
Chen et al. Journal of Cloud Computing (2022) 11:86
https://doi.org/10.1186/s13677-022-00365-8

REVIEW

Task partitioning and offloading in IoT
cloud‑edge collaborative computing
framework: a survey
Haiming Chen*, Wei Qin and Lei Wang 

Abstract 

Internet of Things (IoT) is made up with growing number of facilities, which are digitalized to have sensing, network-
ing and computing capabilities. Traditionally, the large volume of data generated by the IoT devices are processed in
a centralized cloud computing model. However, it is no longer able to meet the computational demands of large-
scale and geographically distributed IoT devices for executing tasks of high performance, low latency, and low energy
consumption. Therefore, edge computing has emerged as a complement of cloud computing. To improve system
performance, it is necessary to partition and offload some tasks generated by local devices to the remote cloud or
edge nodes. However, most of the current research work focuses on designing efficient offloading strategies and
service orchestration. Little attention has been paid to the problem of jointly optimizing task partitioning and offload-
ing for different application types. In this paper, we make a comprehensive overview on the existing task partitioning
and offloading frameworks, focusing on the input and core of decision engine of the framework for task partitioning
and offloading. We also propose comprehensive taxonomy metrics for comparing task partitioning and offloading
approaches in the IoT cloud-edge collaborative computing framework. Finally, we discuss the problems and chal-
lenges that may be encountered in the future.

Keywords:  IoT, Cloud-edge collaborative computing, Task partitioning, Offloading

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In the past few decades, the Internet has expanded to the
physical world and grown to the Internet of Things (IoT).
Ericsson predicts that more than 50 billion devices will be
connected to the Internet by 2025. Most of these devices
are located at the end of the Internet, affecting all aspects
of our daily life and traditional industry. The Internet of
Everything (IoE) has become a major trend in the devel-
opment of the Internet and wireless communication net-
works (Patel et al. [1]). According to the reports, global
monthly mobile data traffic will reach 49 EB by 2021. Due
to the limited computing resources of end devices (e.g.,
disk capacity, memory size, and operating speed), it is

impractical to perform tasks on the end device locally,
especially some resource-intensive applications. Under
the circumstance, cloud computing grows fast, because it
can provide flexible services and data-intensive process-
ing capabilities to end-users through wide area networks
(WANs). Its representatives are Amazon Web services,
Microsoft Azure and Google Cloud, from which users
can obtain seemingly unlimited resources without build-
ing new computing infrastructure. However, some of the
IoE applications, such as face recognition, ultra-high-
definition video, augmented reality (AR), virtual reality
(VR), and semantic analysis of speech, which require low
latency and high computing performance, challenge the
scalable and flexible computing models of the traditional
clouds.

To solve this problem, mobile edge computing (MEC)
has been proposed (Hu et al. [2]). The core idea of MEC

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: chenhaiming@nbu.edu.cn

Faculty of Electrical Engineering and Computer Science, Ningbo University,
Ningbo, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00365-8&domain=pdf

Page 2 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

is to place servers at the edge of the network so that com-
putation, bandwidth, and storage resources are provided
in places close to the IoT end devices to reduce the ser-
vice latency and energy consumption of end devices
(Abbas et al. [3]; Shi et al. [4]), and also to improve the
quality of user experience (QoE) and quality of service
(QoS) (Lai et al. [5]; Sodhro et al. [6]). Edge servers can be
either temporary devices, such as laptops, micro-servers,
etc., or nearby infrastructure. Compared with large-scale
server clusters such as cloud data centers, the comput-
ing and storage capacity of edge servers is relatively
lower, but it has the advantages of short access distance
and flexible geographical distribution. However, edge
computing also brings complex resource management
problems, since the end devices on the access side are
featured by fast-changing service demands, high mobil-
ity and large data volume, etc. Therefore, it is necessary
to design an efficient cloud-edge collaborative computing
mechanism through task scheduling and coordinating
management of computing resources, so as to provide
better services for users. The architecture of cloud-edge
collaborative computing system is shown in Fig. 1.

It is a crucial problem to efficiently offload computing
tasks for realizing cloud-edge collaborative computing,
in terms of response time, energy consumption of end
devices, and quality of experience for users. Depending
on the type of application tasks, the computing offloading
can be generally divided into two categories, namely full
offloading (Ma et al. [7]) and partial offloading (Kuang
et al. [8]). Full offloading is mainly focused on indivisible

applications, which has been studied extensively, while
the partial offloading is targeted at divisible applications.
For the partial offloading, it handles a complete applica-
tion by dividing them into locally executed subtasks and
offloadable subtasks. The locally executed subtasks are
referred to as those that must be executed on the local
device, such as tasks calling peripheral device interfaces
or requiring user interactions, etc. The offloadable sub-
tasks are referred to as those that do not require interac-
tion with the local device, but tend to do computationally
intensive data processing and can be offloaded to run on
edge servers or remote clouds.

The problem of computing offloading has been exten-
sively studied so far, mainly considering the challenges
posed by the geographically distributed edge servers
and the heterogeneity of various resources. Recently,
Avgeris et al. [9] proposed an optimal resource alloca-
tion framework by introducing a Markov Random Field
based mechanism for distributing the excess workload in
scenarios with heterogeneous edge devices and dynamic
wireless conditions modeled by the dynamic behavior
and mobility of the users. There are also some reviews
providing analytical overview of these research works
from different perspectives. Heidari et al. [10] presented
a study on task offloading for IoT devices in various
computing scenarios from the following three aspects:
computing environment, offloading strategy, and deci-
sion process. Zhang et al. [11] conducted a comprehen-
sive study on four critical issues of task offloading in
MEC, including architecture, computation migration,

Fig. 1  Architecture of cloud-edge collaborative computing system

Page 3 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

edge caching, and service orchestration. Saeik et al. [12]
gave a survey of how the Edge and/or Cloud can be com-
bined together to facilitate the task offloading problem,
while emphasizing on the mathematical, artificial intel-
ligence and control theory optimization approaches that
can be used to satisfy the various objectives, constraints
and dynamic conditions for different applications. Feng
et al. [13] presented approaches to achieve offloading
objectives mainly including mathematical solver, heu-
ristic algorithms, Lyapunov optimization, game theory,
and Markov Decision Process (MDP) and Reinforce-
ment Learning (RL), and they compared the approaches
by characterizing their pros and cons as well as targeting
applications. We summarize the existing survey papers of
tasking offloading in Table 1.

Briefly speaking, we found that most of these reviews
focus on various offloading strategies and supporting
techniques to alleviate the burden on smart devices,
whereas few of them consider task partitioning together
with computing offloading. Therefore, in this paper we
make a survey on task offloading in IoT cloud-edge col-
laborative computing from a new perspective. The con-
tributions of the paper are embodied in the following
aspects.

1)	 We pay attention to the problem of jointly optimiz-
ing task partitioning and offloading for different IoT
cloud-edge collaborative computing scenarios;

2)	 We analyze some existing task partitioning and off-
loading frameworks and extract a general workflow
of task partitioning and offloading, which mainly
includes an application model for profiling users’
requirements of task partitioning and offloading and
a decision engine for solving application models;

3)	 We propose comprehensive taxonomy metrics
for comparing task partitioning and offloading
approaches in the IoT cloud-edge collaborative com-
puting framework.

The rest of the paper is organized as follows. Task par-
titioning and offloading framework section introduces
several task partitioning and offloading frameworks
and provides a comparative analysis of them, to extract
a general workflow for task partitioning and offload-
ing. Input of decision engine: application model sec-
tion introduces the application modeling approach
and focuses on interdependent subtask modeling and
cost modeling. Core of decision engine: model solv-
ing section analyzes the currently proposed approaches
for solving models of task partitioning and offloading
decisions. Taxonomy of task partitioning and offload-
ing approaches section proposes a comprehensive tax-
onomy for task partitioning and offloading approaches.
Conclusion and future work section points out some
future challenges and perspectives.

Table 1  Some existing surveys on computing offloading in edge computing

Survey paper Summary

Heidari et al. [10] The authors outlined task offloading for different computing environments, with offloading strategies and decision processes.

Zhang et al. [11] The authors focused on architecture, computation migration, edge caching, and service orchestration in task offloading.

Saeik et al. [12] The authors emphasized on solving the task offloading problem with the mathematical, artificial intelligence and control theory
optimization approaches.

Feng et al. [13] The authors compared the approaches including mathematical solver, heuristic algorithms, Lyapunov optimization, game theory,
and MDP/RL for solving the task offloading problem.

Mach et al. [14] The authors focused mainly on computation offloading decisions, by considering allocation of computing resources and mobility
management in MEC.

Jiang et al. [15] The authors classified the existing work on task offloading into two categories, namely gaming and cooperation between edge
and the cloud, and heuristic algorithms.

Wang et al. [16] The authors classified the existing work on task offloading into five categories, based on offloading destination, load balance of
edge servers, device mobility, application partitioning, and partition granularity, respectively.

