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Abstract 

With the skyrocketing need for low-latency services on the Internet of Vehicles (IoV) and elastic cross-layer resource 
provisioning, multi-access edge computing (MEC) is considered a high-potent solution, which evolves from cloud 
and grid computing to meet the above needs in IoV scenarios. Instead of considering single-point and monolithic 
IoV tasks, in this paper, we consider the IoV applications to be with structural properties and the supporting environ-
ment to be with a hybrid cloud-edge architecture. We develop a scheduling method that offloads tasks to the eNode 
or cloud according to their estimations of latest starting time. Simulative results clearly demonstrate that our method 
beat existing solutions in terms of average completion time, average waiting time, and in-time completion rate.
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Introduction
With the rapid development of Internet-of-Vehicles (IoV) 
technology [1] and the increasing popularity of intelligent 
vehicles [2], more and more computational-intensive IoV 
applications are becoming available. Intelligent vehicles 
can sense the vehicle’s line-of-sight by deploying sen-
sors, including onboard cameras, radar, etc [3]. With 
this information, applications including vehicle-road/
vehicle-person interaction, road condition awareness and 
collaborative dispatching, video or high-precision map 
distribution, etc. can be provided [4].

However, due to the limited resources of intelligent 
vehicles, it is difficult for them to handle computational-
intensive applications completely locally on their own 
[5]. Therefore, the intelligent vehicles transmit this sen-
sor information over the network to more powerful 
servers for artificial intelligence analysis processing of 
applications such as video analysis [6] and high-definition 
maps [7]. After the computation is completed, the server 
returns the results to the vehicle control system to pro-
vide services for these applications.

With the dramatic shift towards applications based on 
artificial intelligence, machine learning and deep learn-
ing, real-life intelligent vehicle applications are divided 
into interdependent subtasks, and the processing com-
plexity between tasks is achieved by introducing a 
topology between them [8]. Take the example of a road 
condition analysis application, which can be requested 
by an intelligent vehicle. Each task represents a part of 
the road condition analysis process and there are cer-
tain dependencies between the tasks, such as road profile 
information and other vehicle information. The execu-
tion of tasks in the application should be ordered, as pro-
cessing tasks may require output data from other tasks.

Cloud computing is a viable solution in the IoT that can 
provide resources in a cost-effectively and elastically [9]. 
But as the number of intelligent vehicles increases dra-
matically, a large amount of data is generated that needs 
to be uploaded and processed by the cloud. For the cloud, 
network bandwidth is often limited, and scheduling too 
many service requests can lead to network congestion 
or even system crashes. For intelligent cars, most tasks 
are latency-sensitive, and the cloud is so far away that it 
takes a long time to complete [10], reducing the quality 
of service, and even for applications like smart obsta-
cle avoidance will lead to safety accidents [11]. So cloud 
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computing alone is not enough to solve this problem and 
requires the use of a more rapid communication solution.

For this problem, Multi-access Edge Computing 
(MEC), which brings compute and storage resources to 
the edge of the mobile network, giving mobile devices 
the ability to run computational-intensive and latency-
sensitive applications [12], may be a good choice [13, 
14]. It is a distributed architecture that greatly reduces 
the data transmission time by communicating with the 
vehicle closer, and it also provides computing resources 
to meet the needs of the application [15], which can meet 
the computation-intensive and latency-sensitive applica-
tions of intelligent vehicles. Although MEC architectures 
are much more responsive than cloud computing, meet-
ing the quality of service (QoS) [16] for intelligent vehi-
cles is still a big challenge. Because intelligent vehicles 
maintain high mobility and a large number of intelligent 
applications.

In this paper, we aim at providing an offloading strategy 
for optimizing execution efficiency and service quality of 
intelligent vehicle applications. The main contributions 
of this paper are: 1) A cloud-edge hybrid architecture 
is designed to allow more flexible scheduling of tasks, 
which is especially adaptable to high load situations. 2) 
Load balancing between different eNodes is considered 
so that tasks are not all gathered in the eNode with the 
best performance for execution. At the same time, the 
priority order for task scheduling is ordered according 
to the acceptable flexible latest beginning time of tasks, 
which improves the overall in-time completion rate. 3) 
We consider that the application is a combination of mul-
tiple tasks and there are certain dependencies between 
tasks that need to be executed in a certain order, which 
is closer to reality, but increases the complexity of the 
problem.

