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Abstract 

Fault diagnosis of rolling bearings is very important for monitoring the health of rotating machinery. However, in 
actual industrial production, owing to the constraints of conditions and costs, only a small number of bearing fault 
samples can be obtained, which leads to an unsatisfactory effect of traditional fault diagnosis models based on data-
driven methods. Therefore, this study proposes a small-sample bearing fault diagnosis method based on an improved 
Siamese neural network (ISNN). This method adds a classification branch to the standard Siamese network and 
replaces the common Euclidean distance measurement with a network measurement. The model includes three net-
works: a feature extraction network, a relationship measurement network, and a fault classification network. First, the 
fault samples were input into the same feature extraction network in pairs, and a long and short-term memory (LSTM) 
network and convolutional neural network (CNN) were used to map the bearing signal data to the low-dimensional 
feature space. Then, the extracted sample features were measured for similarity by the relationship measurement net-
work; at the same time, the features were input into the classification network to complete the bearing fault recogni-
tion. When the number of training samples was particularly small (training set A, 10 samples), the accuracy of 1D CNN, 
Prototype net and Siamese net were 49.8%, 60.2% and 58.6% respectively, while the accuracy of the proposed ISNN 
method was 84.1%. For the 100-sample case of training set D, the accuracy of 1D CNN was improved to 93.4%, which 
was still higher than that of prototype and Siam network, while the accuracy of ISNN method reached 98.1%.The 
experimental results show that the method in this study achieved higher fault diagnosis accuracy and better generali-
zation in the case of small samples.
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Introduction
Rolling bearings are key components in rotating machin-
ery. They are widely used in aerospace, rail transit, indus-
trial production, and other fields. Once they fail, they 
directly affect the normal operation of the entire equip-
ment and cause economic losses to enterprises or even 
lead to accidents that threaten people’s lives and safety. 
Therefore, it is highly desirable to accurately identify 

the fault status of rolling bearings to monitor the health 
of mechanical equipment and eliminate potential safety 
hazards in time.

The rolling bearing fault diagnosis methods in the early 
days mostly used signal decomposition and transforma-
tion technology to extract fault features manually, such 
as empirical mode decomposition [1] and wavelet packet 
transform [2]. In recent years, machine learning and deep 
neural network methods based on big data have led to 
rapid developments in many tasks such as target detec-
tion [3], semantic segmentation [4], and image classi-
fication [5]. In the field of fault diagnosis, an increasing 
number of scholars have applied the following methods 
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to monitor the health condition of rolling bearings [6]: 
support vector machines (SVM) [7, 8], long short-term 
memory (LSTM) networks [9], and convolutional neural 
networks (CNN) [10, 11]. Although the above methods 
have been able to achieve good fault diagnosis results, 
they over rely on large-scale and high-quality training 
data. In actual practice, the working condition environ-
ment of a rolling bearing is complex; it is unrealistic to 
shut equipment down frequently to collect fault signals, 
and the faulty equipment may not be able to continue 
running; as a result, only limited fault data can be col-
lected if any at all. In other words, it is difficult or expen-
sive to collect a large amount of labeled fault data, which 
leads to a small-sample fault diagnosis problem [12]. In 
this case, deep learning models are unsatisfactory (low 
accuracy and poor generalization) and result in a seri-
ous overfitting phenomenon. Therefore, the study of 
small-sample fault diagnosis methods cannot only real-
ize the accurate identification of equipment health status 
under limited training data, but also be of great signifi-
cance in alleviating the difficulty of fault signal acquisi-
tion and reducing the investment of human and material 
resources.

The theory of small-sample learning [13] has attracted 
extensive research in recent years. For the problem of 
small-sample recognition in various fields, research-
ers have proposed many excellent methods that can 
be classified as data enhancement, transfer learning, 
meta learning, and metric learning [14]. Many studies 
on small-sample fault diagnosis have been published in 
the field of mechanical fault diagnosis. Wang et  al. [15] 
enhanced the quality of generation samples and the abil-
ity of planetary gearbox fault diagnosis by combining a 
generative adversarial network and stacked denoising 
autoencoders. Lv et al. [16] proposed a semi-supervised 
fault diagnosis method based on the augmentation of a 
gearbox-labeled sample in a deep embedding relation 
space that improved the generalization ability of the 
relation network by expanding the labeled samples and 
realized gearbox fault identification under a small num-
ber of labeled samples. Hu et  al. [17] used order track-
ing and resampling methods to process bearing data at 
different speeds, and an adaptive batch standardized 
network was applied to classify cross-working condi-
tion faults in small samples. Chen et  al. [18] extended 
the least square support vector machine to implement a 
transfer learning strategy and achieved a better diagnos-
tic performance for the bearing fault diagnosis of insuf-
ficient labeled samples. Wu et al. [19], Xu et al. [20], and 
Zheng et  al. [21] proposed a small-sample bearing fault 
diagnosis method based on transfer learning that trans-
fers the knowledge learned from the source domain to 
the target domain; thus, a good diagnostic accuracy was 