Lin et al. [17] The authors classified the computation offloading from offloading flow and offloading scenario. They also classified the computa-
tion offloading schemes into five categories, which are (non)convex optimization, MDP, game theory, Lyapunov optimization, and
machine learning.

Shakarami et al. [18] The authors only reviewed the computation offloading approaches based on game-theoretic for edge computing.

Wang et al. [19] The authors reviewed the task offloading schemes considering response time, device energy, service provider cost, load balance
between edge and cloud, and device mobility.

This paper We consider task partitioning together with computing offloading, and propose a general framework including an applica-
tion model and a decision engine, and more comprehensive taxonomy metrics for classifying task partitioning and offloading
approaches.

Page 4 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

Task partitioning and offloading framework
MAUI
MAUI is an offloading framework proposed by Cuervo
et al. [20] to support fine-grained energy-aware applica-
tion code offloading to the edge servers with hosted code
running environments. The system architecture of MAUI
is shown in Fig. 2. The MAUI runs on the smartphone,
and its runtime environment consists of three compo-
nents: 1) profiler, which detects programs and collects
the energy and data transfer requirements of the pro-
grams; 2) client proxy, which transfers the control and
data messages to finish code offloading; and 3) solver,
which coordinates with the MAUI server to simplify the
offloading decision to save energy. On the server side,
MAUI has four components, which are profiler, server
agent, solver, and MAUI controller. The MAUI control-
ler is responsible for identifying and allocating resources
of the incoming requests to instantiate the partitioned
application. MAUI provides method-level code offload-
ing based on the .NET framework.

Lots of early attempts have been taken to make the
code migration method light-weighted. Most of the pro-
posed methods are relied on the programmer to manu-
ally modify the program to handle task partitioning,
code migration, and make it adapted to network condi-
tion changing. These methods are fine-grained and able
to save energy consumption of mobile devices, but at
the same time place a considerable burden on program-
mers. MAUI reduces the burden on programmers by
combining code portability, reflection, serialization, and
type safety. MAUI uses the Microsoft .NET Common

Language Runtime (CLR) [21] to handle computing tasks
on both the smartphone and the server sides. Hosted
code enables MAUI to ignore the differences in instruc-
tion set architecture for both mobile devices (typically
using ARM-based CPUs) and servers (typically using
x86 CPUs). MAUI takes costs of network (i.e., latency,
bandwidth, and wait time) and CPU into consideration
to provide an efficient solution for determining how to
partition applications at running time. Therefore, MAUI
has merit in reducing the energy consumption of devices,
but it does not consider how to overcome issues such as
memory resource limitations of devices.

CloneCloud
CloneCloud is a flexible partition analyzer and applica-
tion runtime proposed by Chun et al. [22]. It combines
static and dynamic analysis to automatically partition
applications at a fine-grained level, so as to minimize
execution time and energy consumption for the targeted
computing and communication environments. The sys-
tem architecture of CloneCloud is shown in Fig. 3.

The partitioning mechanism in CloneCloud is offline,
aiming to determine which parts of the application run
on the mobile device and which parts of codes are to
be migrated to the cloud. Unlike the previous method
(including the MAUI system mentioned above), pro-
grammers do not need to write applications in a pre-
scribed manner or annotate source code manually.
CloneCloud uses static analysis to determine the parts of
migration and the reintegration points in the code, based
on a set of constraints. Dynamic analysis performs the

Fig. 2  Architecture of MAUI. (Cuervo et al. [20])

Page 5 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

cost model to build the adaptation environment for appli-
cations of different partitioning strategies. Finally, the
optimization solver uses the cost model derived from the
dynamic analysis to make a proper partitioning decision.

CloneCloud does not rely on programmers’ annota-
tions in source codes. Moreover, CloneCloud allows
native operating systems to execute in a virtual machine
in the cloud. Differing from the application-layer virtual
machine (VM) migrators (Aridor et al. [23]; Zhu et al.
[24]), CloneCloud can utilize both raw CPU functional-
ity and system functionality to implement the underlying
libraries and operating systems. Unlike the traditional
interruption recovery mechanism used for application
migration, CloneCloud migrator operates on a thread-
level granularity.

ThinkAir
ThinkAir is a mobile cloud computing (MCC) offload-
ing framework proposed by Kosta et al. [25]. Based on
the technology of smartphone virtualization in cloud
computing, ThinkAir provides a method-level approach
of task offloading through source annotation. It not only
considers on-demand resource allocation during task
offloading, but also provides a VM manager and an auto-
mated parallel processing module in the cloud to manage
VMs for end devices. Particularly, ThinkAir enhances the
computing power of mobile devices by dynamically cre-
ating, restoring, and destroying VM images of the entire
smartphone system in the cloud. This enables parallelized
applications to call multiple VMs to execute in the cloud
in a seamless and on-demand manner, thereby greatly
reducing execution time and energy consumption. As
shown in Fig. 4, the ThinkAir system architecture con-
sists of three main components, which are execution
environment, application server, and profiler.

The execution environment includes programmer
API, compiler, and execution controller. ThinkAir pro-
vides a simple library, together with the support of
the compiler. The programmer only needs to annotate
which method to be considered for offloading with ‘@
Remote’. This essentially relieves the burden on pro-
grammers. The compiler is composed of the remote
code generator and the customized native develop-
ment kit (NDK). The remote code generator is a tool
that converts annotated code. The NDK provides native
code support on the cloud. The execution controller
drives offloading decisions and records past-calling
data.

The application server manages the code offloaded
to the cloud, consisting of three main components: the
client processor, the cloud infrastructure, and the auto-
matic parallelization component. The client processor
is responsible for building a connection between the
client (mobile device) and the cloud server, receiving
and executing the offloaded code, and returning the
results. To make the cloud infrastructure easy to main-
tain and to keep the execution environment consistent,
ThinkAir uses a virtualized environment that allows the
system to be deployed where needed.

The profiler is the most crucial part of the ThinkAir
framework, which consists of three sub-profilers (i.e.
hardware profiler, software profiler, and network pro-
filer). They collect different data and input it into the
energy model. To solve the problem that specific com-
ponents (e.g., GPS and audio, etc.) must run locally and
cannot be migrated to the cloud, ThinkAir designs and
implements an energy estimation model based on the
PowerTutor model (Zhang et al. [26]).

Fig. 3  Architecture of CloneCloud. (Chun et al. [22])

Page 6 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

Phone2Cloud
Phone2Cloud is an energy-saving mobile cloud comput-
ing system with semi-automatic offloading proposed
by Feng et al. [27]. To improve the energy efficiency of
smartphones, Phone2Cloud offloads the computing tasks
of applications running on smartphones to the cloud
while improving the performance of the applications by
reducing the execution time, which ultimately improve
the quality of user experience. The system architecture of
Phone2Cloud is shown in Fig. 5.

Phone2Cloud consists of seven components, includ-
ing bandwidth monitor, resource monitor, execution time
predictor, offloading decision engine, local execution

manager, remote execution manager, and offloading
proxy. Among these components, the offloading decision
engine is its core and can be easily added or removed
from the framework. Essentially, it was implemented
based on the work of Liu et al. [28] and Xian et al. [29],
which takes the user’s delay tolerance threshold as a
constraint (Balasubramanian et al. [30]). The bandwidth
monitor and resource monitor are used to monitor the
current bandwidth of the network and the CPU load on
the smartphone, respectively, as well as to predict the
average bandwidth and average CPU load when mak-
ing offloading decisions. The execution time predictor is
used to predict the average execution time of an entire

Fig. 4  Architecture of ThinkAir. (Kosta et al. [25])

Page 7 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

application on a smartphone. Local and remote execu-
tion managers are mainly used to manage the execution
of applications in Phone2Cloud. The offloading proxy
connects the offloading decision engine and the remote
execution manager together. Thus, Phone2Cloud mostly
solves the offloading problem at the task-level granularity.

ParGen
ParGen is a parallel approach for module-level partition-
ing and offloading of dataflow applications proposed by
Wen et al. [31]. ParGen aims to optimize the throughput
of dataflow applications, considering that the edge cloud
always serves multiple users in the vicinity and has lim-
ited resources. A novel model was defined for resource
allocation and application partitioning in multi-user sce-
narios. A divide-and-conquer parallel approach for par-
titioning dataflow applications in a multi-user scenario
with competing resources was proposed to jointly opti-
mize application partitioning and resource allocation
among users, so as to maximize the average throughput
of all users. The system architecture of ParGen is shown
in Fig. 6.

ParGen consists of three components: mobile devices,
edge cloud, and cloud. The edge cloud is deployed closer
to users than cloud servers, which can effectively reduce
latency. There are a limited number of servers on the
edge cloud capable of running modules of mobile appli-
cations simultaneously. Many mobile devices connect

to the edge cloud through a base station (BS) or a wire-
less access point (AP). On the mobile device side, there
is a client middleware between the application layer
and the operating system (OS). Its internal monitor-
ing agent program can send execution and transmission
costs to the partitioning program in edge and cloud to
request computation partitioning and bandwidth alloca-
tion. After receiving the request, the partitioning pro-
gram determines the best partitioning policy for each
user and allocates bandwidth. The remote cloud provides
APP store services and programming support for mobile
applications.

