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Abstract 

3D object recognition has great research and application value in the fields of automatic drive, virtual reality, and 
commercial manufacturing. Although various deep models have been exploited and achieved remarkable results for 
3D object recognition, their computational cost is too high for most mobile applications. This paper combines edge 
computing and 3D object recognition into a powerful and efficient framework. It consists of a cloud-based rendering 
stage and a terminal-based recognition stage. In the first stage, inspired by the cloud-based rendering technique, we 
upload the 3D object data from the mobile device to the edge cloud server for multi-view rendering. The rendering 
stage utilizes the powerful computing resource in the edge cloud server to generate multiple view images of the 
given 3D object from different views by parallel high-quality rendering. During the terminal-based recognition stage, 
we integrate a lightweight CNN architecture and a neural network quantization technique into a 3D object recog-
nition model based on the multiple images rendered in the edge cloud server, which can be executed fast in the 
mobile device. To reduce the cost of network training, we propose a novel semi-supervised 3D deep learning method 
with fewer labeled samples. Experiments demonstrate that our method achieves competitive performance compared 
to the state-of-the-art methods with low latency running in the mobile edge environment.
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Introduction
Recently, with the rapid development of 3D scanning 
technology, many mobile devices are equipped with 
portable 3D sensors to realize 3D object reconstruction. 
These mobile devices make 3D sensing usable anytime 
and anywhere at a low cost. And the development of 3D 
sensing ability leads to high-quality 3D object data with 
more points and geometric details. With the increase of 
3D data, it is crucial to realize 3D object recognition for 
mobile applications, such as automatic drive  [1], virtual 
reality, commercial manufacture, smart city  [2, 3], and 
social network.

Since the size of the 3D data is increasingly large, more 
computational burden is required to render and analyze 

the 3D object. However, in practice, the computing power 
and energy supply of mobile devices [4, 5] are usually too 
limited to execute such a complex task efficiently. Thus, 
to realize 3D object recognition for mobile applications, 
a simple idea is to offload the complex 3D data process 
tasks from the mobile device to the remote cloud with 
powerful computing resources  [6, 7], and then transmit 
the recognition results back to the mobile device. How-
ever, the amount of 3D object data being transmitted will 
exceed the capacity of the network. To meet the latency 
constraint, mobile edge computing is a vital solution by 
offloading the computation task to the mobile edge serv-
ers. Since the mobile edge servers are physically located 
close to the mobile devices, the timing of the data trans-
mission can be saved.

Nowadays, deep learning technology  [8] has achieved 
great advances in 3D object recognition  [9–11]. Among 
the existing methods, the view-based method  [12, 13] 
achieves the best performance since it does not rely on 
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complex 3D features. This method first renders multi-
ple 2D images of the 3D object from different views and 
then uses a 2D CNN network to extract the feature from 
the 2D images for information fusion. Though the view-
based methods have shown impressive performances 
in 3D object recognition, the success of these advances 
relies on powerful computing resources, such as multi-
core CPU and strong graphics processing unit (GPU). 
Due to the limited computing power and cache space 
of the mobile device  [14], both high-quality 3D render-
ing and large neural network inference are very expensive 
tasks, which will lead to high latency. Thus, existing view-
based 3D object recognition methods are not suitable to 
be deployed on mobile device.

To make a good tradeoff between the limited comput-
ing resources of the mobile device and the performance 
of view-based 3D object recognition, we perform a sys-
tematic design study to achieve high-performance 3D 
object recognition for mobile applications based on an 
edge computing framework. Instead of offloading the 
whole view-based recognition process in the edge cloud 
server, we choose to split the whole view-based 3D object 
recognition process into two subtasks and then distribute 
these two subtasks on different computing devices in the 
mobile edge environment. The two separable subtasks are 
multi-view rendering and recognition model execution, 
and they are divided based on the following reasons. The 
first one is that the quality of the rendered images has a 
significant compact on the accuracy of the recognition 
model. However, it is impossible to realize photorealis-
tic rendering by mobile devices with limited graphic dis-
play capability. The second one is that the recent mobile 
platform provides some artificial intelligent processor 
runtime mechanisms to accelerate the execution of deep 
neural networks. Accordingly, to optimize the computa-
tion offloading of our edge computing framework, we 
distribute the two subtasks on the edge cloud server and 
the mobile terminal. The edge cloud server is responsi-
ble for multi-view rendering, while the mobile termi-
nal executes the deep recognition model. Therefore, the 
proposed edge computing framework not only achieves 
low latency and high reliability by maximizing the use of 
computing power in the mobile cloud environment but 
also ensures the quality of the rendered image by utiliz-
ing the dedicated rendering hardware in the edge cloud 
server, hence resulting in higher recognition accuracy.

According to the offloading decision, our edge comput-
ing framework first uploads the captured 3D data from 
the mobile terminal to the edge cloud server. Then, the 
edge cloud server employs the dedicated ray-tracing 
hardware to realize fast photorealistic rendering of a 
3D object. By designing parallel processing in the edge 
cloud server, multiple photorealistic images are rendered 

simultaneously to reduce the latency of the whole edge 
computing framework. Finally, the generated images are 
sent back from the edge cloud server to the mobile ter-
minal, and a lightweight CNN model is used to realize 
view-based 3D object recognition on the mobile device. 
The proposed edge computing framework only offloads 
the rendering task to the edge cloud server. Such an edge 
computing structure is very useful when multiple users 
send 3D object recognition requests at the same edge 
cloud server with finite resources. If we offload all the 
tasks on the edge cloud server, it may exceed the cloud 
capacity.

