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Abstract 

Internet of Things (IoT) is made up with growing number of facilities, which are digitalized to have sensing, network-
ing and computing capabilities. Traditionally, the large volume of data generated by the IoT devices are processed in 
a centralized cloud computing model. However, it is no longer able to meet the computational demands of large-
scale and geographically distributed IoT devices for executing tasks of high performance, low latency, and low energy 
consumption. Therefore, edge computing has emerged as a complement of cloud computing. To improve system 
performance, it is necessary to partition and offload some tasks generated by local devices to the remote cloud or 
edge nodes. However, most of the current research work focuses on designing efficient offloading strategies and 
service orchestration. Little attention has been paid to the problem of jointly optimizing task partitioning and offload-
ing for different application types. In this paper, we make a comprehensive overview on the existing task partitioning 
and offloading frameworks, focusing on the input and core of decision engine of the framework for task partitioning 
and offloading. We also propose comprehensive taxonomy metrics for comparing task partitioning and offloading 
approaches in the IoT cloud-edge collaborative computing framework. Finally, we discuss the problems and chal-
lenges that may be encountered in the future.
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Introduction
In the past few decades, the Internet has expanded to the 
physical world and grown to the Internet of Things (IoT). 
Ericsson predicts that more than 50 billion devices will be 
connected to the Internet by 2025. Most of these devices 
are located at the end of the Internet, affecting all aspects 
of our daily life and traditional industry. The Internet of 
Everything (IoE) has become a major trend in the devel-
opment of the Internet and wireless communication net-
works (Patel et  al. [1]). According to the reports, global 
monthly mobile data traffic will reach 49 EB by 2021. Due 
to the limited computing resources of end devices (e.g., 
disk capacity, memory size, and operating speed), it is 

impractical to perform tasks on the end device locally, 
especially some resource-intensive applications. Under 
the circumstance, cloud computing grows fast, because it 
can provide flexible services and data-intensive process-
ing capabilities to end-users through wide area networks 
(WANs). Its representatives are Amazon Web services, 
Microsoft Azure and Google Cloud, from which users 
can obtain seemingly unlimited resources without build-
ing new computing infrastructure. However, some of the 
IoE applications, such as face recognition, ultra-high-
definition video, augmented reality (AR), virtual reality 
(VR), and semantic analysis of speech, which require low 
latency and high computing performance, challenge the 
scalable and flexible computing models of the traditional 
clouds.

To solve this problem, mobile edge computing (MEC) 
has been proposed (Hu et al. [2]). The core idea of MEC 
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is to place servers at the edge of the network so that com-
putation, bandwidth, and storage resources are provided 
in places close to the IoT end devices to reduce the ser-
vice latency and energy consumption of end devices 
(Abbas et  al. [3]; Shi et  al. [4]), and also to improve the 
quality of user experience (QoE) and quality of service 
(QoS) (Lai et al. [5]; Sodhro et al. [6]). Edge servers can be 
either temporary devices, such as laptops, micro-servers, 
etc., or nearby infrastructure. Compared with large-scale 
server clusters such as cloud data centers, the comput-
ing and storage capacity of edge servers is relatively 
lower, but it has the advantages of short access distance 
and flexible geographical distribution. However, edge 
computing also brings complex resource management 
problems, since the end devices on the access side are 
featured by fast-changing service demands, high mobil-
ity and large data volume, etc. Therefore, it is necessary 
to design an efficient cloud-edge collaborative computing 
mechanism through task scheduling and coordinating 
management of computing resources, so as to provide 
better services for users. The architecture of cloud-edge 
collaborative computing system is shown in Fig. 1.

It is a crucial problem to efficiently offload computing 
tasks for realizing cloud-edge collaborative computing, 
in terms of response time, energy consumption of end 
devices, and quality of experience for users. Depending 
on the type of application tasks, the computing offloading 
can be generally divided into two categories, namely full 
offloading (Ma et  al. [7]) and partial offloading (Kuang 
et al. [8]). Full offloading is mainly focused on indivisible 

applications, which has been studied extensively, while 
the partial offloading is targeted at divisible applications. 
For the partial offloading, it handles a complete applica-
tion by dividing them into locally executed subtasks and 
offloadable subtasks. The locally executed subtasks are 
referred to as those that must be executed on the local 
device, such as tasks calling peripheral device interfaces 
or requiring user interactions, etc. The offloadable sub-
tasks are referred to as those that do not require interac-
tion with the local device, but tend to do computationally 
intensive data processing and can be offloaded to run on 
edge servers or remote clouds.

The problem of computing offloading has been exten-
sively studied so far, mainly considering the challenges 
posed by the geographically distributed edge servers 
and the heterogeneity of various resources. Recently, 
Avgeris et  al. [9] proposed an optimal resource alloca-
tion framework by introducing a Markov Random Field 
based mechanism for distributing the excess workload in 
scenarios with heterogeneous edge devices and dynamic 
wireless conditions modeled by the dynamic behavior 
and mobility of the users. There are also some reviews 
providing analytical overview of these research works 
from different perspectives. Heidari et al. [10] presented 
a study on task offloading for IoT devices in various 
computing scenarios from the following three aspects: 
computing environment, offloading strategy, and deci-
sion process. Zhang et al. [11] conducted a comprehen-
sive study on four critical issues of task offloading in 
MEC, including architecture, computation migration, 

Fig. 1  Architecture of cloud-edge collaborative computing system
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edge caching, and service orchestration. Saeik et al.  [12] 
gave a survey of how the Edge and/or Cloud can be com-
bined together to facilitate the task offloading problem, 
while emphasizing on the mathematical, artificial intel-
ligence and control theory optimization approaches that 
can be used to satisfy the various objectives, constraints 
and dynamic conditions for different applications. Feng 
et  al.  [13] presented approaches to achieve offloading 
objectives mainly including mathematical solver, heu-
ristic algorithms, Lyapunov optimization, game theory, 
and Markov Decision Process (MDP) and Reinforce-
ment Learning (RL), and they compared the approaches 
by characterizing their pros and cons as well as targeting 
applications. We summarize the existing survey papers of 
tasking offloading in Table 1.

Briefly speaking, we found that most of these reviews 
focus on various offloading strategies and supporting 
techniques to alleviate the burden on smart devices, 
whereas few of them consider task partitioning together 
with computing offloading. Therefore, in this paper we 
make a survey on task offloading in IoT cloud-edge col-
laborative computing from a new perspective. The con-
tributions of the paper are embodied in the following 
aspects. 

1)	 We pay attention to the problem of jointly optimiz-
ing task partitioning and offloading for different IoT 
cloud-edge collaborative computing scenarios;

2)	 We analyze some existing task partitioning and off-
loading frameworks and extract a general workflow 
of task partitioning and offloading, which mainly 
includes an application model for profiling users’ 
requirements of task partitioning and offloading and 
a decision engine for solving application models;

3)	 We propose comprehensive taxonomy metrics 
for comparing task partitioning and offloading 
approaches in the IoT cloud-edge collaborative com-
puting framework.

