
Xu et al. Journal of Cloud Computing (2022) 11:88
https://doi.org/10.1186/s13677-022-00357-8

RESEARCH

A novel vehicular task deployment method
in hybrid MEC
Xifeng Xu1, Yunni Xia1*, Zeng Feng2, Fan Li3, Hong Xie1, Xiaodong Fu4 and Mengdi Wang5 

Abstract 

With the skyrocketing need for low-latency services on the Internet of Vehicles (IoV) and elastic cross-layer resource
provisioning, multi-access edge computing (MEC) is considered a high-potent solution, which evolves from cloud
and grid computing to meet the above needs in IoV scenarios. Instead of considering single-point and monolithic
IoV tasks, in this paper, we consider the IoV applications to be with structural properties and the supporting environ-
ment to be with a hybrid cloud-edge architecture. We develop a scheduling method that offloads tasks to the eNode
or cloud according to their estimations of latest starting time. Simulative results clearly demonstrate that our method
beat existing solutions in terms of average completion time, average waiting time, and in-time completion rate.

Keywords:  Internet of Vehicles, Multi-access edge computing, Task scheduling, Quality of service

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the rapid development of Internet-of-Vehicles (IoV)
technology [1] and the increasing popularity of intelligent
vehicles [2], more and more computational-intensive IoV
applications are becoming available. Intelligent vehicles
can sense the vehicle’s line-of-sight by deploying sen-
sors, including onboard cameras, radar, etc [3]. With
this information, applications including vehicle-road/
vehicle-person interaction, road condition awareness and
collaborative dispatching, video or high-precision map
distribution, etc. can be provided [4].

However, due to the limited resources of intelligent
vehicles, it is difficult for them to handle computational-
intensive applications completely locally on their own
[5]. Therefore, the intelligent vehicles transmit this sen-
sor information over the network to more powerful
servers for artificial intelligence analysis processing of
applications such as video analysis [6] and high-definition
maps [7]. After the computation is completed, the server
returns the results to the vehicle control system to pro-
vide services for these applications.

With the dramatic shift towards applications based on
artificial intelligence, machine learning and deep learn-
ing, real-life intelligent vehicle applications are divided
into interdependent subtasks, and the processing com-
plexity between tasks is achieved by introducing a
topology between them [8]. Take the example of a road
condition analysis application, which can be requested
by an intelligent vehicle. Each task represents a part of
the road condition analysis process and there are cer-
tain dependencies between the tasks, such as road profile
information and other vehicle information. The execu-
tion of tasks in the application should be ordered, as pro-
cessing tasks may require output data from other tasks.

Cloud computing is a viable solution in the IoT that can
provide resources in a cost-effectively and elastically [9].
But as the number of intelligent vehicles increases dra-
matically, a large amount of data is generated that needs
to be uploaded and processed by the cloud. For the cloud,
network bandwidth is often limited, and scheduling too
many service requests can lead to network congestion
or even system crashes. For intelligent cars, most tasks
are latency-sensitive, and the cloud is so far away that it
takes a long time to complete [10], reducing the quality
of service, and even for applications like smart obsta-
cle avoidance will lead to safety accidents [11]. So cloud

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: xiayunni@hotmail.com

1 College of Computer Science, Chongqing University, Chongqing, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00357-8&domain=pdf

Page 2 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

computing alone is not enough to solve this problem and
requires the use of a more rapid communication solution.

For this problem, Multi-access Edge Computing
(MEC), which brings compute and storage resources to
the edge of the mobile network, giving mobile devices
the ability to run computational-intensive and latency-
sensitive applications [12], may be a good choice [13,
14]. It is a distributed architecture that greatly reduces
the data transmission time by communicating with the
vehicle closer, and it also provides computing resources
to meet the needs of the application [15], which can meet
the computation-intensive and latency-sensitive applica-
tions of intelligent vehicles. Although MEC architectures
are much more responsive than cloud computing, meet-
ing the quality of service (QoS) [16] for intelligent vehi-
cles is still a big challenge. Because intelligent vehicles
maintain high mobility and a large number of intelligent
applications.

In this paper, we aim at providing an offloading strategy
for optimizing execution efficiency and service quality of
intelligent vehicle applications. The main contributions
of this paper are: 1) A cloud-edge hybrid architecture
is designed to allow more flexible scheduling of tasks,
which is especially adaptable to high load situations. 2)
Load balancing between different eNodes is considered
so that tasks are not all gathered in the eNode with the
best performance for execution. At the same time, the
priority order for task scheduling is ordered according
to the acceptable flexible latest beginning time of tasks,
which improves the overall in-time completion rate. 3)
We consider that the application is a combination of mul-
tiple tasks and there are certain dependencies between
tasks that need to be executed in a certain order, which
is closer to reality, but increases the complexity of the
problem.

We conducted a series of experiments based on a well-
known dataset of real-world edge environments and
showed that our proposed algorithm MTS-MEoC out-
performs the benchmark algorithms in the metrics of
average completion time, in-time completion rate, and
average waiting time, indicating that it can provide better
QoS.