Summary
From the frameworks for task partitioning and offload-
ing discussed above, we can see that partition applica-
tions at different granularities can alleviate the resource
constraints in mobile devices. In general, the necessary
components to implement task partitioning and offload-
ing are: (1) a profiler that detects the hardware conditions
of the application, the mobile device itself, and the state
of the network connection, and collects the energy and
data transfer requirements for task execution; (2) a deci-
sion engine that makes decisions about whether and how
to offload based on the results of the partitioning and
offloading model; and (3) an offloading agent that sends
the required input data to a remote server, receives the

Fig. 5  Architecture of Phone2Cloud. (Feng et al. [27])

Page 8 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

results from the remote server, and passes the results to
the application.

We abstract the workflow of the decision engine as
shown in Fig. 7. Briefly speaking, firstly the dependence
relation among the modules of a given application task
is modelled as an application model, and its partition-
ing and offloading optimization goal is modelled as a cost
model based on actual requirements. Secondly, based on
the application model, an appropriate algorithm should
be proposed to get the appropriate task partitioning and
offloading result. Finally, the result is taken as input of

the offloading agent to offload some modules executed
on remote servers, while the rest executed locally on the
mobile device. In this paper, we focus on making a survey
on the input and core of decision engine of the frame-
work for task partitioning and offloading.

Input of decision engine: application model
Generally, a task for IoT applications is composed of
several inter-dependent subtasks. The dependencies
are determined by the context awareness and hardware
requirements of the components to support proper

Fig. 6  Architecture of ParGen. (Wen et al. [31])

Fig. 7  The general framework and workflow of task partitioning and offloading

Page 9 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

operation of the applications. To make offloading deci-
sions on decision engine, the inter-dependent subtask
model should be partitioned into multiple sub-graphs of
disjoint modules, which are then offloaded to appropriate
servers based on cost model. In this section, we will have
an overview on these two models comprising application
models, which are used as input of decision engine.

Inter‑dependent subtask model
The first and essential step in modelling the application is
to model inter-dependent subtasks, called inter-depend-
ence subtask models. At present, Directed Acyclic Graph
(DAG), which uses the vertices to represent sub-tasks
and edges to represent relation, is commonly used to
model dependence relation of subtasks.

For a task to be run in IoT systems, the dependence
relation among subtasks such as execution order, data
flow, and control flow at different granularity levels
can be obtained statically or dynamically based on task
parameters or context-awareness requirements. For
statically modelling, the dependence relation is depicted
before tasks are actually executed. For dynamically mod-
elling, the dependence relation is determined during task
running under control of the decision engine of the task
partitioning and offloading framework. No matter which
type of modelling, the dependence relation is mostly
modelled as DAG. Depending on the computational scale
of tasks, dependence relation models can have a large
number of vertices with interdependencies of high com-
plexity compared to simple class diagrams.

Niu et al. [32] constructed weighted object relationship
graphs (WORGs) for mobile applications. The object and
object-to-object dependence were obtained by analyzing

the bytecode of tasks, and the object relationship graph
(ORG) was constructed by traversing the application
based on method calls, as shown in Fig. 8(a), where
nodes represent objects and edges represent dependence
between objects. Then, the execution time of each object
and the transmission data of each method call were
calculated as the weights of nodes and edges, respec-
tively. The resulting weighted object relationship graphs
(WORGs) were constructed as shown in Fig. 8(b).

Cost model
Different types of applications, such as data-oriented
applications, code-oriented applications, and continu-
ous execution applications, etc. (Munoz et al. [33]), have
different requirements for offloading computing tasks
to remote servers. The application is modelled by taking
into consideration the requirements of users, network
environment, and service providers, finding the corre-
sponding optimization goals and constraints to establish
a cost model. Several cost factors are usually considered
in cost modelling, including latency, energy consump-
tion, quality of service, quality of experience and eco-
nomic cost.

Latency
Latency includes latencies in computing, transmission,
and queuing. It is one of the essential metrics for evaluat-
ing the performance of mobile devices. This is especially
true for latency-sensitive applications, like emergency
event processing in industrial internet of things. The
servers in traditional cloud computing centers have high
computing power to handle complex workloads (e.g.,
image processing (Kumar et al. [34]), speech recognition

Fig. 8  a Object Relationship Graph (ORG). b Weighted Object Relationship Graphs (WORGs). (Niu et al. [32])

Page 10 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

(Muhammad et al. [35]), etc.). However, sending all sub-
tasks to clouds can make both computing resource and
network bandwidth congested, leading to higher queuing
latency and then total latency. To reduce the total latency,
the best approach is to offload workloads that do not
need to be executed locally on mobile devices to the edge
servers with sufficient computing power, which are closer
to the local device than the remote cloud.

Theoretically, if all the subtasks can be processed at
edge servers, the latency can be significantly reduced
compared to sending them to cloud servers for execution
(Shi et al. [36]), because the transmission time between
the edge and the cloud is saved. However, a task arriving
at a resource-constrained edge node is not likely to be
executed immediately, and there is often a waiting time
for execution. Therefore, the geographically closest infra-
structure is not always a good choice. By taking a queu-
ing model based on the priority of tasks in calculating
the delay, it is a practical problem to dispatch subtasks
to the proper layers (i.e. local, edge and cloud), allocate
bandwidth for mobile end devices, and find a suitable
transmission rate. To solve the problem, the real-time
network state (e.g., transmission bandwidth, etc.), com-
puting power and bandwidth usage information of edge
and cloud layers must be considered to avoid unneces-
sary contention and delays.

Energy
Lifetime of mobile devices is considered as one of the
indispensable factors affecting the working periods of IoT
applications. Although some progress has been made in
battery-related technology research, there is still a gap
between the rapid growth of power consumption and
the battery capacity of current mobile devices. There-
fore, another critical optimization goal of partition and
offload decision-making is how to extend the battery
life of mobile devices by reducing energy consumption.
There have been many works that discussed the energy
consumption optimization problem from different per-
spectives. For example, Zhao et al. [37] proposed an
approximate algorithm of computation offloading, which
was shown saving nearly 82.7% of energy compared to
executing it entirely on a mobile device.

Many related works have developed power/energy
models for various components on mobile terminal
devices, including central processing units (CPUs) as well
as cellular and WiFi communications. Recently most of
the researchers used specific hardware (external devices
or components that attached with the mobile device)
to obtain working voltage and current of devices, and
then the power models can be obtained. However, this
measurement based approach can only obtain power
model of the whole device, but not that of each hardware

component of the device (e.g., CPU, GPU, network inter-
face, etc.). This limitation causes challenges in analyzing
the energy consumption of different types of applications
on mobile devices.

Quality of Service (QoS)
Due to the increasing popularity of video streaming ser-
vices (e.g., YouTube and Netflix, etc.) and the exponential
growth of active users, more research works use QoS as
a modelling and optimization goal of many partitioning
and offloading approaches (Rausch et al. [38]; Song et al.
[39]). However, it is challenging to achieve expected QoS
due to many factors, such as different client devices/
request patterns, changing media content, and network
environments. Generally speaking, the following fac-
tors should be taken into consideration to optimize QoS
of network systems. First, the variability of network
resources, the unstable nature of wireless channels, and
the characteristics of fixed/mobile networks in hetero-
geneous environments. Second, the emergence of new
services (e.g., video games and virtual/augmented real-
ity (VR/AR)), the diversity of usage environments, users’
expectations, and the optimization of operational costs
for mobile and service providers. Third, the resource con-
straints of edge servers, various measurement and evalu-
ation methods for QoS management when allocating
resources among users with other users’ quality of expe-
rience (QoE) preferences.

QoS is sometimes directly related to the response time
of an application (amount to the latency metric), which
can be taken as a constraint to achieve a specific QoS.
Particularly, QoS improvement just requires keeping the
response time within a threshold, rather than minimizing
that time. Aazam et al. [40] proposed a resource estima-
tion approach based on the QoE history of the cloud ser-
vice customer (CSC) while enhancing the QoS. Mahmud
et al. [41] proposed a delay-aware application module
management policy that considers various aspects of dis-
tributed applications in a decentralized and coordinated
environment inducing latency, so as to ensure QoS while
meeting deadlines for all types of applications and maxi-
mizing utility of fog computing resources.

