
Song and Guo ﻿Journal of Cloud Computing (2022) 11:92
https://doi.org/10.1186/s13677-022-00359-6

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Efficient 3D object recognition in mobile
edge environment
Mofei Song1,2* and Qi Guo1,2 

Abstract 

3D object recognition has great research and application value in the fields of automatic drive, virtual reality, and
commercial manufacturing. Although various deep models have been exploited and achieved remarkable results for
3D object recognition, their computational cost is too high for most mobile applications. This paper combines edge
computing and 3D object recognition into a powerful and efficient framework. It consists of a cloud-based rendering
stage and a terminal-based recognition stage. In the first stage, inspired by the cloud-based rendering technique, we
upload the 3D object data from the mobile device to the edge cloud server for multi-view rendering. The rendering
stage utilizes the powerful computing resource in the edge cloud server to generate multiple view images of the
given 3D object from different views by parallel high-quality rendering. During the terminal-based recognition stage,
we integrate a lightweight CNN architecture and a neural network quantization technique into a 3D object recog-
nition model based on the multiple images rendered in the edge cloud server, which can be executed fast in the
mobile device. To reduce the cost of network training, we propose a novel semi-supervised 3D deep learning method
with fewer labeled samples. Experiments demonstrate that our method achieves competitive performance compared
to the state-of-the-art methods with low latency running in the mobile edge environment.

Keywords:  Cloud computing, Deep learning, 3D object recognition

Introduction
Recently, with the rapid development of 3D scanning
technology, many mobile devices are equipped with
portable 3D sensors to realize 3D object reconstruction.
These mobile devices make 3D sensing usable anytime
and anywhere at a low cost. And the development of 3D
sensing ability leads to high-quality 3D object data with
more points and geometric details. With the increase of
3D data, it is crucial to realize 3D object recognition for
mobile applications, such as automatic drive [1], virtual
reality, commercial manufacture, smart city [2, 3], and
social network.

Since the size of the 3D data is increasingly large, more
computational burden is required to render and analyze

the 3D object. However, in practice, the computing power
and energy supply of mobile devices [4, 5] are usually too
limited to execute such a complex task efficiently. Thus,
to realize 3D object recognition for mobile applications,
a simple idea is to offload the complex 3D data process
tasks from the mobile device to the remote cloud with
powerful computing resources [6, 7], and then transmit
the recognition results back to the mobile device. How-
ever, the amount of 3D object data being transmitted will
exceed the capacity of the network. To meet the latency
constraint, mobile edge computing is a vital solution by
offloading the computation task to the mobile edge serv-
ers. Since the mobile edge servers are physically located
close to the mobile devices, the timing of the data trans-
mission can be saved.

Nowadays, deep learning technology [8] has achieved
great advances in 3D object recognition [9–11]. Among
the existing methods, the view-based method [12, 13]
achieves the best performance since it does not rely on

*Correspondence: songmf@seu.edu.cn

2 The Key Lab of Computer Network and Information Integration (Ministry
of Education), Southeast University, Nanjing, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00359-6&domain=pdf

Page 2 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

complex 3D features. This method first renders multi-
ple 2D images of the 3D object from different views and
then uses a 2D CNN network to extract the feature from
the 2D images for information fusion. Though the view-
based methods have shown impressive performances
in 3D object recognition, the success of these advances
relies on powerful computing resources, such as multi-
core CPU and strong graphics processing unit (GPU).
Due to the limited computing power and cache space
of the mobile device [14], both high-quality 3D render-
ing and large neural network inference are very expensive
tasks, which will lead to high latency. Thus, existing view-
based 3D object recognition methods are not suitable to
be deployed on mobile device.

To make a good tradeoff between the limited comput-
ing resources of the mobile device and the performance
of view-based 3D object recognition, we perform a sys-
tematic design study to achieve high-performance 3D
object recognition for mobile applications based on an
edge computing framework. Instead of offloading the
whole view-based recognition process in the edge cloud
server, we choose to split the whole view-based 3D object
recognition process into two subtasks and then distribute
these two subtasks on different computing devices in the
mobile edge environment. The two separable subtasks are
multi-view rendering and recognition model execution,
and they are divided based on the following reasons. The
first one is that the quality of the rendered images has a
significant compact on the accuracy of the recognition
model. However, it is impossible to realize photorealis-
tic rendering by mobile devices with limited graphic dis-
play capability. The second one is that the recent mobile
platform provides some artificial intelligent processor
runtime mechanisms to accelerate the execution of deep
neural networks. Accordingly, to optimize the computa-
tion offloading of our edge computing framework, we
distribute the two subtasks on the edge cloud server and
the mobile terminal. The edge cloud server is responsi-
ble for multi-view rendering, while the mobile termi-
nal executes the deep recognition model. Therefore, the
proposed edge computing framework not only achieves
low latency and high reliability by maximizing the use of
computing power in the mobile cloud environment but
also ensures the quality of the rendered image by utiliz-
ing the dedicated rendering hardware in the edge cloud
server, hence resulting in higher recognition accuracy.

According to the offloading decision, our edge comput-
ing framework first uploads the captured 3D data from
the mobile terminal to the edge cloud server. Then, the
edge cloud server employs the dedicated ray-tracing
hardware to realize fast photorealistic rendering of a
3D object. By designing parallel processing in the edge
cloud server, multiple photorealistic images are rendered

simultaneously to reduce the latency of the whole edge
computing framework. Finally, the generated images are
sent back from the edge cloud server to the mobile ter-
minal, and a lightweight CNN model is used to realize
view-based 3D object recognition on the mobile device.
The proposed edge computing framework only offloads
the rendering task to the edge cloud server. Such an edge
computing structure is very useful when multiple users
send 3D object recognition requests at the same edge
cloud server with finite resources. If we offload all the
tasks on the edge cloud server, it may exceed the cloud
capacity.

To support such an edge computing framework, one
core technical challenge is to design a lightweight CNN
architecture with high recognition accuracy, which can
be executed effectively and efficiently on a mobile device.
Since most existing view-based 3D object recognition
methods rely on very complex network, they are time-
consuming for resource-constrained mobile devices.
Recently, a few works [15] propose a lightweight volu-
metric CNN architecture with low resolution, but the
recognition accuracy is too limited to satisfy the require-
ment for our edge computing framework. Another chal-
lenge is to reduce the cost of implementing the mobile
applications, as the current 3D object recognition
methods require a large amount of labeled data, such
as ModelNet [16], ShapeNet [17], PartNet [18, 19], and
3DFUTURE [20]. Though some methods are proposed
to focus on learning 3D object deep classifiers with fewer
data resources [21, 22], the low recognition accuracy and
the time-consuming computing of these methods are
unable to meet the quality of the cloud services.