The rest of the paper is organized as follows. Task par-
titioning and offloading framework  section introduces 
several task partitioning and offloading frameworks 
and provides a comparative analysis of them, to extract 
a general workflow for task partitioning and offload-
ing. Input of decision engine: application model  sec-
tion introduces the application modeling approach 
and focuses on interdependent subtask modeling and 
cost modeling. Core of decision engine: model solv-
ing section analyzes the currently proposed approaches 
for solving models of task partitioning and offloading 
decisions. Taxonomy of task partitioning and offload-
ing approaches section proposes a comprehensive tax-
onomy for task partitioning and offloading approaches. 
Conclusion and future work  section points out some 
future challenges and perspectives.

Table 1  Some existing surveys on computing offloading in edge computing

Survey paper Summary

Heidari et al. [10] The authors outlined task offloading for different computing environments, with offloading strategies and decision processes.

Zhang et al. [11] The authors focused on architecture, computation migration, edge caching, and service orchestration in task offloading.

Saeik et al. [12] The authors emphasized on solving the task offloading problem with the mathematical, artificial intelligence and control theory 
optimization approaches.

Feng et al. [13] The authors compared the approaches including mathematical solver, heuristic algorithms, Lyapunov optimization, game theory, 
and MDP/RL for solving the task offloading problem.

Mach et al. [14] The authors focused mainly on computation offloading decisions, by considering allocation of computing resources and mobility 
management in MEC.

Jiang et al. [15] The authors classified the existing work on task offloading into two categories, namely gaming and cooperation between edge 
and the cloud, and heuristic algorithms.

Wang et al.  [16] The authors classified the existing work on task offloading into five categories, based on offloading destination, load balance of 
edge servers, device mobility, application partitioning, and partition granularity, respectively.

Lin et al. [17] The authors classified the computation offloading from offloading flow and offloading scenario. They also classified the computa-
tion offloading schemes into five categories, which are (non)convex optimization, MDP, game theory, Lyapunov optimization, and 
machine learning.

Shakarami et al. [18] The authors only reviewed the computation offloading approaches based on game-theoretic for edge computing.

Wang et al. [19] The authors reviewed the task offloading schemes considering response time, device energy, service provider cost, load balance 
between edge and cloud, and device mobility.

This paper We consider task partitioning together with computing offloading, and propose a general framework including an applica-
tion model and a decision engine, and more comprehensive taxonomy metrics for classifying task partitioning and offloading 
approaches.
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Task partitioning and offloading framework
MAUI
MAUI is an offloading framework proposed by Cuervo 
et al. [20] to support fine-grained energy-aware applica-
tion code offloading to the edge servers with hosted code 
running environments. The system architecture of MAUI 
is shown in Fig.  2. The MAUI runs on the smartphone, 
and its runtime environment consists of three compo-
nents: 1) profiler, which detects programs and collects 
the energy and data transfer requirements of the pro-
grams; 2) client proxy, which transfers the control and 
data messages to finish code offloading; and 3) solver, 
which coordinates with the MAUI server to simplify the 
offloading decision to save energy. On the server side, 
MAUI has four components, which are profiler, server 
agent, solver, and MAUI controller. The MAUI control-
ler is responsible for identifying and allocating resources 
of the incoming requests to instantiate the partitioned 
application. MAUI provides method-level code offload-
ing based on the .NET framework.

Lots of early attempts have been taken to make the 
code migration method light-weighted. Most of the pro-
posed methods are relied on the programmer to manu-
ally modify the program to handle task partitioning, 
code migration, and make it adapted to network condi-
tion changing. These methods are fine-grained and able 
to save energy consumption of mobile devices, but at 
the same time place a considerable burden on program-
mers. MAUI reduces the burden on programmers by 
combining code portability, reflection, serialization, and 
type safety. MAUI uses the Microsoft .NET Common 

Language Runtime (CLR) [21] to handle computing tasks 
on both the smartphone and the server sides. Hosted 
code enables MAUI to ignore the differences in instruc-
tion set architecture for both mobile devices (typically 
using ARM-based CPUs) and servers (typically using 
x86 CPUs). MAUI takes costs of network (i.e., latency, 
bandwidth, and wait time) and CPU into consideration 
to provide an efficient solution for determining how to 
partition applications at running time. Therefore, MAUI 
has merit in reducing the energy consumption of devices, 
but it does not consider how to overcome issues such as 
memory resource limitations of devices.

CloneCloud
CloneCloud is a flexible partition analyzer and applica-
tion runtime proposed by Chun et  al. [22]. It combines 
static and dynamic analysis to automatically partition 
applications at a fine-grained level, so as to minimize 
execution time and energy consumption for the targeted 
computing and communication environments. The sys-
tem architecture of CloneCloud is shown in Fig. 3.

The partitioning mechanism in CloneCloud is offline, 
aiming to determine which parts of the application run 
on the mobile device and which parts of codes are to 
be migrated to the cloud. Unlike the previous method 
(including the MAUI system mentioned above), pro-
grammers do not need to write applications in a pre-
scribed manner or annotate source code manually. 
CloneCloud uses static analysis to determine the parts of 
migration and the reintegration points in the code, based 
on a set of constraints. Dynamic analysis performs the 

Fig. 2  Architecture of MAUI. (Cuervo et al. [20])
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cost model to build the adaptation environment for appli-
cations of different partitioning strategies. Finally, the 
optimization solver uses the cost model derived from the 
dynamic analysis to make a proper partitioning decision.

CloneCloud does not rely on programmers’ annota-
tions in source codes. Moreover, CloneCloud allows 
native operating systems to execute in a virtual machine 
in the cloud. Differing from the application-layer virtual 
machine (VM) migrators (Aridor et  al. [23]; Zhu et  al. 
[24]), CloneCloud can utilize both raw CPU functional-
ity and system functionality to implement the underlying 
libraries and operating systems. Unlike the traditional 
interruption recovery mechanism used for application 
migration, CloneCloud migrator operates on a thread-
level granularity.

ThinkAir
ThinkAir is a mobile cloud computing (MCC) offload-
ing framework proposed by Kosta et  al. [25]. Based on 
the technology of smartphone virtualization in cloud 
computing, ThinkAir provides a method-level approach 
of task offloading through source annotation. It not only 
considers on-demand resource allocation during task 
offloading, but also provides a VM manager and an auto-
mated parallel processing module in the cloud to manage 
VMs for end devices. Particularly, ThinkAir enhances the 
computing power of mobile devices by dynamically cre-
ating, restoring, and destroying VM images of the entire 
smartphone system in the cloud. This enables parallelized 
applications to call multiple VMs to execute in the cloud 
in a seamless and on-demand manner, thereby greatly 
reducing execution time and energy consumption. As 
shown in Fig.  4, the ThinkAir system architecture con-
sists of three main components, which are execution 
environment, application server, and profiler.