achieved with a small amount of target data. Regarding 
metric learning, Zhang et  al. [22] proposed a bearing 
fault diagnosis method based on a Siamese neural net-
work under the condition of small samples that learned 
features by exploiting sample pairs of the same or differ-
ent categories. The experimental results showed that the 
proposed method was more effective for fault diagnosis 
with limited data. In addition, Wang et al. [23] applied an 
improved prototypical network to a classification prob-
lem based on metric space. Using standard bearing fault 
data set, its higher performance under the conditions of 
limited samples and strong noise was verified. Although 
the above methods improved the fault diagnosis perfor-
mance for small samples to a certain extent, there are 
still many problems. For example, the data enhance-
ment method may generate noisy data, and the genera-
tion model is often difficult to train. The transfer learning 
method requires a large amount of source domain data, 
and the transfer effect depends on the similarity between 
the target and source domains. In addition, the choice 
of transfer strategy is very important. Because the meta 
learning method is highly complex and related tech-
nology is not mature, the application of this method 
is limited. Metric learning only uses simple distance 
measurements as training guidelines and has low accu-
racy when there are few training samples, but it is rela-
tively popular because of its simple calculation and easy 
operation.

The Siamese network [24] is a small-sample learn-
ing method based on similarity measurements. It has 
achieved significant effects in the fields of visual tracking 
[25], speech processing [26], and signature verification 
[27]. However, in many cases, the model performance 
depends on the quality of the feature and the choice of 
the metric method. When testing the model, every train-
ing sample needs to be paired with a testing sample one 
by one to calculate the similarity. In view of this, aiming 
at the problem of low accuracy and over-fitting of fault 
diagnosis by the deep neural network method under the 
condition of small samples, a rolling bearing fault diag-
nosis algorithm based on an improved Siamese neural 
network (ISNN) is proposed in this study. Compared 
with previous work on bearing fault diagnosis, the main 
advantages of the proposed method are as follows:

(1)	 classification branch is added to the standard Sia-
mese network so that the model not only calculates 
the sample similarity but also predicts and classi-
fies the samples directly, thus avoiding the pairing 
calculation of the data one by one during the model 
test. In addition, the standard Siamese network only 
uses the similarity label information between sam-
ples, but the classification branch also effectively 
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uses the category label information of each sample 
and can perform a better constraint role in model 
training.

(2)	 During feature extraction, the time domain data 
and frequency domain data are jointly input into 
the model, and the temporal and spatial features of 
fault signals are extracted by an LSTM network and 
CNN to make full use of the information of limited 
samples.

(3)	 The fixed distance measurement method is replaced 
by neural network measurement so that the model 
can adaptively adjust the measurement method 
according to the learned characteristics. At the 
same time, to reduce the number of parameters and 
alleviate overfitting of the model, a global average 
pooling layer is used in the measurement and clas-
sification networks.

(4)	 Compared with other methods, the ISNN has a 
higher diagnostic accuracy under the condition of 
small samples and also has better generalization 
under variable working conditions.

The remainder of this paper is organized as follows. 
Improved siamese neural network section introduces the 
ISNN and mainly includes the metric learning theory, 
Siamese network theory, and the proposed ISNN method. 
Bearing fault diagnosis process based on ISNN  section 
presents the proposed bearing fault diagnosis framework 
based on the ISNN method. In Experiment and analy-
sis section, the effectiveness of the proposed method is 
demonstrated, including a dataset introduction and com-
parison effect analysis. Finally, Conclusion section  sum-
marizes the full text.

Improved siamese neural network
Metric learning
Metric learning, also known as similarity learning, refers 
to the calculation of the distance between two samples 
through a given distance function to measure their simi-
larity [28]. The goal is to decrease the distance between 
samples of the same type in an embedding space and to 
increase the distance between samples of different types. 
When performing small-sample classification, the final 
classification result is determined by calculating the dis-
tance between the sample to be tested and the sample 
with a known label and finding the nearest neighbor cate-
gory. In practical applications, the Euclidean distance and 
cosine similarity are usually used as distance functions. 
Representative methods are prototypical networks [29], 
matching networks [30], and Siamese networks.

Given two samples, xi and xj , f (·) represents the feature 
mapping of the samples, and their Euclidean distance in 
the metric space can be described as Eq. (1):

The ultimate goal of metric learning is to learn an appro-
priate mapping function under certain constraints.

Siamese neural network
A Siamese neural network is a type of metric learning 
that solves the classification problem in the case of few 
samples by measuring the similarity between two sam-
ples. This method uses two weight-sharing subnetworks 
to receive two input samples simultaneously, and the 
output result is the similarity between the two samples 
[31]. By pairing training samples into the model, the 
number of training times can be effectively increased and 
the relationship between various samples can be deeply 
explored. First, the model maps the two input samples 
( X1,X2 ) to the low-dimensional feature space and then 
calculates the Euclidean distance between the two feature 
vectors. The distance is used to measure the similarity 
between samples. A large distance represents a low simi-
larity, whereas a small distance indicates high similarity. 
The structure of a Siamese network is shown in Fig. 1.