To overcome these two problems, we propose several
strategies to obtain an accurate 3D object recognition
model with the limited computing and data resources in
the mobile edge environment. To reduce the latency of
executing the recognition model in the mobile device,
we design a lightweight CNN architecture by combining
the 3D multi-view learning framework [12, 23] and Shuf-
fleNet [24]. Such a method first extracts the feature of
each rendered image with an efficient CNN architecture
ShuffleNet pre-trained on massive image databases [25]
and then fine-tunes on the 3D data by aggregating multi-
view features. To improve the efficiency in the mobile
edge environment, we employ neural network quantiza-
tion technology to compress the model without accuracy
degradation. To reduce the cost of implementing the
whole edge computing framework, we propose a semi-
supervised 3D feature learning algorithm based on Fix-
Match [26] to utilize the massive amount of unlabeled
shapes and a few labeled samples for model training. The
unlabeled objects can be easily captured by the mobile
devices connected to the cloud center. To realize the 3D

Page 3 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

feature learning, we first use the FixMatch algorithm to
learn a 2D image network for every rendered image of
the 3D object derived from the cloud-based rendering
stage. A 3D multi-view learning algorithm is then used
to learn a 3D object recognition model by integrating the
3D view consistency constraints between different ren-
dered images of the same 3D object. The learned model
can be finally deployed on mobile devices with a central
processing unit (CPU) or digital signal processor (DSP).

The contributions of this study are summarized as
follows: 1) We propose an efficient 3D object recogni-
tion method based on the edge computing paradigm
for mobile applications, which consists of a cloud-based
rendering stage and a terminal-based recognition stage
to maximize the use of the computing resources in the
mobile edge environment. 2) We propose a lightweight
3D CNN architecture by integrating neural network
quantization with high recognition accuracy, which
reduces the latency of the edge computing framework. 3)
We introduce a semi-supervised learning algorithm for
view-based 3D object recognition, which saves the cost of
implementing the edge computing framework for mobile
applications.

Related work
This work relates to several research areas. In this sec-
tion, we briefly review the existing work on 3D object
recognition and edge computing.

3D object recognition
According to the type of supervision, 3D object recog-
nition methods can be divided into three classes: unsu-
pervised, supervised, and semi-supervised methods.
Unsupervised learning uses unlabelled data to train the
feature representation. These methods utilize the 3D
raw data to learn the high-level features directly by mini-
mizing reconstruction loss [27–30] or self-supervised
learning [23, 31, 32]. For example, Afham et al. [32] use
a cross-modal contrastive learning approach to align the
prediction between the point clouds and the rendered 2D
image. However, some labeled objects are still required
to obtain a 3D object classifier. Moreover, the recogni-
tion accuracy of these methods is lower than that of the
supervised ones.

Recently, the supervised method becomes the main-
stream technology for 3D object recognition, which
learns the feature representation from different 3D
raw representations, such as points clouds [33–37] and
views [12, 13]. Point-TnT [36] is a two-stage point feature
learning approach by fusing local and global attention
modules, while Point-Stack [37] uses multi-resolution
feature learning and learnable pooling to extract high-
semantic point features. Among these methods, the

view-based representation usually has the best perfor-
mance. However, the supervised methods require a large
data resource.

Semi-supervised learning utilizes both labeled and
unlabeled data to train a recognition model by pseudo-
labeling or consistency constraints. Song et al. [38] use
the co-training algorithm to realize the end-to-end train-
ing by pseudo-labeling the unlabeled samples. Chen
et al. [39] utilize the consistency constraints on the point
cloud to realize a semi-supervised learning framework.
Shi et al. [40] utilize bi-level optimization to solve the
semi-supervised learning problem for 3D object classi-
fication, which combines a weight predictor network to
define the weights of the samples. Different from exist-
ing semi-supervised learning methods, our method com-
bines the consistency constraints and pseudo-labeling
into a whole framework, which can generate a more
accurate recognition rate.

Due to the complexity of 3D data, existing deep 3D
object recognition methods usually use cumbersome
network architectures to extract effective 3D features.
To solve this problem, some real-time 3D object recog-
nition methods are proposed. LightNet [15] is a light-
weight volumetric 3D CNN for 3D object recognition,
which has fewer training parameters. PVENet [41] is
an architecture with small voxel grid sizes for real-time
point cloud classification. All of these methods learn the
feature representation from voxels with a small resolu-
tion ratio to improve efficiency. However, the geometric
details are lost due to the small resolution, and the nat-
ural inefficiency of 3D convolution operation prevents
the improvement of the inference speed. In contrast, our
method uses the multi-view 3D representation and each
rendered image has sufficient resolution. Through light-
weight CNN and the neural network quantization tech-
nique, we achieve a high recognition rate and inference
efficiency simultaneously.

Edge computing
There is a close connection between cloud computing
and big data analysis [42, 43]. Cloud computing naturally
provides distributed computing, parallel computing, and
large storage capacity, which is very suitable for a big data
model. Besides, cloud computing is helpful for system
updating and management, which ensures the stability
of mobile applications. However, the delay of communi-
cation with mobile cloud servers causes time-sensitive
mobile applications unable to meet the requirements.
Recently, mobile edge computing has become a promis-
ing paradigm to meet the computing resource require-
ments of mobile devices [44]. Edge computing has been
widely used in many mobile application [45] with high
load and high concurrencies, such as smart city [2, 3],

Page 4 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

smart building [46, 47], intelligent manufacturing [48],
and geographical POI recommendation [49]. By shar-
ing configurable computing resources in the mobile edge
environment, edge computing can meet the computation
demand of various mobile applications and improve user
experience.

To design an effective edge computing system, the
communication latency and energy cost are the most
important optimization objectives to ensure the qual-
ity of services [4, 50]. Thus, many works are propose for
task offloading optimization. For example, deep rein-
forcement learning methods [46, 51, 52] are used for task
offloading and resource management to balance the pro-
cessing delay and the power consumption. Bi et al. [53]
propose an optimal offloading scheme to maximize the
system utility based on throughput and fairness. Our
method are inspired with these works, and we design an
edge computing framework, which offloads the cumber-
some rendering task to the edge cloud server.

A recent trend in academia and industry is to combine
artificial intelligent and edge computing into the mobile
application. Actually, artificial intelligent and edge com-
puting can benefit from each other to improve the effi-
ciency of the system. Artificial intelligent can be used
to optimize the edge service to reduce the consumption
of time and energy in data computations and transmis-
sions [1]. Recently, deep learning becomes the main-
streaming method for various applications such as secure
healthcare [54], object detection [55] and semantic seg-
mentation [56]. Due to its high computational com-
plexity, deep learning is usually not suitable for mobile
applications. And edge computing can provide power-
ful computing resources to support the efficient training
and inference of the artificial intelligent model, which

can produce some novel learning paradigms [49]. Our
method conforms such a development trend, and we use
edge computing to process and analysis the large-scale
3D data. By integrating the computing resources in the
edge cloud servers, we alleviate the lack of computing
power in the 3D object recognition mobile applications.

Method
In this section, we introduce the details of our 3D object
recognition method.

Overview
In this paper, we study the efficient 3D object recogni-
tion method in the mobile edge environment. The overall
idea is that we combine edge computing and 3D object
analysis to improve the user experience of mobile appli-
cations. By utilizing the computing resources of the edge
cloud servers, we can realize high-through complex 3D
object analysis tasks with low latency. The process of our
method is shown in Fig. 1.