Related Work
MEC in IoV to aims to leverage nearby external resources
to execute computational-intensive and latency-sensitive
intelligent vehicle applications. In recent years, the prob-
lem of MEC-oriented task offloading has attracted exten-
sive attention and research interest.

Zhang et al. [17] studied the problem of task offload-
ing and resource allocation in vehicular heterogeneous
networks and clustered the QoS of vehicles by improved
K-means algorithm before having Q-Learning algorithm

for allocation to meet the joint demand of capacity and
delay. Liu et al. [18] studied the computational offload-
ing and resource allocation problem of vehicular edge
computing and formulated it as a semi-Markov process.
They solved this problem through Q-learning and deep
reinforcement learning methods. Ye et al [19] studied the
problem of uneven data processing demand due to une-
ven distribution of vehicles in time and space, designed
a hybrid fog architecture consisting of a fog computing
radio access network and vehicle fog computing, and pro-
posed a heuristic algorithm enhanced by deep learning
to optimize computational offloading. Huang et al. [20]
proposed a computational offloading algorithm based on
meta-learning, by learning historical MEC task offload-
ing data and then adapting a small number of training
samples to the current scenario, the resulting algorithm
can generate offloading decisions more efficiently. Xu
et al. [21] proposed a drone-assisted task offloading
approach using deep reinforcement learning techniques
to assist smart buildings and devices with communica-
tion problems in emergency situations. Peng et al. [22]
formulate the task offloading algorithm in edge comput-
ing as a mostly integer linear programming problem and
propose a decentralized reactive approach that learns
dynamically when requests arrive. Huang et al. [23] used
deep reinforcement learning techniques to solve dynamic
optimization problems for perceptual energy control
and computational offloading in the information age.
Wu et al. [24] proposed a heterogeneous Markov deci-
sion process to model the inter-slice resource allocation
process and the intra-slice task scheduling process hier-
archically in IoV with network slicing capabilities. They
designed the corresponding hierarchical deep reinforce-
ment learning architecture to jointly optimize the inter-
slice resource allocation and intra-slice task scheduling
problems. These methods of learning can achieve good
scheduling strategies to improve the quality of service.
However, vehicles have high requirements for latency,
and conventional training methods can lead to high
latency.

Wei et al. [25] defined the task offloading problem
with received energy and completion delay constraints
in IoV as a mixed integer nonlinear programming prob-
lem. They designed an algorithm for joint optimization of
energy consumption and task delay is designed to opti-
mize the selection decision, resource allocation, unload-
ing ratio and transmission power. You et al. [26] used
computational resources and experimental demands
as constraints on task scheduling by pricing network
latency sensitivity ranking based on the Vickrey-Clark-
Groves auction algorithm for solving the problem, which
effectively reduces the network latency. Deng et al. [27]
present an optimization problem for minimizing the

Page 3 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

completion time at a specified cost in IoV. Several algo-
rithms were improved based on the alternating direction
method of multipliers (ADMM) algorithm while intro-
ducing an augmented Lagrangian function to iteratively
improve the minimized task completion time. Lakhan
et al. [28] designed a novel collaborative vehicle fog cloud
network based on container microservices, proposing a
mobile-aware task offloading method to determine the
optimal offloading time and a collaborative task schedul-
ing method responsible for task sequencing and sched-
uling to reduce communication and computational costs
under a given completion time constraint. Chen et al.
[29]propose a dynamic task offloading algorithm based
on deep reinforcement learning taking into account both
MEC and cloud.

Ying et al. [30] considered task scheduling for MEC
applications based on directed acyclic graphs (DAG) and
proposed a maximum reliability offloading algorithm
that decomposes for a given constraint and debits new
dynamic adjustments to maximize execution reliability
for given energy consumption and delay constraint. Sahni
et al. [31] proposed a joint dependent task offloading and
flow scheduling heuristic algorithm for minimizing task
completion time considering the dependencies between
tasks and conflicts of network flow. Zhang et al. [32]

mitigate the concurrent request scheduling problems
based on directed acyclic graphs in an online manner.
They use a Markov decision process model to decom-
pose requests into subtasks, assign schedules based on
different states of subtasks, and use reinforcement learn-
ing methods to make decisions for each step. Most exist-
ing studies of application offloading in IoV do not take
into account the fact that smart vehicle applications also
consist of multiple subtasks with certain dependencies
between tasks.

System Model and problem formulation
In this section, we first explain the system model under
the cloud edge hybrid architecture, including the network
model, vehicle application model, transmission model,
and computation model.