As shown in Fig. 1, the input of the Siamese neural net-
work is a pair of samples, and the output is the similar-
ity between them. When two samples belong to the same 
category, the similarity value approaches 1; when the 
two samples belong to different categories, the similarity 
value approaches 0. The Siamese neural network uses the 
contrast loss function to optimize the training target of 
the model as Eq. (2):

where x represents the input sample, y is the similarity 
label of the sample, and y = 1 indicates that the two sam-
ples are similar. If the Euclidean distance in the feature 
space is large, it indicates that the current model does not 
perform well and increases the loss. y = 0 indicates that 
the two samples are not similar. If the Euclidean distance 
between the two samples in the feature space is small, the 
loss value will also increase.m is the set threshold, N is 
the number of samples, and �·�2 is the two-norm between 
the features, that is, the Euclidean distance.

Introduction to ISNN network structure
The standard Siamese network uses Euclidean dis-
tance as the measurement function. The measurement 
effect depends on the quality of feature extraction in 
the early stage, and a cumbersome sample comparison 
is required during model testing. Because the algo-
rithm in this study was performed under the condition 

(1)df (xi, xj) = d(f (xi)− f (xj)) = f (xi)− f (xj) 2
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of small samples, it was necessary to make full use of 
the information of each training sample, and the net-
work design was not too deep. To make the model more 
flexible for fault classification and make full use of the 
limited sample information, this study added a classifi-
cation branch to the standard Siamese neural network 
and redesigned the feature extraction and distance 
measurement functions according to the characteristics 
of the bearing data; thus, the proposed ISNN bearing 
fault diagnosis model included three networks: feature 
extraction, relationship measurement, and fault classifi-
cation. The structure is shown in Fig. 2.

Feature extraction network
During data preprocessing, the time domain data and fre-
quency domain data of each training sample were spliced, 
and the output was used as the input for the feature extrac-
tion network. The constructed feature extraction network 
consisted of two submodules with exactly the same struc-
ture and parameters. Each submodule first used two LSTM 
layers (L1 and L2 in Fig. 2) to extract the time information 
of the fault sample and then extracted the spatial informa-
tion through the convolutional layer C1. Finally, a maxi-
mum pooling layer P1 was connected to down-sample the 
convolution result to reduce the feature size. In addition, 

Fig. 1  Structure of Siamese network.The input of the Siamese neural network is a pair of samples, and the output is the similarity between them. 
When two samples belong to the same category, the similarity value approaches 1; when the two samples belong to different categories, the 
similarity value approaches 0
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the training samples were input into the ISNN model in 
pairs. Assuming that there were n fault samples, every time 
a pair of samples is input to the model, a total of C2

n times 
effective training can be performed, which greatly increases 
the number of training times of the model.

Relationship measurement network
The function of the relationship measurement network is 
to map the two feature vectors f (Xi) and f (Xj) to simi-
larity probability. When two samples are similar, the out-
put probability is 1, and when two samples are not similar, 
the output probability is 0. Commonly fixed measure-
ment methods overly rely on the spatial quality of the fea-
ture embedding learned by a feature extraction network. 
This study used neural networks to measure the similarity 
relationship between features, trained it jointly with the 
feature extraction network, and adaptively adjusted the 
measurement method according to the input features. As 
can be seen from the ISNN model structure in Fig. 2, the 
relationship measurement network was composed of con-
volutional layers C2 and C3, a global average pooling layer 
P2, and a fully connection layer F1. Global average pooling 
was used to replace the entire feature map with its average 
value. A large number of model parameters were reduced. 
First, the feature vectors f (Xi) and f (Xj) were put into the 
convolutional layer, then they were mapped to a similarity 
value through the P2 and F1 layers, and finally the activa-
tion function layer S1 was used to transform the similarity 
value into [0, 1] . The similarity value was calculated as Eq. 
(3).

where, Ri,j represents the similarity value between the 
i − th sample and the j − th sample, g(·) denotes the 

(3)Ri,j = Sigmoid
(

g
(

f (Xi), f
(

Xj

)))

relationship function that maps the feature vector to the 
similarity value, f (·) represents the output of the fea-
ture extraction network, and Sigmoid is the activation 
function.

To accurately measure the similarity between samples 
of easily confused categories, a weighted similarity loss 
function was defined. A penalty coefficient was added 
according to the degree of difficulty in distinguishing 
between different fault categories to increase the mis-
judgment loss among easily confused fault categories. 
The loss function is given as Eq. (4).

where LS is the similarity loss, Yi,j represents the similar-
ity label between two samples, and αi,j denotes the pen-
alty coefficient when samples i and j belong to different 
fault types. When the two samples are not similar, if the 
Ri,j value output by the network does not approach zero, 
a larger αi,j value is assigned to increase the loss.

