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Abstract 

The edge-cloud computing architecture has been introduced to industrial circles to ensure the time constraints 
for industrial computing tasks. Besides the central cloud, various numbers of edge servers (ESes) are deployed in a 
distributed manner. In the meantime, most large factories currently use auto guided vehicles (AGVs). They usually 
travel along a given route and can help offload tasks to ESes. An ES maybe accessed by multiple AGVs, thus incurring 
offloading and processing delays due to resource competition. In this paper, we investigate the offloading schedul-
ing issue for cyclical tasks and put forth the Multi-AGV Cyclical Offloading Optimization (MCOO) algorithm to reduce 
conflicts. The solution divides the offloading optimization problem into two parts. Firstly, the load balancing algorithm 
and greedy algorithm are utilized to find the optimal allocation of tasks for a single AGV under limited conditions. 
Then, multiple AGVs are asynchronously trained by applying the Reinforcement Learning-based A3C algorithm to 
optimize the offloading scheme. The simulation results show that the MCOO algorithm improves the global offload-
ing performance both in task volume and adaptability compared with the baseline algorithms.
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Introduction
The modern industrial Internet of things (IIoT) has 
been integrating more and more tasks. In this situation, 
efficient task offloading to the cloud server plays a very 
important role in coping with the problems of insuf-
ficient processing capacity and limited resources of 
smart devices  [1, 2]. However, the singular cloud center 
mode can no longer meet the increasing needs. Multi-
clouds  [3], such as multiple fog nodes  [4] and multiple 
edge servers (ESes) [5] are applied to distribute data com-
puting tasks closer to data sources and users. This enables 
the emerging paradigm of edge-cloud IIoT, which  per-
formance  relies heavily on the support of the network. 
However, in some highly dynamic manufacturing site, 
wired industrial ethernet may not be present and wireless 

networks are also not available due to low reliability. To 
this end, other approaches to the problem-solving pro-
cess are therefore necessary.

Auto Guided Vehicles (AGVs) are becoming more and 
more popular in smart factories [6]. They have abundant 
digital storage spaces and usually travel along fixed routes 
throughout the factory. Therefore, they can help offload 
tasks generated by various manufacturing devices to 
edge servers/local clouds during drop-in visits. In addi-
tion to easing the strain on the central cloud server’s 
transmission and processing capabilities, this can also 
satisfy the low delay requirements of data tasks. Mobile 
node-assisted task offloading is proven to be practical in 
the existing literature, such as satellites  [7], vehicles  [8], 
UAVs [9], and vessels [10].

According to the proposed mobile task offloading 
scenario, producing units generate tasks regularly, and 
AGVs carry out their daily transporting tasks along cycli-
cal routes. AGVs collect tasks from producing units and 
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offload them to edge servers when they visit them on the 
way. Then, time can be categorized into rounds and in each 
round, the traveling patterns of AGVs and the number 
of tasks remain the same. Overlapped routes and mutual 
edge servers are common in this case. How to schedule the 
task offloading plan for individual AGVs as well as multiple 
AGVs across rounds is the challenge, as doing so will pre-
vent overload at some edge servers and reduce the overall 
task-offloading delay. The fact is, any AGV at an ES can-
not offload more than it can handle. However, to strictly 
enforce task offloading, an AGV must offload all remaining 
tasks when it reaches the final edge server before return-
ing to the beginning for the subsequent round, regardless 
the queueing time at it. Figure 1 illustrates ESes and path 
segments that make up the routes which AGV1 and AGV2 
follow as they move along them at a speed of v. Two routes 
have an overlapped edge server ( ES4 ) so that multiple 
AGVs may offload tasks to the same ES and put a heavy 
burden on it. Therefore, to balance the performance, if the 
AGVs arriving first offload more tasks, the AGVs behind 
can only offload less. This may cause the later AGVs to pay 
a lot more and even lead to Butterfly Effect. Centralized 
control is a traditional solution, which is, however, costly. If 
the central control system neither summarizes all informa-
tion nor are AGVs able to share information in a real-time 
manner, a pheromone can be used as the intermediate 
medium of AGVs leaving at the ES. These practical factors 
need to be considered in the optimization solution.

To increase the effectiveness of global task offloading, 
we propose the Multi-AGV Cyclical Offloading Opti-
mization (MCOO) algorithm in this paper. The solution 
first applies load balancing and the greedy algorithm 

to find the optimal allocation of tasks for a single AGV 
under given constraints, then, the Reinforcement 
Learning-based A3C algorithm is adopted to optimize 
the offloading scheme for multiple AGVs. The main 
contributions of this paper are summarized as follows:

•	 This work is based on our previous work which to 
our best knowledge is the first one to utilize AGVs 
to help offload computing tasks in the multi-clouds 
enabled industrial Internet of things. The solution is 
extended from once-only scheduling to a practical 
cyclical working model.