Network Model
A hybrid cloud-edge system is considered, as shown in
Fig. 1, which consists of a cloud, multiple eNodes with
multiple servers, and some intelligent vehicles with
applications. The eNodes all have their different loca-
tions and wireless communication coverage, and we
denote the set of these eNodes in a certain range as
N = {N1,N2, ...,NK } , the set of the kth eNode servers as

Fig. 1  System model

Page 4 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

Sk = {Sk ,1, Sk ,2, ..., Sk ,L} . In the system, the intelligent vehi-
cles travel on the road and the set of intelligent vehicles is
indicated by V = {V1,V2, ...,Vh} . Each intelligent vehicle
has computational-intensive and latency-sensitive appli-
cations that need to be offloaded to an eNode server or a
server in the cloud for execution. The set of these appli-
cations is denoted as N = {A1,A2, ...,AI } . An application
can be structured with j tasks and the set of tasks belong-
ing to the same application Ai is Ai = {Ti,1,Ti,2, ...,Ti,J } .
In this paper, we consider scenarios where scheduling
and computation are done on a task-by-task basis. Each
task can be divided into any eNode which the intelligent
vehicle can communicate with, and tasks belonging to
the same application do not have to be assigned to the
same eNode, e.g. T1,1 can be scheduled to N1 for execu-
tion, while T1,2 can be scheduled to N2 for execution. The
intelligent vehicle can only schedule tasks to the eNodes
that are communicable at the current moment. Consider-
ing the mobility of the intelligent vehicle, if the intelligent
vehicle moves out of the communication range of the
eNode, then the intelligent vehicle will no longer be able
to offload tasks to that eNode. Whereas the communica-
tion range of the cloud server is full coverage of the sce-
nario. The notations used in this paper are summarized
in Fig. 2.

Application Model
We consider that the tasks in the application of intelligent
vehicles are dependent on each other, so we represent the
applications as directed acyclic graphs shown in Fig. 3.
A directed acyclic graph represents a class of intelligent
vehicle applications. In the same directed acyclic graph,
the task pointed by the arrow needs to be executed after
the task at the end of the arrow is executed. For instance,
T1,2 and T1,3 can be executed only after T1,1 is executed in
the figure, and T1,8 needs to be executed after both T1,6
and T1,7 have been executed. The dependencies between
tasks of the same application cause them to require the
results of other tasks to be executed before they can be
executed. There are no dependencies between different
applications, so there is no restriction on the order of
execution between their tasks.

Transmission Model
The completion of each application needs to go through
three stages, which are scheduling the task to the desig-
nated server, executing the task at the designated server,
and transmitting the task execution result from the
server back to the intelligent vehicle. The application is
not completed until the last task execution result is trans-
mitted back to the intelligent vehicle. Since the data of
task results are usually small and can be neglected, the

finishing time of the application comprises task data
transmission time and task computation time.

eNode Transmission
We assume that the wireless communication between
intelligent vehicles and eNodes is based on non-orthogo-
nal multiple access technology [33, 34], so in this system,
the bandwidths between different eNodes and intelligent
vehicles are different and their communication does not
interfere with each other. The bandwidth between eNode
Nk and intelligent vehicle Vh is denoted by bh,k , the chan-
nel gain between intelligent vehicle Vh and eNode Nk is
denoted by gh,k , and the transmission power between
intelligent vehicle Vh and eNode Nk is denoted by ph,k .
Therefore, the transmission rate between intelligent vehi-
cle Vh and eNode Nk can be given by

where N0 indicates the Gaussian noise power inside the
channel and tk ,h the transmission time of input data dk
from intelligent vehicle Vh and eNode Nk . Consequently,
the transmission duration tk ,h is

Cloud Transmission
Similarly, when the tasks are transmitted from the intelli-
gent vehicle Vh to the cloud, the corresponding transmis-
sion rate is:

where bh,C indicates the bandwidth between an intelli-
gent vehicle Vh and the cloud, gh,k represents the chan-
nel gain between intelligent vehicle Vh and the cloud, and
ph,k the transmission power between intelligent vehicle
Vh and the cloud. The transmission time tk ,C for a task
with size dk to be transferred from intelligent vehicle Vh
to the cloud is

Computation Model
Due to limited computing resources, we assume that
each server on the eNode can only execute one task at
the same time, and each task can only be executed by one
server.

(1)Rh,k = bh,k log 1+
gh,kph,k

N0

(2)th,k =
di,j

bk ,hlog
(

1+
gh,kph,k
N0

)

(3)Rh,C = bh,Clog

(

1+
gh,Cph,C

N0

)

(4)th,C =
di,j

bh,Clog
(

1+
gh,Cph,C

N0

)

Page 5 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

Since there are dependencies between tasks and
eNodes have coverage limits, there are two conditions
that need to be satisfied for each task to start its exe-
cution. Condition one is that all tasks pointing to it in
the directed acyclic graph have been completed, and
condition two is that there are free servers in the com-
municable eNodes of the intelligent vehicle this task is
located in to execute it.

We use a Boolean variable eim,j to denote whether the
task Ti,m in the directed acyclic graph points to Ti,j , it can
be given as

(5)eim,j =

{

1, if task Ti,m points to Ti,j in the DAG
0, otherwise

Fig. 2  Summary of Key Notations

Page 6 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

If eim,j = 1 , the task Ti,j needs to be executed after the
execution of Ti,m is finished.

We denote the real end time of the task Ti,j by RETi,j .
When all the tasks pointing to the task Ti,j in the directed
acyclic graph are completed, the task Ti,j is ready to wait
for the idle server to execute it, and its readiness time
RTi,j can be expressed as

where pre(Ti,j) denotes the set of all tasks pointing to
task Ti,j in the directed acyclic graph.

