
Lin et al. Journal of Cloud Computing (2022) 11:83
https://doi.org/10.1186/s13677-022-00366-7

RESEARCH

A multi-dimensional extensible cloud-native
service stack for enterprises
Jian Lin*, Dongming Xie, Jinjun Huang, Zinan Liao and Long Ye

Abstract

With the widespread acceptance of the cloud-native concept and the emergence of a large number of dedicated
cloud-native applications, the service stacks of cloud-native applications have received extensive attention in the
industry. To analyze the extensibility problems of service stacks, a cloud-native light-cone model is proposed, which
focuses on the dimensions of application, infrastructure, tenant and workflow, and provides a perspective view that
reflects the concerns of stakeholders. Based on this model, various challenges in designing extensible cloud-native
service stacks are identified by classification. To solve these challenges, a holistic architecture and a set of key technol-
ogies are designed, involving unified runtime abstraction, cluster bootstrapped creation, application-specific control-
lers, etc. Furthermore, the OMStack (Oriental Mind Stack) is implemented, which integrates these technologies and
provides a group of PaaS and SaaS services for container cluster (OMCC), artificial intelligence (OMAI), big data (OMBD)
and so on. Experimental analysis and production applications demonstrate the practicality, efficiency and reliability of
the proposed architecture, stack and services.

Keywords: Cloud-native, Container cluster, Service stack, Kubernetes, PaaS, SaaS

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Introduction
In recent years, the practices of cloud-native comput-
ing have been widely accepted by cloud service provid-
ers and information technology enterprises. On the
basis of the original capabilities of cloud computing like
resource pooling, on-demand provisioning and elastic
scaling [1, 2], the concept of cloud-native computing fur-
ther emphasizes that the full stack of systems and the full
life-cycle of applications are naturally designed for cloud
environments. It aims to provide automation, resiliency,
manageability and observability to the users [3].

Many dedicated cloud-native applications are devel-
oped to serve different businesses. Several cloud-native
service stacks [4–6] are also proposed to provide orches-
tration and maintenance capabilities for upper-layer
applications. Compared to earlier cloud computing prac-
tices of running traditional applications on virtualized
infrastructures, the cloud-native practices deliver higher

resource utilization and enable more business flexibility.
Thus, it gets particular attention from enterprises with
on-premise clusters.

As can be seen from the history of cloud-native com-
puting, its typical architectures and technologies are
abstracted and summarized from best practices, rather
than deduced from pure theories. This is reasonable in
computer engineering, but it is also worthwhile to con-
sider a more systematic approach to analyzing and build-
ing cloud-native service stacks. In this way, the research
challenges can be analyzed in a structured manner, and
the service software can be designed in a consolidated
manner. This is the direction this paper hopes to explore.

To realize the value of the systematic approach, it is
necessary to build production systems and serve real
businesses. Instead of large and comprehensive service
stacks for cloud service providers, the cloud-native ser-
vice stack for enterprises is the focus of this paper, while
mainstream applications including artificial intelligence
and big data are considered as the primary workloads. To
generalize the capabilities in many dimensions that the

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: linjian@orientalmind.com

Oriental Mind (Wuhan) Computing Technology Co., Ltd., Wuhan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00366-7&domain=pdf

Page 2 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

service stack needs to achieve, the “extensibility” feature
is highlighted.

The contributions of this paper include:
(1) A cloud-native light-cone model is proposed to

characterize the issues of extensibility in cloud-native
service stacks. Multiple dimensions including applica-
tion, infrastructure, tenant and workflow are covered.
Based on this model and its perspective view, challenges
in designing extensible cloud-native service stacks are
identified and analyzed.

(2) A multi-dimensional extensible architecture for
cloud-native service stacks is proposed, and a set of
key technologies are designed to solve the challenges of
multiple aspects. The main technologies include uni-
fied runtime abstraction, cluster bootstrapped creation,
application-specific controllers, etc.

(3) An implementation of the architecture – OMStack
(Oriental Mind Stack) is developed, which provides a
group of PaaS and SaaS services for container cluster,
artificial intelligence, big data and so on. Its practicality,
efficiency and reliability have been proven in experimen-
tal analysis and production applications.

Background
The field of cloud-native computing has gradually formed
a recognized technical system. The dimensional analysis
and modeling research on the field is also emerging.

Cloud‑native technical stacks
Cloud-native technical stacks are the foundation for
building service capabilities. Despite the lack of standard-
ized definitions, the main components and basic charac-
teristics of the stacks have been identified and accepted
by the practices of the industry. Three main perspectives
are worth noting.