Quality of Experience (QoE)
With the proliferation of IoT and the ensuing computing-
intensive tasks, the surging need for computing offload-
ing, and how to optimize offloading for the optimal user
quality of experience (QoE) is a fundamental question.
Despite that it is important to consider the character-
istics of the task and make optimal offloading decisions
based on the QoE requirements of each end-user. Par-
ticularly, different types of end-users pursue different
QoE performance. For example, cloud gaming inclines to

Page 11 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

have lower execution time during computational offload-
ing, while the unmanned aerial vehicles (UAVs) prefer
computationally offloading with low energy consumption
to prolong battery life. On the basis of comprehensively
considering the different QoE performance require-
ments of IoT users for task execution time, task process-
ing energy consumption and computing cost, Luo et al.
[42] proposed a QoE-driven adaptive computing offload-
ing (QEACO) strategy based on theoretical performance
analysis. Since then, each IoT user can optimize and
adapt to their best QoE to make offloading decisions.

In the business scenario of IoT, in addition to providing
low latency and low energy consumption, the cloud-edge
collaborative computing module also needs to provide
suitable caching, quick communication and vast amounts
of computing power (Huang et al. [43]). QoE can be
regarded as the most direct experience in service interac-
tion, especially in Internet of Vehicles (IoV). He et al. [44]
studied the problem of QoE-based edge task offloading
in IoV, and proposed an improved deep reinforcement
learning (DRL) algorithm named PS-DDPG, in which a
QoE model was designed by taking into account the lim-
ited vehicle cache and the unpredictable communica-
tion path caused by the diversification of transmission
information.

Economic cost
The economic cost is an essential factor when selecting
computing resources for device users and when service
providers offer solutions. The reasonable pricing of ser-
vices and the optimization of economic cost are essential
issues to be addressed in task partition and offloading.
From the perspective of service providers such as You-
Tube and Amazon, cloud-side collaborative computing
provides lower latency and energy consumption, poten-
tially increasing throughput and improving user expe-
rience (Shi et al. [36]). As a result, they can earn more
benefits by handling the same volume of computing or
storage. The service provider’s investment is mainly spent
in building and maintaining each tier of resources. To
fully utilize the resources of each layer, the provider can
charge the users based on the data location and expected
resource utility. Therefore, how to build a reasonable eco-
nomic cost model based on the characteristics of cloud-
edge collaborative computing to ensure the profitability
of service providers and the acceptability of users is the
focus of current research work.

Integrated model
Due to diverse needs of users and service providers in
fact, the joint optimization of multiple costs needs to
be considered in task partitioning and offloading solu-
tions. However, multiple costs are usually in conflict

with each other, and it is difficult to make them opti-
mal simultaneously. For example, to reduce energy
consumption of the whole system (including mobile
devices, edge servers and cloud servers), it may induce
increasing response time of applications. A compro-
mise between these costs is needed to obtain optimal
partitioning and offloading decisions. In general, there
are several ways to build a cost model for joint optimi-
zation of multiple costs: 1) Converting multiple costs
into one cost. For example, a square-weighted addition
approach assigns each cost its weight to approximate
the optimal solution as closely as possible; 2) Selecting
the most important cost as the optimization objective
and the rest as constraints; 3) Obtaining the Pareto-
optimal solutions (Lin et al. [45]) of each cost for the
mobile device users or service providers according to
actual situations.

Let the first approach be used as an example for cost
modelling. Assume that the application had n modules,
for a given module i, the size of data transmission was ti ,
the memory cost was mi , and the code size was ci . Also,
for each module, a variable xi ∈ {0, 1} was introduced to
indicate whether module i was executed locally (xi = 0)
or remotely (xi = 1) . The cost model was thus expressed
as follows:

In Eq. (4), α is the conversion factor that maps the code
size to CPU instructions. As shown in Eq. (1), the cost
model combines three costs, namely transmission cost
Ct , local device memory cost Cm , and local device CPU
occupation cost Cc , into one, where wt , wm , wc are the
weights of each component that determine priorities of
each optimization goal.

Let the second approach be used as an example for
cost modeling. Assuming that the goal is to minimize
latency and energy consumption of local devices, let Etot
denote the total energy consumption of mobile devices,
while Eloc and Ecom denote the energy consumption of
local execution and the energy consumption of migrating
data between local devices and edge servers respectively.
Thus, the total consumed energy Etot can be expressed as:

(1)Min (wt · Ct + wm · Cm + wc · Cc)

(2)s.t. Ct =
n

i=1

ci · xi +
n

i=1

n

j=1

tj · xj ⊕ xi

(3)Cm =

n
∑

i=1

mi · (1− xi)

(4)Cc =

n
∑

i=1

α · ci · (1− xi)

Page 12 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

Then assume that Ttot denotes the execution time of
application from start to end, Tloc , Tedge and Tcom denote
the time needed for a part of the task to be executed
locally, the time needed for a part of the task to be exe-
cuted at the edge node and the communication time
needed for data migration between the local device and
the edge server respectively. So Ttot can be expressed as:

Next, we choose energy consumption minimization as
the final optimization objective while limiting the total
execution time:

where D denotes the deadline to complete execution of
the application. The values of Eloc and Tloc depend on
the workload of the application running locally and the
computing capability of the local device. The values of
Ecom and Tcom are mainly affected by the variation of net-
work bandwidth. Tedge is determined by the workload of
the application offloaded to the edge and the computing
capability of the edge servers.

Core of decision engine: model solving
Taking the application mode as input, the decision engine
is responsible for decomposing the inter-dependent
subtask models to determine at the specified granular-
ity when and where to place which parts of tasks on the
remote servers (i.e. edge and cloud servers). In particular,
the decision engine first checks whether the application
requires annotations. If annotations are needed, it will
look for pre-annotated components for partitioning the
application. If annotations are not necessary, it proceeds
to check if the event profiler functionality is implemented
in the application. If the event profiler is available, it col-
lects information to optimize the application partitioning
and task offloading decision. The decision process is usu-
ally modelled as a mathematically constrained optimiza-
tion problem.

The core of decision engine is the solver of the
optimization problem based on the graph model of
inter-dependent subtask model and cost model. The opti-
mization algorithms can exhibit different characteristics
when targeting different scenarios and optimization met-
rics. For example, some algorithms produce low overhead
in the analysis technique, while others generate unneces-
sary overhead. Some algorithms need to assign decisions
online, while others need offline pre-processing. The
performance of the resulting optimization is improved

(5)Etot = Eloc + Ecom

(6)Ttot = Tloc + Tedge + Tcom

(7)
Min Etot

s.t. Ttot < D,

by extracting the algorithmic advantages of both types of
models. At present, the methods of modelling and solv-
ing the optimization problem can be divided into three
categories, which are graph optimization, traditional
programming, and Markov Decision Process (MDP) and
Reinforcement Learning (RL).

Graph optimization
Giurgiu et al. [46] took profile information such as char-
acterization of modular architecture, CPU load, and
network state in the cloud and locally to generate a com-
pact specification of the application and environment
in the form of resource consumption graph. This graph
was used together with the modular and highly cohesive
subtask model by the optimization solver (i.e. the core of
decision engine) to determine the optimal allocation of
modules and deploy them accordingly through traversing
the graph in an adaptive topological order.

Niu et al. [32] used weighted object relationship graphs
(WORGs) as application model, and modelled the task
partitioning and offloading problem as a graphical prob-
lem to minimize execution time and energy cost. The
problem was solved by the Branch-Bounded Applica-
tion Partitioning (BBAP) algorithm and the Minimal Cut
Set Greedy Application Partitioning (MCGAP). In the
proposed approaches, bandwidth was considered as an
essential operational variable.

Lakhan et al. [47] proposed an adaptive content-aware
task scheduling (CATSA) framework for mobile work-
flow applications. To satisfy all mobile workflow appli-
cation constraints while reducing their execution time,
CATSA first represented inter-dependent tasks with a
directed acyclic graph, and then sorted them in topo-
logical order based on the earliest due first (EDF), short-
est processing first (SPF), and shortest spare time first
(SSTF) approach. Thereafter, the optimal task offloading
decision was made by selecting an optimal solution from
the solution set using a random search approach.

Wu et al. [48] represented general tasks in arbitrary
topological consumption graphs, and proposed a Min-
Cost Offloading Partitioning (MCOP) algorithm to deter-
mine which portions of the application must run on the
mobile device and which portions on cloud/edge servers
under different cost models and mobile environments.

Traditional programming
Linear programming
Traditionally, the problem of deciding when and where to
place which parts of tasks on remote servers can be mod-
elled as an integer linear programming (ILP) model. For
an ILP model, it has linear optimization objective func-
tion, which is bounded by linear equations or inequa-
tions, and all of its variables are restricted to integers. The

Page 13 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

annotations and analysis results given by the program-
mer about whether the application is partitionable or not
are essential for the integer programming (IP) optimiza-
tion problems. Linear programming (LP) is a traditional
mathematical planning method valid for solving the
problems. The advantage of ILP model is that it always
produces the best results for a particular objective func-
tion, but solving linear programming problems usually
requires a lot of computing time.