We conducted a series of experiments based on a well-
known dataset of real-world edge environments and 
showed that our proposed algorithm MTS-MEoC out-
performs the benchmark algorithms in the metrics of 
average completion time, in-time completion rate, and 
average waiting time, indicating that it can provide better 
QoS.

Related Work
MEC in IoV to aims to leverage nearby external resources 
to execute computational-intensive and latency-sensitive 
intelligent vehicle applications. In recent years, the prob-
lem of MEC-oriented task offloading has attracted exten-
sive attention and research interest.

Zhang et  al. [17] studied the problem of task offload-
ing and resource allocation in vehicular heterogeneous 
networks and clustered the QoS of vehicles by improved 
K-means algorithm before having Q-Learning algorithm 

for allocation to meet the joint demand of capacity and 
delay. Liu et  al. [18] studied the computational offload-
ing and resource allocation problem of vehicular edge 
computing and formulated it as a semi-Markov process. 
They solved this problem through Q-learning and deep 
reinforcement learning methods. Ye et al [19] studied the 
problem of uneven data processing demand due to une-
ven distribution of vehicles in time and space, designed 
a hybrid fog architecture consisting of a fog computing 
radio access network and vehicle fog computing, and pro-
posed a heuristic algorithm enhanced by deep learning 
to optimize computational offloading. Huang et  al. [20] 
proposed a computational offloading algorithm based on 
meta-learning, by learning historical MEC task offload-
ing data and then adapting a small number of training 
samples to the current scenario, the resulting algorithm 
can generate offloading decisions more efficiently. Xu 
et  al. [21] proposed a drone-assisted task offloading 
approach using deep reinforcement learning techniques 
to assist smart buildings and devices with communica-
tion problems in emergency situations. Peng et  al. [22] 
formulate the task offloading algorithm in edge comput-
ing as a mostly integer linear programming problem and 
propose a decentralized reactive approach that learns 
dynamically when requests arrive. Huang et al. [23] used 
deep reinforcement learning techniques to solve dynamic 
optimization problems for perceptual energy control 
and computational offloading in the information age. 
Wu et  al. [24] proposed a heterogeneous Markov deci-
sion process to model the inter-slice resource allocation 
process and the intra-slice task scheduling process hier-
archically in IoV with network slicing capabilities. They 
designed the corresponding hierarchical deep reinforce-
ment learning architecture to jointly optimize the inter-
slice resource allocation and intra-slice task scheduling 
problems. These methods of learning can achieve good 
scheduling strategies to improve the quality of service. 
However, vehicles have high requirements for latency, 
and conventional training methods can lead to high 
latency.

Wei et  al. [25] defined the task offloading problem 
with received energy and completion delay constraints 
in IoV as a mixed integer nonlinear programming prob-
lem. They designed an algorithm for joint optimization of 
energy consumption and task delay is designed to opti-
mize the selection decision, resource allocation, unload-
ing ratio and transmission power. You et  al. [26] used 
computational resources and experimental demands 
as constraints on task scheduling by pricing network 
latency sensitivity ranking based on the Vickrey-Clark-
Groves auction algorithm for solving the problem, which 
effectively reduces the network latency. Deng et  al. [27] 
present an optimization problem for minimizing the 
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completion time at a specified cost in IoV. Several algo-
rithms were improved based on the alternating direction 
method of multipliers (ADMM) algorithm while intro-
ducing an augmented Lagrangian function to iteratively 
improve the minimized task completion time. Lakhan 
et al. [28] designed a novel collaborative vehicle fog cloud 
network based on container microservices, proposing a 
mobile-aware task offloading method to determine the 
optimal offloading time and a collaborative task schedul-
ing method responsible for task sequencing and sched-
uling to reduce communication and computational costs 
under a given completion time constraint. Chen et  al. 
[29]propose a dynamic task offloading algorithm based 
on deep reinforcement learning taking into account both 
MEC and cloud.

