

Adware Dowgin, Ewind, Feiwo, Gooligan, Kemoge, koodous, Mobidash,
Selfmite, Shuanet, Youmi

Adware is an unwanted app that displays ads in your browser.

Ransomware Charger, Jisut, Koler, LockerPin, Simplocker, Pletor, PornDroid, Ran-
somBO, Svpeng, WannaLocker

A malicious app that threatens to block data or a device until the
suspect pays a ransom.

Scareware AndroidDefender, AndroidSpy, AV, AVpass, FakeApp, FakeApp.AL,
FakeAV, FakeJobOffer, FakeTaoBao, Penetho, and VirusShield

Scares people into visiting fake or infected websites or download-
ing malicious files.

SMS BeanBot, Biige, FakeInst, FakeMart, FakeNotify, Jifake, Mazarbot,
Nandrobox, Plankton, SMSsniffer, Zsone

It is a mobile text messaging-based phishing cybersecurity attack.

Benign — Clean apps (Not malicious)

Table 4   Our customized dataset prepared from CIC-
InvesAndMal2019

APK No. of ACGs Train
Features
(APIs)

Texture
Features

Combined

Adware ∼ 3.2K ∼ 8.4K ∼ 27K ∼ 35.4K

Ransomware ∼ 3.2K ∼ 8.4K ∼ 27K ∼ 35.4K

Scareware ∼ 3.4K ∼ 8.6K ∼ 28K ∼ 36.6K

SMS ∼ 3.4K ∼ 8.6K ∼ 28K ∼ 36.6K

Benign ∼ 4.8K ∼ 12.6K ∼ 40.4K ∼ 53K

Page 13 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

the same performance measures are shown for test-
ing data. The accuracy, precision, and recall behave
abruptly sometimes but provide the best performance.
There is a slight drop up to 75% and an increase in loss
up to 32%, but after that, they behave normally. The
performance comparison for malware classification is
shown in Table 7. The ensemble provides the best clas-
sification results, with precision, recall, F1-score, MCC,
and accuracy of 100%, 98%, 98%, 98.52%, and 99.17%,
respectively. While the SVM-rbf achieves the lowest
classification performance.

Figure 10 depicts the malware classification for each
type of malware, namely adware, ransomware, scare-
ware, and SMS. The precision, recall, and F1-score
are indicated by the blue, orange, and gray colours.
The recall is lowest when using base and meta learn-
ers, while the F1-score is the best. However, accuracy
yields the best results for ransomware and scareware
when using ensemble, while it yields the worst results
for adware when using LR and SVM-rbf. There is a
drop in accuracy and F1-score of up to 84% when using
SVM-rbf for adware, indicating that this base learner
provides the worst classification results. The ensemble

Table 5  Comparison of performance measures for malware detection

Model Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

GNB 98 98 97 97.84 98.13

SVM-rbf 97 98 98 97.62 98.06

DT 97 98 98 97.77 98.15

LR 98 98 98 97.82 98.18

RF 97 98 97 96.74 97.82

KNN 96 98 97 97.42 97.12

MLP 97 98 98 98.08 98.22

Ensemble 99 99 99 99.14 99.27

Table 6  Per-class comparison of performance measures for
malware detection

Model App Precision (%) Recall (%) F1-score (%)

GNB Malware 100 97 98

Benign 100 96 100

SVM-rbf Malware 100 97 98

Benign 96 100 98

DT Malware 98 99 98

Benign 99 97 98

LR Malware 100 97 98

Benign 96 100 98

RF Malware 97 98 97

Benign 98 96 97

KNN Malware 97 98 98

Benign 98 96 97

MLP Malware 97 100 98

Benign 100 96 97

Ensemble Malware 100 98 98

Benign 97 99 99

Fig. 8  Epoch curves for training and testing data points for malware detection (accuracy, loss, precision, recall)

Page 14 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

produces the best results overall. Figure 11 depicts the
confusion matrices, which can be used to investigate
classification and misclassification for malware detec-
tion. The confusion matrix is provided for each base
learner and ensemble. The blue diagonal values repre-
sent classification values, while the off-diagonal values
represent misclassification. The ensemble model pro-
duces the best classification results of 99%, 99%, and
1%, 1% for malware and benign, respectively. Figure 12
depicts the confusion matrices for malware classifi-
cation. It is once again demonstrated that SVM-rbf
has the lowest performance while the ensemble has
the highest. For instance, the classification results for
adware, ransomware, scareware, and SMS are 93%,
93%, 92%, and 97%, respectively, whereas the ensem-
ble has 100%, 98%, 98%, and 100% for the same classes.
It is shown that the proposed hybrid results using the
ensemble model outperform the base learners for each
malware variant.