If the task Ti,j will be scheduled by the algorithm to be
executed on eNode server Sk ,l , and server Sk ,l is idle when
the task Ti,j is ready, the task can start execution at the
readiness time. If there is task Tx,y being executed on the
server Sk ,l when the task is ready, the task needs to wait
until the server Sk ,l is idle before execution, so the earliest
beginning time of the task Ti,j can be expressed as

where RETx,y denotes the real ending time of the task
executed on the server before task Ti,j.

The computation time CTi,j,k ,l of task Ti,j on eNode
server Sk ,l is

where di,j indicates the size of input data of task Ti,j and
ck ,l the computing speed of Sk ,l.

(6)
RTi,j = max

eix,j=1

RETi,x

(7)EBTi,j = max{RTi,j ,RETx,y}

(8)CTi,j,k ,l =
di,j

ck ,l

To be similar, the computation time CTi,j,C of task Ti,j
deployed on the cloud server is

where C indicates the computing speed of the cloud
server.

With the knowledge of the application completion time
constraints and the dependencies between the tasks, we
can calculate the latest ending time and the latest beginning
time of the task Ti,j accordingly, and they can be expressed
as

where suc(Ti,j) represents the set of all tasks pointed to
by Ti,j in the directed acyclic graph and CTmin

i,x represents
the shortest computation time of task Ti,x among all the
servers that can communicate with the intelligent vehicle.

The earliest ending time EETi,j of task Ti,j can be
expressed as

We denote whether the application AI is completed in
time by ITi , and it can be given as

(9)CTi,j,C =
di,j

C

(10)

LETi,j = min
Ti,x∈suc(Ti,j)

(LETi,x −min(CTmin
i,x ,CTi,x,C))

(11)LBTi,j = LETi,j −min(CTmin
i,x ,CTi,x,C)

(12)
EETi,j = ESTi,j +min(th,k + CTi,j , th,C + CTi,j,C)

(13)ITi =

{

1, if Ai is completed in time
0, otherwise

Fig. 3  Application structure

Page 7 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

Then we can obtain the in-time completion rate P for this
batch of applications as

Problem Formulation
In this section, we define the problem of minimizing the
completion time under the condition that the completion
time constraint is satisfied as much as possible.

We use x(Ti,j , Sk ,l) to denote whether task Ti,j is sched-
uled to be executed on eNode server Sk ,l , it can be given
as

Therefore, the real ending time RETi of application Ai
scheduled to eNodes can be denoted as

and if scheduled to the cloud can be denoted as

where WTk ,l represents the waiting time to wait for the
server to be idle if the task is ready but the server still has
tasks in progress.

We denote the completion time constraint of appli-
cation Ai as CTCi . The application completes in time
requires the real ending time to be less than the comple-
tion time constraint. Furthermore, the problem can be
formulated as

where α denotes a factor of completion rate CR.
dist(Ti,j , Sk ,l) denotes a distance from task Ti,j to server
Sk ,l , Radk denotes the coverage of eNode Nk , and
dist(Ti,j , Sk ,l) needs to be less than Radk for the task Ti,j to
be delivered to server Sk ,l . Countk ,l denotes the number
of tasks on the server at the moment t, and only one task
can be executed at the same time. RBTi,j denotes the real
beginning time of the task Ti,j.

If the mobility of intelligent vehicles is not considered
and there is only one eNode and all intelligent vehicles

(14)CR =

∑I
i=1 Ai

I

(15)

x(Ti,j , Sk ,l) =

{

1, if task Ti,j is scheduled to server Sk ,l
0, otherwise

(16)

RETi = RETi,J = RTi,J +

K
∑

k=1

L
∑

l=1

[x(Ti,J , Sk ,l)CTi,j,k ,l + th,k +WTk ,l]

(17)RETi = RETi,J = RTi,J + CTi,j,C + th,C

(P1)min(

∑I
i=1 RETi

αCR
)

s.t. RETi ≤ CTCi ∀Ai ∈ A

dist(Ti,j , Sk ,l) ≤ Radk ∀x(Ti,j , Sk ,l) = 1

Countk ,l ≤ 1 ∀t ∈ T

RETi,m ≤ RBTi,j ∀eim,j = 1

can communicate with this eNode, then this problem
can be reduced to a job-shop scheduling problem (JSP),
which is NP-hard and difficult to solve directly [35].

Proposed Algorithm MTS‑MEoC
In this section, to solve the above problem, we pro-
posed a method of multiple applications scheduling to
eNode or cloud for execution (MTS-MEoC). The algo-
rithm offloads tasks to the appropriate server on a suit-
able communicable eNode or the server in the cloud for
execution.