MAUI (Cuervo et al. [20]) provided a fine-grained task
partitioning and code offloading decision engine. It took
inter-dependent subtask modal presented as call graphs,
and then used 0-1 ILP for task partitioning to maximize
energy savings during computing offloading.

CloneCloud (Chun et al. [22]) models the application
as a control flow graph. It partitions applications based
on an offline static analysis of the various running condi-
tions of the target smartphone and the process binaries
on the cloud. Thus, CloneCloud needs to run the analy-
sis again for each newly created application. Based on the
application partitioning, it performs ILP to get the opti-
mized offloading decisions.

In the service-based middleware MACS proposed by
Kovachev et al. [49] for mobile cloud computing, it had
a decision engine that can seamlessly offload compu-
tationally intensive parts of the application to nearby
infrastructure or a remote cloud. For developers, the
application model was the same as the one on the
Android platform, which encapsulated computationally
intensive parts as Android services and each service had
a specific functionality. The services are partitioned based
on set conditions or parameters into two groups, one
running locally and the other running in the cloud. State
information (e.g., CPU load, available memory, remain-
ing battery power on local devices, bandwidth between
the cloud and local devices) was monitored by MACS as
parameter of decision engine for both the cloud and the
local device. Finally, the partitioning and offloading prob-
lems were modelled as an ILP and an open-source class
library was called to perform decision solving on the
Android platform.

Yang et al. [50] studied the application partition-
ing problem by evaluating the constraints on cloud
resources in order to ensure the benefits of service
providers. Initially, a single-user computation parti-
tioning problem (SCPP) was considered, and then the
resource-constrained multi-user computation partition-
ing problem (RCMCPP) was derived from the SCPP.
The RCMCPP was formulated as a mixed-integer linear
programming (MILP) problem to minimize the total exe-
cution time. Application providers leveraged the perfor-
mance-resource-load (PRL) model to design the resource
provisioning mechanism to make a tradeoff between

application performance and cost of cloud resources and
improve utilization of cloud resources.

ParGen et al. [31] used a data flow graph to model rela-
tions of subtasks and formulated the QoS optimized task
partitioning and offloading problem as a 0-1 ILP prob-
lem. A parallel genetic algorithm was then used to maxi-
mize the throughput of the multi-user application. The
approach allows dynamic partitioning of multiple users
and supports sharing of computational requirements
among numerous users.

Alameddine et al. [51] aimed to provide delay-sensi-
tive 5G IoT services in different domains, by solving the
dynamic joint resource allocation and fine-grained task
scheduling problem. The problem was defined and for-
mulated as a mixed-integer linear programming (MILP)
model. Given the heterogeneous requirements of off-
loading task predicted by application models and the
limited MEC capabilities, they combined three NP-hard
problems of task offloading, application resource allo-
cation, and non-preemptive task scheduling. Finally,
they designed the dynamic task offloading and schedul-
ing approach based on LBBD (Logical Benders Decom-
position technique) (Hooker et al. [52]). LBBD solved a
relaxed master problem with fewer constraints and a
subproblem whose solution allows generation of cut sets
that iteratively guided the master problem to narrow the
search space. Eventually, both the master problem and
the subproblem converged to the optimal solution. The
running time of this approach was reduced by several
orders of magnitude, but did not take other constraints
such as energy consumption and cost into consideration.

Ding et al. [53] proposed a decentralized comput-
ing offload strategy (DCOS) algorithm to develop a
task partitioning and offloading strategy for multi-user
multi-mobile-edge scenarios to minimize the application
execution overhead (i.e., the weighted sum of energy con-
sumption and computation time). It took MAUI (Cuervo
et al. [20]), CloneCloud (Chun et al. [22]), ThinkAir
(Kosta et al. [25]), mCloud (Zhou et al. [54]) or ULOOF
(Neto et al. [55]) to partition the application into a set of
tasks with correlations, which were represented as a pro-
gram call graph. Then the model solving was transformed
into a convex optimization problem, and the optimal off-
loading decision was derived.

Wu et al. [56] formulated the offloading decision prob-
lem in blockchain-enabled heterogeneous IoT-edge-
cloud computing environments as a mixed-integer linear
programming (MILP) problem and further derived an
online and polynomial-time-complexity algorithm by
taking advantage of the Lyapunov optimization tech-
nique, such that the energy consumption of the IoT
device can be minimized when only sacrificing a little
delay.

Page 14 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

Non‑Linear Programming (NLP)
Li et al. [57] used task graphs to construct applica-
tion models for offloading and parallel execution. The
task graph execution time was minimized by choos-
ing the optimal task allocation and scheduling policy
by modelling the problem as a mixed-integer nonlin-
ear programming (MINLP) problem. The problem
was transformed into a MILP model using the big-M
approach. Then, a hybrid approach combining the
LBBD principle (Hooker et al. [52]; Emeretlis et al. [58])
and MILP was designed for solving the problem. How-
ever, the computing time was high when the number of
tasks increased, which cloud not be applied to large-
scale applications.

MDP and RL
At present, researchers found that in large-scale off-
loading scenarios, the traditional programming meth-
ods have difficulty in coping with growth of the search
space. There have been many works on modelling the
task partitioning and offloading problem as the Markov
Decision Process (MDP). It then was solved by Reinforce-
ment Learning (RL) or Deep Reinforcement Learning
(DRL) (Dash et al. [59]). RL can learn optimal offloading
policies by interacting with edge networks, which can
achieve model-free control without knowing the system’s
internal transitions. Traditional reinforcement learning
stores tuples containing states, actions, and rewards into
Q tables. However, they are not applicable when the state
or action space is enormous. DRL can solve the problem
of space explosion by integrating neural networks into
reinforcement learning to approximate Q values. There-
fore, DRL for joint optimization problems has attracted
increasing interest from researchers, and complex off-
loading decision problems can be solved more efficiently
using this approach (Wu et al. [60]).

Dab et al. [61] studied the problem of online comput-
ing offloading and resource allocation for applications
with constraints of limited latency and device resources,
and proposed a QL-based QL-JTAR algorithm. QL-JTAR
was designed to jointly optimize total energy consump-
tion and total latency. They considered the interdepend-
ence of multi-user subtasks, and the system state changes
with time slot. The problem was modelled as MDP, and
the Q-Learning algorithm based on the value function
was used to solve complex large-scale MDPs. Afterwards,
the joint computation offloading and resource allocation
method was evaluated by simulating real scenarios with
real data input using the NS3 simulator. This method
considered computational offloading for divisible tasks,
but was only suitable for computational offloading for
small state spaces.

Meng et al. [62] proposed an online task schedul-
ing algorithm based on DRL, by establishing a system
model based on MDP. They designed a new behav-
ior space and reward function expression in order
to minimize the task queuing delay and the average
energy consumption of the terminal system. The author
expressed the behavior space as a Cartesian product
model, and used the Cartesian product to describe the
scheduling of tasks. However, the model only consid-
ered a single user and a single edge server, which could
not cope with the complex IoT environment.

Su et al. [63] proposed a spectrum access scheme
based on Q-Learning in the mobile network environ-
ment to select the optimal spectrum for users. They
aimed to improve the QoE of mobile users and maxi-
mize the content transmission rate by using QL. The
optimal strategy for mobile users to download content
from nodes was determined according to the content
value function to maximize node utilization, and a non-
cooperative Stackelberg game was used to optimize the
optimal strategy. The authors combined the QL-based
optimal spectrum selection algorithm with the two-
stage Stackelberg game content selection algorithm
to jointly maximize network throughput and improve
node utilization. However, the author did not consider
the user’s energy consumption and the node’s cache
consumption when the content was delivered.

Lu et al. [64] proposed a task scheduling algorithm
with discrete server selection based on MA-DDPG,
in order to reduce system energy consumption, task
latency, and task loss rates for mobile devices and edge
servers. It used the characteristics of multi-agent con-
tinuous learning to solve the problem of environmen-
tal instability caused by a single decision maker. It
integrated the SAC algorithm with maximum entropy
reward function to make Actors in DDPG explore as
many actions as possible to obtain more near-optimal
path choices. It combined multi-agent DDPG with SAC
to solve the problems of instability and small learn-
ing in reinforcement learning, and optimized energy
consumption, latency, and task discarding rate in
offloading.

Tang et al. [65] proposed a model-free online off-
loading algorithm based on DRL by considering the
dynamic load problem of edge servers, in order to
minimize long-term costs. In order to improve the cost
estimation, the author innovatively integrated LSTM
in DRL for predicting future server load. It used LSTM
to predict the load information of future servers by
adding the load level of the server to the input of neu-
ral network. Since the addition of LSTM complicated
the original network, it was necessary to compress
the network to reduce the number of operations. The

Page 15 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

algorithm was evaluated based on the demonstration
system, which needed to consider the real computing
tasks in practical problems.