To support such an edge computing framework, one 
core technical challenge is to design a lightweight CNN 
architecture with high recognition accuracy, which can 
be executed effectively and efficiently on a mobile device. 
Since most existing view-based 3D object recognition 
methods rely on very complex network, they are time-
consuming for resource-constrained mobile devices. 
Recently, a few works  [15] propose a lightweight volu-
metric CNN architecture with low resolution, but the 
recognition accuracy is too limited to satisfy the require-
ment for our edge computing framework. Another chal-
lenge is to reduce the cost of implementing the mobile 
applications, as the current 3D object recognition 
methods require a large amount of labeled data, such 
as ModelNet  [16], ShapeNet  [17], PartNet  [18, 19], and 
3DFUTURE  [20]. Though some methods are proposed 
to focus on learning 3D object deep classifiers with fewer 
data resources [21, 22], the low recognition accuracy and 
the time-consuming computing of these methods are 
unable to meet the quality of the cloud services.

To overcome these two problems, we propose several 
strategies to obtain an accurate 3D object recognition 
model with the limited computing and data resources in 
the mobile edge environment. To reduce the latency of 
executing the recognition model in the mobile device, 
we design a lightweight CNN architecture by combining 
the 3D multi-view learning framework [12, 23] and Shuf-
fleNet  [24]. Such a method first extracts the feature of 
each rendered image with an efficient CNN architecture 
ShuffleNet pre-trained on massive image databases  [25] 
and then fine-tunes on the 3D data by aggregating multi-
view features. To improve the efficiency in the mobile 
edge environment, we employ neural network quantiza-
tion technology to compress the model without accuracy 
degradation. To reduce the cost of implementing the 
whole edge computing framework, we propose a semi-
supervised 3D feature learning algorithm based on Fix-
Match  [26] to utilize the massive amount of unlabeled 
shapes and a few labeled samples for model training. The 
unlabeled objects can be easily captured by the mobile 
devices connected to the cloud center. To realize the 3D 
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feature learning, we first use the FixMatch algorithm to 
learn a 2D image network for every rendered image of 
the 3D object derived from the cloud-based rendering 
stage. A 3D multi-view learning algorithm is then used 
to learn a 3D object recognition model by integrating the 
3D view consistency constraints between different ren-
dered images of the same 3D object. The learned model 
can be finally deployed on mobile devices with a central 
processing unit (CPU) or digital signal processor (DSP).

The contributions of this study are summarized as 
follows: 1) We propose an efficient 3D object recogni-
tion method based on the edge computing paradigm 
for mobile applications, which consists of a cloud-based 
rendering stage and a terminal-based recognition stage 
to maximize the use of the computing resources in the 
mobile edge environment. 2) We propose a lightweight 
3D CNN architecture by integrating neural network 
quantization with high recognition accuracy, which 
reduces the latency of the edge computing framework. 3) 
We introduce a semi-supervised learning algorithm for 
view-based 3D object recognition, which saves the cost of 
implementing the edge computing framework for mobile 
applications.

Related work
This work relates to several research areas. In this sec-
tion, we briefly review the existing work on 3D object 
recognition and edge computing.

3D object recognition
According to the type of supervision, 3D object recog-
nition methods can be divided into three classes: unsu-
pervised, supervised, and semi-supervised methods. 
Unsupervised learning uses unlabelled data to train the 
feature representation. These methods utilize the 3D 
raw data to learn the high-level features directly by mini-
mizing reconstruction loss  [27–30] or self-supervised 
learning [23, 31, 32]. For example, Afham et al.  [32] use 
a cross-modal contrastive learning approach to align the 
prediction between the point clouds and the rendered 2D 
image. However, some labeled objects are still required 
to obtain a 3D object classifier. Moreover, the recogni-
tion accuracy of these methods is lower than that of the 
supervised ones.

Recently, the supervised method becomes the main-
stream technology for 3D object recognition, which 
learns the feature representation from different 3D 
raw representations, such as points clouds  [33–37] and 
views [12, 13]. Point-TnT [36] is a two-stage point feature 
learning approach by fusing local and global attention 
modules, while Point-Stack  [37] uses multi-resolution 
feature learning and learnable pooling to extract high-
semantic point features. Among these methods, the 

view-based representation usually has the best perfor-
mance. However, the supervised methods require a large 
data resource.

Semi-supervised learning utilizes both labeled and 
unlabeled data to train a recognition model by pseudo-
labeling or consistency constraints. Song et  al.  [38] use 
the co-training algorithm to realize the end-to-end train-
ing by pseudo-labeling the unlabeled samples. Chen 
et al. [39] utilize the consistency constraints on the point 
cloud to realize a semi-supervised learning framework. 
Shi et  al.  [40] utilize bi-level optimization to solve the 
semi-supervised learning problem for 3D object classi-
fication, which combines a weight predictor network to 
define the weights of the samples. Different from exist-
ing semi-supervised learning methods, our method com-
bines the consistency constraints and pseudo-labeling 
into a whole framework, which can generate a more 
accurate recognition rate.