Fault classification network
Because the relationship measurement network only uses 
the similarity label of the sample and can only judge the 
similarity of a pair of samples, it cannot directly classify 
the testing sample; thus, we introduced a classification 
network in the ISNN model. The designed fault classi-
fication network used the category label information of 
each sample for supervised learning to directly predict 
the fault category to which it belonged to increase the 
flexibility of the model. As shown in Fig. 2, the structure 
of the fault classification network was similar to that of 
the relationship measurement network consisting of 

(4)
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Fig. 2  Structure diagram of ISNN model.The proposed ISNN bearing fault diagnosis model included three networks: feature extraction, relationship 
measurement, and fault classifications
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convolutional layers C4 and C5, a global average pool-
ing layer P3, and a fully connected layer F2. At the end 
of the network, an activation function layer S2 was used 
to output the predicted probability of each fault category. 
During network training, two training samples were sep-
arately input to the fault classification network for pre-
diction, but only one sample needed to be input in the 
testing phase. In this section, we used the mean square 
error as the loss function as Eq. (5).

where LC is the classification loss, Y(·) represents the real 
category label of the sample, and y(·) represents the pre-
dicted label of the network. The calculation method is Eq. 
(6).

where h(·) denotes the output of the classification net-
work, and Softmax is the activation function.

In the ISNN fault diagnosis model, the feature extrac-
tion network performs preliminary feature extraction on 
the input samples (Xi,Xj) . The relationship measurement 
network uses similarity information to constrain the net-
work training such that the feature distance of similar 
samples becomes closer and the feature distance of sam-
ples belonging to different categories becomes farther. 
The classification network completed the final fault clas-
sification task. The three parts were mutually constrained 
and made full use of the time domain, frequency domain, 
label, and sample similarity information of the fault data 
under the condition of small samples. In this study, the 
metric learning concept was applied to the classification 
problem, and the entire model adopted a relatively shal-
low network structure that effectively controlled the size 
of the parameter. When training the model, the similar-
ity loss LS and LC the classification loss were optimized 
simultaneously, and the two losses were combined to 
obtain the final loss function of the model as Eq. (7).

Bearing fault diagnosis process based on ISNN
Based on the proposed ISNN model, this study designed 
a rolling bearing fault diagnosis process that included 
three steps: data preprocessing, ISNN training, and fault 
diagnosis as shown in Fig. 3.

(1)	Data Preprocessing. In this study, an acceleration 
sensor was used to collect the vibration signals of 

(5)LC =
1

2N
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+
(
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)2
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(

h
(

f (X)
))

(7)Loss = LS + LC

rolling bearings from the fault diagnosis experiment 
platform. The first half of the collected signal was 
used as the training set (red box in Fig.  4), and the 
second half was used as the testing set (green box in 
Fig.  4). The signal was then divided into many seg-
ments according to every 2000 points, and the cor-
responding frequency domain data were obtained by 
conducting fast Fourier transform (FFT) on each seg-
ment of the signal and concatenating the data before 
and after the transformation to obtain each sample. 
Finally, to better perform subsequent model training, 
the input samples were processed into standardized 
data of the same magnitude, and each sample was 
standardized as Eq. (8).

 

(2)	ISNN Training. First, the parameters of the ISNN 
model were initialized. Two fault samples were ran-
domly selected from the training set to form a sample 
pair as the model input and gradually train the fea-
ture extraction, relationship measurement, and fault 
classification networks. The loss function was mini-
mized through repeated iterations, and a backpropa-
gation algorithm was used to continuously optimize 
the model parameters.When the maximum train-
ing times were reached, the model parameters were 
saved.

 

(3)	Fault Diagnosis. When performing bearing fault 
diagnosis, the testing samples were input into the 
trained feature extraction network to obtain low-
dimensional feature vectors, and then the fault diag-
nosis results were output by the classification net-
work.

 

Experiment and analysis
Experimental data
To verify the specific superiority of the proposed ISNN 
algorithm, five types of bearing vibration signals on dif-
ferent health states were collected from the drivetrain 
diagnostic simulator as experimental data. The five dif-
ferent fault types were normal state, ball fault, inner 
fault, outer fault, and combined fault (ball, inner, and 
outer faults). The structure of the experimental platform 
is shown in Fig.  5 and was mainly composed of a drive 

(8)X = {xi} =
xi − xmin

xmax − xmin
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motor, gear box, magnetic powder brake, and adjustable 
load. Figure 6 shows the four types of bearing faults. The 
letters marked in the red box indicate the fault type of 
each bearing. Figure 7 shows the time domain vibration 
waveforms of each bearing fault.

In this study, we aimed to prove through simulation 
the difficulty of collecting abundant fault data under 
various working conditions in engineering practice by 
collecting bearing fault signals with only one working 
condition as training data. The motor speed was set 
to 1700 r/min, the load voltage was 4 V, and a unidi-
rectional acceleration sensor was used to collect the 
vibration signal. A sampling frequency of 20 kHz and 
sampling duration of 20 s was chosen. The vibration 
signal file of each fault bearing type contained a total of 
409600 points. We set the first 10 s of data as the train-
ing set and the last 10 s of data as the testing set. The 

collected bearing signals were divided into segments 
of 2000 points, and 100 training samples and 100 test-
ing samples were obtained for each fault type. To study 
the influence of different numbers of fault samples on 
the ISNN model, 10, 20, and 50 samples were randomly 
selected from 100 training samples of each type to con-
struct four different training sets. In addition, the fault 
data of two other working conditions were collected to 
test the generalization performance of the ISNN. One 
working condition was similar to the working condition 
of the training data (1700-r/min motor speed, 8-V load 
voltage), and the other working condition was quite dif-
ferent from the training data (3400-r/min motor speed, 
8-V load voltage. The sampling duration of the testing 
data was 10 s, and the sample segmentation method 
was the same as before. The datasets used in this study 
are shown in Table 1.