Cheng et al. [66] proposed a DRL-based joint deep
reinforcement learning (FDRL) framework to effec-
tively reduce the training loss and privacy leak-
age during training phase. They also proposed a
joint optimization algorithm for task offloading and
resource allocation method based on FDRL. The
method was able to effectively protect the data pri-
vacy in the drone environment, reduce the amount of
original data transmission, and effectively reduce the
training loss.

Wang et al. [67] adopted a sequence-to-sequence
(S2S) neural network to obtain the task dependen-
cies of applications, and used off-policy reinforce-
ment learning to make task offloading decisions. The
training of the S2S neural network was based on the
regularly collected task DAG. According to the experi-
mental results, the offloading method based on rein-
forcement learning achieved better performance than
the heuristic algorithm, but it required a lot of training
when applied to online computing offloading, which
would cause a lot of consumption.

Yan et al. [68] proposed a DRL-based joint optimiza-
tion task offloading algorithm by taking into account
the waste of energy consumption when tasks were dis-
carded. The problem of optimizing long-term latency
and system energy consumption in task offloading was
solved by combining the DQN-based reinforcement
learning method with the cloud-edge collaborative
computing offloading. However, its performance was
evaluated based on static simulation experiments. So it
needs to be migrated to a really dynamic environment
to evaluate the performance.

Taxonomy of task partitioning and offloading
approaches
Based on the above analysis on the current work of task
partitioning and offloading approaches, we see that they
were designed for different applications with different
users, application models, and model solving approaches.
Here we propose a comprehensive taxonomy of these
methods by investigating all critical issues involved in the
task partitioning and offloading framework. As shown in
Fig. 9, the metrics of taxonomy include end-user, inter-
dependent subtask model, cost model, profiler, decision
engine, decision granularity, decision strategy, and off-
loading infrastructure.

–	 End-user means the number of mobile end-users
considered in the application scenarios, which can
be single end-user scenarios or multi-end-user sce-
narios. Compared with the single end-user scenario,
the task partitioning and offloading problem in the
multi-end-user scenarios needs to consider more
environmental factors. For example, in the situation
of limited edge servers, the partitioning and offload-
ing strategy adopted by one end user can be affected
by other end-users’ strategies, if they offload tasks to
the same edge server simultaneously.

–	 Inter-dependent subtask model means the type of
graph models to represent inter-dependent subtasks
for an application task. It can be program call graph,
control graph, data flow graph, object graph, service
graph, module graph, and task graph.

–	 Cost model is identified by the metrics of optimiza-
tion objectives, which are latency, energy consump-
tion, QoS, QoE and economic cost.

–	 Profiler is identified by the type of profile infor-
mation used by the decision engine. The currently

Fig. 9  Comprehensive taxonomy of task partitioning and offloading approaches

Page 16 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

used profile information includes: 1) hardware-
related, including CPU utilization, RAM and device
power, etc. 2) software-related, including data
size, call relationships between module structures,
throughput, etc. 3) network-related, including net-
work connectivity, bandwidth, transmission rate,
etc.

–	 Decision engine is identified by its method used
for model solving, such as graph optimization (GO)
model, linear programming (LP) model, integer lin-
ear programming (ILP) model, mixed integer linear
programming (MILP) model, mixed integer non-
linear programming (MINLP) model, reinforcement
learning (RL) model, deep reinforcement learning
(DRL) model, etc.

–	 Decision granularity refers to the level of granular-
ity used to partition applications for task offloading.
Current applications on mobile terminal devices are
divided into the following granularity levels:

(1)	 Thread-level: partitioning at the thread level of
the application.

(2)	 Method-level: partitioning and annotating at
the method entry and exit of the application.

(3)	 Object-level: the objects of an application are
partitioned to perform a random search to
build an object-relationship graph.

(4)	 Module-level: the application is partitioned
into independent or interdependent modules
and assigned to local or remote servers.

(5)	 Task-level: partitioning the application into
several subtasks based on task type and func-
tion.

–	 Decision strategy is identified by how tasks parti-
tioned (i.e. statically or dynamically) and how off-
loading decisions are made (i.e. before task execution
or during task execution). If tasks are partitioned
statically and offloading decisions are made before
task execution, we call it online decision strategy. On
the contrary, if tasks are partitioned dynamically and
decisions are made during task execution, we call it
offline decision.

–	 Offloading infrastructure includes traditional cloud
and cloud-edge collaborative architecture (Kai et al.
[69]). Traditional cloud-based offloading infra-
structure means that task modules can run on local
devices or remote cloud servers. The cloud-edge
collaboration-based offloading infrastructure means
that task modules can run on local devices, edge
servers, and cloud servers. The edge-based offload-
ing infrastructure means that task can run on local
devices or edge servers.

As shown in Table 2, we make a comprehensive compari-
son on the current work on tasking partitioning and off-
loading decision optimization approaches based on the
proposed taxonomy metrics.

Conclusion and future work
In this paper, we first make a brief review on some rep-
resentative task partitioning and offloading frameworks
for mobile edge computing (MEC) and mobile cloud
computing (MCC). Then, we extract a general work-
flow of task partitioning and offloading, which mainly
includes an application model for profiling users’ require-
ments of task partitioning and offloading and a decision
engine for solving application models. Most importantly,
through making a deep investigation on the current work
on the application model and the core of decision engine,
we show the challenges and approaches to fulfil users’
requirements on delay, energy, and economic cost in
IoT systems by making proper task partitioning and off-
loading decisions with different decision granularity and
decision strategy. Based on the survey, we propose com-
prehensive taxonomy metrics for comparing different
task partitioning and offloading approaches in the IoT
cloud-edge collaborative computing framework.

From the comparison, we think that the following
issues may be further addressed in development of task
partitioning and offloading frameworks.

Granularity of task partitioning. When designing the
partitioning and offloading algorithms, the granularity of
partitioning greatly affects the computational complex-
ity and resource utilization of the service runtime. Par-
titioning at different levels of granularity can cause many
problems, such as subtask dependencies and additional
resource overhead. However, because of the diversity
of tasks, it is challenging to achieve the optimal level of
granularity. It should consider minimal communication
overhead for offloading and lightweight mechanisms for
distributed platform establishment and management.

Resource constraints and environmental dynamics.
In a real cloud-edge collaborative computing offloading
environment, it is necessary to consider the limitations
of computing and storage capabilities of edge nodes.
Besides, since the network environment is unstable, the
computational offloading framework needs to adapt to
the dynamically changing network bandwidth. In addi-
tion, due to the fluctuating network environment and
limited resources, failures of task partitioning and off-
loading may occur. So the framework needs to support
the optimization of resource consumption due to task
loss caused by unpredictable factors.

Offloading in blockchain-enabled communica-
tions systems. Blockchain will play an important role
in emerging 6G network infrastructure, since it has the

Page 17 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

promising possibility to provide fundamentally stable,
reliable, and consistent connectivity among clouds,
edges and devices (Liu et al. [70]). However, it is of
extreme complexity and sophistication to make scalable

and reliable offloading decisions, to model offloading
costs, and to extract reward due to the dynamic nature
of offloading contents, network states, and device states
in the future blockchain-empowered networking and
computing infrastructure (Alam et al. [71]).

Table 2  Task partitioning and offloading decision optimization approaches based on the proposed taxonomy metrics

Algorithms End-user Inter-
dependent
Subtask
Model

Cost Model Profiler Decision
Engine

Decision
Granularity

Decision
Strategy

Offloading
Infrastructure

Giurgiu et al.
[46]

single user module graph latency, energy
consumption

hardware, soft-
ware, network

GO module online cloud

BBAP &MCGAP
(Niu et al. [32])

single user object graph latency, energy hardware,
network

GO object offline cloud

CATSA (Lakhan
et al. [47])

single user module graph latency software,
network

GO module online cloud-edge

MAUI (Cuervo
et al. [20])

single user control flow
graph

energy con-
sumption

hardware, soft-
ware, network

ILP method online cloud-edge

CloneCloud
(Chun et al.
[22])

single user control flow
graph

latency, energy
consumption

software,
network

ILP thread offline cloud

MACS
(Kovachev et al.
[49])

single user service graph energy con-
sumption, QoS

hardware,
network

ILP module online cloud

Yang et al. [50] single user,
multi-user

service graph QoS, economic
cost

hardware,
network

MILP module offline cloud

ParGen (Wen
et al. [31])

multi-user data flow
graph

latency hardware, soft-
ware, network

ILP module offline cloud-edge

DTOS-LBBD
(Alameddine
et al. [51])

single user task graph latency hardware,
software

MILP task offline cloud-edge

DCOS (Ding
et al. [53])

multi-user program call
graph

latency hardware,
software

ILP task offline cloud-edge

Li et al. [57] single user task graph latency software,
network

MINLP task offline cloud-edge

QL-JTAR (Dab
et al. [61])

multi-user task graph energy
consumption,
latency

hardware, soft-
ware, network

RL task online cloud-edge

Meng et al. [62] single-user data flow energy
consumption,
latency

hardware,
software

DRL module online edge

Su et al. [63] multi-user module graph latency, QoE hardware,
software

RL objext offline edge

MA-DDPG (Lu
et al. [64])

multi-user service graph energy
consumption,
latency

hardware, soft-
ware, network

DRL module online edge

Tang et al. [65] multi-user data flow latency hardware, soft-
ware, network

DRL task online edge

FDRL (Cheng
et al. [66])

multi-user data flow energy
consumption,
latency

hardware, soft-
ware, network

DRL task online cloud-edge

Wang et al. [67] single-user task graph energy
consumption,
latency, QoS

hardware, soft-
ware, network

DRL task online cloud-edge

TOLBO (Yan
et al. [68])

multi-user data flow energy
consumption,
latency

hardware, soft-
ware, network

DRL module online cloud-edge

Page 18 of 19Chen et al. Journal of Cloud Computing (2022) 11:86

Real experimental evaluation. Most of the existing
work evaluates the framework of task partitioning and
offloading with simulation experiments. Because the
setting of simulation experiments can be ideal, the sim-
ulation results cannot reflect performance of the offload-
ing algorithms in practice. Therefore, it is necessary to
migrate the method to a real IoT environment to detect
the performance of the algorithm in real scenarios.