•	 An algorithm called the Multi-AGV Cyclical Off-
loading Optimization Algorithm (MCOO), which 
combines game theory and the A3C algorithm, is 
proposed to solve the resource conflict problem of 
multiple AGVs in multiple cycles.

The rest of this paper is arranged as follows. In Section 2, 
relevant work is summarized, and then the system model 
is described in detail in Section 3. In Section 4, the prob-
lem is modeled and the MCOO algorithm is proposed to 
optimize the offloading performance. A comprehensive 
test data set is designed on which experiments have been 
done to evaluate the performance of the algorithm in 
Section 5. Finally, the research work of this paper is sum-
marized in Section 6.

Related work
Many scholars have proposed different methods to help opti-
mize the strategy of computing offloading and improve the 
efficiency of the offloading process [11]. The current research 

Fig. 1  Conflicts of multi-AGV cyclical task offloading
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mostly focuses on the mobile offloading scenario of multi-
user and multi-server, in which the objectives are usually to 
optimize the system delay [12, 13], energy consumption [14–
16], and computing efficiency [17, 18]. Besides efficient static 
schemes  [19], more work focus on the use of distributed 
methods to solve the task offloading scheduling problem.

Because game theory has a good performance in solv-
ing multi-objective optimization problems, ref. [20] intro-
duced a multi-objective optimization scheme based on 
game theory to solve the problem of minimizing cost and 
improve reliability. Ref. [21] created an incentive mecha-
nism based on game theory to more effectively allocate 
distributed resources to realize the dynamic allocation of 
resources to tasks. In general, scheduling requires cen-
tralized control to achieve the best overall performance, 
but it is impractical to force all users to work according 
to the arrangement of centralized control. Thus, ref. [22] 
proposed a distributed game-theoretic task scheduling 
model for edge computing servers. When selecting edge 
servers, the computing resource allocation of servers is 
considered, and an acceleration method is proposed to 
achieve Nash equilibrium faster.

Vehicular Edge Computing (VEC) has been studied 
recently, Wan et  al. proposed the video segmentation 
algorithm with the support of edge computing in the 
Internet of vehicles [23]. In [24], the partial task offload-
ing problem in vehicular edge computing in an urban 
scenario had been studied, where the vehicle computed  
part of a task locally, and offloaded the remaining task 
to a nearby vehicle and to VEC server subject to the 
maximum tolerable delay and vehicle’s stay time. Fur-
thermore, a UAV-assisted multi-clouds system was con-
sidered in [25]. The objective was to minimize the power 
consumption of UAVs with the constraint of queue stabil-
ity, and the problem was further decomposed into three 
sub-problems using stochastic optimization techniques. 
Ref. [26] studied the relative delay optimization problem 
in the MEC assisted UAV group. Considering the great 
influence of the scheduling method on delay and the cou-
pling relationship between scheduling and resource allo-
cation, the joint optimization of computing offload and 
channel access was done, and a distributed game-theo-
retic learning approach was designed.

Nowadays, machine learning has been utilized to solve 
the complex offloading problem, in which reinforce-
ment learning shows strong adaptability  [27]. In  [28], 
the authors integrated two conflicting offloading goals, 
i.e., maximizing the task-finish ratio with tolerable delay 
and minimizing the power consumption of devices. They 
designed a Deep Reinforcement Learning (DRL)-based 
dynamic task offloading (DDTO) algorithm to achieve 
the objective. Considering age of information-aware 
computation offloading, Markovian queueing models 

were constructed to capture the dynamics of IoT devices 
and edge servers in [29]. The authors applied DRL tech-
niques for adapting to large-scale dynamic IIoT environ-
ments, and designed an intelligent Energy Control and 
Computation Offloading (ECCO) algorithm. To deal 
with the problem of insufficient computing resources, 
ref.  [30] and [31] proposed a task offloading and resource 
allocation scheme based on game theory and reinforce-
ment learning. Ref. [32] proposed a deep random online 
scheduling algorithm based on actor critical to optimize 
data transmission scheduling and to minimize the energy 
of the UAV auxiliary communication network.

Although these studies have used different methods to 
solve the task offloading scheduling problem in different 
aspects, none of them can efficiently solve the problem 
in the scenario of periodic AGV offloading scheduling. 
Based on the distributed idea, this paper combines the 
game theory and reinforcement learning to optimize the 
offloading decision and task allocation scheme of multi-
ple AGVs, which also meets the goal of maximizing the 
total amount of AGV offloading tasks in a period while 
improving the utilization of system resources.

System model
Figure 1 shows the cyclical task offloading architecture of 
multi-AGVs, which is composed of AGVs and edge serv-
ers/cloudlets/multi-cloud. Here we regard any of them as 
edge servers (ESes). This section assumes that M AGVs 
are operating along their routes and a total of N edge 
servers out in the field. The set of AGVs is expressed as 
M = { AGV1 , AGV2 , ..., AGVm , ..., AGVM }, and the set 
of ESes is expressed as N ={ES1 , ES2 , ..., ESn , ..., ESN }. 
For the planned route, Li,j is the distance between ESi 
and ESj . The route of each AGV is composed of paths 
between multiple sections of ESes, and is expressed as 
P = {P1,P2, ...,PK } . For ease of reference, Table 1 shows 
the main symbols and notations used in this paper.

