
Liu et al. Journal of Cloud Computing (2022) 11:78
https://doi.org/10.1186/s13677-022-00352-z

RESEARCH

Reinforcement learning empowered
multi‑AGV offloading scheduling in edge‑cloud
IIoT
Peng Liu1, Zhe Liu1, Ji Wang2*, Zifu Wu3, Peng Li4 and Huijuan Lu5 

Abstract 

The edge-cloud computing architecture has been introduced to industrial circles to ensure the time constraints
for industrial computing tasks. Besides the central cloud, various numbers of edge servers (ESes) are deployed in a
distributed manner. In the meantime, most large factories currently use auto guided vehicles (AGVs). They usually
travel along a given route and can help offload tasks to ESes. An ES maybe accessed by multiple AGVs, thus incurring
offloading and processing delays due to resource competition. In this paper, we investigate the offloading schedul-
ing issue for cyclical tasks and put forth the Multi-AGV Cyclical Offloading Optimization (MCOO) algorithm to reduce
conflicts. The solution divides the offloading optimization problem into two parts. Firstly, the load balancing algorithm
and greedy algorithm are utilized to find the optimal allocation of tasks for a single AGV under limited conditions.
Then, multiple AGVs are asynchronously trained by applying the Reinforcement Learning-based A3C algorithm to
optimize the offloading scheme. The simulation results show that the MCOO algorithm improves the global offload-
ing performance both in task volume and adaptability compared with the baseline algorithms.

Keywords:  Mobile Edge Computing, Task Offloading Optimization, Reinforcement Learning, Q-learning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The modern industrial Internet of things (IIoT) has
been integrating more and more tasks. In this situation,
efficient task offloading to the cloud server plays a very
important role in coping with the problems of insuf-
ficient processing capacity and limited resources of
smart devices [1, 2]. However, the singular cloud center
mode can no longer meet the increasing needs. Multi-
clouds [3], such as multiple fog nodes [4] and multiple
edge servers (ESes) [5] are applied to distribute data com-
puting tasks closer to data sources and users. This enables
the emerging paradigm of edge-cloud IIoT, which per-
formance relies heavily on the support of the network.
However, in some highly dynamic manufacturing site,
wired industrial ethernet may not be present and wireless

networks are also not available due to low reliability. To
this end, other approaches to the problem-solving pro-
cess are therefore necessary.

Auto Guided Vehicles (AGVs) are becoming more and
more popular in smart factories [6]. They have abundant
digital storage spaces and usually travel along fixed routes
throughout the factory. Therefore, they can help offload
tasks generated by various manufacturing devices to
edge servers/local clouds during drop-in visits. In addi-
tion to easing the strain on the central cloud server’s
transmission and processing capabilities, this can also
satisfy the low delay requirements of data tasks. Mobile
node-assisted task offloading is proven to be practical in
the existing literature, such as satellites [7], vehicles [8],
UAVs [9], and vessels [10].

According to the proposed mobile task offloading
scenario, producing units generate tasks regularly, and
AGVs carry out their daily transporting tasks along cycli-
cal routes. AGVs collect tasks from producing units and

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: wangjiok@126.com

2 Yuxiang Technology (Hangzhou) Co Ltd, Hangzhou, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00352-z&domain=pdf

Page 2 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

offload them to edge servers when they visit them on the
way. Then, time can be categorized into rounds and in each
round, the traveling patterns of AGVs and the number
of tasks remain the same. Overlapped routes and mutual
edge servers are common in this case. How to schedule the
task offloading plan for individual AGVs as well as multiple
AGVs across rounds is the challenge, as doing so will pre-
vent overload at some edge servers and reduce the overall
task-offloading delay. The fact is, any AGV at an ES can-
not offload more than it can handle. However, to strictly
enforce task offloading, an AGV must offload all remaining
tasks when it reaches the final edge server before return-
ing to the beginning for the subsequent round, regardless
the queueing time at it. Figure 1 illustrates ESes and path
segments that make up the routes which AGV1 and AGV2
follow as they move along them at a speed of v. Two routes
have an overlapped edge server ( ES4 ) so that multiple
AGVs may offload tasks to the same ES and put a heavy
burden on it. Therefore, to balance the performance, if the
AGVs arriving first offload more tasks, the AGVs behind
can only offload less. This may cause the later AGVs to pay
a lot more and even lead to Butterfly Effect. Centralized
control is a traditional solution, which is, however, costly. If
the central control system neither summarizes all informa-
tion nor are AGVs able to share information in a real-time
manner, a pheromone can be used as the intermediate
medium of AGVs leaving at the ES. These practical factors
need to be considered in the optimization solution.

To increase the effectiveness of global task offloading,
we propose the Multi-AGV Cyclical Offloading Opti-
mization (MCOO) algorithm in this paper. The solution
first applies load balancing and the greedy algorithm

to find the optimal allocation of tasks for a single AGV
under given constraints, then, the Reinforcement
Learning-based A3C algorithm is adopted to optimize
the offloading scheme for multiple AGVs. The main
contributions of this paper are summarized as follows:

•	 This work is based on our previous work which to
our best knowledge is the first one to utilize AGVs
to help offload computing tasks in the multi-clouds
enabled industrial Internet of things. The solution is
extended from once-only scheduling to a practical
cyclical working model.

•	 An algorithm called the Multi-AGV Cyclical Off-
loading Optimization Algorithm (MCOO), which
combines game theory and the A3C algorithm, is
proposed to solve the resource conflict problem of
multiple AGVs in multiple cycles.

The rest of this paper is arranged as follows. In Section 2,
relevant work is summarized, and then the system model
is described in detail in Section 3. In Section 4, the prob-
lem is modeled and the MCOO algorithm is proposed to
optimize the offloading performance. A comprehensive
test data set is designed on which experiments have been
done to evaluate the performance of the algorithm in
Section 5. Finally, the research work of this paper is sum-
marized in Section 6.

Related work
Many scholars have proposed different methods to help opti-
mize the strategy of computing offloading and improve the
efficiency of the offloading process [11]. The current research

Fig. 1  Conflicts of multi-AGV cyclical task offloading

Page 3 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

mostly focuses on the mobile offloading scenario of multi-
user and multi-server, in which the objectives are usually to
optimize the system delay [12, 13], energy consumption [14–
16], and computing efficiency [17, 18]. Besides efficient static
schemes [19], more work focus on the use of distributed
methods to solve the task offloading scheduling problem.