Due to the complexity of 3D data, existing deep 3D 
object recognition methods usually use cumbersome 
network architectures to extract effective 3D features. 
To solve this problem, some real-time 3D object recog-
nition methods are proposed. LightNet  [15] is a light-
weight volumetric 3D CNN for 3D object recognition, 
which has fewer training parameters. PVENet  [41] is 
an architecture with small voxel grid sizes for real-time 
point cloud classification. All of these methods learn the 
feature representation from voxels with a small resolu-
tion ratio to improve efficiency. However, the geometric 
details are lost due to the small resolution, and the nat-
ural inefficiency of 3D convolution operation prevents 
the improvement of the inference speed. In contrast, our 
method uses the multi-view 3D representation and each 
rendered image has sufficient resolution. Through light-
weight CNN and the neural network quantization tech-
nique, we achieve a high recognition rate and inference 
efficiency simultaneously.

Edge computing
There is a close connection between cloud computing 
and big data analysis [42, 43]. Cloud computing naturally 
provides distributed computing, parallel computing, and 
large storage capacity, which is very suitable for a big data 
model. Besides, cloud computing is helpful for system 
updating and management, which ensures the stability 
of mobile applications. However, the delay of communi-
cation with mobile cloud servers causes time-sensitive 
mobile applications unable to meet the requirements. 
Recently, mobile edge computing has become a promis-
ing paradigm to meet the computing resource require-
ments of mobile devices  [44]. Edge computing has been 
widely used in many mobile application  [45] with high 
load and high concurrencies, such as smart city  [2, 3], 
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smart building  [46, 47], intelligent manufacturing  [48], 
and geographical POI recommendation  [49]. By shar-
ing configurable computing resources in the mobile edge 
environment, edge computing can meet the computation 
demand of various mobile applications and improve user 
experience.

To design an effective edge computing system, the 
communication latency and energy cost are the most 
important optimization objectives to ensure the qual-
ity of services [4, 50]. Thus, many works are propose for 
task offloading optimization. For example, deep rein-
forcement learning methods [46, 51, 52] are used for task 
offloading and resource management to balance the pro-
cessing delay and the power consumption. Bi et  al.  [53] 
propose an optimal offloading scheme to maximize the 
system utility based on throughput and fairness. Our 
method are inspired with these works, and we design an 
edge computing framework, which offloads the cumber-
some rendering task to the edge cloud server.

A recent trend in academia and industry is to combine 
artificial intelligent and edge computing into the mobile 
application. Actually, artificial intelligent and edge com-
puting can benefit from each other to improve the effi-
ciency of the system. Artificial intelligent can be used 
to optimize the edge service to reduce the consumption 
of time and energy in data computations and transmis-
sions  [1]. Recently, deep learning becomes the main-
streaming method for various applications such as secure 
healthcare  [54], object detection  [55] and semantic seg-
mentation  [56]. Due to its high computational com-
plexity, deep learning is usually not suitable for mobile 
applications. And edge computing can provide power-
ful computing resources to support the efficient training 
and inference of the artificial intelligent model, which 

can produce some novel learning paradigms  [49]. Our 
method conforms such a development trend, and we use 
edge computing to process and analysis the large-scale 
3D data. By integrating the computing resources in the 
edge cloud servers, we alleviate the lack of computing 
power in the 3D object recognition mobile applications.

Method
In this section, we introduce the details of our 3D object 
recognition method.

Overview
In this paper, we study the efficient 3D object recogni-
tion method in the mobile edge environment. The overall 
idea is that we combine edge computing and 3D object 
analysis to improve the user experience of mobile appli-
cations. By utilizing the computing resources of the edge 
cloud servers, we can realize high-through complex 3D 
object analysis tasks with low latency. The process of our 
method is shown in Fig. 1.

Our edge computing framework consists of many 
mobile devices. And each mobile device connects to a 
nearby edge cloud server with high-speed network con-
nectivity based on the location information. We assume 
that the mobile device is equipped with a portable  3D 
scanning sensor, which can realize 3D reconstruction 
of the real object in the physical world. During the 3D 
reconstruction process, the 3D data is compressed by 
the distance-based compression method on the mobile 
device  [57]. When users need to obtain the category of 
the captured 3D object by the mobile device, they can 
send the request to our edge computing framework. The 
edge cloud server and the mobile terminal can collabora-
tively accomplish the recognition task to respond to user 
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Fig. 1  The process of our method
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requests. The whole process consists of the following four 
steps.

First, the captured 3D data is uploaded from the mobile 
device to the edge cloud server. To improve the speed of 
the data transmission, we discard the normal and color 
information of the captured 3D data, while transmitting 
only the compressed geometric data. Since the 3D data 
has been compressed during the 3D reconstruction pro-
cess, the timing of data transmission is very short.

Second, the edge cloud server will arrange the recog-
nition tasks for multiple requests. For each request, the 
edge cloud server decompresses the 3D data after receiv-
ing the data and then starts to render 2D images. Our 
method follows existing view-based methods  [12] and 
renders 12 images according to a fixed viewpoints setting 
for 3D object recognition. Since the rendering processes 
of the 12 images are totally unrelated, the edge cloud 
server performs parallel off-screen rendering by the real-
time ray tracing algorithm [58].

Third, the edge cloud server sends the 12 rendered 
images back to the mobile device via the mobile network. 
As the resolution of the image is only 224 , the timing of 
data transmission can be negligible.