Acknowledgements
Not applicable.

Authors’ contributions
H. Chen wrote the main manuscript text. W. Qin wrote the “MDP and RL” section and
completed the Table 2. L. Wang drew Fig. 9. All authors reviewed the manuscript.

Funding
This research was funded by the Natural Science Foundation of Ningbo City
under Grant No. 2021J090 and Ningbo Manicipal Commonweal S &T Project
under Grant No. 2022S005.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
There is no ethical approval required.

Competing interests
The authors declare that they have no competing interests.

Received: 10 August 2022 Accepted: 12 November 2022

References
	1.	 Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A (2014) Mobile-

edge computing introductory technical white paper. White paper,
mobile-edge computing (MEC) industry initiative 29:854–864

	2.	 Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge
computing-a key technology towards 5g. ETSI white paper 11(11):1–16

	3.	 Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: A
survey. IEEE Internet Things J 5(1):450–465

	4.	 Shi W, Zhang X, Wang Y, Zhang Q (2019) Edge computing: state-of-the-
art and future directions. Journal of Computer Research and Develop-
ment 56(1):73–93

	5.	 Lai P, He Q, Cui G, Xia X, Abdelrazek M, Chen F, Hosking J, Grundy J, Yang
Y (2020) QoE-aware user allocation in edge computing systems with
dynamic QoS. Futur Gener Comput Syst 112:684–694

	6.	 Sodhro AH, Luo Z, Sangaiah AK, Baik SW (2019) Mobile edge comput-
ing based QoS optimization in medical healthcare applications. Int J Inf
Manag 45:308–318

	7.	 Ma X, Cui Y, Wang L, Stojmenovic I (2012) Energy optimizations for mobile
terminals via computation offloading. In: The 2nd IEEE International
Conference on Parallel, Distributed and Grid Computing. IEEE, Piscataway,
pp 236–241

	8.	 Kuang Z, Li L, Gao J, Zhao L, Liu A (2019) Partial offloading scheduling
and power allocation for mobile edge computing systems. IEEE Internet
Things J 6(4):6774–6785

	9.	 Avgeris M, Spatharakis D, Dechouniotis D, Leivadeas A, Karyotis V, Papa-
vassiliou S (2022) ENERDGE: Distributed energy-aware resource allocation
at the edge. Sensors 22:660

	10.	 Heidari A, Jabraeil Jamali MA, Jafari Navimipour N, Akbarpour S (2020)
Internet of things offloading: Ongoing issues, opportunities, and future
challenges. Int J Commun Syst 33(14):e4474

	11.	 Zhang K, Gui X, Ren D, Li J, Wu J, Ren D (2019) Survey on computa-
tion offloading and content caching in mobile edge networks. J Softw
30(08):2491–2516

	12.	 Saeik F, Avgeris M, Spatharakis D et al (2021) Task offloading in edge and
cloud computing: A survey on mathematical, artificial intelligence and
control theory solutions. Comput Netw 195(3):10817

	13.	 Feng C, Han P, Zhang X, Yang B, Liu Y, Guo L (2022) Computation offload-
ing in mobile edge computing networks: A survey. Journal of Network
and Computer Application 202(103366). https://​doi.​org/​10.​1016/j.​jnca.​
2022.​103366

	14.	 Mach P, Becvar Z (2017) Mobile edge computing: A survey on architec-
ture and computation offloading. IEEE Communications Surveys and
Tutorials 19(3):1628–1656

	15.	 Jiang C, Cheng X, Gao H, Zhou X, Wan J (2019) Toward computation
offloading in edge computing: A survey. IEEE Access 7:131543–131558

	16.	 Wang J, Pan J, Esposito F, Calyam P, Yang Z, Mohapatra P (2019) Edge
cloud offloading algorithms: Issues, methods, and perspectives. ACM
Comput Surv 52(1):1–23

	17.	 Lin H, Zeadally S, Chen Z, Labiod H, Wang L (2020) A survey on computa-
tion offloading modeling for edge computing. Journal of Network and
Computer Applications 169:102781

	18.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2020) A review on
the computation offloading approaches in mobile edge comput-
ing: A game-theoretic perspective. Software-Practice and Experience
50(9):1719–1759

	19.	 Wang B, Wang C, Huang W, Song Y, Qin X (2020) A survey and tax-
onomy on task offloading for edge-cloud computing. IEEE Access
8:186080–186101

	20.	 Cuervo E, Balasubramanian A, Dk Cho, Wolman A, Saroiu S, Chandra R,
Bahl P (2010) MAUI: Making smartphones last longer with code offload.
The 8th International Conference on Mobile Systems, Applications, and
Services (MobiSys’10). Association for Computing Machinery, New York,
pp 49–62

	21.	 Richter J, Press M (2010) Applied Microsoft .net Framework Programming,
2nd edn (chap CLR via C#). Microsoft Press, Hoboken

	22.	 Chun BG, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: Elastic
execution between mobile device and cloud. The Sixth Conference on
Computer Systems (EuroSys’11). Association for Computing Machinery,
New York, pp 301–314

	23.	 Aridor Y, Factor M, Teperman A (1999) cJVM: A single system image of a
JVM on a cluster. In: Proceedings of the 1999 International Conference on
Parallel Processing (ICPP), IEEE, Piscataway, pp 4–11

	24.	 Zhu W, Wang CL, Lau F (2002) JESSICA2: A distributed Java virtual
machine with transparent thread migration support. In: IEEE International
Conference on Cluster Computing, IEEE, Piscataway, pp 381–388

	25.	 Kosta S, Aucinas A, Hui P, Mortier R, Zhang X (2012) ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading. IEEE INFOCOM 945–953:945–953

	26.	 Zhang L, Tiwana B, Dick RP, Qian Z, Mao ZM, Wang Z, Yang L (2010)
Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In: IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), IEEE, Piscataway, pp 105–114

	27.	 Feng X, Ding F, Jie L, Kong X, Ma J (2014) Phone2cloud: Exploiting com-
putation offloading for energy saving on smartphones in mobile cloud
computing. Inf Syst Front 16(1):95–111

	28.	 Liu J, Kumar K, Lu YH (2010) Tradeoff between energy savings and privacy
protection in computation offloading. The 16th ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED’10). ACM, New
York, pp 213–218

	29.	 Xian C, Lu YH, Li Z (2007) Adaptive computation offloading for energy
conservation on battery-powered systems. In: The International Conference
on Parallel and Distributed Systems (ICPADS), IEEE, Piscataway, pp 1–8

	30.	 Balasubramanian A, Mahajan R, Venkataramani A (2010) Augmenting
Mobile 3G Using WiFi. The 8th ACM international conference on mobile
systems, applications and services (MobiSys’10). ACM, San Francisco, pp
209–221

	31.	 Wen H, Yang L, Wang Z (2017) Pargen: A parallel method for partition-
ing data stream applications in mobile edge computing. IEEE Access
6:5037–5048

https://doi.org/10.1016/j.jnca.2022.103366
https://doi.org/10.1016/j.jnca.2022.103366

Page 19 of 19Chen et al. Journal of Cloud Computing (2022) 11:86 	

	32.	 Niu J, Song W, Atiquzzaman M (2014) Bandwidth-adaptive partitioning
for distributed execution optimization of mobile applications. Journal of
Network & Computer Applications 37(Jan.):334–347

	33.	 Munoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading. IEEE Trans Veh Technol 64(10):4738–4755

	34.	 Kumar K, Lu Y (2010) Cloud computing for mobile users: Can offloading
computation save energy? Computer 43(4):51–56

	35.	 Muhammad G (2015) Automatic speech recognition using interlaced
derivative pattern for cloud based healthcare system. Clust Comput
18(2):795–802