Our edge computing framework consists of many
mobile devices. And each mobile device connects to a
nearby edge cloud server with high-speed network con-
nectivity based on the location information. We assume
that the mobile device is equipped with a portable 3D
scanning sensor, which can realize 3D reconstruction
of the real object in the physical world. During the 3D
reconstruction process, the 3D data is compressed by
the distance-based compression method on the mobile
device [57]. When users need to obtain the category of
the captured 3D object by the mobile device, they can
send the request to our edge computing framework. The
edge cloud server and the mobile terminal can collabora-
tively accomplish the recognition task to respond to user

Training dataset Single-view training set

labeled

unlabeled

Multi-view training set

labeled

unlabeled

…

v12v2v1

v12v2v1

Single-view training

… …

…

…
…

…

Mobile Terminal

as subnetwork

Single-view net

Multi-view training Quantization Aware training

Model
Deployment

Training Deployment

Shufflenet

Edge Cloud Server

Cloud EnvironmentCaptured 3D Object

3D Sensing

(1) 3D Data Upload

(2) Cloud-based Rendering
(4) Terminal-based

Recognition

‘Chair’

Fig. 1  The process of our method

Page 5 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

requests. The whole process consists of the following four
steps.

First, the captured 3D data is uploaded from the mobile
device to the edge cloud server. To improve the speed of
the data transmission, we discard the normal and color
information of the captured 3D data, while transmitting
only the compressed geometric data. Since the 3D data
has been compressed during the 3D reconstruction pro-
cess, the timing of data transmission is very short.

Second, the edge cloud server will arrange the recog-
nition tasks for multiple requests. For each request, the
edge cloud server decompresses the 3D data after receiv-
ing the data and then starts to render 2D images. Our
method follows existing view-based methods [12] and
renders 12 images according to a fixed viewpoints setting
for 3D object recognition. Since the rendering processes
of the 12 images are totally unrelated, the edge cloud
server performs parallel off-screen rendering by the real-
time ray tracing algorithm [58].

Third, the edge cloud server sends the 12 rendered
images back to the mobile device via the mobile network.
As the resolution of the image is only 224 , the timing of
data transmission can be negligible.

Fourth, the mobile device takes the 12 rendered images
from the edge cloud server as the input of our specific
lightweight 3D CNN network, and executes the recogni-
tion model to output the prediction result to users. Dur-
ing this step, 3D CNN network can be executed by three
modes: CPU, GPU and DSP. The users can choose one of
the three modes according to the mobile terminal used
by compromising the performance and speed.

Among the four steps, the first and third steps are only
responsible for data communication between the mobile
device and the edge cloud server. In the following section,
we detail the second and fourth steps, which are cloud-
based rendering and terminal-based recognition.

Cloud‑based rendering
The goal of cloud-based rendering is to render multiple
2D photorealistic images by the edge cloud server, which
are the input of the recognition model. As shown by pre-
vious research [59], the recognition accuracy increases
with the improvement of the quality of the rendered
images. However, the 3D graphic ability of the mobile
device is rather limited, and it requires dedicated hard-
ware to generate most optical effects. Thus, the only
choice is to perform the rendering task on the edge cloud
server.

To realize the cloud-based rendering, we set up the
viewpoint set in advance and save them in the edge cloud
server. To ensure the features captured from the different
views can be complementary, we put 12 cameras at differ-
ent positions around the 3D object, which is the same as

the pioneering work MVCNN [12]. To put the 3D object
into the rendering scene, we use the upright orientation
method [60] to adjust the pose of the 3D object and then
put the center point at the origin of the 3D coordinate
system. The 12 cameras are elevated 30 degrees from the
ground plane, pointing toward the centroid of the 3D
object, every 30 degrees around the object.

To make the cloud-based rendering result conspicuous,
we add some lights into the 3D scene, which shows some
optical effects, such as shadow, reflection, and refraction.
To handle the illumination, we generate the rendering
result by utilizing a real-time ray tracing algorithm [58],
instead of the rasterization technology. The ray-tracing
algorithm simulates the basic principle of vision, which
is the process of shooting rays from the eye toward the
pixels of the rendered image. Thus, the algorithm first
checks the intersection between the ray and every trian-
gle face of the 3D object and then determines the shad-
ing of the corresponding pixel in the rendered image. In
practice, the decompressed 3D object usually has more
than 100K triangles, thus the complexity is too over-
whelming due to the inefficiency in handling irregular ray
tracing.

As a result, the only viable solution is to resort to pow-
erful dedicated ray-tracing hardware, such as NVIDIA
graphics cards. To deal with high concurrency user
requests, all the edge cloud serves are equipped with
multiple dedicated graphics cards for a high-performance
ray tracing process. Due to the separable feature of multi-
view rendering, the edge cloud server can parallel run the
off-screen rendering subtasks. This reduces the latency of
mobile applications significantly.

One challenge of rendering implementation on the
edge cloud server is that the edge cloud servers usually
have heterogeneous graphics processing units and oper-
ating systems. To solve it, instead of using some specific
shading languages, we interact with the graphics ren-
derer by OpenGL program as a shared library, which pro-
vides unified APIs for 3D graphics rendering. The shared
library is then deployed on all the edge cloud servers to
realize the ray-tracing rendering process with a small
amount of reprogramming. Finally, the 12 2D rendered
images of size 224 × 224 are generated in the edge cloud
server and sent back to the mobile device.

Terminal‑based recognition
Previous multi-view 3D object recognition methods use
a much more complex network to maximize the recogni-
tion performance. However, these networks are too large
to be deployed on mobile devices. To improve the effi-
ciency of our model in the mobile terminal, we design a
lightweight multi-view CNN architecture based on Shuf-
fleNet [24], which has fewer parameters than the other

Page 6 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

CNN architecture, such as VGG11 [61] and ResNet [62].
It is worth noting that there are other lightweight net-
works for 2D images, such as SqueezeNet [63], Xcep-
tion [64], and MobileNet [65]. SqueezeNet uses a deeper
network to reduce the number of parameters, which
requires more inference time. Xception proposes depth-
wise separable convolution to improve the performance,
but the amount of the parameters not reduces impres-
sively. MobileNet constructs a lightweight network by
combining depthwise convolution and pointwise con-
volution, which hinders the information transmission.
Thus, we choose ShuffleNet for its high information
interchange between different channels. The input of our
CNN network is the 12 rendered images generated on the
edge cloud server. The CNN network outputs the cate-
gory of the 3D object as the response to the user request.

Network Architecture. Given each rendered image,
we first use the ShuffleNet network as the basic CNN
architecture to compute the image descriptors from each
rendered image. The architecture of the ShuffleNet is
shown in Fig. 2. The core of the ShuffleNet is the channel
shuffle operation which helps the information in differ-
ent groups flow to other groups randomly. Based on the
channel shuffle operation, we define two types of units
S1 and S2, as shown in Fig. 3. Unit S1 is the basic unit
for feature encoding based on the channel split opera-
tion, which splits the input of feature channels into two
branches. Meanwhile, unit S2 is used for spatial down
sampling by removing the channel split operator. The
final ShuffleNet architecture is composed of several

layers of units S1 and units S2, which is highly efficient
for mobile device.

To aggregate the image descriptors of every rendered
image, our multi-view CNN model utilizes a view pool-
ing layer for the fusion of multiple views of the 3D objects
in no specific order. The view-pooling layer only consid-
ers the view with the maximal activation, thus we sim-
ply use a max pooling operation for information fusion.
Finally, a SoftMax layer is added as the classification
layer, which generates the category prediction results.
The whole architecture of our multi-view CNN model is
shown in Fig. 4. Our experiment shows that such a light-
weight CNN architecture can be executed fast by mobile
devices.