The execution environment includes programmer 
API, compiler, and execution controller. ThinkAir pro-
vides a simple library, together with the support of 
the compiler. The programmer only needs to annotate 
which method to be considered for offloading with ‘@
Remote’. This essentially relieves the burden on pro-
grammers. The compiler is composed of the remote 
code generator and the customized native develop-
ment kit (NDK). The remote code generator is a tool 
that converts annotated code. The NDK provides native 
code support on the cloud. The execution controller 
drives offloading decisions and records past-calling 
data.

The application server manages the code offloaded 
to the cloud, consisting of three main components: the 
client processor, the cloud infrastructure, and the auto-
matic parallelization component. The client processor 
is responsible for building a connection between the 
client (mobile device) and the cloud server, receiving 
and executing the offloaded code, and returning the 
results. To make the cloud infrastructure easy to main-
tain and to keep the execution environment consistent, 
ThinkAir uses a virtualized environment that allows the 
system to be deployed where needed.

The profiler is the most crucial part of the ThinkAir 
framework, which consists of three sub-profilers (i.e. 
hardware profiler, software profiler, and network pro-
filer). They collect different data and input it into the 
energy model. To solve the problem that specific com-
ponents (e.g., GPS and audio, etc.) must run locally and 
cannot be migrated to the cloud, ThinkAir designs and 
implements an energy estimation model based on the 
PowerTutor model (Zhang et al. [26]).

Fig. 3  Architecture of CloneCloud. (Chun et al. [22])
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Phone2Cloud
Phone2Cloud is an energy-saving mobile cloud comput-
ing system with semi-automatic offloading proposed 
by Feng et  al. [27]. To improve the energy efficiency of 
smartphones, Phone2Cloud offloads the computing tasks 
of applications running on smartphones to the cloud 
while improving the performance of the applications by 
reducing the execution time, which ultimately improve 
the quality of user experience. The system architecture of 
Phone2Cloud is shown in Fig. 5.

Phone2Cloud consists of seven components, includ-
ing bandwidth monitor, resource monitor, execution time 
predictor, offloading decision engine, local execution 

manager, remote execution manager, and offloading 
proxy. Among these components, the offloading decision 
engine is its core and can be easily added or removed 
from the framework. Essentially, it was implemented 
based on the work of Liu et al. [28] and Xian et al. [29], 
which takes the user’s delay tolerance threshold as a 
constraint (Balasubramanian et al. [30]). The bandwidth 
monitor and resource monitor are used to monitor the 
current bandwidth of the network and the CPU load on 
the smartphone, respectively, as well as to predict the 
average bandwidth and average CPU load when mak-
ing offloading decisions. The execution time predictor is 
used to predict the average execution time of an entire 

Fig. 4  Architecture of ThinkAir. (Kosta et al. [25])
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application on a smartphone. Local and remote execu-
tion managers are mainly used to manage the execution 
of applications in Phone2Cloud. The offloading proxy 
connects the offloading decision engine and the remote 
execution manager together. Thus, Phone2Cloud mostly 
solves the offloading problem at the task-level granularity.

ParGen
ParGen is a parallel approach for module-level partition-
ing and offloading of dataflow applications proposed by 
Wen et al. [31]. ParGen aims to optimize the throughput 
of dataflow applications, considering that the edge cloud 
always serves multiple users in the vicinity and has lim-
ited resources. A novel model was defined for resource 
allocation and application partitioning in multi-user sce-
narios. A divide-and-conquer parallel approach for par-
titioning dataflow applications in a multi-user scenario 
with competing resources was proposed to jointly opti-
mize application partitioning and resource allocation 
among users, so as to maximize the average throughput 
of all users. The system architecture of ParGen is shown 
in Fig. 6.

ParGen consists of three components: mobile devices, 
edge cloud, and cloud. The edge cloud is deployed closer 
to users than cloud servers, which can effectively reduce 
latency. There are a limited number of servers on the 
edge cloud capable of running modules of mobile appli-
cations simultaneously. Many mobile devices connect 

to the edge cloud through a base station (BS) or a wire-
less access point (AP). On the mobile device side, there 
is a client middleware between the application layer 
and the operating system (OS). Its internal monitor-
ing agent program can send execution and transmission 
costs to the partitioning program in edge and cloud to 
request computation partitioning and bandwidth alloca-
tion. After receiving the request, the partitioning pro-
gram determines the best partitioning policy for each 
user and allocates bandwidth. The remote cloud provides 
APP store services and programming support for mobile 
applications.

Summary
From the frameworks for task partitioning and offload-
ing discussed above, we can see that partition applica-
tions at different granularities can alleviate the resource 
constraints in mobile devices. In general, the necessary 
components to implement task partitioning and offload-
ing are: (1) a profiler that detects the hardware conditions 
of the application, the mobile device itself, and the state 
of the network connection, and collects the energy and 
data transfer requirements for task execution; (2) a deci-
sion engine that makes decisions about whether and how 
to offload based on the results of the partitioning and 
offloading model; and (3) an offloading agent that sends 
the required input data to a remote server, receives the 

Fig. 5  Architecture of Phone2Cloud. (Feng et al. [27])
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results from the remote server, and passes the results to 
the application.

We abstract the workflow of the decision engine as 
shown in Fig. 7. Briefly speaking, firstly the dependence 
relation among the modules of a given application task 
is modelled as an application model, and its partition-
ing and offloading optimization goal is modelled as a cost 
model based on actual requirements. Secondly, based on 
the application model, an appropriate algorithm should 
be proposed to get the appropriate task partitioning and 
offloading result. Finally, the result is taken as input of 

the offloading agent to offload some modules executed 
on remote servers, while the rest executed locally on the 
mobile device. In this paper, we focus on making a survey 
on the input and core of decision engine of the frame-
work for task partitioning and offloading.

Input of decision engine: application model
Generally, a task for IoT applications is composed of 
several inter-dependent subtasks. The dependencies 
are determined by the context awareness and hardware 
requirements of the components to support proper 

Fig. 6  Architecture of ParGen. (Wen et al. [31])

Fig. 7  The general framework and workflow of task partitioning and offloading
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operation of the applications. To make offloading deci-
sions on decision engine, the inter-dependent subtask 
model should be partitioned into multiple sub-graphs of 
disjoint modules, which are then offloaded to appropriate 
servers based on cost model. In this section, we will have 
an overview on these two models comprising application 
models, which are used as input of decision engine.

Inter‑dependent subtask model
The first and essential step in modelling the application is 
to model inter-dependent subtasks, called inter-depend-
ence subtask models. At present, Directed Acyclic Graph 
(DAG), which uses the vertices to represent sub-tasks 
and edges to represent relation, is commonly used to 
model dependence relation of subtasks.

For a task to be run in IoT systems, the dependence 
relation among subtasks such as execution order, data 
flow, and control flow at different granularity levels 
can be obtained statically or dynamically based on task 
parameters or context-awareness requirements. For 
statically modelling, the dependence relation is depicted 
before tasks are actually executed. For dynamically mod-
elling, the dependence relation is determined during task 
running under control of the decision engine of the task 
partitioning and offloading framework. No matter which 
type of modelling, the dependence relation is mostly 
modelled as DAG. Depending on the computational scale 
of tasks, dependence relation models can have a large 
number of vertices with interdependencies of high com-
plexity compared to simple class diagrams.