To dig deeper, we examined the classification results
for each adware family. Table 8 summarizes the perfor-
mance of the proposed approach for adware families,
which include dowgin, ewind, feiwo, gooligan, kemoge,
koodous, mobidash, selfmite, shuanet, and youmi. When

compared to others, the feiwo, kudous, and shuanet have
the best classification results. For feiwo, kudous, and
shuanet, the precision, recall, and f-score are (99%, 100%,
100%), (100%, 100%, 100%), and (100%, 99%, 100%),
respectively. However, kemoge and youmi produce the
fewest results. For instance, the precision, recall, and
F1-score for kemoge and youmi are (97%, 96%, 96%),
(98%, 96%, 97%), and (98%, 96%, 97%), respectively. Fig-
ure 13 depicts the confusion matrix using the ensemble
model, which shows the classification and misclassifica-
tion values for each adware family. The results for adware
are then generated by averaging the classification results
from each family of adware. As a result, each family
successfully fulfills its function for the parent type of
malware.

Comparison with other methods
To demonstrate the effectiveness comprehensively,
the proposed method is compared to other meth-
ods. The proposed method used a hybrid approach
that combined ACGs and texture features. To classify
malware, we only used ACG features and the BERT
large model as shown in Fig. 14. Light blue, orange,
grey, yellow, and dark blue represent precision, recall,

Fig. 9  Epoch curves for training and testing data points for malware classification (accuracy, loss, precision, recall)

Table 7  Comparison of performance measures for malware classification

Model Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

GNB 98 97 97 97.16 97.41

SVM-rbf 94 94 94 91.40 93.56

DT 95 95 95 93.91 94.71

LR 98 97 97 96.59 97.42

RF 97 97 97 96.21 97.16

KNN 97 97 97 96.86 97.02

MLP 98 97 98 97.81 98.37

Ensemble 100 98 98 98.52 99.17

Page 15 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

F1-score, MCC, and accuracy, respectively. The SVM-
rbf produces lower classification results for precision,
recall, F1-score, MCC, and accuracy, which are 69%,
69%, 69%, 65.28%, and 68.89%, respectively. While the
ensemble model provides good classification results
(97%, 98%, 97%, 97.06%, and 97.1%), Because we are
only using ACGs features, the results are lower than
the hybrid features. As a result, it is demonstrated that
hybrid features produce the best classification results.
Furthermore, the proposed approach is compared to
cutting-edge transfer learning approaches. Table 9
exhibits the performance of various trained models,
namely word2vevc, BERT-base, and BERT-large. First,
these trained models are used for malware classifica-
tion without the texture feature. The same models are
then combined with texture features to classify mal-
ware to demonstrate the effectiveness of the combined
approach. Using textual features with the word2vec
model yields the poorest results. BERT outperforms
models such as word2vec. According to word2vec,
every word has the same representation, even though
the context in which a word appears can completely
change its meaning. BERT generates dynamically influ-
enced word representations based on neighbouring
words. For instance, using word2vec, the precision,
recall, F1-score, MCC, and accuracy are 95%, 95%, 96%,
95.12%, and 95.61%, respectively. The BERT-large per-
forms better than the BERT-base when only textual
features are used. Overall, the hybrid approach using
BERT-large and texture features produces the best

classification results when compared to other transfer
learning approaches.

Table 10 shows the performance comparisons with
related and recently published research. Arslan et al.
[15] proposed to create a graphical Android malware
detection tool. The features of Androidmanifest.xml
are extracted and converted to a one-or-zero vector.
The CNN network is trained using the 2D-coded fea-
ture vector. The low-resource model analyzes real-
time apps on mobile devices. The malware detection
rate (accuracy) is 96.2%, with precision, recall, and
F-scores of 97.9%, 98.2%, and 98.1%, respectively.
Kumar et al. [16] use an AVClass tool and a clustering
technique to systematically label the binary samples.
The labelled malicious program is shown in grayscale
images so that local and global textural features can
be extracted. The stacking of ensemble feature maps
is generated from various image descriptors. The
test accuracy for the suggested method is 98.34%.
Ma et al. [3] presented a machine-learning-based
method for detecting Android malware. The CFG
features are extracted to get API information. Three
Android malware detection models are constructed
based on API calls, frequency, and sequence. The
final step is to create a conforming ensemble model.
The detection model achieves 98.98% accuracy. Fren-
klach et al. [17] recommended a technique for exam-
ining static Android apps based on an app similarity
graph (ASG). The key to categorizing an app’s activ-
ity is found in its generic, reusable key components,