Model Training. To save the cost of implementing
the edge computing framework, we design a two-stage
training algorithm by semi-supervised learning algo-
rithm FixMatch [26]. This algorithm reduces the amount
of labeled data, which is beneficial for the upgrading of
the edge computing framework. There are lots of semi-
supervised methods, which can be divided into two cat-
egories: pseudo-labeling and consistency regularization.
The pseudo-labeling methods first learn a deep model
by the labeled examples and then use the learned model
to predict the other examples, which are used to incre-
mentally model training. In contrast, the consistency
regularization methods utilize the prediction invariance
after the random transformation of training data as the
regularization term. To integrate the advantages of these
two methods, we choose to use FixMatch for model

Fig. 2  The architecture of the ShuffleNet

Fig. 3  The architecture of the unit S1 and S2 in the ShuffleNet

Page 7 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

training, which generates the labels of unlabeled samples
by combining consistency regularization and pseudo-
labeling. The input of our model training algorithm is a
set of 3D objects D = L

⋃

U , where the objects in L are
labeled and the ones in U are unlabeled. For each labeled
object si ∈ L , we attach a category tag ci as its label, and
all the category tags form the label set C. Every object is
expressed as 12 images {mj} , and its category tag is the
same as the 3D object.

The existing multi-view methods usually use the net-
work pre-trained on the ImageNet directly to initialize
the weights of the whole network. Since the training sam-
ples are all rendered images, the initial weights do not
reflect the feature of these samples due to the domain dis-
crepancy. Thus, we finetune the network by our rendered
images before the multi-view learning stage. Accordingly,
there are two stages in our model training step: SVCNN
and MVCNN. The goal of the SVCNN stage is to train
the image representation network which is a part of our
whole model, while the MVCNN stage is used to train
our multi-view CNN model for 3D object recognition.

During the SVCNN stage, we use the FixMatch algo-
rithm to train the image network ShuffleNet S, as shown
in Fig. 5. The input of the image network is one rendered
image, and the output is the category prediction of the
image. To utilize the unlabeled rendered images, we
define several image augmentation operations and gener-
ate their artificial labels by consistent regularization and
pseudo-labeling generation. There are two types of image
augmentation operations: weak augmentation and strong
augmentation. We indicate α(·) and β(·) as the weak aug-
mentation and strong augmentation, respectively. The

weak augmentation operation takes the standard flip
or shift transformation strategy. The images are flipped
horizontally with a probability of 50% and translated by
up to 12.5%. By contrast, the strong augmentation opera-
tion produces a more distortion effect. We first perform
no more than 4 augmentation operations from RandAug-
ment [66] and CTAugment [67], and then randomly
select a small square from the augmented image. During
the strong augmentation process, the gray values of some
pixels are changed to a certain value.

For the labeled rendered image mL with the label c, we
use the standard cross-entropy loss as the supervised loss
Ls on weakly augmented labeled images:

For the unlabeled rendered image mU , we perform the
weak augmentation operation and predict the category of
the weakly augmented image by the network S. If the net-
work S can give a confident result, i.e. max S(α(mU)) � τ ,
the label c′ = arg max S(α(mU)) is taken as the pseudo-
label of the image α(mU) . Accordingly, we use the cross-
entropy loss as the unsupervised loss Lu on the strong
augmented image

The final loss function of the SVCNN stage is defined by
adding the supervised loss of all the labeled images and
the unsupervised loss of all the unlabeled images:

(1)Ls(mL) = H(c, S(α(mL)))

(2)Lu(mU) = H(c′, S(β(mU)))

(3)L1 =
1

B

B

b=1

Ls(mLb)+
1

µB

µB

b=1

Lu(mUb)

Fig. 4  The architecture of our multi-view CNN model

Page 8 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

where B is the number of the labeled images, µ is the
ratio between the number of the labeled and unlabeled
images, and the number of all the images is (1+ µ)B.

During the MVCNN stage, we combine the FixMatch
and view consistency to train the whole MVCNN net-
work M. The input of the network is 12 rendered images
{mj} which belong to the same 3D object, and the out-
put of the network is the category prediction of the 3D
object. The learned network S in the SVCNN stage is
part of the MVCNN network, as shown in Fig. 4. The 12
Shufflenet networks share the same parameters and are
used to extract the image descriptors. When combining
the Shufflenet networks into the MVCNN network, we
remove the SoftMax layer and perform the view pooling
layer on the penultimate layer of the shufflenet network.
As done in the SVCNN stage, we also perform the same
image augmentation operations on the rendered images
to define the loss function on the unlabeled 3D objects.
For the labeled 3D object expressed by {mL

j } with the
label c, we perform the weakly augmentation operation
and use the standard cross-entropy loss as the supervised
loss lMs

(4)LMs ({mL
j }) = H(c,M(α(mL

1), ...,α(m
L
12)))

For the unlabeled 3D object expressed by {mU
j }

 , we per-
form the weak augmentation operation on all the ren-
dered images and predict the category of the 3D object
by the network M. If the network M can give a con-
fident result, i.e. maxM(α(mU

1), ...,α(m
U
12)) � τ , the

label c′ = arg maxM(α(mU
1), ...,α(m

U
12)) is taken as the

pseudo-label of the 3D object {mU
j } . Accordingly, we use

the cross-entropy loss as the unsupervised loss lMu on the
unlabeled 3D object

Since the rendered images {mU
j
} belong to one 3D object,

they should have the same category label. According to
the observation, we add a view consistency term to boost
performance. For a set of rendered images {mU

j } , we per-
form weak augmentation and strong augmentation, and
then minimize the divergence between the prediction of
these augmented images. To realize such minimization,
we compute the standard deviations of the prediction of
the weakly augmented and strongly augmented images
by the shufflenet S respectively

(5)LMu ({mU
j }) = H(c′,M(β(mU

1), ...,β(m
U
12)))

(6)
Lαstd = Std(S(α(mU

1)), ..., S(α(m
U
12)))

L
β

std = Std(S(β(mU
1)), ..., S(β(m

U
12)))

Fig. 5  The process of SVCNN stage

Page 9 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

Based on these two standard deviations, we can measure
the consistency degree between the predictions of differ-
ent views of the 3D object. Thus, we define the view con-
sistency term as follows:

Accordingly, the final loss function of the MVCNN stage
is defined as:

Given the loss function, we optimize the network through
back-propagation with stochastic gradient descent [68]
with decreasing learning rates.

Model Deployment. The learned deep model is
finally deployed in the mobile terminal. After the ter-
minal receives the 12 images rendered in the edge
cloud server, it uses the deep model for 3D object
recognition. We provide three running modes on the
mobile terminal: CPU, GPU, and DSP. The speed of the
CPU mode is the lowest, while the speed of the DSP
mode is the fastest. For the recognition accuracy, the
CPU and GPU modes are the same, while the DSP
mode is the lowest. The reason is that the DSP mode
only supports the quantized model, which has a quan-
tization error. The user can choose one of the three
modes according to mobile device, and whether to
quantize the deep model.

The goal of the neural network quantization tech-
nology [69] is to decrease the computational time and
energy consumption of the mobile device. After quan-
tization, the weights and parameters are stored in lower
bit precision and the computational cost for matrix
multiplication reduces quadratically. By network quan-
tization, the latency of our edge computing framework
can be reduced impressively. However, quantization
without any fine-tuning might degrade the recognition
accuracy. To avoid this problem, we use the quantiza-
tion-aware training method [70] to mitigate the quanti-
zation error.