	36.	 Shi W, Jie C, Quan Z, Li Y, Xu L (2016) Edge computing: Vision and chal-
lenges. IEEE Internet Things J 3(5):637–646

	37.	 Zhao T, Zhou S, Song L, Jiang Z, Guo X, Niu Z (2020) Energy-optimal and
delay-bounded computation offloading in mobile edge computing with
heterogeneous clouds. China Communications 17(5):191–210

	38.	 Rausch T, Nastic S, Dustdar S (2018) EMMA: Distributed QoS-aware MQTT
middleware for edge computing applications. In: The IEEE International
Conference on Cloud Engineering (IC2E), IEEE, Piscataway, pp 191–197

	39.	 Song Y, Yau SS, Yu R, Zhang X, Xue G (2017) An approach to qos-based
task distribution in edge computing networks for iot applications. In: The
2017 IEEE International Conference on Edge Computing (EDGE), IEEE,
Piscataway, pp 32–39

	40.	 Aazam M, St-Hilaire M, Lung C, Lambadaris I (2016) MeFoRE: QoE based
resource estimation at Fog to enhance QoS in IoT. In: The 23rd Interna-
tional Conference on Telecommunications (ICT), IEEE, Piscataway, pp 1–5

	41.	 Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware applica-
tion module management for fog computing environments. ACM Trans
Internet Technol 19(1):1–21

	42.	 Luo Q, Shi W, Fan P, etal (2021) Qoe-driven computation offloading:
Performance analysis and adaptive method. In: 2021 13th International
Conference on Wireless Communications and Signal Processing (WCSP),
Changsha, IEEE, Piscataway, pp 1–5

	43.	 Huang M, Liu W, Wang T, Liu A, Zhang S et al (2020) A cloud-MEC collabo-
rative task offloading scheme with service orchestration. IEEE Internet
Things J 7(7):5792–5805

	44.	 He X, Lu H, Du M, Mao Y, Wang K et al (2021) Qoe-based task offloading
with deep reinforcement learning in edge-enabled internet of vehicles.
IEEE Trans Intell Transp Syst 22(4):2252–2261

	45.	 Lin J (1976) Multiple-objective problems: Pareto-optimal solutions
by method of proper equality constraints. IEEE Trans Autom Control
21(5):641–650

	46.	 Giurgiu I, Riva O, Alonso G (2012) Dynamic software deployment from
clouds to mobile devices. In: ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing, USE-
NIX, Berkeley, pp 394–414

	47.	 Lakhan A, Li X (2019) Content aware task scheduling framework for
mobile workflow applications in heterogeneous mobile-edge-cloud
paradigms: CATSA framework. In: The IEEE International Conference on
Parallel Distributed Processing with Applications (ISPA’19), IEEE, Piscata-
way, pp 242–249

	48.	 Wu H, Knottenbelt WJ, Wolter K (2019) An efficient application partition-
ing algorithm in mobile environments. IEEE Trans Parallel Distrib Syst
30(7):1464–1480

	49.	 Kovachev D, Klamma R (2012) Framework for computation offloading in
mobile cloud computing. International Journal of Interactive Multimedia
and Artificial Intelligence 1(7):6–15

	50.	 Yang L, Cao J, Cheng H, Ji Y (2015) Multi-User Computation Partitioning
for Latency Sensitive Mobile Cloud Applications. in IEEE Transactions on
Computers 64(8):2253–2266

	51.	 Alameddine HA, Sharafeddine S, Sebbah S, Ayoubi S, Assi C (2019)
Dynamic task offloading and scheduling for low-latency iot services in
multi-access edge computing. IEEE J Sel Areas Commun 37(3):668–682

	52.	 Hooker JN, Ottosson G (2003) Logic-based benders decomposition. Math
Program 96(1):33–60

	53.	 Ding Y, Liu C, Zhou X, Liu Z, Tang Z (2020) A code-oriented partitioning
computation offloading strategy for multiple users and multiple mobile
edge computing servers. IEEE Trans Industr Inf 16(7):4800–4810

	54.	 Zhou B, Dastjerdi AV, Calheiros RN, Srirama SN, Buyya R (2017) mCloud:
A context-aware offloading framework for heterogeneous mobile cloud.
IEEE Trans Serv Comput 10(5):797–810

	55.	 Neto JLD, Yu S, Macedo DF, Nogueira JMS, Langar R, Secci S (2018)
ULOOF: A user level online offloading framework for mobile edge com-
puting. IEEE Trans Mob Comput 17(11):2660–2674

	56.	 Wu H, Wolter K, Jiao P, Deng Y, Zhao Y, Xu M (2021) EEDTO: An Energy-
Efficient Dynamic Task Offloading algorithm for blockchain-enabled
IoT-edge-cloud orchestrated computing. IEEE Internet Things J
8(4):2163–2176

	57.	 Li S, Chen W, Chen Y, Chen C, Zheng Z (2019) Makespan-minimized com-
putation offloading for smart toys in edge-cloud computing. Electron
Commer Res Appl 37:100884

	58.	 Emeretlis A, Theodoridis G, Alefragis P, Voros N (2016) A logic-based bend-
ers decomposition approach for mapping applications on heterogene-
ous multicore platforms. ACM Trans Embed Comput Syst 15(1):19

	59.	 Dash SK, Dash S, Mishra J et al (2020) Opportunistic mobile data
offloading using machine learning approach. Wirel Pers Commun
110(1):125–139

	60.	 Wu H, Li X, Deng Y (2020) Deep learning-driven wireless communication
for edge-cloud computing: Opportunities and challenges. Journal of
Cloud Computing 9(21):1–14

	61.	 Dab B, Aitsaadi N, Langar R (2019) Q-learning algorithm for joint com-
putation offloading and resource allocation in edge cloud. In: Proceed-
ings of 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), IEEE, Piscataway, pp 45–52

	62.	 Meng H, Chao D, Guo Q (2019) Deep reinforcement learning based task
offloading algorithm for mobile-edge computing systems. In: Proceed-
ings of the 2019 4th International Conference on Mathematics and
Artificial Intelligence, IEEE, Piscataway, pp 90–94

	63.	 Su Z, Dai M, Xu Q et al (2020) Q-learning-based spectrum access for
content delivery in mobile networks. IEEE Transactions on Cognitive
Communications and Networking 6(1):35–47

	64.	 Lu H, Gu C, Luo F et al (2020) Optimization of task offloading strategy
for mobile edge computing based on multi-agent deep reinforcement
learning. IEEE Access 8:202573–202584

	65.	 Tang M, Wong V (2022) Deep reinforcement learning for task offload-
ing in mobile edge computing systems. IEEE Trans Mob Comput
21(1):1985–1997

	66.	 Cheng Z, Gao Z, Liwang M, Huang L, Du X, Guizani M et al (2021) Intel-
ligent task offloading and energy allocation in the uav-aided mobile
edge-cloud continuum. IEEE Netw 35(5):42–49

	67.	 Wang J, Hu J, Min G, Zhan W, Zomaya A, Georgalas N et al (2022) Depend-
ent task offloading for edge computing based on deep reinforcement
learning. IEEE Trans Comput 71(10):2449–461

	68.	 Yan L, Chen H, Tu Y, Zhou X et al (2022) A task offloading algorithm
with cloud edge jointly load balance optimization based on deep
reinforcement learning for unmanned surface vehicles. IEEE Access
10(1):16566–16576

	69.	 Kai C, Zhou H, Yi Y, Huang W (2021) Collaborative cloud-edge-end task
offloading in mobile-edge computing networks with limited communi-
cation capability. IEEE Transactions on Cognitive Communications and
Networking 7(2):624–634

	70.	 Liu Y, Su Z, Wang Y (2022) Energy-efficient and physical layer secure
computation offloading in blockchain-empowered internet of things.
IEEE Internet Things J. https://​doi.​org/​10.​1109/​JIOT.​2022.​31592​48

	71.	 Alam T, Ullah A, Benaida M (2022) Deep reinforcement learning approach
for computation offloading in blockchain-enabled communications
systems. J Ambient Intell Humaniz Comput. https://​doi.​org/​10.​1007/​
s12652-​021-​03663-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/JIOT.2022.3159248
https://doi.org/10.1007/s12652-021-03663-2
https://doi.org/10.1007/s12652-021-03663-2

	Task partitioning and offloading in IoT cloud-edge collaborative computing framework: a survey
	Abstract
	Introduction
	Task partitioning and offloading framework
	MAUI
	CloneCloud
	ThinkAir
	Phone2Cloud
	ParGen
	Summary

	Input of decision engine: application model
	Inter-dependent subtask model
	Cost model
	Latency
	Energy
	Quality of Service (QoS)
	Quality of Experience (QoE)
	Economic cost
	Integrated model

	Core of decision engine: model solving
	Graph optimization
	Traditional programming
	Linear programming
	Non-Linear Programming (NLP)

	MDP and RL

	Taxonomy of task partitioning and offloading approaches
	Conclusion and future work
	Acknowledgements
	References