This paper assumes that each AGV carries the same 
amount of tasks from the start point in each cycle and 
drives along the planned route at a constant speed v. 
When passing an ES on the route, it can offload the tasks 
to the ES for processing. Before the AGV leaves the last 
ES, full offloading of the completed tasks is required. 
Then, the AGV returns to the starting point to receive 
new tasks and start the next round of transportation. 
Because the computing power and storage capacity of 
each ES are limited, it should carefully plan how many 
tasks to offload on which edge server. In the proposed 
model, Taskmi  represents the number of tasks offloaded 
by the m-th AGV at the i-th ES. Since the starting point 
of each AGV is different, the time of encountering each 
ES will also be different. The tasks offloaded by the first 
arriving AGV will also be processed first at the ES.
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We now explain the task offloading and executing pro-
cess of an individual AGV. Specifically, the time for the 
AGV to complete a round of schedule includes three 
parts: the time tonm  for the AGV to receive the tasks, the 
moving time tmov

m  of the AGV, and the offloading time toffm  
of the tasks. The amount of time needed by an AGV to 
gather tasks at the starting point is tonm  . tmov

m  is the length 
of time needed for an AGV to move from its starting 
point to its destination and back again after finishing its 
tasks. The amount of time toffm  is needed for an AGV to 
send the tasks to the ESes. Since the transmission rate 
and the number of tasks received and offloaded by AGVs 
are the same, tonm  is equal to toffm  . For tasks, it is also neces-
sary to calculate the processing time at ESes. This time 
will also be one of the key factors to judge the utilization 
rate of ES resources and the quality of the scheduling 
scheme.

Moving time: AGVm moves uniformly along the 
planned route from the starting point Im at a fixed speed 
v. tmov

m,i  represents the moving time of an AGV, that is, the 
time taken by AGVm from the starting point to the off-
loading range of the i-th ES in a round of operation. The 
specific calculation formula is as follows:

Offloading time: the task offloading time is the time 
required for an AGV to transmit data to the ES. We 
express toffm,i as the time spent by the AGVm offloading 
to the i-th ES and s as the offloading bandwidth. Please 

(1)tmov
m,i =

Lj,k∈Im→{ESi}

Lmj,k/v, Im → {ESi} ⊆ Pm

be advised, s is identical among ESes and equal to task 
receiving bandwidth. Suppose the number of tasks is 
Taskmi  , then we have:

Similarly, it can be obtained that the time tonm  required for 
the AGVm to receive the tasks at the starting point is:

In addition, if AGVm cannot offload normally accord-
ing to conflicts, it may wait at ESes for its turn. Tm is 
the upper bound of time an AGV receives tasks, offload 
tasks, and travels in each round. It varies due to the off-
loading scheduling ( twait ). If it is too long and longer than 
the period of cyclical tasks, it will decrease the number of 
offloaded tasks. Therefore, the total time Tm required in 
one cycle of AGVm is:

Because the offloading time is very small compared with 
the moving time, waiting time, and processing time, and 
equal across AGVs, it can be regarded as a constant (we 
set it to 0 in the experiment). When AGVm does not 
need to wait in a cycle, twait is also 0.

Processing time: It is used to evaluate the time 
required for ESes to process offloaded tasks from AGVs. 
This paper assumes that the computing power and 

(2)t
off
m,i = Taskmi /s

(3)tonm = t
off
m =

|Dm−Im|
∑

i=1

t
off
m,i

(4)Tm = 2tonm + Ltotal/v + twait ≈ Ltotal/v + twait

Table 1  Some symbolic variables used in the model

Notation Description

M, m Total number of AGVs, m ∈ {1, 2, 3, ...,M}

N, n Total number of ESes, n ∈ {1, 2, 3, ...,N}

v Driving speed of AGVs

Lmtotal , L
m
i,j The distance traveled by the m-th AGV in one cycle and the distance from point i to point j

Taskm Total number of tasks carried by the m-th AGV in one cycle

Tm Total time spent by the m-th AGV in one cycle including loading/offloading tasks and traveling

tonm The time spent by the m-th AGV to load tasks at the starting point

tmov
m Travel time of the m-th AGV

toffm Task offloading time of the m-th AGV

Im Starting point of the m-th AGV

Dm End point of the m-th AGV

|Dm − Im| Number of ESes that the m-th AGV passes from the beginning to the end

Cn The capacity of n-th ES

En Processing efficiency of n-th ES

Taskmi Number of tasks offloaded by the m-th AGV at the i-th ES

Cm
i Available capacity of the i-th ES when the m-th AGV passes through the i-th ES

RTmi Number of tasks allocated on the i-th ES for the remaining tasks of the m-th AGV

RCm
i Remaining available resources of the i-th ES in the m-th AGV path
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capacity of each ES are given and different. These param-
eters together with the distance variation will lead AGVs 
to assign different number of tasks to ESes. For the i-th 
ES, the task processing time tcalm,i for tasks of AGVm is:

Then, in a particular cycle, the final task finishing time is 
the largest one among all tasks:

This paper aims to maximize the multi-AGV cyclical 
task offloading scheduling problem to maximize the total 
number of processed tasks offloaded by multiple AGVs in 
a given time. Therefore, the objective function is:

To maximize the total number of tasks that can be 
offloaded in a given amount of time, we propose the fol-
lowing algorithm design.