Fig. 10  Per-class comparison of performance measures for malware classification

Page 16 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

such as functions, it is assumed. Using the Drebin
benchmark dataset and a dataset provided by Virus-
Total, the proposed work achieved an accuracy of
97.5% and an AUC score of 98.7% in balanced set-
tings, respectively. Nguyen et al. [18] suggested a
method called PSI-Graph, which analyzes function-
call graphs for each executable file, to identify IoT
botnets. The experimental findings show that, when
applied to a dataset of 11,200 ELF files contain-
ing 7199 IoT botnet samples and 4001 benign sam-
ples, the suggested method attains an accuracy of
98.7%. Pektas et al. [19] used the API call graph to
demonstrate all possible malware execution paths.

Deep neural networks embed API call graphs as
low-dimensional numeric vectors. This study con-
centrates on optimizing network performance by
investigating distinct encoding algorithms and tun-
ing network configuration parameters to ensure the
best hyperparameter mixture and maximum metric
value. The proposed method achieves 98.86% accu-
racy, 98.65% F-measure, 98.47% recall, and 98.84%
precision. Our proposed method utilized the hybrid
features of CFG and multi-model features for mal-
ware detection and classification. It is shown that the
proposed approach outperformed as compared to
the recently published works.

Fig. 11  Comparison of classification/misclassification using confusion matrices for malware detection

Page 17 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

Fig. 12  Comparison of classification/misclassification using Confusion matrices for malware classification

Page 18 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

Computational complexity
Computational Complexity (CC), is concerned with cat-
egorizing computational issues based on their resource
utilization and relating these classes to one another. We
analyzed CC for each algorithm presented in Table 112.
The complexity is based on the space required for the
proposed approach.

Conclusion
Android is the most popular mobile operating sys-
tem, making it an appealing pinpoint for cyber actors.
Consequently, it is essential to evade these threats effi-
ciently. Machine learning is a viable solution for mal-
ware detection, which is heavily reliant on features.
Despite the numerous features of these malware analyz-
ers, cyber actors can avoid detection by understanding
the features. Consequently, one of the main duties of
the Android security sector is to consistently propose
cutting-edge features that can spot fraudulent behav-
iour. This paper describes a novel feature extraction
method for detecting attacks that combines ACGs and
malware images. To extract the DEX file and Java source

code from an APK, reverse engineering is used. We gen-
erate an ACG to represent Android apps with elevated
characteristics by harvesting API-Calls from CFGs. The
ACGs can be used to generate a digital fingerprint of
Android app activity. The trained features vector is then
retrieved from ACGs using the attention-based trans-
fer learning method with multiple heads. The DEX file
is turned into a malware image, and texture features
are extracted and outlined. Finally, the ACGs and tex-
ture features are combined to effectively detect and

Table 8  Comparison of performance measures for malware
family classification

Family Precision (%) Recall (%) F1-score (%)

dowgin 98 99 99

ewind 99 99 99

feiwo 99 100 100

gooligan 97 98 98

kemoge 97 96 96

koodous 100 100 100

mobidash 99 98 98

selfmite 97 98 98

shuanet 100 99 100

youmi 98 96 97

Fig. 13  Confusion matrix for adware families using ensemble

2  Where R stands for resources, .d for .dex, BL for base learner, and ML for
machine learning.

Page 19 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

classify malware. The proposed method achieves the
highest classification accuracy, 99.27%, when utilizing a
CIC-InvesAndMal2019-customized dataset. Extensive
experiments are also carried out to compare the pro-
posed method with state-of-the-art transfer approaches,
as it has been demonstrated that our methods outper-
form. The BERT-base with texture features is the next
best method for achieving good results, with 98.52%
classification accuracy. Compared to using a single type
of feature, it is demonstrated that hybrid features pro-
vide outstanding classification results.