First of all, to prioritize the order among tasks, we use
a flexible latest beginning time FLBTi,j to indicate the
urgency of task Ti,j , which can be denoted as

where ETmax
i,m indicates the maximum execution dura-

tion of task Ti,m on all servers of eNode, and the FLBTi,j
of the last task Ti,j of the application Ai is calculated when
LETi,m is CTCi in Eq. (18). Once the application reaches
this time, it means that the risk of application timeout is
greatly increased and the priority of this task needs to be
raised so that the task is executed as soon as possible to
guarantee the in-time completion rate of the application.
Meanwhile, sorting by FLBT allows applications arriving
at different moments to be sorted according to the same
standard and does not affect the priority of the task by
the difference in the ordered arrival time.

At the beginning of the algorithm, all ready tasks (i.e.,
tasks that have reached RT) are placed in the task queue
waiting to be scheduled. The first task of the application
is the moment when the application arrives. The tasks in
the task queue are first sorted by FLBT, and each task is
scheduled for execution in this order. We schedule each
task by selecting the idle server that can get the minimum
EET. If there is no free server available for communica-
tion at the current moment, it is necessary to wait for the
server to finish executing its current task. However, if the
task reaches FLTB, or if the waiting time is about to reach
FLTB, the task needs to be put into the waiting queue,
and the tasks in the waiting queue are given priority in
each algorithmic scheduling. Tasks in the waiting queue
are prioritized to the fastest server to ensure that the task
is completed no later than the latest ending time. They
will choose the server that can get the minimum EET for
scheduling, and if that server is not available task Ti,j will
also be queued into that server Sk ,l first to wait for prior-
ity processing, while at the same time when other tasks
choose a server, the ready time of server Sk ,l needs to be
added to the execution time of task Ti,j . And if the task
will exceed the latest ending time no matter which server
is selected, the task will be scheduled to the cloud for

(18)FLBTi,j = min
Ti,m∈suc(Ti,j)

(LETi,m − ETmax
i,m)

Page 8 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

execution, freeing up quality eNode resources for other
applications to ensure the overall QoS. The details of the
algorithm are shown in Algorithm 1.

Algorithm 1 MTS-MEoC

Experiment
In this section, we conduct a series of studies on the
average application completion time, average applica-
tion waiting time, in-time application completion rate,
and utilization of servers based on the cloud-edge hybrid
architecture.

Experiment settings
We conduct the experiments based on the public and
widely-used EUA dataset [36]. It contains the locations
of the 125 edge servers (base stations) in the Melbourne
central business district area in Australia. We use the
base station information from the EUA as the infor-
mation of our eNodes with a communication range of
400-800 meters and a certain number of servers in each
eNode. The computation speed of each eNode server is
1 ×108 – 3 ×108 kB/s and that of the cloud is 1 ×109 kB/s.

At the start time of the experiment, there will be a cer-
tain number of intelligent vehicles traveling in a straight
line according to their respective speed and direction,
and their speed sizes range from 36 km/h to 72 km/h.
There will be applications on the intelligent vehicles that
need to be unloaded, and the task size of the applica-
tions is between 2 ×106–5×106 kB. The completion time
constraint CTCi of the application Ai is 0.5 – 0.7s. The
dependencies of tasks in different applications are not the
same and are classified into six cases illustrated in Fig. 3.

The intelligent vehicles communicate with the eNo-
des and cloud through wireless. The channel bandwidth
between intelligent vehicle Vh and eNode Nk bh,k is 500–
800 kHz, and that between intelligent vehicle Vh and
cloud bh,C is 50 kHz. The power gain gh,k is 6.5×10−4 at
a reference distance of one meter and the transmission
power ph,k is 0.1 W. The noise power of the system N0 is
10−10 W.

We consider the following algorithms as the peers:
1)Random Selection Algorithm (RSA): In this algo-

rithm, every task will be scheduled to a random eNode
and a random server of this eNode.

2)Greedy Algorithm (GA): The greedy algorithm
schedules every task to the eNode with the shortest
transmission time, and then chooses the idle server with
the fastest computation speed.

3)Multiple Applications Multiple Tasks Scheduling
(MAMTS) [37]: In this algorithm, the tasks in the same
application will be scheduled to the eNode with the
shortest overall execution time, and then the tasks in this
application will select the server according to a priority.

In our experiments, we compare the in-time comple-
tion rate, average completion time, average waiting time,
and server utilization of MTS-MEoC with other bench-
mark algorithms for different load cases.

Result and Comparison
Our experiments used an environment with five servers
at each of the five eNodes. A variety of different numbers
of intelligent vehicles were tested, and each vehicle had
an application required to offload for execution.

As shown in Fig. 4, different kinds of applications are
represented by different shapes, such as triangles, pro-
totypes, and squares. The applications scheduled to the
same eNode are represented by the same color. We can
see that the RSA algorithm schedules some applications
that are very far from the eNode to that eNode, and the
picture has more cross lines of different colors. While
GA prefers to select applications closer to the eNode
for scheduling. MAMTS assigns more balanced applica-
tions to each eNode. MTS-MEoC has multiple color lines
attached to the same Application because it can assign
different tasks in the directed acyclic graph of an applica-
tion to different eNodes.