Algorithm design
The AGV assisted offloading scheduling problem is divided 
into two parts using an efficient multi-AGV cyclical off-
loading optimization algorithm (MCOO). In particular, 
the best offloading plan that only takes into account one 
AGV is determined in the first place. Considering the task 
processing efficiency and capacity limitation of ESes and 
the time spent by each AGV in a cycle without conflict, 
the number of tasks that each AGV can offload success-
fully during this period is calculated. Any AGV can select 
the greedy offloading strategy if the offloading demands 
of all AGVs in a cycle can be satisfied. The weighted poll-
ing method is used to distribute tasks to achieve a load 
balance state if the offloading demand of AGVs in a cycle 
cannot be satisfied. Then, in the second part, based on the 
optimal offloading scheme obtained for a single AGV, the 
game theory is used to optimize the offloading decisions of 
AGVs considering the impact of multiple AGVs offloading 
to the same ES at different times. Finally, to solve the prob-
lem distributively, reinforcement learning is used to train 
each AGV asynchronously, so that each AGV can learn the 
optimal offloading scheme, which helps achieve the goal of 
this paper. The implementation of the proposed method is 
introduced in detail below.

Cyclical offloading optimization of single AGV: For 
the offloading scheduling of periodic tasks, the offloading 
scheme of an AGV in the previous cycle may affect the off-
loading scheme of subsequent cycles. Thus, a single AGV 
cyclical offloading optimization algorithm that combines 

(5)tcalm,i = Taskmi /Ei

(6)tcalm = max
(

tcalm,i

)

, ∀i, i ∈ |Dm − Im|

(7)Tasktotal = maximize

M
∑

i=1

Taski ∗ Ttotal/T
single
i

load balancing and the greedy algorithm is proposed in this 
section. Firstly, it calculates the time taken for each AGV to 
complete a cycle of operation and offloading without con-
flict, and then calculates the number of tasks that each ES 
can handle within this time. If the task cannot be offloaded 
in this case, the weighted polling algorithm is used to cal-
culate the load-balancing offloading scheme of AGVs in a 
cycle, which can also reduce the impact on the offloading 
scheme in subsequent cycles. Through the joint optimiza-
tion of the greedy algorithm and load balancing algorithm, 
the optimal offloading scheme of each AGV without con-
flict can be obtained. This detail is explained below.

Each AGV carries some tasks and starts from the start-
ing point at a speed v and drives circularly according to 
the planned path. When it passes through an ES node 
during the driving process, it offloads some of the tasks 
to the ES for processing. When the AGV reaches the last 
ES, it needs to offload the rest of the tasks it carries, and 
then the AGV returns to the starting point to receive 
tasks again and starts the next round of operation and 
offloading. Firstly, we calculate the time required for one 
round of AGV operation and offloading. From the above, 
it can be obtained that the time required for one round 
of the AGV cycle is Tm = Ltotal/v + twait . therefore, for 
the i-th ES passed by an AGV, the task quantity Taskgreedyi  
that ES can handle during this period is:

Then the weighted polling algorithm is used to calculate 
the load-balancing distribution scheme of AGVs at each 
ES. Because the AGV passes through different ESes in 
sequence, the time when each ES receives the task and 
starts processing  is different. Therefore, when the AGV 
travels to the i-th ES, the ESx before the i-th ES is already 
processing previous tasks. Then, for any ES before the i-
th ES, the time tcalx  that starts before the i-th ES is:

The number of tasks Taskcalx  that ESx can handle in this 
part of time is:

where RT is the remaining tasks of the AGV. Therefore, 
when the AGV reaches D at the last ES, the number of 
tasks assigned to the first |D − I | − 1 ESes are:

(8)Task
greedy
i =

{

Ei ∗ T , Ei ∗ T ≤ Ci

Ci, Ei ∗ T > Ci

(9)tcalx =
∑

Lj,k∈{ESx}→{ESi}

Lj,k/v, {ESx} → {ESi} ⊆ Pm

(10)Taskcalx = min
(

RCx,Ex ∗ t
cal
x ,RT

)

(11)Taskcal =

|D−I |−1
∑

i=1

Taskcali
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The remaining tasks RT to be assigned of the AGV are:

These remaining tasks can also be allocated according to 
the computing capacity and remaining capacity of each 
ES. If the ES is fully loaded, it will refuse to accept the 
task. Therefore, the sum of the efficiency of ES under full 
load is calculated as:

Thus, it can be calculated that the task amount RTi can 
be reassigned to the i-th ES is:

where RCi represents the remaining capacity after the i-
th ES receives the task amount of Taskcali :

If the remaining capacity of ES fails to meet the assigned 
task volume during the allocation process, the excess task 
volume RT ′ needs to be allocated again according to the 
above steps. Therefore, the number of tasks allocated to 
the i-th ES using the weighted polling algorithm is:

As mentioned above, because an AGV will operate multi-
ple cycles, combined with greedy allocation and weighted 
polling allocation under restrictive conditions, the 
amount allocated by AGV to the i-th ES is:

The algorithm is shown in Algorithm  1. After the task 
of each AGV is reasonably allocated by using the single 
AGV cyclical offloading scheduling algorithm, the scheme 
with no or little impact on the subsequent cycle can be 
obtained. Similarly, the offloading scheduling that has 
no impact on the subsequent cycle allocation can also be 
obtained. On this basis, the offloading schemes of multi-
ple AGVs at the same ES can be coordinated by collecting 
information of multiple cycles, so that the offloading allo-
cation schemes of multiple AGVs can reach an excellent 
balance state. Next, we will use the idea of game theory 
combined with multi-agent reinforcement learning to 
optimize the problem of multi-AGV cyclical offloading.

(12)RT = Task − Taskcal

(13)Etotal =

|D−I |
∑

i=1

Ei, if ESi is fully loaded, Ei = 0

(14)RTi =

{

Ei/Etotal ∗ AR, Ei/Etotal ∗ RT ≤ RCi

RCi, other

(15)RCi = Ci − Taskcali

(16)Taskbalancei = Taskcali + RTi

(17)

Taski =

{

Task
greedy
i , Task

greedy
i ≥ Taskbalancei

Taskbalancei , Task
greedy
i < Taskbalancei

Algorithm 1  Single AGV Cyclical Scheduling Algorithm

Cyclical offloading optimization of multi-AGV: As 
mentioned above, when multiple AGVs perform peri-
odic mobile offloading, due to the first mover advantage 
between AGVs, later AGVs may not offload according 
to their planned offloading scheme, thus affecting the 
scheduling efficiency. This kind of situation with first 
mover advantage is also a common phenomenon in game 
theory. To achieve the final goal of this paper, we intro-
duce a dynamic cooperative game.

The game model generally includes some participants, a 
strategy set and a utility function. We regard each AGV as 
a participant in the game, with a total number of M. When 
each AGV arrives at an ES, it can know the decision-making 
information of other previous arriving participants and uses 
it as a basis to determine its offloading amount. The deci-
sion-making of each AGV when it encounters insufficient 
resources at an ES is taken as the strategy set. Therefore, 
the “strategy” of the game is whether the previous arriving 
AGV gives up resources for the second comer. Therefore, 
the policy set of the m-th participant at N shared ESes is 
Sm =

{

S1m, S
2
m, ..., S

N
m

}

 , where Sim is either Srefuse or Soff  , and 
the policy set of all participants is S = {S1, S2, ..., SM} . The 
utility function in the game now can be transformed into 
the objective function of this paper.

In the cooperative game, multiple AGV groups are called 
alliances, which are composed of AGVs for collaborative 
interests, that is, a larger total offloading volume. The impact 
of an AGV on the group is realized through the offloading 
decision of the first arrivals (whether to choose to give up 
resources for the later arrivals). Here we use this model to 
solve the offloading decision problem of multiple AGVs.

Specifically, for two AGVs that will pass through the same 
ES, AGV1 will arrive at the ES first and offload Task1 . The 
capacity of the ES is assumed to be C. When AGV2 arrives 
at the ES, it needs to offload Task2 . If Task1 and Task2 can be 
offloaded normally, AGV1 does not need to make the deci-
sion to give up resources when the next round arrives, which 
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is Srefuse . If offloading Task2 will exceed the capacity of the 
ES, but AGV2 will offload this part of the task to other ESes 
and will not affect the offloading scheme of the next round, 
AGV1 will decide Srefuse . If offloading Task2 will exceed the 
capacity of the ES and assigning this part of the task to other 
ESes will affect the offloading scheme of the next round, 
AGV2 will leave a message at that ES. When AGV1 arrives 
in the next round, it will calculate whether the resources 
will affect its subsequent offloading scheme. If not, AGV1 ’s 
decision is Soff  . If so, AGV1 will consider whether giving up 
resources will increase the benefits to the alliance of AGV1 
and AGV2 . If it can increase the overall benefits of the alli-
ance, AGV1 will decide Soff  , otherwise, it will decide Srefuse . 
As can be seen from the description above, the first arriv-
als benefit from delegating decision-making, and various 
processing techniques can be used depending on the state 
information and overall income of the second arrivals.