Fig. 3  Bearing fault diagnosis process.Based on the proposed ISNN model, this study designed a rolling bearing fault diagnosis process that 
included three steps: data preprocessing, ISNN training, and fault diagnosis
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Experimental parameter settings
The experimental software platforms used were 
i7-4790 CPU, NVIDIA GTX1050Ti, Python3.7, and 
Pytorch1.3. In the experiment, the Adam algorithm 
was used to optimize the model parameters, the batch 
size was set to 50, the learning rate was set to 0.002, 
and the maximum number of iterations was 400. The 
detailed parameter settings of the ISNN model are 
presented in Table 2. Before being input to the model, 
the fault signals were transformed into a 40 × 100 size, 
where 40 represents the single time-sequence input 
size of the LSTM network, and 100 denotes the total 
number of input sequences. In Table 2, the parameters 
of the 1D CNN represent the input channel, output 
channel, kernel size, step size, and padding size; the 
pooling layer parameters represent the pooling win-
dow size and step size.

Performance analysis of ISNN
Influence of sample size on model performance
To demonstrate the influence of different numbers of 
training samples on the fault diagnosis performance of 
the ISNN, the number of training samples for each fault 
type was set to 10, 20, 50, and 100 in Training sets A, 
B, C, and D, respectively, and Testing set 1 was used to 
verify the effect of the model. The accuracy curve of the 
ISNN is shown in Fig. 8. The red solid line is the accu-
racy of the training set, the blue solid line is the accuracy 
of the testing set, and the green dashed line is the refer-
ence value. Figure 9 shows the final diagnostic accuracy 
value of the ISNN using Testing set 1 with the different 
training sets.

A shown in Fig. 8, the training accuracy of the model 
with different training set sizes quickly reached 100% (red 
solid line), particularly for Training sets A and B. This 

Fig. 4  Data preprocessing steps. In this study, an acceleration sensor was used to collect the vibration signals of rolling bearings from the fault 
diagnosis experiment platform. The first half of the collected signal was used as the training set (red box in Fig. 4), and the second half was used as 
the testing set (green box in Fig. 4)
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shows that in the case of small samples, the ISNN learned 
the information from the training data very easily. How-
ever, in the testing set, the diagnostic effect of the model 
was greatly affected by the number of samples. As shown 
in Fig. 8(a), with 10 training samples for each fault type, 
the testing accuracy of the ISNN was approximately 84%, 
and the model exhibited an overfitting phenomenon. As 
shown in Fig. 8(b), when 20 training samples were used 
for each fault type, the testing accuracy exceeded 92%, 
and the overfitting problem was significantly relieved. 
As shown in Fig. 8(c), increasing the number of training 
samples to 50 for each fault type obtained a testing accu-
racy of approximately 95%, and in Fig.  8(d), the testing 
accuracy for 100 samples was close to 99% and effectively 

realized the diagnosis of bearing faults. Moreover, com-
paring Fig.  8 (a)-(d), the model training process fluctu-
ated significantly when the number of training samples 
was small. As the number of samples increased, the train-
ing process became more stable, and the testing accuracy 
curve became smoother.

In Fig. 9, it is apparent from the overall results that the 
diagnostic performance of the ISNN model increased as 
the number of training samples increased. In particular, 
when the number of training samples increased from 
10 to 20, the testing accuracy increased from 84.1% to 
92.3%. The above results show that the ISNN model’s 
dependence on large-scale training data was significantly 
reduced. By alleviating the overfitting problem effectively 

Fig. 5  Drivetrain diagnostic simulator. The structure of the experimental platform was mainly composed of a drive motor, gear box, magnetic 
powder brake, and adjustable load

Fig. 6  Bearing fault states. The letters marked in the red box indicate the fault type of each bearing



Page 10 of 17Zhao et al. Journal of Cloud Computing           (2022) 11:79 

Fig. 7  Vibration waveforms of faulty bearings. This figure shows the time domain vibration waveforms of each bearing fault. (Upper left) (a) Ball 
fault (Upper right) (b) Combined fault (Lower left) (c) Inner fault (Lower right) (d) Outer fault

Table 1  Experimental datasets

Dataset Number of samples of each fault type Working 
condition (speed, 
voltage)Normal Ball fault Combined fault Inner fault Outer fault