In the future, the trained features can eventually be
mined using GloVe and Fast-text trained models. In

Fig. 14  Malware classification using BERT-large (without texture features)

Table 9  Performance comparison of transfer learning methods with the proposed approach

Method Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

word2vec 95 95 96 95.12 95.61

BERT-base 96 97 96 96.21 96.34

BERT-large 97 98 97 97.06 97.12

Texture with word2vec 98 98 99 98.13 98.38

Texture with BERT-base 98 99 98 98.21 98.52

Texture with BERT-large 99 99 99 99.14 99.27

Table 10  Performance comparison of transfer learning methods
with the proposed approach

Reference Methods Accuracy (%)

Arslan et al. [15] CNN 96.2

Kumar et al. [16] Stacked Ensemble 98.34

Ma et al. [3] CFG & Ensemble 98.98

Frenklach et al. [17] App Similarity Graph (ASG) 97.5

Nguyen et al. [18] Function-call Graph & DCNN 98.7

Pektas et al. [19] API-call Graph & DNN 98.65

Our Proposed Hybrid (CFG & multi-model image) 99.27

Table 11  CC of our proposed approach

Algorithms APK JDEX/DEX Extractor TTF/TF/Dt/CF/DF CFG/ACG​ BL/ML

Algorithm 1 2|n| |R| + |.d| + |M| |n| − − −
Algorithm 2 − − − |n| |n| −
Algorithm 3 − − − 3|n| − −
Algorithm 4 − − − 5|n| + | n

4
| − 6|BL| + 2|ML|

Page 20 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75

addition, the effectiveness of malware detection can be
assessed using more sophisticated deep learning models,
such as reinforcement learning.

Acknowledgements
Not applicable.

Authors’ contributions
Farhan Ullah proposed the study, simulated it, and wrote the manuscript.
Shamsher Ullah designed and wrote algorithms and assisted in addressing the
comments. Gautam Srivastava reviewed and analyzed the proposed research.
All authors read and approved the final manuscript.

Funding
There is no funding support for the research work.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Software, Northwestern Polytechnical University, Xian 710072,
China. 2 Department of Math and Computer Science, Brandon University, R7A
6A9 Brandon, Canada. 3 Research Centre for Interneural Computing, China
Medical University, 40402 Taichung, Taiwan. 4 Department of Computer Sci-
ence and Math, Lebanese American University, 1102 Beirut, Lebanon.

Received: 12 September 2022 Accepted: 16 October 2022

References
	1.	 Felt AP, Finifter M, Chin E, Hanna S, Wagner D (2011) A survey of mobile

malware in the wild. In: Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices. ACM pp 3–14.
https://​doi.​org/​10.​1145/​20466​14.​20466​18

	2.	 Tam K, Feizollah A, Anuar NB, Salleh R, Cavallaro L (2017) The evolution
of android malware and android analysis techniques. ACM Comput Surv
(CSUR) 49(4):1–41

	3.	 Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method for android
malware detection based on control flow graphs and machine learning
algorithms. IEEE Access 7:21235–21245

	4.	 Ou F, Xu J (2022) S3feature: A static sensitive subgraph-based feature for
android malware detection. Comput Secur 112:102513

	5.	 Karbab EB, Debbabi M (2019) Maldy: Portable, data-driven malware
detection using natural language processing and machine learning
techniques on behavioral analysis reports. Digit Investig 28:S77–S87

	6.	 Zhang M, Duan Y, Yin H, Zhao Z (2014) Semantics-aware android malware
classification using weighted contextual api dependency graphs. In:
Proceedings of the 2014 ACM SIGSAC conference on computer and com-
munications security. ACM pp 1105–1116. https://​doi.​org/​10.​1145/​26602​
67.​26603​59

	7.	 Vu DL, Nguyen TK, Nguyen TV, Nguyen TN, Massacci F, Phung PH (2020)
Hit4mal: Hybrid image transformation for malware classification. Trans
Emerg Telecommun Technol 31(11):e3789

	8.	 Milosevic N, Dehghantanha A, Choo KKR (2017) Machine learning aided
android malware classification. Comput Electr Eng 61:266–274

	9.	 Egele M, Scholte T, Kirda E, Kruegel C (2008) A survey on automated
dynamic malware-analysis techniques and tools. ACM Comput Surv
(CSUR) 44(2):1–42

	10.	 Wang P, Wang YS (2015) Malware behavioural detection and vaccine
development by using a support vector model classifier. J Comput Syst
Sci 81(6):1012–1026

	11.	 Wang W, Zhao M, Gao Z, Xu G, Xian H, Li Y, Zhang X (2019) Constructing
features for detecting android malicious applications: issues, taxonomy
and directions. IEEE Access 7:67602–67631

	12.	 Abusitta A, Li MQ, Fung BC (2021) Malware classification and com-
position analysis: A survey of recent developments. J Inf Secur Appl
59:102828

	13.	 Mahindru A, Singh P (2017) Dynamic permissions based android malware
detection using machine learning techniques. In: Proceedings of the
10th innovations in software engineering conference. ACM pp 202–210.
https://​doi.​org/​10.​1145/​30214​60.​30214​85