Fourth, the mobile device takes the 12 rendered images 
from the edge cloud server as the input of our specific 
lightweight 3D CNN network, and executes the recogni-
tion model to output the prediction result to users. Dur-
ing this step, 3D CNN network can be executed by three 
modes: CPU, GPU and DSP. The users can choose one of 
the three modes according to the mobile terminal used 
by compromising the performance and speed.

Among the four steps, the first and third steps are only 
responsible for data communication between the mobile 
device and the edge cloud server. In the following section, 
we detail the second and fourth steps, which are cloud-
based rendering and terminal-based recognition.

Cloud‑based rendering
The goal of cloud-based rendering is to render multiple 
2D photorealistic images by the edge cloud server, which 
are the input of the recognition model. As shown by pre-
vious research  [59], the recognition accuracy increases 
with the improvement of the quality of the rendered 
images. However, the 3D graphic ability of the mobile 
device is rather limited, and it requires dedicated hard-
ware to generate most optical effects. Thus, the only 
choice is to perform the rendering task on the edge cloud 
server.

To realize the cloud-based rendering, we set up the 
viewpoint set in advance and save them in the edge cloud 
server. To ensure the features captured from the different 
views can be complementary, we put 12 cameras at differ-
ent positions around the 3D object, which is the same as 

the pioneering work MVCNN [12]. To put the 3D object 
into the rendering scene, we use the upright orientation 
method [60] to adjust the pose of the 3D object and then 
put the center point at the origin of the 3D coordinate 
system. The 12 cameras are elevated 30 degrees from the 
ground plane, pointing toward the centroid of the 3D 
object, every 30 degrees around the object.

To make the cloud-based rendering result conspicuous, 
we add some lights into the 3D scene, which shows some 
optical effects, such as shadow, reflection, and refraction. 
To handle the illumination, we generate the rendering 
result by utilizing a real-time ray tracing algorithm [58], 
instead of the rasterization technology. The ray-tracing 
algorithm simulates the basic principle of vision, which 
is the process of shooting rays from the eye toward the 
pixels of the rendered image. Thus, the algorithm first 
checks the intersection between the ray and every trian-
gle face of the 3D object and then determines the shad-
ing of the corresponding pixel in the rendered image. In 
practice, the decompressed 3D object usually has more 
than 100K triangles, thus the complexity is too over-
whelming due to the inefficiency in handling irregular ray 
tracing.

As a result, the only viable solution is to resort to pow-
erful dedicated ray-tracing hardware, such as NVIDIA 
graphics cards. To deal with high concurrency user 
requests, all the edge cloud serves are equipped with 
multiple dedicated graphics cards for a high-performance 
ray tracing process. Due to the separable feature of multi-
view rendering, the edge cloud server can parallel run the 
off-screen rendering subtasks. This reduces the latency of 
mobile applications significantly.

One challenge of rendering implementation on the 
edge cloud server is that the edge cloud servers usually 
have heterogeneous graphics processing units and oper-
ating systems. To solve it, instead of using some specific 
shading languages, we interact with the graphics ren-
derer by OpenGL program as a shared library, which pro-
vides unified APIs for 3D graphics rendering. The shared 
library is then deployed on all the edge cloud servers to 
realize the ray-tracing rendering process with a small 
amount of reprogramming. Finally, the 12 2D rendered 
images of size 224 × 224 are generated in the edge cloud 
server and sent back to the mobile device.

Terminal‑based recognition
Previous multi-view 3D object recognition methods use 
a much more complex network to maximize the recogni-
tion performance. However, these networks are too large 
to be deployed on mobile devices. To improve the effi-
ciency of our model in the mobile terminal, we design a 
lightweight multi-view CNN architecture based on Shuf-
fleNet  [24], which has fewer parameters than the other 
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CNN architecture, such as VGG11 [61] and ResNet [62]. 
It is worth noting that there are other lightweight net-
works for 2D images, such as SqueezeNet  [63], Xcep-
tion [64], and MobileNet [65]. SqueezeNet uses a deeper 
network to reduce the number of parameters, which 
requires more inference time. Xception proposes depth-
wise separable convolution to improve the performance, 
but the amount of the parameters not reduces impres-
sively. MobileNet constructs a lightweight network by 
combining depthwise convolution and pointwise con-
volution, which hinders the information transmission. 
Thus, we choose ShuffleNet for its high information 
interchange between different channels. The input of our 
CNN network is the 12 rendered images generated on the 
edge cloud server. The CNN network outputs the cate-
gory of the 3D object as the response to the user request.

Network Architecture. Given each rendered image, 
we first use the ShuffleNet network as the basic CNN 
architecture to compute the image descriptors from each 
rendered image. The architecture of the ShuffleNet is 
shown in Fig. 2. The core of the ShuffleNet is the channel 
shuffle operation which helps the information in differ-
ent groups flow to other groups randomly. Based on the 
channel shuffle operation, we define two types of units 
S1 and S2, as shown in Fig.  3. Unit S1 is the basic unit 
for feature encoding based on the channel split opera-
tion, which splits the input of feature channels into two 
branches. Meanwhile, unit S2 is used for spatial down 
sampling by removing the channel split operator. The 
final ShuffleNet architecture is composed of several 

layers of units S1 and units S2, which is highly efficient 
for mobile device.