Because game theory has a good performance in solv-
ing multi-objective optimization problems, ref. [20] intro-
duced a multi-objective optimization scheme based on
game theory to solve the problem of minimizing cost and
improve reliability. Ref. [21] created an incentive mecha-
nism based on game theory to more effectively allocate
distributed resources to realize the dynamic allocation of
resources to tasks. In general, scheduling requires cen-
tralized control to achieve the best overall performance,
but it is impractical to force all users to work according
to the arrangement of centralized control. Thus, ref. [22]
proposed a distributed game-theoretic task scheduling
model for edge computing servers. When selecting edge
servers, the computing resource allocation of servers is
considered, and an acceleration method is proposed to
achieve Nash equilibrium faster.

Vehicular Edge Computing (VEC) has been studied
recently, Wan et al. proposed the video segmentation
algorithm with the support of edge computing in the
Internet of vehicles [23]. In [24], the partial task offload-
ing problem in vehicular edge computing in an urban
scenario had been studied, where the vehicle computed
part of a task locally, and offloaded the remaining task
to a nearby vehicle and to VEC server subject to the
maximum tolerable delay and vehicle’s stay time. Fur-
thermore, a UAV-assisted multi-clouds system was con-
sidered in [25]. The objective was to minimize the power
consumption of UAVs with the constraint of queue stabil-
ity, and the problem was further decomposed into three
sub-problems using stochastic optimization techniques.
Ref. [26] studied the relative delay optimization problem
in the MEC assisted UAV group. Considering the great
influence of the scheduling method on delay and the cou-
pling relationship between scheduling and resource allo-
cation, the joint optimization of computing offload and
channel access was done, and a distributed game-theo-
retic learning approach was designed.

Nowadays, machine learning has been utilized to solve
the complex offloading problem, in which reinforce-
ment learning shows strong adaptability [27]. In [28],
the authors integrated two conflicting offloading goals,
i.e., maximizing the task-finish ratio with tolerable delay
and minimizing the power consumption of devices. They
designed a Deep Reinforcement Learning (DRL)-based
dynamic task offloading (DDTO) algorithm to achieve
the objective. Considering age of information-aware
computation offloading, Markovian queueing models

were constructed to capture the dynamics of IoT devices
and edge servers in [29]. The authors applied DRL tech-
niques for adapting to large-scale dynamic IIoT environ-
ments, and designed an intelligent Energy Control and
Computation Offloading (ECCO) algorithm. To deal
with the problem of insufficient computing resources,
ref. [30] and [31] proposed a task offloading and resource
allocation scheme based on game theory and reinforce-
ment learning. Ref. [32] proposed a deep random online
scheduling algorithm based on actor critical to optimize
data transmission scheduling and to minimize the energy
of the UAV auxiliary communication network.

Although these studies have used different methods to
solve the task offloading scheduling problem in different
aspects, none of them can efficiently solve the problem
in the scenario of periodic AGV offloading scheduling.
Based on the distributed idea, this paper combines the
game theory and reinforcement learning to optimize the
offloading decision and task allocation scheme of multi-
ple AGVs, which also meets the goal of maximizing the
total amount of AGV offloading tasks in a period while
improving the utilization of system resources.

System model
Figure 1 shows the cyclical task offloading architecture of
multi-AGVs, which is composed of AGVs and edge serv-
ers/cloudlets/multi-cloud. Here we regard any of them as
edge servers (ESes). This section assumes that M AGVs
are operating along their routes and a total of N edge
servers out in the field. The set of AGVs is expressed as
M = { AGV1 , AGV2 , ..., AGVm , ..., AGVM }, and the set
of ESes is expressed as N ={ES1 , ES2 , ..., ESn , ..., ESN }.
For the planned route, Li,j is the distance between ESi
and ESj . The route of each AGV is composed of paths
between multiple sections of ESes, and is expressed as
P = {P1,P2, ...,PK } . For ease of reference, Table 1 shows
the main symbols and notations used in this paper.

This paper assumes that each AGV carries the same
amount of tasks from the start point in each cycle and
drives along the planned route at a constant speed v.
When passing an ES on the route, it can offload the tasks
to the ES for processing. Before the AGV leaves the last
ES, full offloading of the completed tasks is required.
Then, the AGV returns to the starting point to receive
new tasks and start the next round of transportation.
Because the computing power and storage capacity of
each ES are limited, it should carefully plan how many
tasks to offload on which edge server. In the proposed
model, Taskmi represents the number of tasks offloaded
by the m-th AGV at the i-th ES. Since the starting point
of each AGV is different, the time of encountering each
ES will also be different. The tasks offloaded by the first
arriving AGV will also be processed first at the ES.

Page 4 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

We now explain the task offloading and executing pro-
cess of an individual AGV. Specifically, the time for the
AGV to complete a round of schedule includes three
parts: the time tonm for the AGV to receive the tasks, the
moving time tmov

m of the AGV, and the offloading time toffm
of the tasks. The amount of time needed by an AGV to
gather tasks at the starting point is tonm  . tmov

m is the length
of time needed for an AGV to move from its starting
point to its destination and back again after finishing its
tasks. The amount of time toffm is needed for an AGV to
send the tasks to the ESes. Since the transmission rate
and the number of tasks received and offloaded by AGVs
are the same, tonm is equal to toffm  . For tasks, it is also neces-
sary to calculate the processing time at ESes. This time
will also be one of the key factors to judge the utilization
rate of ES resources and the quality of the scheduling
scheme.