Ying et  al. [30] considered task scheduling for MEC 
applications based on directed acyclic graphs (DAG) and 
proposed a maximum reliability offloading algorithm 
that decomposes for a given constraint and debits new 
dynamic adjustments to maximize execution reliability 
for given energy consumption and delay constraint. Sahni 
et al. [31] proposed a joint dependent task offloading and 
flow scheduling heuristic algorithm for minimizing task 
completion time considering the dependencies between 
tasks and conflicts of network flow. Zhang et  al. [32] 

mitigate the concurrent request scheduling problems 
based on directed acyclic graphs in an online manner. 
They use a Markov decision process model to decom-
pose requests into subtasks, assign schedules based on 
different states of subtasks, and use reinforcement learn-
ing methods to make decisions for each step. Most exist-
ing studies of application offloading in IoV do not take 
into account the fact that smart vehicle applications also 
consist of multiple subtasks with certain dependencies 
between tasks.

System Model and problem formulation
In this section, we first explain the system model under 
the cloud edge hybrid architecture, including the network 
model, vehicle application model, transmission model, 
and computation model.

Network Model
A hybrid cloud-edge system is considered, as shown in 
Fig.  1, which consists of a cloud, multiple eNodes with 
multiple servers, and some intelligent vehicles with 
applications. The eNodes all have their different loca-
tions and wireless communication coverage, and we 
denote the set of these eNodes in a certain range as 
N = {N1,N2, ...,NK } , the set of the kth eNode servers as 

Fig. 1  System model
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Sk = {Sk ,1, Sk ,2, ..., Sk ,L} . In the system, the intelligent vehi-
cles travel on the road and the set of intelligent vehicles is 
indicated by V = {V1,V2, ...,Vh} . Each intelligent vehicle 
has computational-intensive and latency-sensitive appli-
cations that need to be offloaded to an eNode server or a 
server in the cloud for execution. The set of these appli-
cations is denoted as N = {A1,A2, ...,AI } . An application 
can be structured with j tasks and the set of tasks belong-
ing to the same application Ai is Ai = {Ti,1,Ti,2, ...,Ti,J } . 
In this paper, we consider scenarios where scheduling 
and computation are done on a task-by-task basis. Each 
task can be divided into any eNode which the intelligent 
vehicle can communicate with, and tasks belonging to 
the same application do not have to be assigned to the 
same eNode, e.g. T1,1 can be scheduled to N1 for execu-
tion, while T1,2 can be scheduled to N2 for execution. The 
intelligent vehicle can only schedule tasks to the eNodes 
that are communicable at the current moment. Consider-
ing the mobility of the intelligent vehicle, if the intelligent 
vehicle moves out of the communication range of the 
eNode, then the intelligent vehicle will no longer be able 
to offload tasks to that eNode. Whereas the communica-
tion range of the cloud server is full coverage of the sce-
nario. The notations used in this paper are summarized 
in Fig. 2.

Application Model
We consider that the tasks in the application of intelligent 
vehicles are dependent on each other, so we represent the 
applications as directed acyclic graphs shown in Fig.  3. 
A directed acyclic graph represents a class of intelligent 
vehicle applications. In the same directed acyclic graph, 
the task pointed by the arrow needs to be executed after 
the task at the end of the arrow is executed. For instance, 
T1,2 and T1,3 can be executed only after T1,1 is executed in 
the figure, and T1,8 needs to be executed after both T1,6 
and T1,7 have been executed. The dependencies between 
tasks of the same application cause them to require the 
results of other tasks to be executed before they can be 
executed. There are no dependencies between different 
applications, so there is no restriction on the order of 
execution between their tasks.

Transmission Model
The completion of each application needs to go through 
three stages, which are scheduling the task to the desig-
nated server, executing the task at the designated server, 
and transmitting the task execution result from the 
server back to the intelligent vehicle. The application is 
not completed until the last task execution result is trans-
mitted back to the intelligent vehicle. Since the data of 
task results are usually small and can be neglected, the 

finishing time of the application comprises task data 
transmission time and task computation time.

eNode Transmission
We assume that the wireless communication between 
intelligent vehicles and eNodes is based on non-orthogo-
nal multiple access technology [33, 34], so in this system, 
the bandwidths between different eNodes and intelligent 
vehicles are different and their communication does not 
interfere with each other. The bandwidth between eNode 
Nk and intelligent vehicle Vh is denoted by bh,k , the chan-
nel gain between intelligent vehicle Vh and eNode Nk is 
denoted by gh,k , and the transmission power between 
intelligent vehicle Vh and eNode Nk is denoted by ph,k . 
Therefore, the transmission rate between intelligent vehi-
cle Vh and eNode Nk can be given by

where N0 indicates the Gaussian noise power inside the 
channel and tk ,h the transmission time of input data dk 
from intelligent vehicle Vh and eNode Nk . Consequently, 
the transmission duration tk ,h is