According to the maximization objective function of the 
above formula, the AGV needs to consider maximizing 
the current income when making decisions, that is, the 
offloading volume of the AGV alliance. This objective is 
equal to that each round of AGV transportation and off-
loading take the least amount of time. That is, try to avoid 
waiting for offloading in the process of one round and 
reduce the total waiting time of the AGV alliance. In addi-
tion, when an AGV chooses to refuse or give up resources 
when making offloading decisions, it also needs to con-
sider how much to give up to maximize benefits.

In terms of multi-agents, the difficulty of learning is 
much higher than that of a single agent. Because a sin-
gle agent only depends on the action of one agent dur-
ing state transition, while in a multi-agent system, the 
state transition of an agent will be affected by the joint 
actions of all agents. Therefore, in the multi-agent sys-
tem, the MDP attribute will become invalid, and it is dif-
ficult to evaluate the impact of each agent on the overall 
results. The multi-agent training optimization problem 
is solved in this paper using a multi-agent actor-critic 
algorithm. Among them, multiple “actors” are trained 
asynchronously, and then a centralized “critic” evaluates 
the results to optimize the behavior of the agent.

The model in this paper can be formalized as a quad 
< AM, S,Am,R > , where AM is the number set of all 
AGVs, S is the global state space, Am is the action space 
of the m-th AGV, and R is the reward. In each step, each 
AGV takes action according to the obtained information 
and strategy π . After execution, it will get a reward R, and 
then state s will move to the next state s′ . The goal of each 
AGV is to maximize its expected return:

(18)Jm(πm) =
∑

r(s, a1, a2, ..., aM)

Action a is the offloading amount of an  AGV at the 
shared ES. To achieve the goal of maximizing the total 
offloading amount of AGVs within a given time Ttotal , the 
global reward can be set as:

As was already mentioned, the Actor-Critic algorithm 
(AC algorithm) combines two reinforcement learning 
algorithms based on strategy and value, enabling it to 
more effectively update in one step while also choos-
ing the best course of action in continuous or high-
dimensional action space. For the M AGVs in the model, 
the hypothetical strategy π = π1,π2...,πM , parameter 
φ = φ1,φ2, ...,φM , the return function for the m-th AGV 
is:

Then the strategy function is derived to obtain:

Thus, the expected income gradient of the m-th AGV is:

where Qθ (s, a) is the critic’s Q function. Qθ (s, a) takes the 
global state s and joint action a as the input and outputs 
of the global Q value. At this time, the critic’s function Qθ 
can be updated as:

where y is expressed as:

The A3C (Asynchronous Advantage Actor Critic) algo-
rithm is presented in this paper to speed up the algorithm’s 
convergence and reduce data correlation. Based on the 
framework of the AC algorithm, the A3C algorithm intro-
duces the idea of asynchronous training, which can make 
multiple agents train and learn asynchronously in multiple 
environments. Therefore, there is no correlation in the data 
itself, and there is no need for the empirical playback of the 
DQN algorithm to stabilize the learning process. In addi-
tion to saving storage space, this greatly accelerates training 
time and improves the uniformity of sample distribution.

In addition, to clearly identify the impact of agents 
on the global reward, we propose to use the differential 
reward. The differential reward can be described as:

(19)R =

M
∑

i=1

Ttotal/T
single
i ∗ Task

single
i

(20)J (φm) = V πm(s) = Eπm [V ]

(21)∇φmπm(s, a) = πm(s, a)∇φm log πm(s, a)

(22)∇φmJ (φm) = Eπm
[

∇φm log πm(s, a)Qθ (s, a)
]

(23)L(θ) =

M
∑

i=1

E(s,a,s′,a′)

[

(

y− Qθ (s, a)
)2
]

(24)y = r + γEa′
(

Q
θ
′

(

s′, a′
))
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where r(s, a) is the global reward and r
(

s,
(

am, a
c
m

))

 is 
the global reward when the m-th agent takes the default 
behavior. Therefore, agent m can improve Dm ’s behavior 
and increase the overall reward. The distinct offloading 
scheme of each AGV obtained in the previous section is 
trained here as the agent’s default behavior.

In this algorithm, multiple agents share the global net-
work parameters φ and φv , which represent the actor net-
work and critical network respectively, and each agent has 
its two network parameters φ′ and φ ′

v , as well as the global 
counter T and each agent’s counter t. At the beginning of 
the algorithm, the agent counter is initialized first, and 
then the global network parameters are used to initialize 
the network parameters in each agent thread, and the ini-
tial state st is obtained. In the iterative process, the agent 
uses the policy function π

(

at |st;φ
′
)

 to get and execute 
action at to obtain the next state st+1 and the correspond-
ing reward R. At this time, the value function of each state 
can be calculated through the critical network. After sev-
eral iterations, the parameters of each agent thread are 
used to update the global network parameters. The basic 
description of multi-AGV cyclical offloading optimization 
algorithm (MCOO) is described in Algorithm 2.