To perform the quantization-aware training, we first
introduce the quantization simulation block into every
layer of our model. The quantization simulation block
will turn the real-valued vector v into the integer vector
vint by the rounding and clamping operation. Specially,
given a real-valued vector v, we first map it to the integer
grid {0, 1, ..., 28 − 1}:

where ⌊·⌉ is the round-to-nearest operator, s is the factor,
z is the zero point. And, s and z are optimized during the
quantization-aware training. The clamping is defined as:

(7)Lv = Lαstd + L
β

std

(8)L2 = LMs + LMu + Lv

(9)vint = clamp(
⌊v

s

⌉

+ z; 0, 28 − 1)

To fine-tune such a network, we need to back-propagate
through the quantization simulation block. However, the
gradient of the round-to-nearest operation is not well
defined. To measure the gradient, the straight-through
estimator is utilized and the gradient of the round-to-
nearest operator is equal to 1. According to this approxi-
mation, we can use the standard back-propagation
algorithm to fine-tune our MVCNN network with the
quantization simulation block. After neural network
quantization, the quantitative MVCNN network can
be deployed on the mobile device. To use DSP for net-
work inference, we remove the data operations in the
MVCNN network that exceed 4-dimension. This is done
by converting the 5-dimensional operations involved in
the network structure to 4-dimensional operations. For
example, we convert a certain operator from the dimen-
sion of (3, 12, 1024, 7, 7) to (3, 12, 1024, 7*7). By the DSP
environment, the network can be executed on the mobile
device quickly, and the speed is close to that of running
a normal model on the cloud server with powerful GPU.

Experiments
Implementation detail
The experiments of this study use ModelNet40 as the
training and testing dataset, containing 9843 training
samples and 2468 testing samples, in which 10% of sam-
ples from each class are selected to keep the markers dur-
ing the training process and the rest are disordered as
unmarked samples. Each sample consists of 12 views and
12 2D grayscale images of size 224 × 224 are transformed
into 3× 224 × 224 RGB images for training in order to
facilitate sample enhancement. The sample distribution
of all categories is shown in Fig. 6.

The Adam optimizer is used to train the SVCNN and
MVCNN model, and there are 60 epochs for each train-
ing stage. Every batch includes 1 set of labeled data and
3 sets of unlabeled data. And every epoch traverses all
the labeled data once. The initial learning rate is set to
5× 10−5 and the confidence threshold is 0.95.

The effect of the initial labeled size
In the experiment, we adjust the proportion of labeled
data and use 5%, 6%, 7%, 8%, 9%, and 10% of labeled
samples separately for training. The goal of this experi-
ment is to observe the influence of the number of labeled
samples on the training results. This reflects the cost of
implementing our edge computing framework. As shown
in Fig. 7, the final accuracy results are improved with the

(10)clamp(x; a, c) =







a, x < a
x, a ≤ x ≤ c
c, x > c

Page 10 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

increase of labeled data. In the following experiment, we
choose 10% as the number of labeled samples.

Comparison with state‑of‑the‑art methods
Figure 8 shows the accuracy variation curve of our pro-
posed method during the training process. We also test
the performance of the final model on the unlabeled
training samples and the test samples. For the unlabeled
training samples, the prediction accuracy is 91.58%. For
the test samples of the ModelNet40 dataset, the recogni-
tion accuracy is 91.53%.

Moreover, our experiments compare the proposed
semi-supervised 3D object recognition method with
existing powerful supervised methods, the recent unsu-
pervised 3D shape feature learning methods, and the
other semi-supervised methods, respectively. The com-
parison results are shown in Table 1.

The accuracies of LFD [12], MVCNN [12], MVCNN
with high-quality rendering [59], DGCNN [71], Point-
TnT [36], and PointStack [37] under supervised learn-
ing are 75.5%, 89.9%, 95.5%, 92.2%, 92.6% and 93.3%
respectively. It can be seen that the 91.53% classification
accuracy of our method surpasses even a portion of the
supervised learning methods and is comparable to that
of DGCNN [71]. It is worth noting that from the report
of MVCNN with high-quality rendering [59], the high-
quality rendered images can improve the performance
significantly. This proves the validity of our offloading
decision, which offloads the multi-view rendering to the
edge cloud server with the goal of realizing photorealistic
rendering.

The unsupervised 3D shape feature learning meth-
ods Primitive-GAN [72], FoldingNet (Shapenet) [29]
and CrossPoint [32] can achieve classification accura-
cies of 86.4%, 88.4% and 89.1%. For a fairer comparison,
ModelNet40 is used for training instead of the original
ShapeNet in the experiments with FoldingNet, and the
classification performance dropped to 86.2%. As shown
in Table 1, the performance of our method outperforms
the state-of-the-art unsupervised methods.

Both FoldingNet [29] and LFD [12] are used as semi-
supervised algorithms trained on ModelNet40 using 10%
feature data and obtained 76.2% and 60.8% accuracy cor-
respondingly. The most recent semi-supervised methods
are the deep co-training method [38] and OSSSL (open-
set semi-supervised learning) [40], which achieve the
accuracy of 89.0% and 85.5%. The experimental results
show that with 10% initial data, our method can obtain
better results than the other semi-supervised learning
methods.

Ablation study
Impact of augmentation strategies
Since augmentation strategies play an important
role in the FixMatch algorithm, we conduct an abla-
tion study of data augmentation strategies. We try a
combination of other enhancement strategies (e.g.,
strong enhancement in generating manual labels
and weak enhancement in predicting enhancement
methods) and find that the test accuracy decreases
to some extent. The specific experimental results
are shown in Table 2. From the reults, we can see
that the strongly-augmented strategy improves the
accuracy significantly when we use weakly-aug-
mented strategy during the manual label genera-
tion stage. However, when there is no augmentation
during the manual label generation stage, the effect
of the strongly-augmented strategy is not impres-
sive. This means that the combination of strongly-
augmented and weakly–augmented strategy is very
important, since this avoids the overfitting of the
model.

We use the RandAugment method for image aug-
mentation. For each image, we randomly select some
augmentation methods to transform the image. The
random augmentation and cropping operations are con-
tained in the strongly-augmented process, and we test
the importance of these two operations by varying the
predicted augmentation method while maintaining the
manual label generation method as weakly-augmented.
The results in Table 3 show that the performance of the
model is degraded by removing any of these two opera-
tions. From the results, we can see that there is no formal
distinction between the effect of cropping and random
augmentation.

The effect of SVCNN
To show the effectiveness of the SVCNN stage, we
remove the SVCNN stage and compare the accuracy of
the learned model with our two-stage training strategy.
The comparison results are shown in Table 4, and the
prediction accuracy is decreased by 2.15% without the
SVCNN stage.

View consistency loss
To verify the effectiveness of the view consistency loss on
the unlabeled samples, we measure the performance of
the learned model by removing the corresponding loss.
The comparison results are shown in Table 5, and the
prediction accuracy is decreased by 0.73% without the
view consistent loss.

Page 11 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

The effect of the lightweight architecture
In contrast to the results of more complex models such
as VGG11 [61], we compare the accuracies of differ-
ent CNN architectures. In this experiment, we set the
SVCNN network as VGG11 and ShuffleNet respectively,
and the accuracy of the final models is shown in Table 6.
The results show that more complex networks lead to
higher recognition accuracy.