Comparison of average completion time
Results: Figure 5 illustrates the average completion time
of all applications for our proposed MTS-MEoC and the
other three methods for different numbers of applica-
tions. In the comparison, our proposed method achieves
the lowest average completion time (on average, 24.4%
lower than MAMTS; 37.0% lower than GA and 63.1%
lower than RSA). With a small number of applications,

Page 9 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

all three algorithms, except the RSA, possess a certain
degree of stability, but as the amount of applications
increases and the servers all enter into high-load usage,
the performance of the MAMTS and GA algorithms
shows some volatility, while MTS-MEoC still guarantees
a low completion time.

Analysis: MTS-MEoC has the lowest average comple-
tion time mainly for two reasons: 1) It takes into account
the hybrid cloud-edge architecture, so it is more flex-
ible for task scheduling and can avoid some key tasks
waiting for idle servers as much as possible; 2. It takes
into account the load of eNodes and schedules tasks to

Fig. 4  How applications are scheduled with different algorithms

Fig. 5  The average completion time

Page 10 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

eNodes with lower load to execute, making full use of
server resources.

Comparison of in‑time completion rate
Results: Figure 6 shows the application’s In-time comple-
tion rate, which corresponds to the percentage of appli-
cations that are finished within the specified completion
time constraints. MTS-MEoC achieved the highest task
completion rate, (on average 40.3% higher than MAMTS,
41.9% higher than GA, and 143% higher than RSA).
When the load is low, MTS-MEoC and MAMTS can
basically complete all applications in time. As the server
load rises, both have some applications that cannot be
completed in time, but MTS-MEoC still has the high-
est completion rate, which means that MTS-MEoC can
provide high-quality services to more intelligent vehicle
users.
Analysis: GA and RSA do not prioritize tasks, so some

urgent tasks are not completed, resulting in a lower in-
time completion rate. GA algorithm mainly pursues the
fastest execution of tasks, so the performance is better
when the load is high compared to RSA and MAMTS.
Our proposed algorithm MTS-MEoC and MAMTS both
prioritize the tasks, so the more urgent tasks are pro-
cessed first, which makes the task completion rate higher
when the server load is low. But MAMTS has too many
tasks performed on part of the eNodes after high server
load without a load balancing strategy, so the completion
rate becomes low. MTS-MEoC, however, offloads tasks
to eNodes with a lower load to execute them as appropri-
ate and also to the cloud, so it is more flexible and has a
higher completion rate.

Comparison of average waiting time
Results: Figure 7 demonstrates the average waiting time
before the application completes execution, the time
when the task is ready after all the tasks pointing to it in
the directed acyclic graph have been completed but there
are no idle servers available for scheduling. In the com-
parison, MTS-MEoC obtains the lowest average comple-
tion time (on average 31.2% lower than MAMTS, 71.9%
lower than RSA, and 37.4% lower than GA), which means
that MTS-MEoC can provide a better quality of service
for intelligent vehicle applications.
Analysis: The lower average waiting time of MTS-

MEoC is mainly due to the fact that tasks are scheduled
to be executed on eNodes with low loads so that the wait-
ing time can be significantly reduced when there are too
many tasks arriving at the same time. Also, more reason-
able matching of tasks to servers can reduce the applica-
tion waiting time to some extent.

Comparison of servers utilization
Results: Figure 8 demonstrates the utilization of all
servers throughout the process of providing computing
services to intelligent vehicles. The utilization of MTS-
MEoC is 13.3% lower than MAMTS, but 47.5% higher
than GA and 170.3% higher than RSA. The utilization of
the four algorithms is roughly at a stable level regardless
of the load.
Analysis: Idle servers result in lower utilization, so

utilization roughly reflects the level of an algorithm for
server utilization. But it is not necessarily good if the
utilization is high, because the utilization is also higher
if the server with less computing power is always used.
So although our algorithm has a lower utilization than

Fig. 6  The in-time completion rate

Page 11 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

MAMTS, the average completion time and waiting time
of the previous algorithm can be combined to show that
our algorithm uses the server more rationally and pro-
vides better quality of service with lower utilization. With
the same quality of service, lower utilization also means
cost savings.

Conclusions and future work
In this paper, we consider the application offloading prob-
lem for intelligent vehicles based on a hybrid cloud-edge
environment. We propose the algorithm MTS-MEoC
considering the dependencies of tasks in the application.
MTS-MEoC is experimentally proven to outperform its

peers in terms of average completion time, in-time com-
pletion rate, and average waiting time. MTS-MEoC is
able to provide a better quality of service to intelligent
vehicle users.

In future work, we will consider the following aspects:
1) The application offloading problem cannot be reduced
to a static optimization problem in reality, and we
should consider the dynamic arrival of the application
over time in our subsequent research; 2) We will use
some data mining methods to implement load sensing
and movement prediction, which will enable better task
scheduling.

Fig. 7  The average waiting time of applications

Fig. 8  The servers utilization

Page 12 of 13Xu et al. Journal of Cloud Computing (2022) 11:88

Abbreviations
IoV: Internet of Vehicles; QoS: Quality of Service; MEC: Multi-access Edge Com-
puting; DAG: Directed acyclic graphs.

Acknowledgements
The authors will be grateful to the editor and anonymous referees for their
valuable comments and suggestions.