Moving time: AGVm moves uniformly along the
planned route from the starting point Im at a fixed speed
v. tmov

m,i represents the moving time of an AGV, that is, the
time taken by AGVm from the starting point to the off-
loading range of the i-th ES in a round of operation. The
specific calculation formula is as follows:

Offloading time: the task offloading time is the time
required for an AGV to transmit data to the ES. We
express toffm,i as the time spent by the AGVm offloading
to the i-th ES and s as the offloading bandwidth. Please

(1)tmov
m,i =

Lj,k∈Im→{ESi}

Lmj,k/v, Im → {ESi} ⊆ Pm

be advised, s is identical among ESes and equal to task
receiving bandwidth. Suppose the number of tasks is
Taskmi  , then we have:

Similarly, it can be obtained that the time tonm required for
the AGVm to receive the tasks at the starting point is:

In addition, if AGVm cannot offload normally accord-
ing to conflicts, it may wait at ESes for its turn. Tm is
the upper bound of time an AGV receives tasks, offload
tasks, and travels in each round. It varies due to the off-
loading scheduling ( twait ). If it is too long and longer than
the period of cyclical tasks, it will decrease the number of
offloaded tasks. Therefore, the total time Tm required in
one cycle of AGVm is:

Because the offloading time is very small compared with
the moving time, waiting time, and processing time, and
equal across AGVs, it can be regarded as a constant (we
set it to 0 in the experiment). When AGVm does not
need to wait in a cycle, twait is also 0.

Processing time: It is used to evaluate the time
required for ESes to process offloaded tasks from AGVs.
This paper assumes that the computing power and

(2)t
off
m,i = Taskmi /s

(3)tonm = t
off
m =

|Dm−Im|
∑

i=1

t
off
m,i

(4)Tm = 2tonm + Ltotal/v + twait ≈ Ltotal/v + twait

Table 1  Some symbolic variables used in the model

Notation Description

M, m Total number of AGVs, m ∈ {1, 2, 3, ...,M}

N, n Total number of ESes, n ∈ {1, 2, 3, ...,N}

v Driving speed of AGVs

Lmtotal , L
m
i,j The distance traveled by the m-th AGV in one cycle and the distance from point i to point j

Taskm Total number of tasks carried by the m-th AGV in one cycle

Tm Total time spent by the m-th AGV in one cycle including loading/offloading tasks and traveling

tonm The time spent by the m-th AGV to load tasks at the starting point

tmov
m Travel time of the m-th AGV

toffm Task offloading time of the m-th AGV

Im Starting point of the m-th AGV

Dm End point of the m-th AGV

|Dm − Im| Number of ESes that the m-th AGV passes from the beginning to the end

Cn The capacity of n-th ES

En Processing efficiency of n-th ES

Taskmi Number of tasks offloaded by the m-th AGV at the i-th ES

Cm
i Available capacity of the i-th ES when the m-th AGV passes through the i-th ES

RTmi Number of tasks allocated on the i-th ES for the remaining tasks of the m-th AGV

RCm
i Remaining available resources of the i-th ES in the m-th AGV path

Page 5 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

capacity of each ES are given and different. These param-
eters together with the distance variation will lead AGVs
to assign different number of tasks to ESes. For the i-th
ES, the task processing time tcalm,i for tasks of AGVm is:

Then, in a particular cycle, the final task finishing time is
the largest one among all tasks:

This paper aims to maximize the multi-AGV cyclical
task offloading scheduling problem to maximize the total
number of processed tasks offloaded by multiple AGVs in
a given time. Therefore, the objective function is:

To maximize the total number of tasks that can be
offloaded in a given amount of time, we propose the fol-
lowing algorithm design.

Algorithm design
The AGV assisted offloading scheduling problem is divided
into two parts using an efficient multi-AGV cyclical off-
loading optimization algorithm (MCOO). In particular,
the best offloading plan that only takes into account one
AGV is determined in the first place. Considering the task
processing efficiency and capacity limitation of ESes and
the time spent by each AGV in a cycle without conflict,
the number of tasks that each AGV can offload success-
fully during this period is calculated. Any AGV can select
the greedy offloading strategy if the offloading demands
of all AGVs in a cycle can be satisfied. The weighted poll-
ing method is used to distribute tasks to achieve a load
balance state if the offloading demand of AGVs in a cycle
cannot be satisfied. Then, in the second part, based on the
optimal offloading scheme obtained for a single AGV, the
game theory is used to optimize the offloading decisions of
AGVs considering the impact of multiple AGVs offloading
to the same ES at different times. Finally, to solve the prob-
lem distributively, reinforcement learning is used to train
each AGV asynchronously, so that each AGV can learn the
optimal offloading scheme, which helps achieve the goal of
this paper. The implementation of the proposed method is
introduced in detail below.

Cyclical offloading optimization of single AGV: For
the offloading scheduling of periodic tasks, the offloading
scheme of an AGV in the previous cycle may affect the off-
loading scheme of subsequent cycles. Thus, a single AGV
cyclical offloading optimization algorithm that combines

(5)tcalm,i = Taskmi /Ei

(6)tcalm = max
(

tcalm,i

)

, ∀i, i ∈ |Dm − Im|

(7)Tasktotal = maximize

M
∑

i=1

Taski ∗ Ttotal/T
single
i

load balancing and the greedy algorithm is proposed in this
section. Firstly, it calculates the time taken for each AGV to
complete a cycle of operation and offloading without con-
flict, and then calculates the number of tasks that each ES
can handle within this time. If the task cannot be offloaded
in this case, the weighted polling algorithm is used to cal-
culate the load-balancing offloading scheme of AGVs in a
cycle, which can also reduce the impact on the offloading
scheme in subsequent cycles. Through the joint optimiza-
tion of the greedy algorithm and load balancing algorithm,
the optimal offloading scheme of each AGV without con-
flict can be obtained. This detail is explained below.

Each AGV carries some tasks and starts from the start-
ing point at a speed v and drives circularly according to
the planned path. When it passes through an ES node
during the driving process, it offloads some of the tasks
to the ES for processing. When the AGV reaches the last
ES, it needs to offload the rest of the tasks it carries, and
then the AGV returns to the starting point to receive
tasks again and starts the next round of operation and
offloading. Firstly, we calculate the time required for one
round of AGV operation and offloading. From the above,
it can be obtained that the time required for one round
of the AGV cycle is Tm = Ltotal/v + twait . therefore, for
the i-th ES passed by an AGV, the task quantity Taskgreedyi
that ES can handle during this period is:

Then the weighted polling algorithm is used to calculate
the load-balancing distribution scheme of AGVs at each
ES. Because the AGV passes through different ESes in
sequence, the time when each ES receives the task and
starts processing is different. Therefore, when the AGV
travels to the i-th ES, the ESx before the i-th ES is already
processing previous tasks. Then, for any ES before the i-
th ES, the time tcalx that starts before the i-th ES is:

The number of tasks Taskcalx that ESx can handle in this
part of time is:

where RT is the remaining tasks of the AGV. Therefore,
when the AGV reaches D at the last ES, the number of
tasks assigned to the first |D − I | − 1 ESes are:

(8)Task
greedy
i =

{

Ei ∗ T , Ei ∗ T ≤ Ci

Ci, Ei ∗ T > Ci

(9)tcalx =
∑

Lj,k∈{ESx}→{ESi}

Lj,k/v, {ESx} → {ESi} ⊆ Pm

(10)Taskcalx = min
(

RCx,Ex ∗ t
cal
x ,RT

)

(11)Taskcal =

|D−I |−1
∑

i=1

Taskcali

Page 6 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

The remaining tasks RT to be assigned of the AGV are:

These remaining tasks can also be allocated according to
the computing capacity and remaining capacity of each
ES. If the ES is fully loaded, it will refuse to accept the
task. Therefore, the sum of the efficiency of ES under full
load is calculated as:

Thus, it can be calculated that the task amount RTi can
be reassigned to the i-th ES is:

where RCi represents the remaining capacity after the i-
th ES receives the task amount of Taskcali :

If the remaining capacity of ES fails to meet the assigned
task volume during the allocation process, the excess task
volume RT ′ needs to be allocated again according to the
above steps. Therefore, the number of tasks allocated to
the i-th ES using the weighted polling algorithm is:

As mentioned above, because an AGV will operate multi-
ple cycles, combined with greedy allocation and weighted
polling allocation under restrictive conditions, the
amount allocated by AGV to the i-th ES is:

The algorithm is shown in Algorithm 1. After the task
of each AGV is reasonably allocated by using the single
AGV cyclical offloading scheduling algorithm, the scheme
with no or little impact on the subsequent cycle can be
obtained. Similarly, the offloading scheduling that has
no impact on the subsequent cycle allocation can also be
obtained. On this basis, the offloading schemes of multi-
ple AGVs at the same ES can be coordinated by collecting
information of multiple cycles, so that the offloading allo-
cation schemes of multiple AGVs can reach an excellent
balance state. Next, we will use the idea of game theory
combined with multi-agent reinforcement learning to
optimize the problem of multi-AGV cyclical offloading.

(12)RT = Task − Taskcal

(13)Etotal =

|D−I |
∑

i=1

Ei, if ESi is fully loaded, Ei = 0

(14)RTi =

{

Ei/Etotal ∗ AR, Ei/Etotal ∗ RT ≤ RCi

RCi, other

(15)RCi = Ci − Taskcali

(16)Taskbalancei = Taskcali + RTi

(17)

Taski =

{

Task
greedy
i , Task

greedy
i ≥ Taskbalancei

Taskbalancei , Task
greedy
i < Taskbalancei

Algorithm 1  Single AGV Cyclical Scheduling Algorithm

Cyclical offloading optimization of multi-AGV: As
mentioned above, when multiple AGVs perform peri-
odic mobile offloading, due to the first mover advantage
between AGVs, later AGVs may not offload according
to their planned offloading scheme, thus affecting the
scheduling efficiency. This kind of situation with first
mover advantage is also a common phenomenon in game
theory. To achieve the final goal of this paper, we intro-
duce a dynamic cooperative game.

The game model generally includes some participants, a
strategy set and a utility function. We regard each AGV as
a participant in the game, with a total number of M. When
each AGV arrives at an ES, it can know the decision-making
information of other previous arriving participants and uses
it as a basis to determine its offloading amount. The deci-
sion-making of each AGV when it encounters insufficient
resources at an ES is taken as the strategy set. Therefore,
the “strategy” of the game is whether the previous arriving
AGV gives up resources for the second comer. Therefore,
the policy set of the m-th participant at N shared ESes is
Sm =

{

S1m, S
2
m, ..., S

N
m

}

 , where Sim is either Srefuse or Soff  , and
the policy set of all participants is S = {S1, S2, ..., SM} . The
utility function in the game now can be transformed into
the objective function of this paper.

In the cooperative game, multiple AGV groups are called
alliances, which are composed of AGVs for collaborative
interests, that is, a larger total offloading volume. The impact
of an AGV on the group is realized through the offloading
decision of the first arrivals (whether to choose to give up
resources for the later arrivals). Here we use this model to
solve the offloading decision problem of multiple AGVs.

Specifically, for two AGVs that will pass through the same
ES, AGV1 will arrive at the ES first and offload Task1 . The
capacity of the ES is assumed to be C. When AGV2 arrives
at the ES, it needs to offload Task2 . If Task1 and Task2 can be
offloaded normally, AGV1 does not need to make the deci-
sion to give up resources when the next round arrives, which

Page 7 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

is Srefuse . If offloading Task2 will exceed the capacity of the
ES, but AGV2 will offload this part of the task to other ESes
and will not affect the offloading scheme of the next round,
AGV1 will decide Srefuse . If offloading Task2 will exceed the
capacity of the ES and assigning this part of the task to other
ESes will affect the offloading scheme of the next round,
AGV2 will leave a message at that ES. When AGV1 arrives
in the next round, it will calculate whether the resources
will affect its subsequent offloading scheme. If not, AGV1 ’s
decision is Soff  . If so, AGV1 will consider whether giving up
resources will increase the benefits to the alliance of AGV1
and AGV2 . If it can increase the overall benefits of the alli-
ance, AGV1 will decide Soff  , otherwise, it will decide Srefuse .
As can be seen from the description above, the first arriv-
als benefit from delegating decision-making, and various
processing techniques can be used depending on the state
information and overall income of the second arrivals.

According to the maximization objective function of the
above formula, the AGV needs to consider maximizing
the current income when making decisions, that is, the
offloading volume of the AGV alliance. This objective is
equal to that each round of AGV transportation and off-
loading take the least amount of time. That is, try to avoid
waiting for offloading in the process of one round and
reduce the total waiting time of the AGV alliance. In addi-
tion, when an AGV chooses to refuse or give up resources
when making offloading decisions, it also needs to con-
sider how much to give up to maximize benefits.

In terms of multi-agents, the difficulty of learning is
much higher than that of a single agent. Because a sin-
gle agent only depends on the action of one agent dur-
ing state transition, while in a multi-agent system, the
state transition of an agent will be affected by the joint
actions of all agents. Therefore, in the multi-agent sys-
tem, the MDP attribute will become invalid, and it is dif-
ficult to evaluate the impact of each agent on the overall
results. The multi-agent training optimization problem
is solved in this paper using a multi-agent actor-critic
algorithm. Among them, multiple “actors” are trained
asynchronously, and then a centralized “critic” evaluates
the results to optimize the behavior of the agent.