	14.	 Alasmary H, Abusnaina A, Jang R, Abuhamad M, Anwar A, Nyang D,
Mohaisen D (2020) Soteria: Detecting adversarial examples in control
flow graph-based malware classifiers. In: 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE pp 888–898.
https://​doi.​org/​10.​1109/​ICDCS​47774.​2020.​00089

	15.	 Arslan RS, Tasyurek M (2022) Amd-cnn: Android malware detection via
feature graph and convolutional neural networks. Concurr Comput Pract
Experience 34:e7180

	16.	 Kumar S, Janet B, Neelakantan S (2022) Identification of malware families
using stacking of textural features and machine learning. Expert Syst Appl
208:118073

	17.	 Frenklach T, Cohen D, Shabtai A, Puzis R (2021) Android malware detec-
tion via an app similarity graph. Comput Secur 109:102386

	18.	 Nguyen HT, Ngo QD, Le VH (2020) A novel graph-based approach for iot
botnet detection. Int J Inf Secur 19(5):567–577

	19.	 Pektaş A, Acarman T (2020) Deep learning for effective android
malware detection using api call graph embeddings. Soft Comput
24(2):1027–1043

	20.	 Kumar S, Janet B (2022) Dtmic: Deep transfer learning for malware image
classification. J Inf Secur Appl 64:103063

	21.	 Gonzalez H, Kadir AA, Stakhanova N, Alzahrani AJ, Ghorbani AA
(2015) Exploring reverse engineering symptoms in android apps. In:
Proceedings of the Eighth European Workshop on System Security.
pp 1–7

	22.	 Ullah F, Naeem MR, Mostarda L, Shah SA (2021) Clone detection in
5g-enabled social iot system using graph semantics and deep learning
model. Int J Mach Learn Cybern 12(11):3115–3127

	23.	 Yan J, Yan G, Jin D (2019) Classifying malware represented as control
flow graphs using deep graph convolutional neural network. In:
2019 49th annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE pp 52–63. https://​doi.​org/​10.​1109/​
DSN.​2019.​00020

	24.	 Gao Z, Feng A, Song X, Wu X (2019) Target-dependent sentiment clas-
sification with bert. IEEE Access 7:154290–154299

	25.	 Oak R, Du M, Yan D, Takawale H, Amit I (2019) Malware detection on
highly imbalanced data through sequence modeling. In: Proceedings of
the 12th ACM Workshop on artificial intelligence and security. ACM pp
37–48. https://​doi.​org/​10.​1145/​33385​01.​33573​74

	26.	 Gálvez-López D, Tardos JD (2012) Bags of binary words for fast place
recognition in image sequences. IEEE Trans Robot 28(5):1188–1197

	27.	 Ullah F, Ullah S, Naeem MR, Mostarda L, Rho S, Cheng X (2022) Cyber-
threat detection system using a hybrid approach of transfer learning and
multi-model image representation. Sensors 22(15):5883

	28.	 Lee WY, Saxe J, Harang R (2019) Seqdroid: Obfuscated android malware
detection using stacked convolutional and recurrent neural networks.
In: Deep learning applications for cyber security. Springer pp 197–210.
https://​doi.​org/​10.​1007/​978-3-​030-​13057-2_9

	29.	 Yerima SY, Sezer S (2018) Droidfusion: A novel multilevel classifier
fusion approach for android malware detection. IEEE Trans Cybern
49(2):453–466

https://doi.org/10.1145/2046614.2046618
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/3021460.3021485
https://doi.org/10.1109/ICDCS47774.2020.00089
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1145/3338501.3357374
https://doi.org/10.1007/978-3-030-13057-2_9

Page 21 of 21Ullah et al. Journal of Cloud Computing (2022) 11:75 	

	30.	 Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P (2016) Auto-
mated bug assignment: Ensemble-based machine learning in large scale
industrial contexts. Empir Softw Eng 21(4):1533–1578

	31.	 Taheri L, Kadir AFA, Lashkari AH (2019) Extensible android malware
detection and family classification using network-flows and api-calls.
In: 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE pp 1–8. https://​doi.​org/​10.​1109/​CCST.​2019.​88884​30

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/CCST.2019.8888430

	A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization
	Abstract
	Introduction
	Problem statement

	Literature review
	Proposed method
	Reverse engineering of APKs
	Graph-based features analysis
	Transfer learning with multi-heads attention
	Malware visualization and texture feature extraction
	Deep features selection
	Stacked generalization ensemble learning

	Results and discussions
	Dataset preparation
	Performance indicators
	Results analysis
	Comparison with other methods
	Computational complexity

	Conclusion
	Acknowledgements
	References