Niu et al. [32] constructed weighted object relationship 
graphs (WORGs) for mobile applications. The object and 
object-to-object dependence were obtained by analyzing 

the bytecode of tasks, and the object relationship graph 
(ORG) was constructed by traversing the application 
based on method calls, as shown in Fig.  8(a), where 
nodes represent objects and edges represent dependence 
between objects. Then, the execution time of each object 
and the transmission data of each method call were 
calculated as the weights of nodes and edges, respec-
tively. The resulting weighted object relationship graphs 
(WORGs) were constructed as shown in Fig. 8(b).

Cost model
Different types of applications, such as data-oriented 
applications, code-oriented applications, and continu-
ous execution applications, etc. (Munoz et al. [33]), have 
different requirements for offloading computing tasks 
to remote servers. The application is modelled by taking 
into consideration the requirements of users, network 
environment, and service providers, finding the corre-
sponding optimization goals and constraints to establish 
a cost model. Several cost factors are usually considered 
in cost modelling, including latency, energy consump-
tion, quality of service, quality of experience and eco-
nomic cost.

Latency
Latency includes latencies in computing, transmission, 
and queuing. It is one of the essential metrics for evaluat-
ing the performance of mobile devices. This is especially 
true for latency-sensitive applications, like emergency 
event processing in industrial internet of things. The 
servers in traditional cloud computing centers have high 
computing power to handle complex workloads (e.g., 
image processing (Kumar et al. [34]), speech recognition 

Fig. 8  a  Object Relationship Graph (ORG). b  Weighted Object Relationship Graphs (WORGs). (Niu et al. [32])
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(Muhammad et al. [35]), etc.). However, sending all sub-
tasks to clouds can make both computing resource and 
network bandwidth congested, leading to higher queuing 
latency and then total latency. To reduce the total latency, 
the best approach is to offload workloads that do not 
need to be executed locally on mobile devices to the edge 
servers with sufficient computing power, which are closer 
to the local device than the remote cloud.

Theoretically, if all the subtasks can be processed at 
edge servers, the latency can be significantly reduced 
compared to sending them to cloud servers for execution 
(Shi et  al. [36]), because the transmission time between 
the edge and the cloud is saved. However, a task arriving 
at a resource-constrained edge node is not likely to be 
executed immediately, and there is often a waiting time 
for execution. Therefore, the geographically closest infra-
structure is not always a good choice. By taking a queu-
ing model based on the priority of tasks in calculating 
the delay, it is a practical problem to dispatch subtasks 
to the proper layers (i.e. local, edge and cloud), allocate 
bandwidth for mobile end devices, and find a suitable 
transmission rate. To solve the problem, the real-time 
network state (e.g., transmission bandwidth, etc.), com-
puting power and bandwidth usage information of edge 
and cloud layers must be considered to avoid unneces-
sary contention and delays.

Energy
Lifetime of mobile devices is considered as one of the 
indispensable factors affecting the working periods of IoT 
applications. Although some progress has been made in 
battery-related technology research, there is still a gap 
between the rapid growth of power consumption and 
the battery capacity of current mobile devices. There-
fore, another critical optimization goal of partition and 
offload decision-making is how to extend the battery 
life of mobile devices by reducing energy consumption. 
There have been many works that discussed the energy 
consumption optimization problem from different per-
spectives. For example, Zhao et  al. [37] proposed an 
approximate algorithm of computation offloading, which 
was shown saving nearly 82.7% of energy compared to 
executing it entirely on a mobile device.

Many related works have developed power/energy 
models for various components on mobile terminal 
devices, including central processing units (CPUs) as well 
as cellular and WiFi communications. Recently most of 
the researchers used specific hardware (external devices 
or components that attached with the mobile device) 
to obtain working voltage and current of devices, and 
then the power models can be obtained. However, this 
measurement based approach can only obtain power 
model of the whole device, but not that of each hardware 

component of the device (e.g., CPU, GPU, network inter-
face, etc.). This limitation causes challenges in analyzing 
the energy consumption of different types of applications 
on mobile devices.

Quality of Service (QoS)
Due to the increasing popularity of video streaming ser-
vices (e.g., YouTube and Netflix, etc.) and the exponential 
growth of active users, more research works use QoS as 
a modelling and optimization goal of many partitioning 
and offloading approaches (Rausch et al. [38]; Song et al. 
[39]). However, it is challenging to achieve expected QoS 
due to many factors, such as different client devices/
request patterns, changing media content, and network 
environments. Generally speaking, the following fac-
tors should be taken into consideration to optimize QoS 
of network systems. First, the variability of network 
resources, the unstable nature of wireless channels, and 
the characteristics of fixed/mobile networks in hetero-
geneous environments. Second, the emergence of new 
services (e.g., video games and virtual/augmented real-
ity (VR/AR)), the diversity of usage environments, users’ 
expectations, and the optimization of operational costs 
for mobile and service providers. Third, the resource con-
straints of edge servers, various measurement and evalu-
ation methods for QoS management when allocating 
resources among users with other users’ quality of expe-
rience (QoE) preferences.

QoS is sometimes directly related to the response time 
of an application (amount to the latency metric), which 
can be taken as a constraint to achieve a specific QoS. 
Particularly, QoS improvement just requires keeping the 
response time within a threshold, rather than minimizing 
that time. Aazam et al. [40] proposed a resource estima-
tion approach based on the QoE history of the cloud ser-
vice customer (CSC) while enhancing the QoS. Mahmud 
et  al. [41] proposed a delay-aware application module 
management policy that considers various aspects of dis-
tributed applications in a decentralized and coordinated 
environment inducing latency, so as to ensure QoS while 
meeting deadlines for all types of applications and maxi-
mizing utility of fog computing resources.

Quality of Experience (QoE)
With the proliferation of IoT and the ensuing computing-
intensive tasks, the surging need for computing offload-
ing, and how to optimize offloading for the optimal user 
quality of experience (QoE) is a fundamental question. 
Despite that it is important to consider the character-
istics of the task and make optimal offloading decisions 
based on the QoE requirements of each end-user. Par-
ticularly, different types of end-users pursue different 
QoE performance. For example, cloud gaming inclines to 
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have lower execution time during computational offload-
ing, while the unmanned aerial vehicles (UAVs) prefer 
computationally offloading with low energy consumption 
to prolong battery life. On the basis of comprehensively 
considering the different QoE performance require-
ments of IoT users for task execution time, task process-
ing energy consumption and computing cost, Luo et  al. 
[42] proposed a QoE-driven adaptive computing offload-
ing (QEACO) strategy based on theoretical performance 
analysis. Since then, each IoT user can optimize and 
adapt to their best QoE to make offloading decisions.