The model in this paper can be formalized as a quad
< AM, S,Am,R > , where AM is the number set of all
AGVs, S is the global state space, Am is the action space
of the m-th AGV, and R is the reward. In each step, each
AGV takes action according to the obtained information
and strategy π . After execution, it will get a reward R, and
then state s will move to the next state s′ . The goal of each
AGV is to maximize its expected return:

(18)Jm(πm) =
∑

r(s, a1, a2, ..., aM)

Action a is the offloading amount of an AGV at the
shared ES. To achieve the goal of maximizing the total
offloading amount of AGVs within a given time Ttotal , the
global reward can be set as:

As was already mentioned, the Actor-Critic algorithm
(AC algorithm) combines two reinforcement learning
algorithms based on strategy and value, enabling it to
more effectively update in one step while also choos-
ing the best course of action in continuous or high-
dimensional action space. For the M AGVs in the model,
the hypothetical strategy π = π1,π2...,πM , parameter
φ = φ1,φ2, ...,φM , the return function for the m-th AGV
is:

Then the strategy function is derived to obtain:

Thus, the expected income gradient of the m-th AGV is:

where Qθ (s, a) is the critic’s Q function. Qθ (s, a) takes the
global state s and joint action a as the input and outputs
of the global Q value. At this time, the critic’s function Qθ
can be updated as:

where y is expressed as:

The A3C (Asynchronous Advantage Actor Critic) algo-
rithm is presented in this paper to speed up the algorithm’s
convergence and reduce data correlation. Based on the
framework of the AC algorithm, the A3C algorithm intro-
duces the idea of asynchronous training, which can make
multiple agents train and learn asynchronously in multiple
environments. Therefore, there is no correlation in the data
itself, and there is no need for the empirical playback of the
DQN algorithm to stabilize the learning process. In addi-
tion to saving storage space, this greatly accelerates training
time and improves the uniformity of sample distribution.

In addition, to clearly identify the impact of agents
on the global reward, we propose to use the differential
reward. The differential reward can be described as:

(19)R =

M
∑

i=1

Ttotal/T
single
i ∗ Task

single
i

(20)J (φm) = V πm(s) = Eπm [V]

(21)∇φmπm(s, a) = πm(s, a)∇φm log πm(s, a)

(22)∇φmJ (φm) = Eπm
[

∇φm log πm(s, a)Qθ (s, a)
]

(23)L(θ) =

M
∑

i=1

E(s,a,s′,a′)

[

(

y− Qθ (s, a)
)2
]

(24)y = r + γEa′
(

Q
θ
′

(

s′, a′
))

Page 8 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

where r(s, a) is the global reward and r
(

s,
(

am, a
c
m

))

 is
the global reward when the m-th agent takes the default
behavior. Therefore, agent m can improve Dm ’s behavior
and increase the overall reward. The distinct offloading
scheme of each AGV obtained in the previous section is
trained here as the agent’s default behavior.

In this algorithm, multiple agents share the global net-
work parameters φ and φv , which represent the actor net-
work and critical network respectively, and each agent has
its two network parameters φ′ and φ ′

v , as well as the global
counter T and each agent’s counter t. At the beginning of
the algorithm, the agent counter is initialized first, and
then the global network parameters are used to initialize
the network parameters in each agent thread, and the ini-
tial state st is obtained. In the iterative process, the agent
uses the policy function π

(

at |st;φ
′
)

 to get and execute
action at to obtain the next state st+1 and the correspond-
ing reward R. At this time, the value function of each state
can be calculated through the critical network. After sev-
eral iterations, the parameters of each agent thread are
used to update the global network parameters. The basic
description of multi-AGV cyclical offloading optimization
algorithm (MCOO) is described in Algorithm 2.

Algorithm 2  Multi-AGV Cyclical Offloading Optimization Algorithm
(MCOO)

Experiments
Results from simulations are presented in this section
to attest to the effectiveness of the proposed algorithms.
We first introduce the setting of various parameters, then

(25)Dm(s, a) = r(s, a)− r
(

s,
(

am, a
c
m

)) conduct experiments to observe the total revenue and
service delay of multi-AGV cyclical offloading, then com-
pare it with related algorithms to verify the effectiveness,
and finally observe the robustness on performance by
changing parameters.

Data set
In this experiment, we comprehensively consider the
realistic factors, such as the transportation and offload-
ing routes of AGVs, the computing and storage capac-
ity of edge servers, and periodic tasks in accord with
the industrial scenario. Firstly, as shown in Fig. 2, there
are 5 AGVs initially in the experiment. The plant floor is
divided into grids. The distance of each grid is 50m. Each
AGV starts from the task receiving point at the speed of
5m/s and travels along the given route. An AGV will pass
through some edge servers during driving. The number
of tasks carried by an AGV is randomly selected between
{200, 300, 500}kB, the distance between edge servers is
randomly selected between [100, 300] m, and the upper
bound of computing power of edge servers is taken as
{50, 60, 70, 80, 90}kB/min, and the storage capacity is ran-
domly taken as {100, 150, 180}kB. Please be noted, Fig. 2
is only a demonstration of one slice of multiple rounds.
The number of AGVs, number of ESes, computing power
of ESes, and other parameters will change from round
to round. The simulation parameters are summarized in
Table 2.

We must train AGVs for numerous cycles to obtain a
stable offloading scheme. According to the area of the
scenario and the speed of AGVs, each round could be fin-
ished around 10 minutes. Thus, this paper sets the total
evaluation time to one hour. This time can be changed
without affecting the performance characteristics. The
cyclical offloading of a single AGV is trained first, fol-
lowed by the training of the entire multi-AGV and com-
parisons with the greedy algorithm, the DQN algorithm,
and the basic AC algorithm to accurately assess the per-
formance in complex scenes. Evaluation metrics include
the convergence speed and results of the algorithm,
which is very important for delay-sensitive tasks. In addi-
tion, we also observe the impact on the performance of
the algorithm by changing the parameters of the algo-
rithm and servers.