We then deploy the above two models in a mobile device,
which has a Qualcomm Snapdragon 865 Plus mobile plat-
form. In this experiment, we run them in CPU, GPU, and
DSP modes respectively. The comparison of the running
speed is shown in Table 7 and it can be found that the net-
work Shufflenet runs much faster than the network VGG11
in all three modes. And the former can run about 624
times per second in DSP mode, which is about 6.7 times
faster than the latter. The experiment results show that
our method is suitable for the edge computing framework,
which can be executed efficiently in the mobile terminal.

The quantization‑aware training
We quantize the final model by quantization aware
training and found that the accuracy of the quantized

network decreased by 0.48% in comparison as shown in
Table 8. The quantitative perception training is trained
for 20 epochs, and the initial value of the learning rate
is set to 5× 10−5 , which is divided by 10 every 5 epochs.
Other settings are the same as the training of the
MVCNN network. We also compare the performance of
the model quantized by the post-training quantization
algorithm. The results show that the quantization aware
training technology can reduce the quantization error
effectively.

Complexity Analysis. We measure the timing of the
four steps of our edge computing framework. The first
step uploads the 3D data to the edge cloud server. After
compression, the average size of 3D data in the Model-
Net40 is 0.9M, which takes about 18ms for data trans-
mission under a 5G network. The cloud-based rendering
spends around 9ms on the server with 12 NVIDIA GTX
2080Ti graphics cards. To send the 12 rendered images
with 224 × 224 back to the mobile device (the size is
about 0.24M), it takes around 5ms. Based on our pre-
vious experiment, the timings of executing the neural
network on the mobile device by CPU, GPU, and DSP
mode are 25.4ms, 12.9ms and 1.6ms respectively. Thus,

Fig. 6  The sample distribution of all categories

Page 12 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

Fig. 7  The effect of the initial labeled size

Fig. 8  The accuracy variation curve

Page 13 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

the whole processing timing is no more than 60ms. This
proves that our edge computing framework can support
real-time 3D object recognition.

Conclusion
In this paper, we propose to use the edge comput-
ing technique for high-through 3D object recognition.
First, a powerful and efficient framework is created by
combining edge computing and 3D object recognition,
which consists of a cloud-based rendering stage and a
terminal-based recognition stage. Second, a lightweight
CNN architecture is integrated into a 3D multi-view
learning framework to reduce the complexity of the net-
work. Meanwhile, the quantization-aware training tech-
nology is utilized to improve the inference speed on the
mobile device further. Third, a novel semi-supervised 3D
deep learning method based on Fixmatch is proposed
to reduce the cost of implementing the edge computing
framework. Experiments show that our method achieves
high recognition accuracy and fast inference efficiency,
which can be helpful for applications in mobile edge
environments.

Table 1  Comparison of Different Methods on ModelNet40

Type Methods Accuracy

Supervised LFD [12] 75.5%

MVCNN [12] 89.9%

MVCNN (high-quality) [59] 95.5%

DGCNN [71] 92.2%

Point-TnT [36] 92.6%

PointStack [37] 93.3%

Unsupervised Primitive-GAN [72] 86.4%

FoldingNet(ModelNet40) [29] 86.2%

FoldingNet(ShapeNet) [29] 88.4%

CrossPoint [32] 89.1%

Semi-supervised LFD [12] 60.8%

FoldingNet [29] 76.2%

OSSSL [40] 85.5%

Co-training [38] 89.0%

Ours 91.5%

Table 2  Accuracy under Different Augmentation Strategies

Manual label generation
method

Prediction Method Accuracy (%)

No augmented Weakly-augmented 88.13

No augmented Strongly-augmented 88.86

Weakly-augmented Weakly-augmented 89.18

Weakly-augmented Strongly-augmented 91.53

Table 3  Accuracy under Different Strong Augmentation
Methods

Manual label
generation
method

Prediction Method Accuracy (%)

Weakly-augmented cropping 90.19

Weakly-augmented random augmentation 90.03

Weakly-augmented cropping + random augmentation 91.53

Table 4  The Effect of SVCNN

Loss Accuracy (%)

without SVCNN 89.38

with SVCNN 91.53

Table 5  The Effect of the View Consistent Loss

Loss Accuracy (%)

without view consistency loss 90.80

with view consistency loss 91.53

Table 6  Comparison of Different Architectures

Architecture Accuracy (%)

VGG11 91.53

ShuffleNet 93.07

Table 7  Speed comparison (infs/s indicates the number of
executions per second)

Model CPU (infs/s) GPU (infs/s) DSP (infs/s)

VGG11 7.51069 15.9231 93.7604

ShuffleNet 39.402 77.8134 624.683

Table 8  The Effect of the Quantization-Aware Training

Quantization Algorithm Accuracy (%)

Without Quantization 91.53

Post-Training Quantization 90.48

Quantization-Aware Training 91.05

Page 14 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

Limitation and future work
The success of our method relies on the following
assumption: all the testing 3D shapes are shown as
isolated objects. However, in practice, the 3D capture
data usually have lots of noisy information. Therefore,
we need to introduce an attention method to focus
on the discriminative region in the future. Another
future work will utilize more promising lightweight
methods to improve efficiency, such as neural archi-
tecture search and knowledge distillation. Moreover,
we expect to introduce online learning and lifelong
learning into our framework, which can use the cap-
tured 3D data from the mobile phone as the training
data to enhance the performance of 3D object classi-
fier continuously.

Acknowledgements
We sincerely thank the reviewers and the Editor for their valuable suggestions.

Authors’ contributions
Mofei Song and Qi Guo conceived and designed the study. Mofei Song and
Qi Guo performed the simulations. All authors wrote the paper. All authors
reviewed and edited the manuscript. All authors read and approved the final
manuscript.

Funding
This work was supported by National Natural Science Foundation of China
(61906036), the Open Research Project of State Key Laboratory of Novel Soft-
ware Technology (Nanjing University) (KFKT2019B02).

Availability of data and materials
The data used to support the finding of this study are available from the cor-
responding author upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 The School of Computer Science and Engineering, Southeast University, Nan-
jing, China. 2 The Key Lab of Computer Network and Information Integration
(Ministry of Education), Southeast University, Nanjing, China.