In the business scenario of IoT, in addition to providing 
low latency and low energy consumption, the cloud-edge 
collaborative computing module also needs to provide 
suitable caching, quick communication and vast amounts 
of computing power (Huang et  al. [43]). QoE can be 
regarded as the most direct experience in service interac-
tion, especially in Internet of Vehicles (IoV). He et al. [44] 
studied the problem of QoE-based edge task offloading 
in IoV, and proposed an improved deep reinforcement 
learning (DRL) algorithm named PS-DDPG, in which a 
QoE model was designed by taking into account the lim-
ited vehicle cache and the unpredictable communica-
tion path caused by the diversification of transmission 
information.

Economic cost
The economic cost is an essential factor when selecting 
computing resources for device users and when service 
providers offer solutions. The reasonable pricing of ser-
vices and the optimization of economic cost are essential 
issues to be addressed in task partition and offloading. 
From the perspective of service providers such as You-
Tube and Amazon, cloud-side collaborative computing 
provides lower latency and energy consumption, poten-
tially increasing throughput and improving user expe-
rience (Shi et  al. [36]). As a result, they can earn more 
benefits by handling the same volume of computing or 
storage. The service provider’s investment is mainly spent 
in building and maintaining each tier of resources. To 
fully utilize the resources of each layer, the provider can 
charge the users based on the data location and expected 
resource utility. Therefore, how to build a reasonable eco-
nomic cost model based on the characteristics of cloud-
edge collaborative computing to ensure the profitability 
of service providers and the acceptability of users is the 
focus of current research work.

Integrated model
Due to diverse needs of users and service providers in 
fact, the joint optimization of multiple costs needs to 
be considered in task partitioning and offloading solu-
tions. However, multiple costs are usually in conflict 

with each other, and it is difficult to make them opti-
mal simultaneously. For example, to reduce energy 
consumption of the whole system (including mobile 
devices, edge servers and cloud servers), it may induce 
increasing response time of applications. A compro-
mise between these costs is needed to obtain optimal 
partitioning and offloading decisions. In general, there 
are several ways to build a cost model for joint optimi-
zation of multiple costs: 1) Converting multiple costs 
into one cost. For example, a square-weighted addition 
approach assigns each cost its weight to approximate 
the optimal solution as closely as possible; 2) Selecting 
the most important cost as the optimization objective 
and the rest as constraints; 3) Obtaining the Pareto-
optimal solutions (Lin et  al. [45]) of each cost for the 
mobile device users or service providers according to 
actual situations.

Let the first approach be used as an example for cost 
modelling. Assume that the application had n modules, 
for a given module i, the size of data transmission was ti , 
the memory cost was mi , and the code size was ci . Also, 
for each module, a variable xi ∈ {0, 1} was introduced to 
indicate whether module i was executed locally (xi = 0) 
or remotely (xi = 1) . The cost model was thus expressed 
as follows:

In Eq. (4), α is the conversion factor that maps the code 
size to CPU instructions. As shown in Eq.  (1), the cost 
model combines three costs, namely transmission cost 
Ct , local device memory cost Cm , and local device CPU 
occupation cost Cc , into one, where wt , wm , wc are the 
weights of each component that determine priorities of 
each optimization goal.

Let the second approach be used as an example for 
cost modeling. Assuming that the goal is to minimize 
latency and energy consumption of local devices, let Etot 
denote the total energy consumption of mobile devices, 
while Eloc and Ecom denote the energy consumption of 
local execution and the energy consumption of migrating 
data between local devices and edge servers respectively. 
Thus, the total consumed energy Etot can be expressed as:

(1)Min (wt · Ct + wm · Cm + wc · Cc)

(2)s.t. Ct =
n

i=1

ci · xi +
n

i=1

n

j=1

tj · xj ⊕ xi

(3)Cm =

n
∑

i=1

mi · (1− xi)

(4)Cc =

n
∑

i=1

α · ci · (1− xi)
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Then assume that Ttot denotes the execution time of 
application from start to end, Tloc , Tedge and Tcom denote 
the time needed for a part of the task to be executed 
locally, the time needed for a part of the task to be exe-
cuted at the edge node and the communication time 
needed for data migration between the local device and 
the edge server respectively. So Ttot can be expressed as:

Next, we choose energy consumption minimization as 
the final optimization objective while limiting the total 
execution time:

where D denotes the deadline to complete execution of 
the application. The values of Eloc and Tloc depend on 
the workload of the application running locally and the 
computing capability of the local device. The values of 
Ecom and Tcom are mainly affected by the variation of net-
work bandwidth. Tedge is determined by the workload of 
the application offloaded to the edge and the computing 
capability of the edge servers.

Core of decision engine: model solving
Taking the application mode as input, the decision engine 
is responsible for decomposing the inter-dependent 
subtask models to determine at the specified granular-
ity when and where to place which parts of tasks on the 
remote servers (i.e. edge and cloud servers). In particular, 
the decision engine first checks whether the application 
requires annotations. If annotations are needed, it will 
look for pre-annotated components for partitioning the 
application. If annotations are not necessary, it proceeds 
to check if the event profiler functionality is implemented 
in the application. If the event profiler is available, it col-
lects information to optimize the application partitioning 
and task offloading decision. The decision process is usu-
ally modelled as a mathematically constrained optimiza-
tion problem.

The core of decision engine is the solver of the 
optimization problem based on the graph model of 
inter-dependent subtask model and cost model. The opti-
mization algorithms can exhibit different characteristics 
when targeting different scenarios and optimization met-
rics. For example, some algorithms produce low overhead 
in the analysis technique, while others generate unneces-
sary overhead. Some algorithms need to assign decisions 
online, while others need offline pre-processing. The 
performance of the resulting optimization is improved 

(5)Etot = Eloc + Ecom

(6)Ttot = Tloc + Tedge + Tcom

(7)
Min Etot

s.t. Ttot < D,

by extracting the algorithmic advantages of both types of 
models. At present, the methods of modelling and solv-
ing the optimization problem can be divided into three 
categories, which are graph optimization, traditional 
programming, and Markov Decision Process (MDP) and 
Reinforcement Learning (RL).

Graph optimization
Giurgiu et al. [46] took profile information such as char-
acterization of modular architecture, CPU load, and 
network state in the cloud and locally to generate a com-
pact specification of the application and environment 
in the form of resource consumption graph. This graph 
was used together with the modular and highly cohesive 
subtask model by the optimization solver (i.e. the core of 
decision engine) to determine the optimal allocation of 
modules and deploy them accordingly through traversing 
the graph in an adaptive topological order.

Niu et al. [32] used weighted object relationship graphs 
(WORGs) as application model, and modelled the task 
partitioning and offloading problem as a graphical prob-
lem to minimize execution time and energy cost. The 
problem was solved by the Branch-Bounded Applica-
tion Partitioning (BBAP) algorithm and the Minimal Cut 
Set Greedy Application Partitioning (MCGAP). In the 
proposed approaches, bandwidth was considered as an 
essential operational variable.