Simulation results
Optimal offloading scheme of single AGV for periodic
tasks: We firstly optimize the offloading allocation of sin-
gle AGVs. Table 3 shows the average scheduling time of
each cycle and the cumulative offloading volume of one
hour.

Table 3 shows the number of tasks received by 5 AGVs
at the beginning of each cycle, and the average time

Page 9 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

consumed by each AGV for traveling and offloading, and
the total offloaded tasks within one hour. Figure 3 shows
the offloading amount in one hour under different algo-
rithms. The non-optimized algorithm is actually a greedy
algorithm, in which the AGV always tries to offload tasks
as many as possible at the first convenience. As can be
seen from Fig. 3, the single AGV offloading optimization
algorithm proposed in this paper can keep the time con-
sumed in each cycle relatively stable, while the baseline
algorithm cannot achieve the optimal offloading. For the
baseline algorithm, with the increasing of elapsed time,
the time consumed by AGVs in one cycle will increase,
thus gradually reducing the offloading amount of tasks.

Comparison of training efficiency and results of
different algorithms: In this section, we apply four dif-
ferent algorithms to comprehensively evaluate the per-
formance of multiple AGVs. The four algorithms are the
greedy algorithm, DQN algorithm, AC algorithm, and
multi-AGV cyclical offloading optimization algorithm
(MCOO). Here, the total number of tasks offloaded by
multiple AGVs in one hour is selected as the metric to
measure the performance of the algorithms. Since the
results of the greedy algorithm will not change with the
process of training, it is not used in comparison for train-
ing performance. For simplicity, the same learning rate
α = 0.01 and the same loss function γ = 0.95 are selected

Fig. 2  Path of AGV mobile offloading

Table 2  Parameter setting

Parameter Value Range

M [2, 10]

N [15, 20]

Task {200, 300, 500}kB

v 5m/s

L [100, 300]m

C {100, 150, 180}kB

E {50, 60, 70, 80, 90}kB/min

Table 3  Optimal offloading scheme of single AGV

Tasks received by
AGV per cycle (kB)

Average time
consumed per cycle
(min)

Total offloading
volume of AGV in
one hour (KB)

AGV1 500 5 6000

AGV2 300 5 4500

AGV3 200 4 3000

AGV4 300 4.5 4000

AGV5 500 6 5000

Page 10 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

for the other three algorithms in training, and the mean
value of rewards is taken as the result, as shown in Fig. 4.

As can be seen from the above figure, the proposed
MCOO algorithm shows the best training speed which
is much faster than the other two algorithms. Except
that, the acquired total reward is also larger than the
competitors. This is because that the algorithm can
make better decisions in a shorter time, which is very
important for delay-sensitive tasks.

Now, we evaluate and compare the performance by
changing the parameters. The first parameter is the
number of AGVs. We set the number of AGVs to 2, 4, 6,
8, and 10 respectively, and conducted 200 independent
experiments for each group of AGVs to take the mean
value. The results are shown in Fig. 5. As mentioned
above, when multiple AGVs offload tasks at different
times to the same ES, the remaining capacity of the ES
is often not able to meet the offloading requirements of
the later AGVs, which affects the offloading scheme of
the later AGVs. This leads to idle waiting for offloading,
which will affect the overall offloading volume. It can be
seen from the figure that the result of the greedy sched-
uling strategy is the worst because all AGVs choose to
offload as many as possible in the offloading process.
In this way, in the shared ES, the first AGV always
preempts resources, resulting in the later AGV being
prone to waiting for offloading. Therefore, the final
result is not good. And with the increase in the num-
ber of AGVs, the effectiveness of greedy scheduling is

getting worse and worse. The DQN algorithm and AC
algorithm have poor convergence speed when training
multiple agents. Also, with the increase of the number
of agents, the training effectiveness also gets worse.
MCOO algorithm combines the game theory with the
A3C algorithm to optimize the offloading decision of
AGVs at shared ESes. Because multiple threads are
used to train each AGV, not only the training speed but
also the final result are improved.

The influence of other factors on performance: In
this part, we study the influence of the number of ESes
and the computing power of ESes on the performance
of the algorithm. Here, the number of AGVs are fixed
to 5, the number of ESes and the computing power of
ESes are adjusted respectively. 200 groups of experi-
ments are carried out, and the mean value are taken
as the final results. The routes of AGVs are different
in each round. Figure 6 compares the results when the
number of ESes passed by each AGV increases from 4
to 7. I.e., the routes of AGVs are randomly generated,
but the maximum number of ESes they pass is fixed
between 4 and 7. It can be seen from Fig. 6 that with
the increase of the number of ESes, the impact of the
offloading scheme of AGV at the shared ESes on the
subsequent rounds and other AGVs becomes smaller
and smaller, while the offloading time of each AGV
is more and more stable. When the maximal num-
ber of ESes passed by an AGV increases to 6, all algo-
rithms can achieve the maximum offloading volume.

0 10 20 30 40 50 60
Total time(min)

0

1000

2000

3000

4000

5000

To
ta

l n
um

be
r

of
 A

G
V

 o
ff

lo
ad

in
g

ta
sk

s(
kB

)
Optimization algorithm

Non-Optimization algorithm

Fig. 3  Task offloading volume of single AGV in one hour

Page 11 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

Figure 7 compares the results of various algorithms
when the upper bound of the processing efficiency of
ESes increases from 50kB/min to 90kB/min. Similar
to the result in Fig. 6, when the computing power of
ESes reaches 80kB/min, which exceeds the offloading
requirements of AGVs, all algorithms can achieve the
maximum offloading efficiency. During the process, the
proposed MCOO algorithm always needs less ESes to
achieve the same offloading amount or the largest off-
loading amount with the same computing power, com-
pared with other algorithms.