To aggregate the image descriptors of every rendered 
image, our multi-view CNN model utilizes a view pool-
ing layer for the fusion of multiple views of the 3D objects 
in no specific order. The view-pooling layer only consid-
ers the view with the maximal activation, thus we sim-
ply use a max pooling operation for information fusion. 
Finally, a SoftMax layer is added as the classification 
layer, which generates the category prediction results. 
The whole architecture of our multi-view CNN model is 
shown in Fig. 4. Our experiment shows that such a light-
weight CNN architecture can be executed fast by mobile 
devices.

Model Training. To save the cost of implementing 
the edge computing framework, we design a two-stage 
training algorithm by semi-supervised learning algo-
rithm FixMatch [26]. This algorithm reduces the amount 
of labeled data, which is beneficial for the upgrading of 
the edge computing framework. There are lots of semi-
supervised methods, which can be divided into two cat-
egories: pseudo-labeling and consistency regularization. 
The pseudo-labeling methods first learn a deep model 
by the labeled examples and then use the learned model 
to predict the other examples, which are used to incre-
mentally model training. In contrast, the consistency 
regularization methods utilize the prediction invariance 
after the random transformation of training data as the 
regularization term. To integrate the advantages of these 
two methods, we choose to use FixMatch for model 

Fig. 2  The architecture of the ShuffleNet

Fig. 3  The architecture of the unit S1 and S2 in the ShuffleNet
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training, which generates the labels of unlabeled samples 
by combining consistency regularization and pseudo-
labeling. The input of our model training algorithm is a 
set of 3D objects D = L

⋃

U , where the objects in L are 
labeled and the ones in U are unlabeled. For each labeled 
object si ∈ L , we attach a category tag ci as its label, and 
all the category tags form the label set C. Every object is 
expressed as 12 images {mj} , and its category tag is the 
same as the 3D object.

The existing multi-view methods usually use the net-
work pre-trained on the ImageNet directly to initialize 
the weights of the whole network. Since the training sam-
ples are all rendered images, the initial weights do not 
reflect the feature of these samples due to the domain dis-
crepancy. Thus, we finetune the network by our rendered 
images before the multi-view learning stage. Accordingly, 
there are two stages in our model training step: SVCNN 
and MVCNN. The goal of the SVCNN stage is to train 
the image representation network which is a part of our 
whole model, while the MVCNN stage is used to train 
our multi-view CNN model for 3D object recognition.

During the SVCNN stage, we use the FixMatch algo-
rithm to train the image network ShuffleNet S, as shown 
in Fig. 5. The input of the image network is one rendered 
image, and the output is the category prediction of the 
image. To utilize the unlabeled rendered images, we 
define several image augmentation operations and gener-
ate their artificial labels by consistent regularization and 
pseudo-labeling generation. There are two types of image 
augmentation operations: weak augmentation and strong 
augmentation. We indicate α(·) and β(·) as the weak aug-
mentation and strong augmentation, respectively. The 

weak augmentation operation takes the standard flip 
or shift transformation strategy. The images are flipped 
horizontally with a probability of 50% and translated by 
up to 12.5%. By contrast, the strong augmentation opera-
tion produces a more distortion effect. We first perform 
no more than 4 augmentation operations from RandAug-
ment  [66] and CTAugment  [67], and then randomly 
select a small square from the augmented image. During 
the strong augmentation process, the gray values of some 
pixels are changed to a certain value.

For the labeled rendered image mL with the label c, we 
use the standard cross-entropy loss as the supervised loss 
Ls on weakly augmented labeled images:

For the unlabeled rendered image mU , we perform the 
weak augmentation operation and predict the category of 
the weakly augmented image by the network S. If the net-
work S can give a confident result, i.e. max S(α(mU )) � τ , 
the label c′ = arg max S(α(mU )) is taken as the pseudo-
label of the image α(mU ) . Accordingly, we use the cross-
entropy loss as the unsupervised loss Lu on the strong 
augmented image

The final loss function of the SVCNN stage is defined by 
adding the supervised loss of all the labeled images and 
the unsupervised loss of all the unlabeled images:

(1)Ls(mL) = H(c, S(α(mL)))

(2)Lu(mU ) = H(c′, S(β(mU )))

(3)L1 =
1

B

B

b=1

Ls(mLb)+
1

µB

µB

b=1

Lu(mUb)

Fig. 4  The architecture of our multi-view CNN model
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where B is the number of the labeled images, µ is the 
ratio between the number of the labeled and unlabeled 
images, and the number of all the images is (1+ µ)B.

During the MVCNN stage, we combine the FixMatch 
and view consistency to train the whole MVCNN net-
work M. The input of the network is 12 rendered images 
{mj} which belong to the same 3D object, and the out-
put of the network is the category prediction of the 3D 
object. The learned network S in the SVCNN stage is 
part of the MVCNN network, as shown in Fig. 4. The 12 
Shufflenet networks share the same parameters and are 
used to extract the image descriptors. When combining 
the Shufflenet networks into the MVCNN network, we 
remove the SoftMax layer and perform the view pooling 
layer on the penultimate layer of the shufflenet network. 
As done in the SVCNN stage, we also perform the same 
image augmentation operations on the rendered images 
to define the loss function on the unlabeled 3D objects. 
For the labeled 3D object expressed by {mL

j } with the 
label c, we perform the weakly augmentation operation 
and use the standard cross-entropy loss as the supervised 
loss lMs