Authors’ contributions
Xifeng Xu performed the evaluation experiments and wrote the manuscript.
Yunni Xia designed the study. Zeng Feng, Fan Li, and Xiaodong Fu proposed a
new framework for the system, and Hong Xie proposed algorithm modifica-
tions. Mengdi Wang provided all the pictures. All authors participated actively
in discussions and reviewed the manuscript. The author(s) read and approved
the final manuscript.

Funding
This work is supported by the National Science Foundation of China (NSFC)
with the granting No. 62172062 and the Graduate Student Research and
Innovation Foundation of Chongqing, No.CYS21062.

Availability of data and materials
The EUA dataset is available at the URL https://​github.​com/​98254​3386/​eua-​
datas​et.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Computer Science, Chongqing University, Chongqing, China.
2 Discovery Technology (Shenzhen)Limited, Shenzhen, China. 3 Key Laboratory
of Fundamental Synthetic Vision Graphics and Image Science for National
Defense, Sichuan University, Chengdu, China. 4 Faculty of Information Engi-
neering and Automation, Kunming University of Science and Technology,
Kunming, China. 5 College of Computer Science and Technology, Chongqing
University of Posts and Telecommunications, Chongqing, China.

Received: 29 July 2022 Accepted: 2 November 2022

References
	1.	 Huang J, Tong Z, Feng Z (2022) Geographical poi recommendation for

internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	2.	 Dureja A, Sangwan S (2021) A review: efficient transportatio-future
aspects of iov. Evolving Technologies forComputing, Communication and
Smart World, p 97–108

	3.	 Hakimi A, Yusof KM, Azizan MA, Azman MAA, Hussain SM (2021) A survey
on internet of vehicle (iov): applications & comparison of vanets, iov and
sdn-iov. ELEKTRIKA J Electr Eng 20(3):26–31

	4.	 Santhakumar G, Whenish R (2022) Internet of Vehicles. Springer Interna-
tional Publishing, Cham, pp 259–281

	5.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595. https://​doi.​org/​10.​1109/​TVT.​2021.​31335​86

	6.	 Varsha P, Priyadharshini D, Swetha S et al (2021) Video analysis of vehicle
and pedestrian using neural network. Ann Romanian Soc Cell Biol
4727–4733

	7.	 Bao Z, Hossain S, Lang H, Lin X (2022) High-definition map genera-
tion technologies for autonomous driving: a review. arXiv preprint
arXiv:2206.05400

	8.	 Liu Z, Liwang M, Hosseinalipour S, Dai H, Gao Z, Huang L (2022) RFID:
towards low latency and reliable DAG task scheduling over dynamic

vehicular clouds. CoRR abs/2208.12568. https://​doi.​org/​10.​48550/​arXiv.​
2208.​12568

	9.	 Jie D, Zhao Y, Liu Y, Qi L, Hu C (2014) Cloud-assisted analysis for energy
efficiency in intelligent video systems. J Supercomput 70(3):1345–1364

	10.	 Cao B, Sun Z, Zhang J, Gu Y (2021) Resource allocation in 5g IoV architec-
ture based on SDN and fog-cloud computing. IEEE Trans Intell Transp Syst
PP(99):1–9

	11.	 Mohapatra H, Rath AK, Panda N (2022) IoT infrastructure for the accident
avoidance: an approach of smart transportation. Int J Inf Technol
14(2):761–768

	12.	 Chen Y, Gu W, Xu J et al (2022) Dynamic task offloading for digital twin-
empowered mobile edge computing viadeep reinforcement learn-
ing. China Commun

	13.	 Shetty RS (2021) Multi-Access Edge Computing in 5G. Apress, Berkeley,
pp 69–102

	14.	 Abdullah MFA, Yogarayan S, Razak SFA, Azman A, Amin AHM, Salleh
M (2022) Edge computing forvehicle to everything: a short review.
F1000Research 10(1104):1104

	15.	 Chen Y, Zhao F, Lu Y, Chen X (2021) Dynamic task offloading for mobile
edge computing with hybrid energy supply. Tsinghua Sci Technol.
https://​doi.​org/​10.​26599/​TST.​2021.​90100​50

	16.	 Luo X, Zhou M, Li S, Xia Y, You Z-H, Zhu Q et al (2017) Incorporation of
efficient second-ordersolvers into latent factor models for accurate
prediction of missing qos data. IEEE Trans Cybern 48(4):1216–1228

	17.	 Zhang H, Luan Q, Zhu J, Fangwei LI, Amp N (2018) Task offloading and
resource allocation in vehicleheterogeneous networks with MEC. Chinese
J Internet of Things 2(3):36–43

	18.	 Liu Y, Yu H, Xie S, Zhang Y (2019) Deep reinforcement learning for offload-
ing and resource allocation in vehicleedge computing and networks.
IEEE Trans Veh Technol 68(11):11158–11168

	19.	 Ye T, Lin X, Wu J, Li G, Li J (2020) Processing capability and qoe driven
optimized computation offloadingscheme in vehicular fog based f-ran.
World Wide Web 23(4):2547–2565