Conclusion
This paper studies the task offloading allocation problem
of multiple AGVs aiming at more total offloaded tasks in
a given time period. In the proposed scenario, there are
AGVs, periodic tasks, and edge servers/cloudlets/multi-
cloud. When offloading tasks to the edge server, AGVs
should take into account not only the effects of other
AGVs’ offloading decisions but also their own on sub-
sequent cycles. When solving this problem, this paper
decomposes the problem into two parts: in the first part,
the optimal offloading allocation of a single AGV is carried

15000

16000

17000

18000

19000

20000

21000

22000

0 1 2 3 4 5

To
ta

l R
ew

ar
d

Episode(*1000)

DQN

AC

MCOO

Fig. 4  Comparison of total rewards of different algorithms

0

10000

20000

30000

40000

50000

2 4 6 8 10

To
ta

l o
ff

lo
ad

in
g

 v
o

lu
m

e
o

f A
G

V
/k

B

Number of AGVS

Greedy scheduling

DQN

AC

MCOO

Fig. 5  Comparison of total offloading volume of different algorithms

Page 12 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

out separately, and the offloading scheme with no or mini-
mal impact on other cycles is obtained. Then, based on
the first part, considering the overall benefits of multiple
AGVs, the game theory is introduced to solve the offload-
ing decision of AGVs at the shared ESes. Then, based on
the distributed idea, the Multi-Agent reinforcement learn-
ing algorithm is used to train each AGV asynchronously,
and then the central system optimizes the whole to obtain
the optimal offloading scheme of each AGV. Simulation

results show that the multi-AGV offloading optimization
algorithm proposed in this paper can effectively improve
the overall performance of multi-AGV mobile offloading
in the scenario of periodic task scheduling.

As privacy has become a major concern in edge-cloud
IIoT, federated learning has been proven very effective in
the existing work [33]. To achieve privacy preservation,
future work will consider combining federated learn-
ing with reinforcement learning. Another trend is to use

7654
The number of ES

17000

18000

19000

20000

21000

22000

23000

To
ta

l n
um

be
r

of
 A

G
V

 o
ff

lo
ad

in
g

ta
sk

s(
kB

)

Greedy offloading

DQN

AC

MCOO

Fig. 6  The effect of the number of ESes on the results

50 60 70 80 90
The computing power of ES(kB/s)

17000

18000

19000

20000

21000

22000

23000

To
ta

l n
um

be
r

of
 A

G
V

 o
ff

lo
ad

in
g

ta
sk

s(
kB

)

Greedy offloading

DQN

AC

MCOO

Fig. 7  The effect of the computing power of ESes on the results

Page 13 of 14Liu et al. Journal of Cloud Computing (2022) 11:78 	

AGVs for edge caching [34], which is very important
when the amount of generated data is very large.

Abbreviations
AGV: Auto guided vehicle; ES: Edge server; MCOO: Multi-AGV cyclical offload-
ing optimization; A3C: Asynchronous advantage actor critic.

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful com-
ments and valuable suggestions.

Authors’ contributions
Peng Liu proposed the solution to the target problem and led the write-up of
the manuscript. Zhe Liu and Zifu Wu completed most of the writing of this man-
uscript and conducted the experiment. Ji Wang found the target problem from
his working experience and built the system model. Peng Li took part in the
discussion of the solution and gave many useful suggestions. Huijuan Lu helped
in revising the paper. All authors have read and approved the manuscript.

Authors’ information
Peng Liu received his B.S. and M.S. in Computer Science and Technology from
Hangzhou Dianzi University respectively in 2001 and 2004, and Ph.D. in Com-
puter Science and Technology from Zhejiang University in 2007, China. Cur-
rently, he is an associate professor at Hangzhou Dianzi University. His research
interests include the Internet of things, edge computing, and vehicular
ad-hoc networks. Zhe Liu is a graduate student at Hangzhou Dianzi University.
Her research interest is the Internet of vehicles. Ji Wang received his M.S. in
Computer Science and Technology from Hangzhou Dianzi University, China in
2005. He is now the CEO of Yuxiang Technology (Hangzhou) Co Ltd, China and
the chief engineer in R&D team as well. His research interests include indus-
trial automation and big data. Zifu Wu was a graduate student at Hangzhou
Dianzi University. His research interest is edge computing and the industrial
Internet of things. Peng Li received his BS degree from Huazhong University
of Science and Technology, China, in 2007, the MS and PhD degrees from
the University of Aizu, Japan, in 2009 and 2012, respectively. Dr. Li is currently
an associate professor at the University of Aizu, Japan. His research interests
mainly focus on cloud computing, Internet-of-Things, big data systems, as well
as related wired and wireless networking problems. Huijuan Lu received her
Ph.D. degree from the China University of Mining and Technology, China, in
2012. Since 1999, she has been with the College of Information Engineering,
China Jiliang University, Hangzhou, China, where she is currently a professor in
computer science and technology. Her current research interests include big
data, distributed computing, bioinformatics, data mining, pattern recognition,
and artificial intelligence.

Funding
This work is supported by the Natural Science Foundation of China under
Grant 62172134.

Availability of data and materials
Please contact the corresponding author for available data and materials.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science and Technology, Hangzhou Dianzi University,
Hangzhou, China. 2 Yuxiang Technology (Hangzhou) Co Ltd, Hangzhou, China.
3 HDU‑ITMO Joint Institute, Hangzhou Dianzi University, 310018 Hangzhou,
China. 4 School of Computer Science and Engineering, University of Aizu,
Aizu, Japan. 5 Key Laboratory of Electromagnetic Wave Information Technol-
ogy and Metrology of Zhejiang Province, College of Information Engineering,
China Jiliang University, Hangzhou, China.

Received: 18 August 2022 Accepted: 21 October 2022

References
	1.	 Chen Y, Gu W, Xu J et al (2022) Dynamic task offloading for digital twin-

empowered mobile edge computing via deep reinforcement learning.
China Commun

	2.	 Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading
and resource allocation for noma-enabled iot in smart buildings and
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	3.	 Tomarchio O, Calcaterra D, Modica GD (2020) Cloud resource orches-
tration in the multi-cloud landscape: a systematic review of existing
frameworks. J Cloud Comput 9:49

	4.	 Ren Q, Liu K, Zhang L (2021) Multi-objective optimization for task offload-
ing based on network calculus in fog environments. Digit Commun
Netw. https://​doi.​org/​10.​1016/j.​dcan.​2021.​09.​012

	5.	 You Q, Tang B (2021) Efficient task offloading using particle swarm opti-
mization algorithm in edge computing for industrial internet of things. J
Cloud Comput 10(1):41

	6.	 Wu Y, Dai HN, Wang H, Xiong Z, Guo S (2022) A survey of intelligent
network slicing management for industrial iot: Integrated approaches
for smart transportation, smart energy, and smart factory. IEEE Commun
Surv Tutorials 24(2):1175–1211