Cloud Transmission
Similarly, when the tasks are transmitted from the intelli-
gent vehicle Vh to the cloud, the corresponding transmis-
sion rate is:

where bh,C indicates the bandwidth between an intelli-
gent vehicle Vh and the cloud, gh,k represents the chan-
nel gain between intelligent vehicle Vh and the cloud, and 
ph,k the transmission power between intelligent vehicle 
Vh and the cloud. The transmission time tk ,C for a task 
with size dk to be transferred from intelligent vehicle Vh 
to the cloud is

Computation Model
Due to limited computing resources, we assume that 
each server on the eNode can only execute one task at 
the same time, and each task can only be executed by one 
server.

(1)Rh,k = bh,k log 1+
gh,kph,k

N0

(2)th,k =
di,j

bk ,hlog
(

1+
gh,kph,k
N0

)

(3)Rh,C = bh,Clog

(

1+
gh,Cph,C

N0

)

(4)th,C =
di,j

bh,Clog
(

1+
gh,Cph,C

N0

)
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Since there are dependencies between tasks and 
eNodes have coverage limits, there are two conditions 
that need to be satisfied for each task to start its exe-
cution. Condition one is that all tasks pointing to it in 
the directed acyclic graph have been completed, and 
condition two is that there are free servers in the com-
municable eNodes of the intelligent vehicle this task is 
located in to execute it.

We use a Boolean variable eim,j to denote whether the 
task Ti,m in the directed acyclic graph points to Ti,j , it can 
be given as

(5)eim,j =

{

1, if task Ti,m points to Ti,j in the DAG
0, otherwise

Fig. 2  Summary of Key Notations
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If eim,j = 1 , the task Ti,j needs to be executed after the 
execution of Ti,m is finished.

We denote the real end time of the task Ti,j by RETi,j . 
When all the tasks pointing to the task Ti,j in the directed 
acyclic graph are completed, the task Ti,j is ready to wait 
for the idle server to execute it, and its readiness time 
RTi,j can be expressed as

where pre(Ti,j) denotes the set of all tasks pointing to 
task Ti,j in the directed acyclic graph.

If the task Ti,j will be scheduled by the algorithm to be 
executed on eNode server Sk ,l , and server Sk ,l is idle when 
the task Ti,j is ready, the task can start execution at the 
readiness time. If there is task Tx,y being executed on the 
server Sk ,l when the task is ready, the task needs to wait 
until the server Sk ,l is idle before execution, so the earliest 
beginning time of the task Ti,j can be expressed as

where RETx,y denotes the real ending time of the task 
executed on the server before task Ti,j.

The computation time CTi,j,k ,l of task Ti,j on eNode 
server Sk ,l is

where di,j indicates the size of input data of task Ti,j and 
ck ,l the computing speed of Sk ,l.

(6)
RTi,j = max

eix,j=1

RETi,x

(7)EBTi,j = max{RTi,j ,RETx,y}

(8)CTi,j,k ,l =
di,j

ck ,l

To be similar, the computation time CTi,j,C of task Ti,j 
deployed on the cloud server is

where C indicates the computing speed of the cloud 
server.

With the knowledge of the application completion time 
constraints and the dependencies between the tasks, we 
can calculate the latest ending time and the latest beginning 
time of the task Ti,j accordingly, and they can be expressed 
as

where suc(Ti,j) represents the set of all tasks pointed to 
by Ti,j in the directed acyclic graph and CTmin

i,x  represents 
the shortest computation time of task Ti,x among all the 
servers that can communicate with the intelligent vehicle.

The earliest ending time EETi,j of task Ti,j can be 
expressed as

We denote whether the application AI is completed in 
time by ITi , and it can be given as

(9)CTi,j,C =
di,j

C

(10)

LETi,j = min
Ti,x∈suc(Ti,j)

(LETi,x −min(CTmin
i,x ,CTi,x,C))

(11)LBTi,j = LETi,j −min(CTmin
i,x ,CTi,x,C)

(12)
EETi,j = ESTi,j +min(th,k + CTi,j , th,C + CTi,j,C)

(13)ITi =

{

1, if Ai is completed in time
0, otherwise

Fig. 3  Application structure
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Then we can obtain the in-time completion rate P for this 
batch of applications as

Problem Formulation
In this section, we define the problem of minimizing the 
completion time under the condition that the completion 
time constraint is satisfied as much as possible.