Training set A 10 10 10 10 10 1700 r/min, 4 V

Training set B 20 20 20 20 20

Training set C 50 50 50 50 50

Training set D 100 100 100 100 100

Testing set 1 100 100 100 100 100 1700 r/min, 4 V

Testing set 2 100 100 100 100 100 1700 r/min, 8 V

Testing set 3 100 100 100 100 100 3400 r/min, 8 V

Table 2  Parameter setup of ISNN

Network name Layer type Main parameters Output size

Feature extraction network Input \ 40 × 100

LSTM1 (40,10) 10 × 100

LSTM2 (40,10) 10 × 100

1D CNN (1,16,9,3,1) 16 × 332

Max pooling (5,3) 16 × 110

Relationship measurement network Input \ 32 × 110

1D CNN (32,32,5,2,1) 32 × 54

1D CNN (32,16,5,2,1) 16 × 26

Global average pooling \ 16

Full connection (16,1) 1

Fault classification network Input \ 16 × 110

1D CNN (16,32,5,2,1) 32 × 54

1D CNN (32,16,5,2,1) 16 × 26

Global average pooling \ 16

Fully connected (16,5) 5
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in the case of small samples, the ISNN still achieved 
improved results when there were only dozens of fault 
samples.

Influence of different feature extraction methods on model 
performance
To analyze the impact of the feature extraction network 
of the ISNN model on fault diagnosis performance, four 
different feature extraction methods were compared. 
They used only time domain data, frequency domain 
data, the fully connected layer, and a 1D CNN. The diag-
nostic accuracy of various feature extraction methods 
was tested using different training sets, and the results 
are shown in Table 3 and Fig. 10.

From Table  3 and Fig.  10, we can see that when the 
time domain data was directly used for model training, 
the diagnostic result was the worst. For the 10-sam-
ple fault types, the accuracy was only 43.4%. When the 
number of training samples reached 100, the accuracy 
was only 63.2%. In contrast, when frequency domain 
data was used for model training, the diagnostic 
effect was greatly improved. In the case of 10 training 

samples, the accuracy was over 80%; in the case of 100 
training samples, the accuracy reached 95.2%, which 
was 32% higher than that of the time domain data, indi-
cating that the frequency domain information of the 
signal provided more effective features for the model. 
In addition, when using different network structures 
for feature extraction, if the number of training sam-
ples was particularly small, the feature extraction effect 
of the convolution structure was not as good as that of 
the fully connected structure. For example, when there 
were only 10 and 20 training samples, the accuracy of 
the convolutional structure was 4.8% and 2.2%, respec-
tively, lower than that of the fully connected structure. 
With an increase in the number of training samples, 
the feature extraction ability of the convolutional struc-
ture improved. In the case of 100 samples, the fault 
diagnostic accuracy exceeded 97%, indicating that the 
convolutional structure was dependent on the number 
of samples. In contrast, the feature extraction network 
designed in this study with the time domain and fre-
quency domain information input into the model simul-
taneously and the use of an LSTM network and CNN to 

Fig. 8  Training and testing accuracy curves under different number of training samples. (Upper left) (a) Training Set A (Upper right) (b) Training Set 
B (Lower left) (c) Training Set C (Lower right) (d) Training Set D
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jointly extract sample features achieved the highest fault 
diagnostic accuracy.

Influence of different relationship measurement methods 
on model performance
To evaluate the influence of the relationship measure-
ment network of the ISNN model on fault diagnosis per-
formance, under the framework of the algorithm in this 
study, the measurement method of the proposed ISNN 
was replaced with the Euclidean distance and cosine dis-
tance methods to form two comparison models to verify 
the effect of the ISNN using different training sets. The 
results are presented in Table 4 and Fig. 11.

As shown in Table 4 and Fig. 11, under the algorithm 
framework of this study, the three relationship measure-
ment methods all achieved good diagnostic accuracy, but 
there were differences under various training sets. In the 
case of Training set A (10 samples), the cosine distance 
measurement method had the worst result with an accu-
racy of only 74.8%, while the accuracy of the proposed 
ISNN measurement method was 84.1%, which was 2.7% 
higher than that of the Euclidean distance measurement 

method. However, as the number of training samples 
increased, the result of the cosine distance measurement 
method improved and was eventually better than that of 
the Euclidean distance measurement method. For Train-
ing set D, the diagnostic accuracy of the cosine method 
reached 97.2% and was higher than that of the Euclid-
ean method with an accuracy of 96.4%. At this time, the 
accuracy of the ISNN measurement method was 98.1%, 
which was slightly higher than that of the two fixed dis-
tance measurement methods. Overall, when the number 
of training samples increased from 10 to 100, the accu-
racy and stability of the ISNN measurement method 
were better than those of the fixed distance measurement 
methods.