Received: 2 September 2022 Accepted: 2 November 2022

References
	1.	 Xu X, Li H, Xu W, Liu Z, Yao L, Dai F (2021) Artificial intelligence for edge

service optimization in internet of vehicles: A survey. Tsinghua Sci Tech-
nol 27(2):270–287

	2.	 Qi L, Hu C, Zhang X, Khosravi MR, Sharma S, Pang S, Wang T (2020)
Privacy-aware data fusion and prediction with spatial-temporal
context for smart city industrial environment. IEEE Trans Industr Inform
17(6):4159–4167

	3.	 Tong Z, Ye F, Yan M, Liu H, Basodi S (2021) A survey on algorithms for
intelligent computing and smart city applications. Big Data Min Analytics
4(3):155–172

	4.	 Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital twin-
empowered mobile edge computing via deep reinforcement learning.
China Commun

	5.	 Huang J, Zhang C, Zhang J (2020) A multi-queue approach of energy
efficient task scheduling for sensor hubs. Chin J Electron 29(2):242–247

	6.	 Zhang W, Chen X, Jiang J (2020) A multi-objective optimization method
of initial virtual machine fault-tolerant placement for star topological data
centers of cloud systems. Tsinghua Sci Technol 26(1):95–111

	7.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595

	8.	 Hou C, Wu J, Cao B, Fan J (2021) A deep-learning prediction model
for imbalanced time series data forecasting. Big Data Min Analytics
4(4):266–278

	9.	 Ioannidou A, Chatzilari E, Nikolopoulos S, Kompatsiaris I (2017) Deep
learning advances in computer vision with 3d data: A survey. Acm Com-
put Surv 50(2):1–38

	10.	 Mirbauer M, Krabec M, Krivanek J, Sikudova E (2022) Survey and evalua-
tion of neural 3d shape classification approaches. IEEE Trans Pattern Anal
Mach Intell 44(11):8635–8656

	11.	 Xiao YP, Lai YK, Zhang FL, Li C, Gao L (2020) A survey on deep geom-
etry learning: From a representation perspective. Comput Vis Media
6(2):113–133

	12.	 Su H, Maji S, Kalogerakis E, Learned-Miller EG (2015) Multi-view convolu-
tional neural networks for 3d shape recognition. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, Santiago, 7-13
December 2015. IEEE, New York

	13.	 Chen SL, Zheng L, Zhang Y, Sun Z, Xu K (2018) Veram: View-enhanced
recurrent attention model for 3d shape classification. IEEE Trans Vis Com-
put Graph 25:3244–3257

	14.	 Chen Y, Xing H, Ma Z, et al (2022) Cost-efficient edge caching for noma-
enabled iot services. China Commun

	15.	 Zhi S, Liu Y, Li X, Guo Y (2018) Toward real-time 3d object recognition: A
lightweight volumetric cnn framework using multitask learning. Comput
Graph 71:199–207

	16.	 Wu X, Chang J, Lai YK, Yang J, Tian Q (2021) Bispl: Bidirectional self-
paced learning for recognition from web data. IEEE Trans Image Process
30:6512–6527

	17.	 Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese
S, Savva M, Song S, Su H, et al (2015) Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:​1502.​03167

	18.	 Mo K, Zhu S, Chang AX, Yi L, Tripathi S, Guibas LJ, Su H (2019) Partnet: A
large-scale benchmark for fine-grained and hierarchical part-level 3d
object understanding. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, Long Beach, CA, 16-20 June 2019.
IEEE, New York

	19.	 Yu F, Liu K, Zhang Y, Zhu C, Xu K (2019) Partnet: A recursive part decom-
position network for fine-grained and hierarchical shape segmentation.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, Long Beach, CA, 16-20 June 2019. IEEE, New York

	20.	 Fu H, Jia R, Gao L, Gong M, Zhao B, Maybank S, Tao D (2021) 3d-future: 3d
furniture shape with texture. Int J Comput Vision 129(12):3313–3337

	21.	 Cheraghian A, Rahman S, Campbell D, Petersson L (2020) Transductive
zero-shot learning for 3d point cloud classification. In: Proceedings of
the IEEE/CVF winter conference on applications of computer vision,
Colorado, 1-5 March 2020. IEEE, New York

	22.	 Wu Z, Zhang Y, Zeng M, Qin F, Wang Y (2018) Joint analysis of shapes and
images via deep domain adaptation. Comput Graph 70:140–147

	23.	 Han Z, Shang M, Liu YS, Zwicker M (2019) View inter-prediction gan: Unsu-
pervised representation learning for 3d shapes by learning global shape
memories to support local view predictions. In: Proceedings of the AAAI
Conference on artificial intelligence, Hawaii, 27 January–1 February 2019.
AAAI, Menlo Park

	24.	 Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, Salt
Lake City, UT, 18-22 June 2018. IEEE, New York

	25.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with
deep convolutional neural networks. In: Proceedings of advances in
neural information processing systems, Nevada, 3-8 December 2012. MIT
Press, Cambridge

	26.	 Sohn K, Berthelot D, Carlini N, Zhang Z, Zhang H, Raffel CA, Cubuk ED,
Kurakin A, Li CL (2020) Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. In: Proceedings of advances in neural
information processing systems, virtual, 6-10 December 2020. MIT Press,
Cambridge

http://arxiv.org/abs/1502.03167

Page 15 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92 	

	27.	 Sharma A, Grau O, Fritz M (2016) Vconv-dae: Deep volumetric shape
learning without object labels. In: Proceedings of geometry meets deep
learning workshop at european conference on computer vision, Amster-
dam, 9 October 2016. Springer, Berlin

	28.	 Wu J, Zhang C, Xue T, Freeman B, Tenenbaum JB (2016) Learning a
probabilistic latent space of object shapes via 3d generative-adversarial
modeling. In: Proceedings of advances in neural information processing
systems, Barcelona, 5-10 December 2016. MIT Press, Cambridge

	29.	 Yang Y, Feng C, Shen Y, Tian D (2018) Foldingnet: Point cloud auto-
encoder via deep grid deformation. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, Salt Lake City,
UT, 18-22 June 2018. IEEE, New York

	30.	 Achlioptas P, Diamanti O, Mitliagkas I, Guibas L (2018) Learning represen-
tations and generative models for 3d point clouds. In: Proceedings of
international conference on machine learning, Stockholm Sweden, 10-15
July 2018. ACM, New York

	31.	 Eckart B, Yuan W, Liu C, Kautz J (2021) Self-supervised learning on 3d
point clouds by learning discrete generative models. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
virtual, 19-25 June 2021. IEEE, New York

	32.	 Afham M, Dissanayake I, Dissanayake D, Dharmasiri A, Thilakarathna K,
Rodrigo R (2022) Crosspoint: Self-supervised cross-modal contrastive
learning for 3d point cloud understanding. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, Louisiana,
19-24 June 2022. IEEE, New York

	33.	 Qi CR, Su H, Mo K, Guibas LJ (2017a) Pointnet: Deep learning on point
sets for 3d classification and segmentation. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, Honolulu,
HI, 22-25 July 2017. IEEE, New York

	34.	 Qi CR, Yi L, Su H, Guibas LJ (2017b) Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In: Proceedings of advances in
neural information processing systems, Long Beach, 4 December 2017.
MIT Press, Cambridge

	35.	 Liu Y, Fan B, Xiang S, Pan C (2019) Relation-shape convolutional neural
network for point cloud analysis. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, Long Beach, 16-20
June 2019. IEEE, New York

	36.	 Berg A, Oskarsson M, O’Connor M (2022) Points to patches: Enabling the
use of self-attention for 3d shape recognition. arXiv preprint arXiv:​2204.​
03957

	37.	 Wijaya KT, Paek DH, Kong SH (2022) Advanced feature learning on point
clouds using multi-resolution features and learnable pooling. arXiv
preprint arXiv:​2205.​09962

	38.	 Song M, Liu Y, Liu XF (2020) Semi-supervised 3d shape recognition via
multimodal deep co-training. Comput Graph Forum 39(7):279–289

	39.	 Chen L, Zhang Y, Lin Y, Jiang M, Huang Y, Lei Y (2021) Consistency-based
semi-supervised learning for point cloud classification. In: Proceedings of
international conference on pattern recognition and artificial intelligence,
virtual, 20-22 August 2021. Springer, Berlin