In terms of workload abstraction, the serverless execu-
tion model [7] is emphasized. It means the developers
of applications only need to pay attention to the busi-
ness logic, not the capacity planning, allocation or main-
tenance of the underlying resources. In the technical
implementation, FaaS (Function as a Service) and CaaS
(Container as a Service) are two major routes. A FaaS
service hosts users’ application functionalities and allo-
cates scalable resources for them at fine granularity. Its
disadvantage is that the application needs to be rewrit-
ten and the functionality is constrained. A CaaS service
encapsulates and runs applications within containers.
It has better compatibility with legacy business, but the
scalability, efficiency and resiliency are also subject to the
existing applications.

In terms of runtime management and resource sched-
uling, containerization is the main technical route. Com-
pared to hypervisor-based virtualization technologies

used by IaaS stacks, containerization technology is more
lightweight and efficient. In the cloud-native context, ser-
vice stacks need not only container engines for a single
node, but also container orchestrators that manage the
compute, storage and network resources for a cluster.
Kubernetes [4] is such a widely used container orchestra-
tor. Containerization technology also meets the needs of
the microservice architecture for functional decomposi-
tion, service discovery and runtime management, so it is
friendly to existing enterprise applications.

In terms of software engineering paradigm, the con-
cepts of CI/CD (continuous integration, continuous
delivery) and DevOps (combining software development
and IT operations) are often emphasized by cloud-native
practices. Its purpose is to improve the development
efficiency and product quality of cloud-native services.
Under this paradigm, automated workflows are lever-
aged to drive the building, verification and deployment
of applications. The boundary between development and
production environments becomes blurred, while auto-
mated traffic policies implement the iterations of ser-
vices in a real-time and secure manner. Saving operation
and maintenance costs is an important consideration for
enterprises adopting this paradigm.

Dimensional analysis models
Architecture modeling is a systematic way of analyzing
existing systems and designing new systems. Among the
modeling methodologies, dimensional analysis is a con-
cise and effective way.

In computer networking, the hourglass model [8] is a
classic model that uses the dimensions of hierarchy and
function to describe the relationship between protocols.
The bridging role of the network layer (Internet protocol)
is an important insight from the model. This model has
also been extended to related fields such as grid comput-
ing [9]. Inspired by the hourglass model, Lin et al. pro-
posed an analysis model for consolidated cluster systems
[10] that adopts the dimensions of resource consolidation
and runtime coordination. This model defines a set of key
features on each dimension in order to locate the defi-
ciencies in existing systems, and guide the improvement
and innovation of new systems.

In software engineering, the 4+1 view model [11]
provides general guidance for software architecture
design and implementation. It uses the views of logical,
process, development, physical and scenarios to clar-
ify the concerns in each phase of a software life-cycle.
Based on this model, many formal methods like UML
diagrams are available for each view [12], so the con-
ceptual model can further guide engineering practice,
involving systematically analyzing existing software
and automatically generating new code. Inspired by

Page 3 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

this model, derived models [13, 14] have also been pro-
posed in some subfields of software engineering.

In cloud computing, dimensional analysis is widely
adopted by academia and industry. Among the mod-
els, the conceptual reference model proposed by NIST
[15] as well as the taxonomy on multiple dimensions
has universal guiding significance. It organizes the
concepts of the taxonomy in four levels: role, activ-
ity, component and sub-component. Typical service
deployment and consumption modes are defined by the
model. This model focuses on external functional views
instead of internal technical details. Other models and
taxonomies [16] usually extend the reference model in
depth (underlying implementation) or breadth (subdi-
vision components). Refined formal specifications like
TOSCA (Topology and Orchestration Specification for
Cloud Applications) [17] are also proposed for describ-
ing and constructing cloud applications.

Specific to the field of cloud-native computing, there
are relatively few studies on analysis models. Kratzke
et al. proposed the ClouNS reference model [18] and
analyzed a group of cloud-native applications, architec-
tures and methodologies [19] according to the model.
The main dimensions the model focuses on are infra-
structure viewpoint and service category. Through
hierarchical refinement, the underlying implementa-
tions of different applications and service stacks are
classified. Thus, their design trade-offs can be identi-
fied, and potential innovation opportunities can be
found. Besides, the maturity assessment model [3] for
cloud-native service stacks is also concerned by enter-
prise users.

Cloud‑native light‑cone model
In order to characterize the issues in designing cloud-
native service stacks, and analyze the technical challenges
in a systematic way, a new model – the cloud-native light-
cone model is proposed.

Definition
The cloud-native light-cone model is a dimensional
analysis model. It focuses on describing and guiding
the designs of cloud-native service stacks. It defines the
dimensions of analysis from a spatiotemporal perspec-
tive in software engineering. Four dimensions including
application, infrastructure, tenant and workflow are con-
cerned by this model. As shown in Fig. 1, these dimen-
sions form a 4D coordinate system that looks like a light
cone in the theory of relativity. The axis scales qualita-
tively represent the design options for each dimension,
while the points in the space represent the product ori-
entations or design decisions of cloud-native services and
service stacks.