	7.	 Cheng N, Lyu F, Quan W, Zhou C, He H, Shi W, Shen X (2019) Space/aerial-
assisted computing offloading for iot applications: A learning-based
approach. IEEE J Sel Areas Comput 37(5):1117–1129

	8.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595

	9.	 Chen J, Chen S, Luo S, Wang Q, Cao B, Li X (2020) An intelligent task
offloading algorithm (itoa) for uav edge computing network. Digit Com-
mun Netw 6(4):433–443

	10.	 Yang T, Kong L, Zhao N, Sun R (2021) Efficient energy and delay tradeoff
for vessel communications in sdn based maritime wireless networks. IEEE
Trans Intell Transp Syst 22(6):3800–3812

	11.	 Liu Y, Peng M, Shou G, Chen Y, Chen S (2020) Toward edge intelligence:
Multiaccess edge computing for 5g and internet of things. IEEE Internet
Things J 7(8):6722–6747

	12.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for iot in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	13.	 Shu C, Zhao Z, Han Y, Min G, Duan H (2020) Multi-user offloading for
edge computing networks: A dependency-aware and latency-optimal
approach. IEEE Internet Things J 7(3):1678–1689

	14.	 Chen Y, Zhao F, Lu Y, Chen X (2021) Dynamic task offloading for mobile
edge computing with hybrid energy supply. Tsinghua Sci Technol.
https://​doi.​org/​10.​26599/​TST.​2021.​90100​50

	15.	 Guo H, Liu J (2020) Uav-enhanced intelligent offloading for internet of
things at the edge. IEEE Trans Ind Inform 16(4):2737–2746

	16.	 Shang B, Liu L (2020) Mobile-edge computing in the sky: Energy
optimization for air—ground integrated networks. IEEE Internet Things J
7(8):7443–7456

	17.	 Wu Y, Wu J, Chen L, Yan J, Luo Y (2020) Efficient task scheduling for servers
with dynamic states in vehicular edge computing. Comput Commun
150:245–253

	18.	 Zhang J, Zhou L, Zhou F, Seet BC, Zhang H, Cai Z, Wei J (2020) Computa-
tion-efficient offloading and trajectory scheduling for multi-uav assisted
mobile edge computing. IEEE Trans Veh Technol 69(2):2114–2125

	19.	 Sadatdiynov K, Cui L, Zhang L, Huang JZ, Salloum S, Mahmud MS (2022)
A review of optimization methods for computation offloading in edge
computing networks. Digit Commun Netw. https://​doi.​org/​10.​1016/j.​
dcan.​2022.​03.​003

	20.	 Ali L, Muyeen SM, Bizhani H, Simoes MG (2021) Game approach for sizing
and cost minimization of a multi-microgrids using a multi-objective
optimization. 2021 IEEE Green Technologies Conference (GreenTech).
IEEE, Denver, pp 507–512

	21.	 Cao B, Xia S, Han J, Li Y (2020) A distributed game methodology for
crowdsensing in uncertain wireless scenario. IEEE Trans Mob Comput
19(1):15–28

	22.	 Wang W, Lu B, Li Y, Wei W, Li J, Mumtaz S, Guizani M (2021) Task schedul-
ing game optimization for mobile edge computing. ICC 2021 - IEEE
International Conference on Communications. IEEE, Montreal, pp 1–6

https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.dcan.2021.09.012
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1016/j.dcan.2022.03.003

Page 14 of 14Liu et al. Journal of Cloud Computing (2022) 11:78

	23.	 Wan S, Ding S, Chen C (2022) Edge computing enabled video segmenta-
tion for real-time traffic monitoring in internet of vehicles. Pattern Recog
121:108146

	24.	 Raza S, Liu W, Ahmed M, Anwar MR, Mirza MA, Sun Q, Wang S (2020) An
efficient task offloading scheme in vehicular edge computing. J Cloud
Comput 9:28

	25.	 Zhou Y, GE H, Ma B, Zhang S, Huang J (2022) Collaborative task offloading
and resource allocation with hybrid energy supply for uav-assisted multi-
clouds. J Cloud Comput 42:11

	26.	 Chen R, Cui L, Wang M, Zhang Y, Yao K, Yang Y, Yao C (2021) Joint com-
putation offloading, channel access and scheduling optimization in uav
swarms: A game-theoretic learning approach. IEEE Open J Comput Soc
2:308–320

	27.	 Yan Z, Ge J, Wu Y, Li L, Li T (2020) Automatic virtual network embedding:
A deep reinforcement learning approach with graph convolutional
networks. IEEE J Sel Areas Commun 38(6):1040–1057

	28.	 Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. Int J Commun
Syst. https://​doi.​org/​10.​1002/​dac.​5154

	29.	 Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial iot. Futur Gener Comput Syst 139:29–37

	30.	 Jiang Q, Xu X, He Q, Zhang X, Dai F, Qi L, Dou W (2021) Game theory-
based task offloading and resource allocation for vehicular networks
in edge-cloud computing. 2021 IEEE International Conference on Web
Services (ICWS). IEEE, Chicago, pp 341–346. https://​doi.​org/​10.​1109/​
ICWS5​3863.​2021.​00052

	31.	 Tran-Dang H, Bhardwaj S, Rahim T, Musaddiq A, Kim DS (2022) Reinforce-
ment learning based resource management for fog computing environ-
ment: Literature review, challenges, and open issues. J Commun Netw
24(1):83–98

	32.	 Yuan Y, Lei L, Vu TX, Chatzinotas S et al (2021) Energy minimization in
uav-aided networks: Actor-critic learning for constrained scheduling
optimization. IEEE Trans Veh Technol 70(5):5028–5042

	33.	 Huang J, Tong Z, Feng Z (2022) Geographical poi recommendation for
internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	34.	 Chen Y, Xing H, Ma Z, et al. (2022) Cost-efficient edge caching for noma-
enabled iot services. China Commun

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/ICWS53863.2021.00052
https://doi.org/10.1109/ICWS53863.2021.00052
https://doi.org/10.1002/dac.5161

	Reinforcement learning empowered multi-AGV offloading scheduling in edge-cloud IIoT
	Abstract
	Introduction
	Related work
	System model
	Algorithm design
	Experiments
	Data set
	Simulation results

	Conclusion
	Acknowledgements
	References