Algorithm 2  Multi-AGV Cyclical Offloading Optimization Algorithm 
(MCOO)

Experiments
Results from simulations are presented in this section 
to attest to the effectiveness of the proposed algorithms. 
We first introduce the setting of various parameters, then 

(25)Dm(s, a) = r(s, a)− r
(

s,
(

am, a
c
m

)) conduct experiments to observe the total revenue and 
service delay of multi-AGV cyclical offloading, then com-
pare it with related algorithms to verify the effectiveness, 
and finally observe the robustness on performance by 
changing parameters.

Data set
In this experiment, we comprehensively consider the 
realistic factors, such as the transportation and offload-
ing routes of AGVs, the computing and storage capac-
ity of edge servers, and periodic tasks in accord with 
the industrial scenario. Firstly, as shown in Fig.  2, there 
are 5 AGVs initially in the experiment. The plant floor is 
divided into grids. The distance of each grid is 50m. Each 
AGV starts from the task receiving point at the speed of 
5m/s and travels along the given route. An AGV will pass 
through some edge servers during driving. The number 
of tasks carried by an AGV is randomly selected between 
{200, 300, 500}kB, the distance between edge servers is 
randomly selected between [100, 300] m, and the upper 
bound of computing power of edge servers is taken as 
{50, 60, 70, 80, 90}kB/min, and the storage capacity is ran-
domly taken as {100, 150, 180}kB. Please be noted, Fig. 2 
is only a demonstration of one slice of multiple rounds. 
The number of AGVs, number of ESes, computing power 
of ESes, and other parameters will change from round 
to round. The simulation parameters are summarized in 
Table 2.

We must train AGVs for numerous cycles to obtain a 
stable offloading scheme. According to the area of the 
scenario and the speed of AGVs, each round could be fin-
ished around 10 minutes. Thus, this paper sets the total 
evaluation time to one hour. This time can be changed 
without affecting the performance characteristics. The 
cyclical offloading of a single AGV is trained first, fol-
lowed by the training of the entire multi-AGV and com-
parisons with the greedy algorithm, the DQN algorithm, 
and the basic AC algorithm to accurately assess the per-
formance in complex scenes. Evaluation metrics include 
the convergence speed and results of the algorithm, 
which is very important for delay-sensitive tasks. In addi-
tion, we also observe the impact on the performance of 
the algorithm by changing the parameters of the algo-
rithm and servers.

Simulation results
Optimal offloading scheme of single AGV for periodic 
tasks: We firstly optimize the offloading allocation of sin-
gle AGVs. Table 3 shows the average scheduling time of 
each cycle and the cumulative offloading volume of one 
hour.

Table 3 shows the number of tasks received by 5 AGVs 
at the beginning of each cycle, and the average time 
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consumed by each AGV for traveling and offloading, and 
the total offloaded tasks within one hour. Figure 3 shows 
the offloading amount in one hour under different algo-
rithms. The non-optimized algorithm is actually a greedy 
algorithm, in which the AGV always tries to offload tasks 
as many as possible at the first convenience. As can be 
seen from Fig. 3, the single AGV offloading optimization 
algorithm proposed in this paper can keep the time con-
sumed in each cycle relatively stable, while the baseline 
algorithm cannot achieve the optimal offloading. For the 
baseline algorithm, with the increasing of elapsed time, 
the time consumed by AGVs in one cycle will increase, 
thus gradually reducing the offloading amount of tasks.

Comparison of training efficiency and results of 
different algorithms: In this section, we apply four dif-
ferent algorithms to comprehensively evaluate the per-
formance of multiple AGVs. The four algorithms are the 
greedy algorithm, DQN algorithm, AC algorithm, and 
multi-AGV cyclical offloading optimization algorithm 
(MCOO). Here, the total number of tasks offloaded by 
multiple AGVs in one hour is selected as the metric to 
measure the performance of the algorithms. Since the 
results of the greedy algorithm will not change with the 
process of training, it is not used in comparison for train-
ing performance. For simplicity, the same learning rate 
α = 0.01 and the same loss function γ = 0.95 are selected 

Fig. 2  Path of AGV mobile offloading

Table 2  Parameter setting

Parameter Value Range

M [2, 10]

N [15, 20]

Task {200, 300, 500}kB

v 5m/s

L [100, 300]m

C {100, 150, 180}kB

E {50, 60, 70, 80, 90}kB/min

Table 3  Optimal offloading scheme of single AGV

Tasks received by 
AGV per cycle (kB)

Average time 
consumed per cycle 
(min)

Total offloading 
volume of AGV in 
one hour (KB)

AGV1 500 5 6000

AGV2 300 5 4500

AGV3 200 4 3000

AGV4 300 4.5 4000

AGV5 500 6 5000
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for the other three algorithms in training, and the mean 
value of rewards is taken as the result, as shown in Fig. 4.