	40.	 Shi X, Xu X, Zhang W, Zhu X, Foo CS, Jia K (2022) Open-set semi-super-
vised learning for 3d point cloud understanding. arXiv preprint arXiv:​
2205.​01006

	41.	 Bader C, Dingler S, Schwieger V (2021) Pvenet: Point voxel encoder
network for real-time classification of lidar point cloud segments. In:
Proceedings of international conference on advanced robotics, virtual,
6-10 December 2021. IEEE, New York

	42.	 Li F, Yu X, Ge R, Wang Y, Cui Y, Zhou H (2021) Bcse: Blockchain-based
trusted service evaluation model over big data. Big Data Min Analytics
5(1):1–14

	43.	 Sandhu AK (2021) Big data with cloud computing: Discussions and chal-
lenges. Big Data Min Analytics 5(1):32–40

	44.	 Huang J, Lv B, Wu Y, Chen Y, Shen X (2022) Dynamic admission control
and resource allocation for mobile edge computing enabled small cell
network. IEEE Trans Veh Technol 71(2):1964–1973

	45.	 Qi L, Lin W, Zhang X, Dou W, Xu X, Chen J (2022) A correlation graph
based approach for personalized and compatible web apis recommen-
dation in mobile app development. IEEE Trans Knowl Data Eng. https://​
doi.​org/​10.​1109/​TKDE.​2022.​31686​11

	46.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for iot in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron 222. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	47.	 Li K, Zhao J, Hu J, Chen Y (2022) Dynamic energy efficient task offloading
and resource allocation for noma-enabled iot in smart buildings and
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	48.	 Wang K (2020) Migration strategy of cloud collaborative computing for
delay-sensitive industrial iot applications in the context of intelligent
manufacturing. Comput Commu 150:413–420

	49.	 Huang J, Tong Z, Feng Z (2022) Geographical poi recommendation for
internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	50.	 Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial iot. Future Gener Comput Syst 139:29–37

	51.	 Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. Int J Commun
Syst. https://​doi.​org/​10.​1002/​dac.​5154

	52.	 Chen Y, Liu Z, Zhang Y et al (2021) Deep reinforcement learning-based
dynamic resource management for mobile edge computing in industrial
internet of things. IEEE Trans Industr Inform 17(7):4925–4934

	53.	 Bi R, Liu Q, Ren J, Tan G (2020) Utility aware offloading for mobile-edge
computing. Tsinghua Sci Technol 26(2):239–250

	54.	 Wu Y, Zhang L, Berretti S, Wan S (2022) Medical image encryption by
content-aware dna computing for secure healthcare. IEEE Trans Industr
Inform. https://​doi.​org/​10.​1109/​TII.​2022.​31945​90

	55.	 Wu Y, Guo H, Chakraborty C, Khosravi M, Berretti S, Wan S (2022) Edge
computing driven low-light image dynamic enhancement for object
detection. IEEE Trans Netw Sci Eng. https://​doi.​org/​10.​1109/​TNSE.​2022.​
31515​02

	56.	 Shi G, Wu Y, Liu J, Wan S, Wang W, Lu T (2022) Incremental few-shot
semantic segmentation via embedding adaptive-update and hyper-class
representation. arXiv preprint arXiv:​2207.​12964

	57.	 Kim D, Lee S, Lee H, Cho S (2008) A distance-based compres-
sion of 3d meshes for mobile devices. IEEE Trans Consum Electron
54(3):1398–1405

	58.	 Deng Y, Ni Y, Li Z, Mu S, Zhang W (2017) Toward real-time ray tracing: A
survey on hardware acceleration and microarchitecture techniques. ACM
Comput Surv 50(4):1–41

	59.	 Su JC, Gadelha M, Wang R, Maji S (2018) A deeper look at 3d shape clas-
sifiers. In: Proceedings of the european conference on computer vision,
Munich, 8–14 September 2018. Springer, Berlin

	60.	 Fu H, Cohen-Or D, Dror G, Sheffer A (2008) Upright orientation of man-
made objects. In: Proceedings of special interest group on computer
graphics and interactive techniques conference, Los Angeles, 11-15
August 2008. ACM, New York

	61.	 Simonyan K, Zisserman A (2014) Very deep convolutional networks for
large-scale image recognition. Ithaca, NY. arXiv preprint https://​arxiv.​org/​
abs/​1409.​1556

	62.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image rec-
ognition. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, Las Vegas, 27-30 June 2016

	63.	 Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016)
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5
mb model size. arXiv preprint arXiv:​1602.​07360

	64.	 Chollet F (2017) Xception: Deep learning with depthwise separable con-
volutions. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, Honolulu, HI, 22-25 July 2017. IEEE, New York

	65.	 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:​1704.​
04861

	66.	 Cubuk ED, Zoph B, Shlens J, Le QV (2020) Randaugment: Practical auto-
mated data augmentation with a reduced search space. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
virtual, 14-19 June 2020. IEEE, New York

	67.	 Kurakin A, Raffel C, Berthelot D, Cubuk ED, Zhang H, Sohn K, Carlini N
(2020) Remixmatch: Semi-supervised learning with distribution match-
ing and augmentation anchoring. In: Proceedings of international
conference on learning representations, virtual, 26 April-1 May 2020.
Ithaca, NY

	68.	 Johnson R, Zhang T (2013) Accelerating stochastic gradient descent
using predictive variance reduction. In: Proceedings of advances in neural

http://arxiv.org/abs/2204.03957
http://arxiv.org/abs/2204.03957
http://arxiv.org/abs/2205.09962
http://arxiv.org/abs/2205.01006
http://arxiv.org/abs/2205.01006
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1002/dac.5161
https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/TII.2022.3194590
https://doi.org/10.1109/TNSE.2022.3151502
https://doi.org/10.1109/TNSE.2022.3151502
http://arxiv.org/abs/2207.12964
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

Page 16 of 16Song and Guo ﻿Journal of Cloud Computing (2022) 11:92

information processing systems, Nevada, 5-10 December 2013. MIT Press,
Cambridge

	69.	 Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua Xs (2019)
Quantization networks. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, Long Beach, 16-20 June 2019.
IEEE, New York

	70.	 Tailor SA, Fernandez-Marques J, Lane ND (2020) Degree-quant: Quantiza-
tion-aware training for graph neural networks. arXiv preprint arXiv:​2008.​
05000

	71.	 Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019)
Dynamic graph cnn for learning on point clouds. ACM Trans Graph
38(5):1–12

	72.	 Khan SH, Guo Y, Hayat M, Barnes N (2019) Unsupervised primitive discov-
ery for improved 3d generative modeling. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, Long Beach,
16-20 June 2019. IEEE, New York

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2008.05000
http://arxiv.org/abs/2008.05000

	Efficient 3D object recognition in mobile edge environment
	Abstract
	Introduction
	Related work
	3D object recognition
	Edge computing

	Method
	Overview
	Cloud-based rendering
	Terminal-based recognition

	Experiments
	Implementation detail
	The effect of the initial labeled size
	Comparison with state-of-the-art methods
	Ablation study
	Impact of augmentation strategies
	The effect of SVCNN
	View consistency loss
	The effect of the lightweight architecture
	The quantization-aware training

	Conclusion
	Limitation and future work

	Acknowledgements
	References