(4)LMs ({mL
j }) = H(c,M(α(mL

1), ...,α(m
L
12)))

For the unlabeled 3D object expressed by {mU
j }

 , we per-
form the weak augmentation operation on all the ren-
dered images and predict the category of the 3D object 
by the network M. If the network M can give a con-
fident result, i.e. maxM(α(mU

1 ), ...,α(m
U
12)) � τ , the 

label c′ = arg maxM(α(mU
1 ), ...,α(m

U
12)) is taken as the 

pseudo-label of the 3D object {mU
j } . Accordingly, we use 

the cross-entropy loss as the unsupervised loss lMu  on the 
unlabeled 3D object

Since the rendered images {mU
j
} belong to one 3D object, 

they should have the same category label. According to 
the observation, we add a view consistency term to boost 
performance. For a set of rendered images {mU

j } , we per-
form weak augmentation and strong augmentation, and 
then minimize the divergence between the prediction of 
these augmented images. To realize such minimization, 
we compute the standard deviations of the prediction of 
the weakly augmented and strongly augmented images 
by the shufflenet S respectively

(5)LMu ({mU
j }) = H(c′,M(β(mU

1 ), ...,β(m
U
12)))

(6)
Lαstd = Std(S(α(mU

1 )), ..., S(α(m
U
12)))

L
β

std = Std(S(β(mU
1 )), ..., S(β(m

U
12)))

Fig. 5  The process of SVCNN stage
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Based on these two standard deviations, we can measure 
the consistency degree between the predictions of differ-
ent views of the 3D object. Thus, we define the view con-
sistency term as follows:

Accordingly, the final loss function of the MVCNN stage 
is defined as:

Given the loss function, we optimize the network through 
back-propagation with stochastic gradient descent  [68] 
with decreasing learning rates.

Model Deployment. The learned deep model is 
finally deployed in the mobile terminal. After the ter-
minal receives the 12 images rendered in the edge 
cloud server, it uses the deep model for 3D object 
recognition. We provide three running modes on the 
mobile terminal: CPU, GPU, and DSP. The speed of the 
CPU mode is the lowest, while the speed of the DSP 
mode is the fastest. For the recognition accuracy, the 
CPU and GPU modes are the same, while the DSP 
mode is the lowest. The reason is that the DSP mode 
only supports the quantized model, which has a quan-
tization error. The user can choose one of the three 
modes according to mobile device, and whether to 
quantize the deep model.

The goal of the neural network quantization tech-
nology  [69] is to decrease the computational time and 
energy consumption of the mobile device. After quan-
tization, the weights and parameters are stored in lower 
bit precision and the computational cost for matrix 
multiplication reduces quadratically. By network quan-
tization, the latency of our edge computing framework 
can be reduced impressively. However, quantization 
without any fine-tuning might degrade the recognition 
accuracy. To avoid this problem, we use the quantiza-
tion-aware training method [70] to mitigate the quanti-
zation error.

To perform the quantization-aware training, we first 
introduce the quantization simulation block into every 
layer of our model. The quantization simulation block 
will turn the real-valued vector v into the integer vector 
vint by the rounding and clamping operation. Specially, 
given a real-valued vector v, we first map it to the integer 
grid {0, 1, ..., 28 − 1}:

where ⌊·⌉ is the round-to-nearest operator, s is the factor, 
z is the zero point. And, s and z are optimized during the 
quantization-aware training. The clamping is defined as:

(7)Lv = Lαstd + L
β

std

(8)L2 = LMs + LMu + Lv

(9)vint = clamp(
⌊v

s

⌉

+ z; 0, 28 − 1)

To fine-tune such a network, we need to back-propagate 
through the quantization simulation block. However, the 
gradient of the round-to-nearest operation is not well 
defined. To measure the gradient, the straight-through 
estimator is utilized and the gradient of the round-to-
nearest operator is equal to 1. According to this approxi-
mation, we can use the standard back-propagation 
algorithm to fine-tune our MVCNN network with the 
quantization simulation block. After neural network 
quantization, the quantitative MVCNN network can 
be deployed on the mobile device. To use DSP for net-
work inference, we remove the data operations in the 
MVCNN network that exceed 4-dimension. This is done 
by converting the 5-dimensional operations involved in 
the network structure to 4-dimensional operations. For 
example, we convert a certain operator from the dimen-
sion of (3, 12, 1024, 7, 7) to (3, 12, 1024, 7*7). By the DSP 
environment, the network can be executed on the mobile 
device quickly, and the speed is close to that of running 
a normal model on the cloud server with powerful GPU.

Experiments
Implementation detail
The experiments of this study use ModelNet40 as the 
training and testing dataset, containing 9843 training 
samples and 2468 testing samples, in which 10% of sam-
ples from each class are selected to keep the markers dur-
ing the training process and the rest are disordered as 
unmarked samples. Each sample consists of 12 views and 
12 2D grayscale images of size 224 × 224 are transformed 
into 3× 224 × 224 RGB images for training in order to 
facilitate sample enhancement. The sample distribution 
of all categories is shown in Fig. 6.

The Adam optimizer is used to train the SVCNN and 
MVCNN model, and there are 60 epochs for each train-
ing stage. Every batch includes 1 set of labeled data and 
3 sets of unlabeled data. And every epoch traverses all 
the labeled data once. The initial learning rate is set to 
5× 10−5 and the confidence threshold is 0.95.