Performance comparison with other methods
To further investigate the excellent performance of the 
ISNN model for fault diagnosis with small samples, a 
1D CNN, prototype network, and standard Siamese 
network were selected as comparison methods. The 1D 
CNN consisted of four convolution modules and three 
fully connected layers, The prototype network was also 

Fig. 9  Testing accuracy of ISNN using different training sets

Table 3  Accuracy of different feature extraction methods

Feature extraction method Training A Training B Training C Training D

ISNN 84.10% 92.30% 95.00% 98.10%

Time domain 43.40% 48.40% 55.60% 63.20%

Frequency domain 80.20% 87..8% 92.80% 95.20%

Fully connected 77.40% 84.60% 88.00% 93.80%

1D CNN 72.60% 82.40% 91.60% 97.20%



Page 13 of 17Zhao et al. Journal of Cloud Computing           (2022) 11:79 	

a small-sample learning method that divided the train-
ing set into a support set and a query set to perform the 
nearest neighbor classification by calculating the distance 
between a testing sample and a prototype. The standard 
Siamese network was the small-sample learning method 
based on the similarity measurement introduced in Sia-
mese neural network section. In the experiment, each 
model was trained using four training sets. To verify the 
generalization performance of the ISNN model, three 
testing sets with different working conditions were used 
for testing.

Accuracy comparison under same working conditions
Table 5 lists the fault diagnosis accuracy of various meth-
ods on Testing set 1 under different numbers of training 
samples with the same working conditions as the training 
set. When the number of training samples was particu-
larly small (Training set A), the accuracy of the 1D CNN 
was the lowest and less than 50%, and the accuracies of 
the two small-sample prototype and Siamese networks 
were about 60%. The proposed ISNN method accuracy 
reached 83.6%. For the 50-sample case of Training set C, 

the accuracy of the 1D CNN was significantly improved, 
reaching 88.6%, and was higher than the 82.5% of the 
prototype network and the 75.8% of the Siamese net-
work. At this time, the accuracy of the ISNN method 
was still nearly 8% higher than that of the 1D CNN. For 
the 100-sample case of Training set D, the accuracy of 
the 1D CNN increased to 93.4%, which was still higher 
than that of the prototype and Siamese networks, and 
the gap between the ISNN method became smaller, only 
5.2% lower. On the whole, the 1D CNN was significantly 
affected by the number of training samples. When the 
sample was severely insufficient, the model became over-
fitted, and the effect of directly applying it to small-sam-
ple fault diagnosis was not ideal. The diagnostic accuracy 
of the Siamese network before the improvement was very 
poor and inferior to that of the prototype network. In 
the case of 100 training samples, the accuracy was only 
86.7%. However, the effect of the improved ISNN method 
increased significantly, obviously better than that of the 
two comparison methods.

Using Training set B (20 samples) as an example to 
observe the recognition results of each type of bearing 
fault by the four methods, the confusion matrix of the 
diagnosis results of each model using Testing set 1 is 
shown in Fig.  12. The abscissa represents the predicted 
fault class, the ordinate represents the real fault class, and 
the main diagonal represents the number of predicted 
correct testing samples. There were 100 testing samples 
for each category.

Figure 12 shows that for 20 training samples for each 
fault type, the three comparison methods had a large 
number of misclassifications and the fault diagnostic 

Fig. 10  Accuracy histogram of different feature extraction methods

Table 4  Accuracy of different relationship measurement 
methods

Measurement 
method

Training A Training B Training C Training D

Euclidean distance 81.40% 89.40% 94.60% 96.40%

Cosine distance 74.80% 85.80% 95.00% 97.20%

ISNN 84.10% 92.30% 95.00% 98.10%
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effect was very poor, while the proposed ISNN method 
was obviously better than that of the other methods. 
As shown in Fig.  12(a), when the 1D CNN was used 
for diagnosis, only the inner fault and normal samples 
were classified well, while only 37 of the 100 combined 
fault samples were correctly predicted. As shown in 
Fig. 12(b), the classification result of the prototype net-
work was obviously better than that of the 1D CNN. 
Except for a large number of misclassified outer fault 
samples (only 43 correctly predicted), the remain-
ing four types of faults all exhibited a certain degree of 
improvement. As shown in Fig. 12(c), the Siamese net-
work had the worst effect on bearing fault diagnosis. 
Only the normal samples were identified well (94 sam-
ples), while about half of the combined fault and outer 
fault samples were misclassified. In contrast, Fig. 12(d) 
shows that the ISNN method significantly improved 
the classification results of the various fault types. The 
combined fault case had the worst classification (19 
samples incorrectly predicted), and more than 90 sam-
ples of the other fault types were correctly identified. 
From the above analysis, it can be concluded that in the 
case of a small number of training samples, the several 

comparison methods ineffectively diagnosed bearing 
fault, while the proposed ISNN method performed bet-
ter on small-sample fault diagnosis.

Accuracy comparison under different working conditions
In actual production, the working conditions of equip-
ment often changes, resulting in different distributions of 
the testing and training data. To verify the generalization 
performance of the ISNN method compared to other 
methods on different testing data, Testing set 2 (similar 
to the training set working condition) and Testing set 3 
(largely different from the training set working condition) 
in Table 1 were used to conduct the experiments, and the 
results are shown in Table 6.