Lakhan et al. [47] proposed an adaptive content-aware 
task scheduling (CATSA) framework for mobile work-
flow applications. To satisfy all mobile workflow appli-
cation constraints while reducing their execution time, 
CATSA first represented inter-dependent tasks with a 
directed acyclic graph, and then sorted them in topo-
logical order based on the earliest due first (EDF), short-
est processing first (SPF), and shortest spare time first 
(SSTF) approach. Thereafter, the optimal task offloading 
decision was made by selecting an optimal solution from 
the solution set using a random search approach.

Wu et  al. [48] represented general tasks in arbitrary 
topological consumption graphs, and proposed a Min-
Cost Offloading Partitioning (MCOP) algorithm to deter-
mine which portions of the application must run on the 
mobile device and which portions on cloud/edge servers 
under different cost models and mobile environments.

Traditional programming
Linear programming
Traditionally, the problem of deciding when and where to 
place which parts of tasks on remote servers can be mod-
elled as an integer linear programming (ILP) model. For 
an ILP model, it has linear optimization objective func-
tion, which is bounded by linear equations or inequa-
tions, and all of its variables are restricted to integers. The 
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annotations and analysis results given by the program-
mer about whether the application is partitionable or not 
are essential for the integer programming (IP) optimiza-
tion problems. Linear programming (LP) is a traditional 
mathematical planning method valid for solving the 
problems. The advantage of ILP model is that it always 
produces the best results for a particular objective func-
tion, but solving linear programming problems usually 
requires a lot of computing time.

MAUI (Cuervo et al. [20]) provided a fine-grained task 
partitioning and code offloading decision engine. It took 
inter-dependent subtask modal presented as call graphs, 
and then used 0-1 ILP for task partitioning to maximize 
energy savings during computing offloading.

CloneCloud (Chun et  al. [22]) models the application 
as a control flow graph. It partitions applications based 
on an offline static analysis of the various running condi-
tions of the target smartphone and the process binaries 
on the cloud. Thus, CloneCloud needs to run the analy-
sis again for each newly created application. Based on the 
application partitioning, it performs ILP to get the opti-
mized offloading decisions.

In the service-based middleware MACS proposed by 
Kovachev et al. [49] for mobile cloud computing, it had 
a decision engine that can seamlessly offload compu-
tationally intensive parts of the application to nearby 
infrastructure or a remote cloud. For developers, the 
application model was the same as the one on the 
Android platform, which encapsulated computationally 
intensive parts as Android services and each service had 
a specific functionality. The services are partitioned based 
on set conditions or parameters into two groups, one 
running locally and the other running in the cloud. State 
information (e.g., CPU load, available memory, remain-
ing battery power on local devices, bandwidth between 
the cloud and local devices) was monitored by MACS as 
parameter of decision engine for both the cloud and the 
local device. Finally, the partitioning and offloading prob-
lems were modelled as an ILP and an open-source class 
library was called to perform decision solving on the 
Android platform.

Yang et  al. [50] studied the application partition-
ing problem by evaluating the constraints on cloud 
resources in order to ensure the benefits of service 
providers. Initially, a single-user computation parti-
tioning problem (SCPP) was considered, and then the 
resource-constrained multi-user computation partition-
ing problem (RCMCPP) was derived from the SCPP. 
The RCMCPP was formulated as a mixed-integer linear 
programming (MILP) problem to minimize the total exe-
cution time. Application providers leveraged the perfor-
mance-resource-load (PRL) model to design the resource 
provisioning mechanism to make a tradeoff between 

application performance and cost of cloud resources and 
improve utilization of cloud resources.

ParGen et al. [31] used a data flow graph to model rela-
tions of subtasks and formulated the QoS optimized task 
partitioning and offloading problem as a 0-1 ILP prob-
lem. A parallel genetic algorithm was then used to maxi-
mize the throughput of the multi-user application. The 
approach allows dynamic partitioning of multiple users 
and supports sharing of computational requirements 
among numerous users.

Alameddine et  al. [51] aimed to provide delay-sensi-
tive 5G IoT services in different domains, by solving the 
dynamic joint resource allocation and fine-grained task 
scheduling problem. The problem was defined and for-
mulated as a mixed-integer linear programming (MILP) 
model. Given the heterogeneous requirements of off-
loading task predicted by application models and the 
limited MEC capabilities, they combined three NP-hard 
problems of task offloading, application resource allo-
cation, and non-preemptive task scheduling. Finally, 
they designed the dynamic task offloading and schedul-
ing approach based on LBBD (Logical Benders Decom-
position technique) (Hooker et  al. [52]). LBBD solved a 
relaxed master problem with fewer constraints and a 
subproblem whose solution allows generation of cut sets 
that iteratively guided the master problem to narrow the 
search space. Eventually, both the master problem and 
the subproblem converged to the optimal solution. The 
running time of this approach was reduced by several 
orders of magnitude, but did not take other constraints 
such as energy consumption and cost into consideration.

Ding et  al. [53] proposed a decentralized comput-
ing offload strategy (DCOS) algorithm to develop a 
task partitioning and offloading strategy for multi-user 
multi-mobile-edge scenarios to minimize the application 
execution overhead (i.e., the weighted sum of energy con-
sumption and computation time). It took MAUI (Cuervo 
et  al. [20]), CloneCloud (Chun et  al. [22]), ThinkAir 
(Kosta et al. [25]), mCloud (Zhou et al. [54]) or ULOOF 
(Neto et al. [55]) to partition the application into a set of 
tasks with correlations, which were represented as a pro-
gram call graph. Then the model solving was transformed 
into a convex optimization problem, and the optimal off-
loading decision was derived.

Wu et al. [56] formulated the offloading decision prob-
lem in blockchain-enabled heterogeneous IoT-edge-
cloud computing environments as a mixed-integer linear 
programming (MILP) problem and further derived an 
online and polynomial-time-complexity algorithm by 
taking advantage of the Lyapunov optimization tech-
nique, such that the energy consumption of the IoT 
device can be minimized when only sacrificing a little 
delay.
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Non‑Linear Programming (NLP)
Li et  al. [57] used task graphs to construct applica-
tion models for offloading and parallel execution. The 
task graph execution time was minimized by choos-
ing the optimal task allocation and scheduling policy 
by modelling the problem as a mixed-integer nonlin-
ear programming (MINLP) problem. The problem 
was transformed into a MILP model using the big-M 
approach. Then, a hybrid approach combining the 
LBBD principle (Hooker et al. [52]; Emeretlis et al. [58]) 
and MILP was designed for solving the problem. How-
ever, the computing time was high when the number of 
tasks increased, which cloud not be applied to large-
scale applications.

MDP and RL
At present, researchers found that in large-scale off-
loading scenarios, the traditional programming meth-
ods have difficulty in coping with growth of the search 
space. There have been many works on modelling the 
task partitioning and offloading problem as the Markov 
Decision Process (MDP). It then was solved by Reinforce-
ment Learning (RL) or Deep Reinforcement Learning 
(DRL) (Dash et al. [59]). RL can learn optimal offloading 
policies by interacting with edge networks, which can 
achieve model-free control without knowing the system’s 
internal transitions. Traditional reinforcement learning 
stores tuples containing states, actions, and rewards into 
Q tables. However, they are not applicable when the state 
or action space is enormous. DRL can solve the problem 
of space explosion by integrating neural networks into 
reinforcement learning to approximate Q values. There-
fore, DRL for joint optimization problems has attracted 
increasing interest from researchers, and complex off-
loading decision problems can be solved more efficiently 
using this approach (Wu et al. [60]).