We use x(Ti,j , Sk ,l) to denote whether task Ti,j is sched-
uled to be executed on eNode server Sk ,l , it can be given 
as

Therefore, the real ending time RETi of application Ai 
scheduled to eNodes can be denoted as

and if scheduled to the cloud can be denoted as

where WTk ,l represents the waiting time to wait for the 
server to be idle if the task is ready but the server still has 
tasks in progress.

We denote the completion time constraint of appli-
cation Ai as CTCi . The application completes in time 
requires the real ending time to be less than the comple-
tion time constraint. Furthermore, the problem can be 
formulated as

where α denotes a factor of completion rate CR. 
dist(Ti,j , Sk ,l) denotes a distance from task Ti,j to server 
Sk ,l , Radk denotes the coverage of eNode Nk , and 
dist(Ti,j , Sk ,l) needs to be less than Radk for the task Ti,j to 
be delivered to server Sk ,l . Countk ,l denotes the number 
of tasks on the server at the moment t, and only one task 
can be executed at the same time. RBTi,j denotes the real 
beginning time of the task Ti,j.

If the mobility of intelligent vehicles is not considered 
and there is only one eNode and all intelligent vehicles 

(14)CR =

∑I
i=1 Ai

I

(15)

x(Ti,j , Sk ,l) =

{

1, if task Ti,j is scheduled to server Sk ,l
0, otherwise

(16)

RETi = RETi,J = RTi,J +

K
∑

k=1

L
∑

l=1

[x(Ti,J , Sk ,l)CTi,j,k ,l + th,k +WTk ,l]

(17)RETi = RETi,J = RTi,J + CTi,j,C + th,C

(P1)min(

∑I
i=1 RETi

αCR
)

s.t. RETi ≤ CTCi ∀Ai ∈ A

dist(Ti,j , Sk ,l) ≤ Radk ∀x(Ti,j , Sk ,l) = 1

Countk ,l ≤ 1 ∀t ∈ T

RETi,m ≤ RBTi,j ∀eim,j = 1

can communicate with this eNode, then this problem 
can be reduced to a job-shop scheduling problem (JSP), 
which is NP-hard and difficult to solve directly [35].

Proposed Algorithm MTS‑MEoC
In this section, to solve the above problem, we pro-
posed a method of multiple applications scheduling to 
eNode or cloud for execution (MTS-MEoC). The algo-
rithm offloads tasks to the appropriate server on a suit-
able communicable eNode or the server in the cloud for 
execution.

First of all, to prioritize the order among tasks, we use 
a flexible latest beginning time FLBTi,j to indicate the 
urgency of task Ti,j , which can be denoted as

where ETmax
i,m  indicates the maximum execution dura-

tion of task Ti,m on all servers of eNode, and the FLBTi,j 
of the last task Ti,j of the application Ai is calculated when 
LETi,m is CTCi in Eq. (18). Once the application reaches 
this time, it means that the risk of application timeout is 
greatly increased and the priority of this task needs to be 
raised so that the task is executed as soon as possible to 
guarantee the in-time completion rate of the application. 
Meanwhile, sorting by FLBT allows applications arriving 
at different moments to be sorted according to the same 
standard and does not affect the priority of the task by 
the difference in the ordered arrival time.

At the beginning of the algorithm, all ready tasks (i.e., 
tasks that have reached RT) are placed in the task queue 
waiting to be scheduled. The first task of the application 
is the moment when the application arrives. The tasks in 
the task queue are first sorted by FLBT, and each task is 
scheduled for execution in this order. We schedule each 
task by selecting the idle server that can get the minimum 
EET. If there is no free server available for communica-
tion at the current moment, it is necessary to wait for the 
server to finish executing its current task. However, if the 
task reaches FLTB, or if the waiting time is about to reach 
FLTB, the task needs to be put into the waiting queue, 
and the tasks in the waiting queue are given priority in 
each algorithmic scheduling. Tasks in the waiting queue 
are prioritized to the fastest server to ensure that the task 
is completed no later than the latest ending time. They 
will choose the server that can get the minimum EET for 
scheduling, and if that server is not available task Ti,j will 
also be queued into that server Sk ,l first to wait for prior-
ity processing, while at the same time when other tasks 
choose a server, the ready time of server Sk ,l needs to be 
added to the execution time of task Ti,j . And if the task 
will exceed the latest ending time no matter which server 
is selected, the task will be scheduled to the cloud for 

(18)FLBTi,j = min
Ti,m∈suc(Ti,j)

(LETi,m − ETmax
i,m )
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execution, freeing up quality eNode resources for other 
applications to ensure the overall QoS. The details of the 
algorithm are shown in Algorithm 1.