The effect of the initial labeled size
In the experiment, we adjust the proportion of labeled 
data and use 5%, 6%, 7%, 8%, 9%, and 10% of labeled 
samples separately for training. The goal of this experi-
ment is to observe the influence of the number of labeled 
samples on the training results. This reflects the cost of 
implementing our edge computing framework. As shown 
in Fig. 7, the final accuracy results are improved with the 

(10)clamp(x; a, c) =







a, x < a
x, a ≤ x ≤ c
c, x > c
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increase of labeled data. In the following experiment, we 
choose 10% as the number of labeled samples.

Comparison with state‑of‑the‑art methods
Figure 8 shows the accuracy variation curve of our pro-
posed method during the training process. We also test 
the performance of the final model on the unlabeled 
training samples and the test samples. For the unlabeled 
training samples, the prediction accuracy is 91.58%. For 
the test samples of the ModelNet40 dataset, the recogni-
tion accuracy is 91.53%.

Moreover, our experiments compare the proposed 
semi-supervised 3D object recognition method with 
existing powerful supervised methods, the recent unsu-
pervised 3D shape feature learning methods, and the 
other semi-supervised methods, respectively. The com-
parison results are shown in Table 1.

The accuracies of LFD  [12], MVCNN  [12], MVCNN 
with high-quality rendering  [59], DGCNN  [71], Point-
TnT  [36], and PointStack  [37] under supervised learn-
ing are 75.5%, 89.9%, 95.5%, 92.2%, 92.6% and 93.3% 
respectively. It can be seen that the 91.53% classification 
accuracy of our method surpasses even a portion of the 
supervised learning methods and is comparable to that 
of DGCNN [71]. It is worth noting that from the report 
of MVCNN with high-quality rendering  [59], the high-
quality rendered images can improve the performance 
significantly. This proves the validity of our offloading 
decision, which offloads the multi-view rendering to the 
edge cloud server with the goal of realizing photorealistic 
rendering.

The unsupervised 3D shape feature learning meth-
ods Primitive-GAN  [72], FoldingNet (Shapenet)   [29] 
and CrossPoint  [32] can achieve classification accura-
cies of 86.4%, 88.4% and 89.1%. For a fairer comparison, 
ModelNet40 is used for training instead of the original 
ShapeNet in the experiments with FoldingNet, and the 
classification performance dropped to 86.2%. As shown 
in Table 1, the performance of our method outperforms 
the state-of-the-art unsupervised methods.

Both FoldingNet  [29] and LFD  [12] are used as semi-
supervised algorithms trained on ModelNet40 using 10% 
feature data and obtained 76.2% and 60.8% accuracy cor-
respondingly. The most recent semi-supervised methods 
are the deep co-training method [38] and OSSSL (open-
set semi-supervised learning)  [40], which achieve the 
accuracy of 89.0% and 85.5%. The experimental results 
show that with 10% initial data, our method can obtain 
better results than the other semi-supervised learning 
methods.

Ablation study
Impact of augmentation strategies
Since augmentation strategies play an important 
role in the FixMatch algorithm, we conduct an abla-
tion study of data augmentation strategies. We try a 
combination of other enhancement strategies (e.g., 
strong enhancement in generating manual labels 
and weak enhancement in predicting enhancement 
methods) and find that the test accuracy decreases 
to some extent. The specific experimental results 
are shown in Table  2. From the reults, we can see 
that the strongly-augmented strategy improves the 
accuracy significantly when we use weakly-aug-
mented strategy during the manual label genera-
tion stage. However, when there is no augmentation 
during the manual label generation stage, the effect 
of the strongly-augmented strategy is not impres-
sive. This means that the combination of strongly-
augmented and weakly–augmented strategy is very 
important, since this avoids the overfitting of the 
model.

We use the RandAugment method for image aug-
mentation. For each image, we randomly select some 
augmentation methods to transform the image. The 
random augmentation and cropping operations are con-
tained in the strongly-augmented process, and we test 
the importance of these two operations by varying the 
predicted augmentation method while maintaining the 
manual label generation method as weakly-augmented. 
The results in Table 3 show that the performance of the 
model is degraded by removing any of these two opera-
tions. From the results, we can see that there is no formal 
distinction between the effect of cropping and random 
augmentation.

The effect of SVCNN
To show the effectiveness of the SVCNN stage, we 
remove the SVCNN stage and compare the accuracy of 
the learned model with our two-stage training strategy. 
The comparison results are shown in Table  4, and the 
prediction accuracy is decreased by 2.15% without the 
SVCNN stage.

View consistency loss
To verify the effectiveness of the view consistency loss on 
the unlabeled samples, we measure the performance of 
the learned model by removing the corresponding loss. 
The comparison results are shown in Table  5, and the 
prediction accuracy is decreased by 0.73% without the 
view consistent loss.
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The effect of the lightweight architecture
In contrast to the results of more complex models such 
as VGG11  [61], we compare the accuracies of differ-
ent CNN architectures. In this experiment, we set the 
SVCNN network as VGG11 and ShuffleNet respectively, 
and the accuracy of the final models is shown in Table 6. 
The results show that more complex networks lead to 
higher recognition accuracy.