	20.	 Huang L, Zhang L, Yang S, Qian LP, Wu Y (2020) Meta-learning based
dynamic computation task offloadingfor mobile edge computing net-
works. IEEE Commun Lett 25(5):1568–1572

	21.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for IoT in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron 222. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	22.	 Peng Q, Xia Y, Wang Y, Wu C, Luo X, Lee J (2020) A decentralized reactive
approach to online taskoffloading in mobile edge computing environ-
ments. In: International Conference on Service-OrientedComputing.
Springer, p 232–247

	23.	 Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

	24.	 Wu W, Dong J, Sun Y, Yu FR (2022) Heterogeneous markov decision
process model for joint resourceallocation and task scheduling in
network slicing enabled internet of vehicles. IEEE Wireless Commun Lett
11(6):1118–1122. https://​doi.​org/​10.​1109/​LWC.​2022.​31521​77

	25.	 Huang W, Xiong NN, Mumtaz S (2021) Joet: Sustainable vehicle-assisted
edge computing for internet of vehicles. arXiv:​2108.​02443. https://​doi.​
org/​10.​48550/​arXiv.​2108.​02443

	26.	 You M, Zhou H, Zhuang Y (2020) Research on application of auction
algorithm in internet of vehicles taskscheduling under fog environment.
In: Proceedings of the 2020 the 4th International Conference on Innova-
tionin Artificial Intelligence, p 242–249

	27.	 Deng Y, Chen Z, Yao X, Hassan S, Wu J (2019) Task scheduling for smart
city applications based onmulti-server mobile edge computing. IEEE
Access 7 :14410–14421

	28.	 Lakhan A, Memon MS, Elhoseny M, Mohammed MA, Qabulio M, Abdel-
Basset M et al (2022) Cost-efficient mobility offloading and task schedul-
ing for microservices iovt applications in container-based fogcloud
network. Cluster Comput 25(3):2061-2083

	29.	 Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. Int J Commun
Syst. https://​doi.​org/​10.​1002/​dac.​5154

	30.	 Ying S, Li J, Xiguang W (2020) Dag-based task scheduling in mobile edge
computing. 2020 7th International conference on information science
and control engineering (ICISCE). https://​doi.​org/​10.​1109/​ICISC​E50968.​
2020.​00095

https://github.com/982543386/eua-dataset
https://github.com/982543386/eua-dataset
https://doi.org/10.1002/dac.5161
https://doi.org/10.1109/TVT.2021.3133586
https://doi.org/10.48550/arXiv.2208.12568
https://doi.org/10.48550/arXiv.2208.12568
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.1109/LWC.2022.3152177
http://arxiv.org/abs/2108.02443
https://doi.org/10.48550/arXiv.2108.02443
https://doi.org/10.48550/arXiv.2108.02443
https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/ICISCE50968.2020.00095
https://doi.org/10.1109/ICISCE50968.2020.00095

Page 13 of 13Xu et al. Journal of Cloud Computing (2022) 11:88 	

	31.	 Sahni Y, Cao J, Yang L, Ji Y (2020) Multihop offloading of multiple
dag tasks in collaborative edge computing. IEEE Internet of Things J
8(6):4893–4905

	32.	 Zhang Y, Li R, Zhou Z, Zhao Y, Li, R (2021) Deep reinforcement learning for
dag-based concurrent requestsscheduling in edge networks. In: Inter-
national Conference on Wireless Algorithms, Systems, and Applications.
Springer, p 359–366

	33.	 Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading
and resource allocation for noma-enabled IoT in smart buildings and
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	34.	 Chen Y, Xing H, Ma Z et al (2022) Cost-efficient edge caching for noma-
enabled iot services. ChinaCommun

	35.	 Li Y, Luo G, Wu B (2019) Flexible job shop scheduling based on genetically
modified neighborhood hybrid algorithm. In: 2019 IEEE International
Conference on Artificial Intelligence and Computer Applications (ICAICA).
pp 337–342. https://​doi.​org/​10.​1109/​ICAICA.​2019.​88735​01

	36.	 Lai P, He Q, Abdelrazek M, Chen F, Hosking J, Grundy J et al (2018) Optimal
edge user allocation inedge computing with variable sized vector bin
packing. In: International Conference on Service-OrientedComputing.
Springer, p 230–245

	37.	 Liu Y, Wang S, Zhao Q, Du S, Zhou A, Ma X et al (2020) Dependency-aware
task scheduling invehicular edge computing. IEEE Internet of Things J
7(6):4961–4971

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1109/ICAICA.2019.8873501

	A novel vehicular task deployment method in hybrid MEC
	Abstract
	Introduction
	Related Work
	System Model and problem formulation
	Network Model
	Application Model
	Transmission Model
	eNode Transmission
	Cloud Transmission

	Computation Model
	Problem Formulation

	Proposed Algorithm MTS-MEoC
	Experiment
	Experiment settings
	Result and Comparison
	Comparison of average completion time
	Comparison of in-time completion rate
	Comparison of average waiting time
	Comparison of servers utilization

	Conclusions and future work
	Acknowledgements
	References