Algorithm 1 MTS-MEoC

Experiment
In this section, we conduct a series of studies on the 
average application completion time, average applica-
tion waiting time, in-time application completion rate, 
and utilization of servers based on the cloud-edge hybrid 
architecture.

Experiment settings
We conduct the experiments based on the public and 
widely-used EUA dataset [36]. It contains the locations 
of the 125 edge servers (base stations) in the Melbourne 
central business district area in Australia. We use the 
base station information from the EUA as the infor-
mation of our eNodes with a communication range of 
400-800 meters and a certain number of servers in each 
eNode. The computation speed of each eNode server is 
1 ×108 – 3 ×108 kB/s and that of the cloud is 1 ×109 kB/s.

At the start time of the experiment, there will be a cer-
tain number of intelligent vehicles traveling in a straight 
line according to their respective speed and direction, 
and their speed sizes range from 36 km/h to 72 km/h. 
There will be applications on the intelligent vehicles that 
need to be unloaded, and the task size of the applica-
tions is between 2 ×106–5×106 kB. The completion time 
constraint CTCi of the application Ai is 0.5 – 0.7s. The 
dependencies of tasks in different applications are not the 
same and are classified into six cases illustrated in Fig. 3.

The intelligent vehicles communicate with the eNo-
des and cloud through wireless. The channel bandwidth 
between intelligent vehicle Vh and eNode Nk bh,k is 500–
800 kHz, and that between intelligent vehicle Vh and 
cloud bh,C is 50 kHz. The power gain gh,k is 6.5×10−4 at 
a reference distance of one meter and the transmission 
power ph,k is 0.1 W. The noise power of the system N0 is 
10−10 W.

We consider the following algorithms as the peers:
1)Random Selection Algorithm (RSA): In this algo-

rithm, every task will be scheduled to a random eNode 
and a random server of this eNode.

2)Greedy Algorithm (GA): The greedy algorithm 
schedules every task to the eNode with the shortest 
transmission time, and then chooses the idle server with 
the fastest computation speed.

3)Multiple Applications Multiple Tasks Scheduling 
(MAMTS) [37]: In this algorithm, the tasks in the same 
application will be scheduled to the eNode with the 
shortest overall execution time, and then the tasks in this 
application will select the server according to a priority.

In our experiments, we compare the in-time comple-
tion rate, average completion time, average waiting time, 
and server utilization of MTS-MEoC with other bench-
mark algorithms for different load cases.

Result and Comparison
Our experiments used an environment with five servers 
at each of the five eNodes. A variety of different numbers 
of intelligent vehicles were tested, and each vehicle had 
an application required to offload for execution.

As shown in Fig.  4, different kinds of applications are 
represented by different shapes, such as triangles, pro-
totypes, and squares. The applications scheduled to the 
same eNode are represented by the same color. We can 
see that the RSA algorithm schedules some applications 
that are very far from the eNode to that eNode, and the 
picture has more cross lines of different colors. While 
GA prefers to select applications closer to the eNode 
for scheduling. MAMTS assigns more balanced applica-
tions to each eNode. MTS-MEoC has multiple color lines 
attached to the same Application because it can assign 
different tasks in the directed acyclic graph of an applica-
tion to different eNodes.

Comparison of average completion time
Results: Figure 5 illustrates the average completion time 
of all applications for our proposed MTS-MEoC and the 
other three methods for different numbers of applica-
tions. In the comparison, our proposed method achieves 
the lowest average completion time (on average, 24.4% 
lower than MAMTS; 37.0% lower than GA and 63.1% 
lower than RSA ). With a small number of applications, 
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all three algorithms, except the RSA, possess a certain 
degree of stability, but as the amount of applications 
increases and the servers all enter into high-load usage, 
the performance of the MAMTS and GA algorithms 
shows some volatility, while MTS-MEoC still guarantees 
a low completion time.