We then deploy the above two models in a mobile device, 
which has a Qualcomm Snapdragon 865 Plus mobile plat-
form. In this experiment, we run them in CPU, GPU, and 
DSP modes respectively. The comparison of the running 
speed is shown in Table 7 and it can be found that the net-
work Shufflenet runs much faster than the network VGG11 
in all three modes. And the former can run about 624 
times per second in DSP mode, which is about 6.7 times 
faster than the latter. The experiment results show that 
our method is suitable for the edge computing framework, 
which can be executed efficiently in the mobile terminal.

The quantization‑aware training
We quantize the final model by quantization aware 
training and found that the accuracy of the quantized 

network decreased by 0.48% in comparison as shown in 
Table 8. The quantitative perception training is trained 
for 20 epochs, and the initial value of the learning rate 
is set to 5× 10−5 , which is divided by 10 every 5 epochs. 
Other settings are the same as the training of the 
MVCNN network. We also compare the performance of 
the model quantized by the post-training quantization 
algorithm. The results show that the quantization aware 
training technology can reduce the quantization error 
effectively.

Complexity Analysis. We measure the timing of the 
four steps of our edge computing framework. The first 
step uploads the 3D data to the edge cloud server. After 
compression, the average size of 3D data in the Model-
Net40 is 0.9M, which takes about 18ms for data trans-
mission under a 5G network. The cloud-based rendering 
spends around 9ms on the server with 12 NVIDIA GTX 
2080Ti graphics cards. To send the 12 rendered images 
with 224 × 224 back to the mobile device (the size is 
about 0.24M), it takes around 5ms. Based on our pre-
vious experiment, the timings of executing the neural 
network on the mobile device by CPU, GPU, and DSP 
mode are 25.4ms, 12.9ms and 1.6ms respectively. Thus, 

Fig. 6  The sample distribution of all categories
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Fig. 7  The effect of the initial labeled size

Fig. 8  The accuracy variation curve
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the whole processing timing is no more than 60ms. This 
proves that our edge computing framework can support 
real-time 3D object recognition.

Conclusion
In this paper, we propose to use the edge comput-
ing technique for high-through 3D object recognition. 
First, a powerful and efficient framework is created by 
combining edge computing and 3D object recognition, 
which consists of a cloud-based rendering stage and a 
terminal-based recognition stage. Second, a lightweight 
CNN architecture is integrated into a 3D multi-view 
learning framework to reduce the complexity of the net-
work. Meanwhile, the quantization-aware training tech-
nology is utilized to improve the inference speed on the 
mobile device further. Third, a novel semi-supervised 3D 
deep learning method based on Fixmatch is proposed 
to reduce the cost of implementing the edge computing 
framework. Experiments show that our method achieves 
high recognition accuracy and fast inference efficiency, 
which can be helpful for applications in mobile edge 
environments.

Table 1  Comparison of Different Methods on ModelNet40

Type Methods Accuracy

Supervised LFD [12] 75.5%

MVCNN [12] 89.9%

MVCNN (high-quality) [59] 95.5%

DGCNN [71] 92.2%

Point-TnT [36] 92.6%

PointStack [37] 93.3%

Unsupervised Primitive-GAN [72] 86.4%

FoldingNet(ModelNet40) [29] 86.2%

FoldingNet(ShapeNet) [29] 88.4%

CrossPoint [32] 89.1%

Semi-supervised LFD [12] 60.8%

FoldingNet [29] 76.2%

OSSSL [40] 85.5%

Co-training [38] 89.0%

Ours 91.5%

Table 2  Accuracy under Different Augmentation Strategies

Manual label generation 
method

Prediction Method Accuracy (%)

No augmented Weakly-augmented 88.13

No augmented Strongly-augmented 88.86

Weakly-augmented Weakly-augmented 89.18

Weakly-augmented Strongly-augmented 91.53

Table 3  Accuracy under Different Strong Augmentation 
Methods

Manual label 
generation 
method

Prediction Method Accuracy (%)

Weakly-augmented cropping 90.19

Weakly-augmented random augmentation 90.03

Weakly-augmented cropping + random augmentation 91.53

Table 4  The Effect of SVCNN

Loss Accuracy (%)

without SVCNN 89.38

with SVCNN 91.53

Table 5  The Effect of the View Consistent Loss

Loss Accuracy (%)

without view consistency loss 90.80

with view consistency loss 91.53

Table 6  Comparison of Different Architectures

Architecture Accuracy (%)

VGG11 91.53

ShuffleNet 93.07

Table 7  Speed comparison (infs/s indicates the number of 
executions per second)

Model CPU (infs/s) GPU (infs/s) DSP (infs/s)

VGG11 7.51069 15.9231 93.7604

ShuffleNet 39.402 77.8134 624.683

Table 8  The Effect of the Quantization-Aware Training

Quantization Algorithm Accuracy (%)

Without Quantization 91.53

Post-Training Quantization 90.48

Quantization-Aware Training 91.05
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Limitation and future work
The success of our method relies on the following 
assumption: all the testing 3D shapes are shown as 
isolated objects. However, in practice, the 3D capture 
data usually have lots of noisy information. Therefore, 
we need to introduce an attention method to focus 
on the discriminative region in the future. Another 
future work will utilize more promising lightweight 
methods to improve efficiency, such as neural archi-
tecture search and knowledge distillation. Moreover, 
we expect to introduce online learning and lifelong 
learning into our framework, which can use the cap-
tured 3D data from the mobile phone as the training 
data to enhance the performance of 3D object classi-
fier continuously.
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