In Table  6, when the testing data were similar to the 
training set data, the diagnostic accuracies of the three 
comparison methods in the 10-sample Training set A 
and 20-sample Training set B were very low. When the 
number of training samples was increased to 100 (Train-
ing set D), the 1D CNN achieved an accuracy of 90.2%, 
while the accuracies of the prototype and Siamese net-
works were only 74.4% and 78.5%, respectively, while the 
accuracy of the ISNN method was still approximately 

Fig. 11  Accuracy histogram of different relationship measurement methods

Table 5  Accuracy of various methods using Testing set 1

Method Training set A Training set B Training set C Training set D

1D CNN 49.80% 68.20% 88.60% 93.40%

Prototype net 60.20% 74.60% 82.50% 90.30%

Siamese net 58.60% 66.80% 75.80% 86.70%

ISNN 84.10% 92.30% 95.00% 98.10%
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98%. When the working conditions of Testing set 3 were 
quite different from the training data, the fault diagnosis 
effect of the comparison methods became worse, par-
ticularly when there were less than 50 training samples. 
The diagnostic accuracy of the prototype and Siamese 
networks was only approximately 60%, and the 1D CNN 

had an accuracy of approximately 80%, while the ISNN 
method achieved an accuracy of more than 90%. From 
the analysis above, it can be concluded that the proto-
type and Siamese networks had poor diagnostic accu-
racy and weak generalization ability when facing variable 
working condition data. The accuracy of the 1D CNN 

Fig. 12  Confusion matrix of diagnostic results of various methods under Training set B. (Upper left) (a) 1D CNN (Upper right) (b) Prototype network 
(Lower left) (c) Siamese network (Lower right) (d) ISNN

Table 6  Accuracy of various fault diagnosis methods under different testing sets

Dataset Testing set 2 Testing set 3

1D CNN Prototype net Siamese net ISNN 1D CNN Prototype net Siamese net ISNN

Training set A 49.20% 42.30% 46.40% 83.00% 47.30% 40.40% 45.10% 82.40%

Training set B 67.00% 54.40% 58.30% 89.70% 65.20% 51.60% 55.20% 88.70%

Training set C 85.60% 65.80% 69.60% 94.80% 83.50% 60.90% 66.00% 94.40%

Training set D 90.20% 74.40% 78.50% 97.80% 86.00% 68.60% 76.60% 95.20%
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method also decreased significantly, while the ISNN 
method was only reduced by approximately 1%, and the 
highest accuracy of 95.2% was achieved when the work-
ing conditions changed significantly. Compared with the 
other three methods, the generalization performance 
was significantly improved.

To more intuitively show the fault diagnostic effect of 
the ISNN method on variable working condition data 
with small samples, Training set C (50 samples in each 
category) and Testing set 3 (largely different from the 
training set working condition), we selected the 1D CNN 
method as a comparison, and the fault classification 
results of the two methods were visualized by t-SNE. The 
results are shown in Fig. 13.

As shown in Fig. 13(a), although the 1D CNN method 
roughly classified the various fault samples, there were 
still different degrees of overlap. For example, some sam-
ples of the inner fault (yellow scatter) were mixed with 
the combined fault samples (green scatter), and the nor-
mal samples (red scatter) were also partially mixed with 
the ball fault samples (blue scatter). In addition, a large 
number of outer fault samples (purple scatter) and com-
bined fault samples (green scatter) overlapped, and the 
overall classification result of the model was poor. As 
shown in Fig.  13(b), after the ISNN method was used 
for fault diagnosis, the grouping of samples of the same 
fault category improved, and there were larger intervals 
between the samples of different categories with only a 
small number of outer fault samples (purple scatter) mis-
classified as combined faults (green scatter). This indi-
cates that the ISNN method identified various bearing 
faults well under variable working conditions, verifying 
that the model has a better generalization effect under 
small-sample conditions.

Conclusions
In this study, we reported a rolling bearing fault diagno-
sis algorithm based on the condition of small samples 
that integrated the metric learning idea and an ordinary 
classification network into a framework. We achieved an 
accurate diagnosis of bearing faults by jointly training the 
feature extraction, relationship measurement, and fault 
classification networks. The following conclusions can be 
drawn from the experimental analysis. 

(1)	 The ISNN model effectively diagnoses bear-
ing faults in a variety of small-sample conditions, 
achieving an accuracy of 84.1% using only 10 train-
ing samples and 98.1% using 100 training samples.

(2)	 The LSTM+CNN feature extraction network 
designed in this study used neural networks as a 
relationship measurement method and enabled the 
model to learn more discriminative sample features, 
thereby obtaining greater diagnostic accuracy.

(3)	 Through an experimental comparison with the 1D 
CNN, prototype network, and original Siamese net-
work methods, the ISNN method proposed in this 
study had the highest diagnostic accuracy of 95.2% 
for 100 training samples and had better generaliza-
tion when the working conditions of testing data 
changed.

The ISNN proposed in this paper achieves good clas-
sification effect in the known and single small-sample 
fault classification task, but it can not distinguish the 
unknown type of fault and complex fault. Next, we will 
try to introduce unknown, complex fault and other fault 
types on the basis of this paper to more comprehensively 
verify the superiority of this method.

Fig. 13  Visualization of diagnostic results of 1D CNN and ISNN under Training set C. (Left) (a) 1D CNN (Right) (b) ISNN
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