Analysis: MTS-MEoC has the lowest average comple-
tion time mainly for two reasons: 1) It takes into account 
the hybrid cloud-edge architecture, so it is more flex-
ible for task scheduling and can avoid some key tasks 
waiting for idle servers as much as possible; 2. It takes 
into account the load of eNodes and schedules tasks to 

Fig. 4  How applications are scheduled with different algorithms

Fig. 5  The average completion time
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eNodes with lower load to execute, making full use of 
server resources.

Comparison of in‑time completion rate
Results: Figure 6 shows the application’s In-time comple-
tion rate, which corresponds to the percentage of appli-
cations that are finished within the specified completion 
time constraints. MTS-MEoC achieved the highest task 
completion rate, (on average 40.3% higher than MAMTS, 
41.9% higher than GA, and 143% higher than RSA). 
When the load is low, MTS-MEoC and MAMTS can 
basically complete all applications in time. As the server 
load rises, both have some applications that cannot be 
completed in time, but MTS-MEoC still has the high-
est completion rate, which means that MTS-MEoC can 
provide high-quality services to more intelligent vehicle 
users.
Analysis: GA and RSA do not prioritize tasks, so some 

urgent tasks are not completed, resulting in a lower in-
time completion rate. GA algorithm mainly pursues the 
fastest execution of tasks, so the performance is better 
when the load is high compared to RSA and MAMTS. 
Our proposed algorithm MTS-MEoC and MAMTS both 
prioritize the tasks, so the more urgent tasks are pro-
cessed first, which makes the task completion rate higher 
when the server load is low. But MAMTS has too many 
tasks performed on part of the eNodes after high server 
load without a load balancing strategy, so the completion 
rate becomes low. MTS-MEoC, however, offloads tasks 
to eNodes with a lower load to execute them as appropri-
ate and also to the cloud, so it is more flexible and has a 
higher completion rate.

Comparison of average waiting time
Results: Figure 7 demonstrates the average waiting time 
before the application completes execution, the time 
when the task is ready after all the tasks pointing to it in 
the directed acyclic graph have been completed but there 
are no idle servers available for scheduling. In the com-
parison, MTS-MEoC obtains the lowest average comple-
tion time (on average 31.2% lower than MAMTS, 71.9% 
lower than RSA, and 37.4% lower than GA), which means 
that MTS-MEoC can provide a better quality of service 
for intelligent vehicle applications.
Analysis: The lower average waiting time of MTS-

MEoC is mainly due to the fact that tasks are scheduled 
to be executed on eNodes with low loads so that the wait-
ing time can be significantly reduced when there are too 
many tasks arriving at the same time. Also, more reason-
able matching of tasks to servers can reduce the applica-
tion waiting time to some extent.

Comparison of servers utilization
Results: Figure  8 demonstrates the utilization of all 
servers throughout the process of providing computing 
services to intelligent vehicles. The utilization of MTS-
MEoC is 13.3% lower than MAMTS, but 47.5% higher 
than GA and 170.3% higher than RSA. The utilization of 
the four algorithms is roughly at a stable level regardless 
of the load.
Analysis: Idle servers result in lower utilization, so 

utilization roughly reflects the level of an algorithm for 
server utilization. But it is not necessarily good if the 
utilization is high, because the utilization is also higher 
if the server with less computing power is always used. 
So although our algorithm has a lower utilization than 

Fig. 6  The in-time completion rate
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MAMTS, the average completion time and waiting time 
of the previous algorithm can be combined to show that 
our algorithm uses the server more rationally and pro-
vides better quality of service with lower utilization. With 
the same quality of service, lower utilization also means 
cost savings.

Conclusions and future work
In this paper, we consider the application offloading prob-
lem for intelligent vehicles based on a hybrid cloud-edge 
environment. We propose the algorithm MTS-MEoC 
considering the dependencies of tasks in the application. 
MTS-MEoC is experimentally proven to outperform its 

peers in terms of average completion time, in-time com-
pletion rate, and average waiting time. MTS-MEoC is 
able to provide a better quality of service to intelligent 
vehicle users.

In future work, we will consider the following aspects: 
1) The application offloading problem cannot be reduced 
to a static optimization problem in reality, and we 
should consider the dynamic arrival of the application 
over time in our subsequent research; 2) We will use 
some data mining methods to implement load sensing 
and movement prediction, which will enable better task 
scheduling.

Fig. 7  The average waiting time of applications

Fig. 8  The servers utilization
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