Dab et al. [61] studied the problem of online comput-
ing offloading and resource allocation for applications 
with constraints of limited latency and device resources, 
and proposed a QL-based QL-JTAR algorithm. QL-JTAR 
was designed to jointly optimize total energy consump-
tion and total latency. They considered the interdepend-
ence of multi-user subtasks, and the system state changes 
with time slot. The problem was modelled as MDP, and 
the Q-Learning algorithm based on the value function 
was used to solve complex large-scale MDPs. Afterwards, 
the joint computation offloading and resource allocation 
method was evaluated by simulating real scenarios with 
real data input using the NS3 simulator. This method 
considered computational offloading for divisible tasks, 
but was only suitable for computational offloading for 
small state spaces.

Meng et  al. [62] proposed an online task schedul-
ing algorithm based on DRL, by establishing a system 
model based on MDP. They designed a new behav-
ior space and reward function expression in order 
to minimize the task queuing delay and the average 
energy consumption of the terminal system. The author 
expressed the behavior space as a Cartesian product 
model, and used the Cartesian product to describe the 
scheduling of tasks. However, the model only consid-
ered a single user and a single edge server, which could 
not cope with the complex IoT environment.

Su et  al. [63] proposed a spectrum access scheme 
based on Q-Learning in the mobile network environ-
ment to select the optimal spectrum for users. They 
aimed to improve the QoE of mobile users and maxi-
mize the content transmission rate by using QL. The 
optimal strategy for mobile users to download content 
from nodes was determined according to the content 
value function to maximize node utilization, and a non-
cooperative Stackelberg game was used to optimize the 
optimal strategy. The authors combined the QL-based 
optimal spectrum selection algorithm with the two-
stage Stackelberg game content selection algorithm 
to jointly maximize network throughput and improve 
node utilization. However, the author did not consider 
the user’s energy consumption and the node’s cache 
consumption when the content was delivered.

Lu et  al. [64] proposed a task scheduling algorithm 
with discrete server selection based on MA-DDPG, 
in order to reduce system energy consumption, task 
latency, and task loss rates for mobile devices and edge 
servers. It used the characteristics of multi-agent con-
tinuous learning to solve the problem of environmen-
tal instability caused by a single decision maker. It 
integrated the SAC algorithm with maximum entropy 
reward function to make Actors in DDPG explore as 
many actions as possible to obtain more near-optimal 
path choices. It combined multi-agent DDPG with SAC 
to solve the problems of instability and small learn-
ing in reinforcement learning, and optimized energy 
consumption, latency, and task discarding rate in 
offloading.

Tang et  al. [65] proposed a model-free online off-
loading algorithm based on DRL by considering the 
dynamic load problem of edge servers, in order to 
minimize long-term costs. In order to improve the cost 
estimation, the author innovatively integrated LSTM 
in DRL for predicting future server load. It used LSTM 
to predict the load information of future servers by 
adding the load level of the server to the input of neu-
ral network. Since the addition of LSTM complicated 
the original network, it was necessary to compress 
the network to reduce the number of operations. The 
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algorithm was evaluated based on the demonstration 
system, which needed to consider the real computing 
tasks in practical problems.

Cheng et  al. [66] proposed a DRL-based joint deep 
reinforcement learning (FDRL) framework to effec-
tively reduce the training loss and privacy leak-
age during training phase. They also proposed a 
joint optimization algorithm for task offloading and 
resource allocation method based on FDRL. The 
method was able to effectively protect the data pri-
vacy in the drone environment, reduce the amount of 
original data transmission, and effectively reduce the 
training loss.

Wang et  al. [67] adopted a sequence-to-sequence 
(S2S) neural network to obtain the task dependen-
cies of applications, and used off-policy reinforce-
ment learning to make task offloading decisions. The 
training of the S2S neural network was based on the 
regularly collected task DAG. According to the experi-
mental results, the offloading method based on rein-
forcement learning achieved better performance than 
the heuristic algorithm, but it required a lot of training 
when applied to online computing offloading, which 
would cause a lot of consumption.

Yan et al. [68] proposed a DRL-based joint optimiza-
tion task offloading algorithm by taking into account 
the waste of energy consumption when tasks were dis-
carded. The problem of optimizing long-term latency 
and system energy consumption in task offloading was 
solved by combining the DQN-based reinforcement 
learning method with the cloud-edge collaborative 
computing offloading. However, its performance was 
evaluated based on static simulation experiments. So it 
needs to be migrated to a really dynamic environment 
to evaluate the performance.

Taxonomy of task partitioning and offloading 
approaches
Based on the above analysis on the current work of task 
partitioning and offloading approaches, we see that they 
were designed for different applications with different 
users, application models, and model solving approaches. 
Here we propose a comprehensive taxonomy of these 
methods by investigating all critical issues involved in the 
task partitioning and offloading framework. As shown in 
Fig.  9, the metrics of taxonomy include end-user, inter-
dependent subtask model, cost model, profiler, decision 
engine, decision granularity, decision strategy, and off-
loading infrastructure.

–	 End-user means the number of mobile end-users 
considered in the application scenarios, which can 
be single end-user scenarios or multi-end-user sce-
narios. Compared with the single end-user scenario, 
the task partitioning and offloading problem in the 
multi-end-user scenarios needs to consider more 
environmental factors. For example, in the situation 
of limited edge servers, the partitioning and offload-
ing strategy adopted by one end user can be affected 
by other end-users’ strategies, if they offload tasks to 
the same edge server simultaneously.

–	 Inter-dependent subtask model means the type of 
graph models to represent inter-dependent subtasks 
for an application task. It can be program call graph, 
control graph, data flow graph, object graph, service 
graph, module graph, and task graph.

–	 Cost model is identified by the metrics of optimiza-
tion objectives, which are latency, energy consump-
tion, QoS, QoE and economic cost.

–	 Profiler is identified by the type of profile infor-
mation used by the decision engine. The currently 

Fig. 9  Comprehensive taxonomy of task partitioning and offloading approaches
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used profile information includes: 1) hardware-
related, including CPU utilization, RAM and device 
power, etc. 2) software-related, including data 
size, call relationships between module structures, 
throughput, etc. 3) network-related, including net-
work connectivity, bandwidth, transmission rate, 
etc.

–	 Decision engine is identified by its method used 
for model solving, such as graph optimization (GO) 
model, linear programming (LP) model, integer lin-
ear programming (ILP) model, mixed integer linear 
programming (MILP) model, mixed integer non-
linear programming (MINLP) model, reinforcement 
learning (RL) model, deep reinforcement learning 
(DRL) model, etc.

–	 Decision granularity refers to the level of granular-
ity used to partition applications for task offloading. 
Current applications on mobile terminal devices are 
divided into the following granularity levels: 

(1)	 Thread-level: partitioning at the thread level of 
the application.