As can be seen from the above figure, the proposed 
MCOO algorithm shows the best training speed which 
is much faster than the other two algorithms. Except 
that, the acquired total reward is also larger than the 
competitors. This is because that the algorithm can 
make better decisions in a shorter time, which is very 
important for delay-sensitive tasks.

Now, we evaluate and compare the performance by 
changing the parameters. The first parameter is the 
number of AGVs. We set the number of AGVs to 2, 4, 6, 
8, and 10 respectively, and conducted 200 independent 
experiments for each group of AGVs to take the mean 
value. The results are shown in Fig.  5. As mentioned 
above, when multiple AGVs offload tasks at different 
times to the same ES, the remaining capacity of the ES 
is often not able to meet the offloading requirements of 
the later AGVs, which affects the offloading scheme of 
the later AGVs. This leads to idle waiting for offloading, 
which will affect the overall offloading volume. It can be 
seen from the figure that the result of the greedy sched-
uling strategy is the worst because all AGVs choose to 
offload as many as possible in the offloading process. 
In this way, in the shared ES, the first AGV always 
preempts resources, resulting in the later AGV being 
prone to waiting for offloading. Therefore, the final 
result is not good. And with the increase in the num-
ber of AGVs, the effectiveness of greedy scheduling is 

getting worse and worse. The DQN algorithm and AC 
algorithm have poor convergence speed when training 
multiple agents. Also, with the increase of the number 
of agents, the training effectiveness also gets worse. 
MCOO algorithm combines the game theory with the 
A3C algorithm to optimize the offloading decision of 
AGVs at shared ESes. Because multiple threads are 
used to train each AGV, not only the training speed but 
also the final result are improved.

The influence of other factors on performance: In 
this part, we study the influence of the number of ESes 
and the computing power of ESes on the performance 
of the algorithm. Here, the number of AGVs are fixed 
to 5, the number of ESes and the computing power of 
ESes are adjusted respectively. 200 groups of experi-
ments are carried out, and the mean value are taken 
as the final results. The routes of AGVs are different 
in each round. Figure 6 compares the results when the 
number of ESes passed by each AGV increases from 4 
to 7. I.e., the routes of AGVs are randomly generated, 
but the maximum number of ESes they pass is fixed 
between 4 and 7. It can be seen from Fig.  6 that with 
the increase of the number of ESes, the impact of the 
offloading scheme of AGV at the shared ESes on the 
subsequent rounds and other AGVs becomes smaller 
and smaller, while the offloading time of each AGV 
is more and more stable. When the maximal num-
ber of ESes passed by an AGV increases to 6, all algo-
rithms can achieve the maximum offloading volume. 
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Fig. 3  Task offloading volume of single AGV in one hour
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Figure  7 compares the results of various algorithms 
when the upper bound of the processing efficiency of 
ESes increases from 50kB/min to 90kB/min. Similar 
to the result in Fig.  6, when the computing power of 
ESes reaches 80kB/min, which exceeds the offloading 
requirements of AGVs, all algorithms can achieve the 
maximum offloading efficiency. During the process, the 
proposed MCOO algorithm always needs less ESes to 
achieve the same offloading amount or the largest off-
loading amount with the same computing power, com-
pared with other algorithms.

Conclusion
This paper studies the task offloading allocation problem 
of multiple AGVs aiming at more total offloaded tasks in 
a given time period. In the proposed scenario, there are 
AGVs, periodic tasks, and edge servers/cloudlets/multi-
cloud. When offloading tasks to the edge server, AGVs 
should take into account not only the effects of other 
AGVs’ offloading decisions but also their own on sub-
sequent cycles. When solving this problem, this paper 
decomposes the problem into two parts: in the first part, 
the optimal offloading allocation of a single AGV is carried 
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out separately, and the offloading scheme with no or mini-
mal impact on other cycles is obtained. Then, based on 
the first part, considering the overall benefits of multiple 
AGVs, the game theory is introduced to solve the offload-
ing decision of AGVs at the shared ESes. Then, based on 
the distributed idea, the Multi-Agent reinforcement learn-
ing algorithm is used to train each AGV asynchronously, 
and then the central system optimizes the whole to obtain 
the optimal offloading scheme of each AGV. Simulation 

results show that the multi-AGV offloading optimization 
algorithm proposed in this paper can effectively improve 
the overall performance of multi-AGV mobile offloading 
in the scenario of periodic task scheduling.

As privacy has become a major concern in edge-cloud 
IIoT, federated learning has been proven very effective in 
the existing work  [33]. To achieve privacy preservation, 
future work will consider combining federated learn-
ing with reinforcement learning. Another trend is to use 
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AGVs for edge caching  [34], which is very important 
when the amount of generated data is very large.

Abbreviations
AGV: Auto guided vehicle; ES: Edge server; MCOO: Multi-AGV cyclical offload-
ing optimization; A3C: Asynchronous advantage actor critic.
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