(2)	 Method-level: partitioning and annotating at 
the method entry and exit of the application.

(3)	 Object-level: the objects of an application are 
partitioned to perform a random search to 
build an object-relationship graph.

(4)	 Module-level: the application is partitioned 
into independent or interdependent modules 
and assigned to local or remote servers.

(5)	 Task-level: partitioning the application into 
several subtasks based on task type and func-
tion.

–	 Decision strategy is identified by how tasks parti-
tioned (i.e. statically or dynamically) and how off-
loading decisions are made (i.e. before task execution 
or during task execution). If tasks are partitioned 
statically and offloading decisions are made before 
task execution, we call it online decision strategy. On 
the contrary, if tasks are partitioned dynamically and 
decisions are made during task execution, we call it 
offline decision.

–	 Offloading infrastructure includes traditional cloud 
and cloud-edge collaborative architecture (Kai et  al. 
[69]). Traditional cloud-based offloading infra-
structure means that task modules can run on local 
devices or remote cloud servers. The cloud-edge 
collaboration-based offloading infrastructure means 
that task modules can run on local devices, edge 
servers, and cloud servers. The edge-based offload-
ing infrastructure means that task can run on local 
devices or edge servers.

As shown in Table 2, we make a comprehensive compari-
son on the current work on tasking partitioning and off-
loading decision optimization approaches based on the 
proposed taxonomy metrics.

Conclusion and future work
In this paper, we first make a brief review on some rep-
resentative task partitioning and offloading frameworks 
for mobile edge computing (MEC) and mobile cloud 
computing (MCC). Then, we extract a general work-
flow of task partitioning and offloading, which mainly 
includes an application model for profiling users’ require-
ments of task partitioning and offloading and a decision 
engine for solving application models. Most importantly, 
through making a deep investigation on the current work 
on the application model and the core of decision engine, 
we show the challenges and approaches to fulfil users’ 
requirements on delay, energy, and economic cost in 
IoT systems by making proper task partitioning and off-
loading decisions with different decision granularity and 
decision strategy. Based on the survey, we propose com-
prehensive taxonomy metrics for comparing different 
task partitioning and offloading approaches in the IoT 
cloud-edge collaborative computing framework.

From the comparison, we think that the following 
issues may be further addressed in development of task 
partitioning and offloading frameworks.

Granularity of task partitioning. When designing the 
partitioning and offloading algorithms, the granularity of 
partitioning greatly affects the computational complex-
ity and resource utilization of the service runtime. Par-
titioning at different levels of granularity can cause many 
problems, such as subtask dependencies and additional 
resource overhead. However, because of the diversity 
of tasks, it is challenging to achieve the optimal level of 
granularity. It should consider minimal communication 
overhead for offloading and lightweight mechanisms for 
distributed platform establishment and management.

Resource constraints and environmental dynamics. 
In a real cloud-edge collaborative computing offloading 
environment, it is necessary to consider the limitations 
of computing and storage capabilities of edge nodes. 
Besides, since the network environment is unstable, the 
computational offloading framework needs to adapt to 
the dynamically changing network bandwidth. In addi-
tion, due to the fluctuating network environment and 
limited resources, failures of task partitioning and off-
loading may occur. So the framework needs to support 
the optimization of resource consumption due to task 
loss caused by unpredictable factors.

Offloading in blockchain-enabled communica-
tions systems. Blockchain will play an important role 
in emerging 6G network infrastructure, since it has the 
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promising possibility to provide fundamentally stable, 
reliable, and consistent connectivity among clouds, 
edges and devices (Liu et  al. [70]). However, it is of 
extreme complexity and sophistication to make scalable 

and reliable offloading decisions, to model offloading 
costs, and to extract reward due to the dynamic nature 
of offloading contents, network states, and device states 
in the future blockchain-empowered networking and 
computing infrastructure (Alam et al. [71]).

Table 2  Task partitioning and offloading decision optimization approaches based on the proposed taxonomy metrics

Algorithms End-user Inter-
dependent 
Subtask 
Model

Cost Model Profiler Decision 
Engine

Decision 
Granularity

Decision 
Strategy

Offloading 
Infrastructure

Giurgiu et al. 
[46]

single user module graph latency, energy 
consumption

hardware, soft-
ware, network

GO module online cloud

BBAP &MCGAP 
(Niu et al. [32])

single user object graph latency, energy hardware, 
network

GO object offline cloud

CATSA (Lakhan 
et al. [47])

single user module graph latency software, 
network

GO module online cloud-edge

MAUI (Cuervo 
et al. [20])

single user control flow 
graph

energy con-
sumption

hardware, soft-
ware, network

ILP method online cloud-edge

CloneCloud 
(Chun et al. 
[22])

single user control flow 
graph

latency, energy 
consumption

software, 
network

ILP thread offline cloud

MACS 
(Kovachev et al. 
[49])

single user service graph energy con-
sumption, QoS

hardware, 
network

ILP module online cloud

Yang et al. [50] single user, 
multi-user

service graph QoS, economic 
cost

hardware, 
network

MILP module offline cloud

ParGen (Wen 
et al. [31])

multi-user data flow 
graph

latency hardware, soft-
ware, network

ILP module offline cloud-edge

DTOS-LBBD 
(Alameddine 
et al. [51])

single user task graph latency hardware, 
software

MILP task offline cloud-edge

DCOS (Ding 
et al. [53])

multi-user program call 
graph

latency hardware, 
software

ILP task offline cloud-edge

Li et al. [57] single user task graph latency software, 
network

MINLP task offline cloud-edge

QL-JTAR (Dab 
et al. [61])

multi-user task graph energy 
consumption, 
latency

hardware, soft-
ware, network

RL task online cloud-edge

Meng et al. [62] single-user data flow energy 
consumption, 
latency

hardware, 
software

DRL module online edge

Su et al. [63] multi-user module graph latency, QoE hardware, 
software

RL objext offline edge

MA-DDPG (Lu 
et al. [64])

multi-user service graph energy 
consumption, 
latency

hardware, soft-
ware, network

DRL module online edge

Tang et al. [65] multi-user data flow latency hardware, soft-
ware, network

DRL task online edge

FDRL (Cheng 
et al. [66])

multi-user data flow energy 
consumption, 
latency

hardware, soft-
ware, network

DRL task online cloud-edge

Wang et al. [67] single-user task graph energy 
consumption, 
latency, QoS

hardware, soft-
ware, network

DRL task online cloud-edge

TOLBO (Yan 
et al. [68])

multi-user data flow energy 
consumption, 
latency

hardware, soft-
ware, network

DRL module online cloud-edge
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Real experimental evaluation. Most of the existing 
work evaluates the framework of task partitioning and 
offloading with simulation experiments. Because the 
setting of simulation experiments can be ideal, the sim-
ulation results cannot reflect performance of the offload-
ing algorithms in practice. Therefore, it is necessary to 
migrate the method to a real IoT environment to detect 
the performance of the algorithm in real scenarios.
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