This model is inspired by the end-to-end idea of the
hourglass model but with obvious extensions. The appli-
cation and infrastructure dimensions are the top and
bottom ends of a technical stack, while the tenant and
workflow dimensions are the spatial and temporal organ-
ization units of a business pipeline. The qualitative scales
of each dimension are not constrained by this model, but
can be chosen flexibly by users. A typical group of scales
and their instances in existing service stacks are listed in
Table 1. The object indexed by a larger number approxi-
mately contains the object indexed by a smaller number
in each dimension.

Fig. 1 The coordinate system of the cloud-native light-cone model

Page 4 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

This model also provides a perspective view that
reflects the concerns of different stakeholders. As shown
in Table 2, pairwise combinations of the four dimensions
constitute six kinds of concerns. They are associated with
six typical roles in three groups of stakeholders (end-user,
proprietor and developer) of a service stack. Each role’s
responsibility related to the four dimensions is explained
in the table. It illustrates the guidance value of this model
for the design, application and evaluation of cloud-native
service stacks.

Properties
Extensibility is the main property of concern that can be
derived directly from the structural features of the cloud-
native light-cone model. The specific meanings of exten-
sibility are explained as follows.

(1) Extensibility in depth: it means the whole or part
of a service stack corresponding to a point in the coor-
dinate system can support extensive types of instances,
where the instances belong to the objects constrained by
the multi-dimensional scales of the point. This property
reflects the service stack’s functional strength at a single
point.

(2) Extensibility in breadth: it means the whole or part
of a service stack corresponding to a point in the coor-
dinate system has the potential to extend its range of
capabilities to those defined by the nearby points in the
coordinate system. This property reflects the service
stack’s capability coverage and application scope.

Although this model does not reflect other properties
of a service stack directly, they can be further derived
from the functions produced by the combination of

Table 1 The dimensions of the cloud-native light-cone model

Dimension Example of scale

Index Object Instance

x: application A1 process (task) a mapper task of a Spark MR job

A2 process group (job) a Spark MR job

A3 application framework a group of Spark runtime services

A4 application cluster a Kubernetes cluster with Spark-operator

y: infrastructure I1 device a GPU

I2 node a VM with a GPU

I3 IaaS stack instance an OpenStack cluster

I4 IaaS source a public cloud

z: tenant T1 user a personal (sub)account on a public cloud

T2 user group a user group on a public cloud

T3 virtual organization a project on a public cloud

T4 organization an enterprise account on a public cloud

t: workflow W1 intra-job an Allreduce-based AI training

W2 inter-job an ensemble-learning-based AI training

W3 inter-service an AI pipeline from training to inference

W4 inter-cluster an AI pipeline for CI/CD

Table 2 The perspective view of the cloud-native light-cone model

Stakeholder Concern Explanation

Group Role

service stack end-user manager x + z manage and coordinate various business resources, involving things (application) and people
(tenant)

ordinary user x + t organize individual work (application) uniformly and effectively in a structured way (workflow)

service stack proprietor service operator y + z use the service stack on the infrastructure to serve the users (tenant)

system maintainer y + t ensure the stability and availability of the business (workflow) on the infrastructure

service stack developer software architect x + y design effective abstractions to map applications to underlying resources (infrastructure)

product manager z + t design business processes (workflow) and user experience for tenants to improve efficiency
and usability

Page 5 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

dimensions. The following sections on architecture and
designs will explain them.

Discussion
To better understand and apply the cloud-native light-
cone model, it is necessary to explain how it relates to
classic models and existing formal methods.

The original intention and positioning of this model
are similar to the 4+1 view model, that is, to propose
a macroscopic model for guiding system analysis and
design. It evolves rather than replaces the classic model.
On the one hand, it spotlights the scenario of cloud-
native services. A specific target field makes the selec-
tion of dimensions more focused and relevant. On the
other hand, while referring to the view division based on
various stakeholders, this model places more emphasis
on the spatiotemporal dimensions closely related to the
runtime of cloud services, so as to better serve the effec-
tive output of enterprises.

The functionality of this model is a complement to clas-
sic formal methods like UML and TOSCA. It extends
existing methodologies rather than conflicts with them.
UML and TOSCA focus more on implementability. They
pursue a consistent mapping from logical design to phys-
ical implementation. In contrast, our model focuses more
on comprehensibility. It is a thinking framework that
mainly serves the upstream of a software life-cycle for
high-level problem analysis and architecture design.

Challenges of extensible cloud‑native service stack
By using the cloud-native light-cone model, the chal-
lenges of designing an extensible cloud-native service
stack are analyzed. To make the research problems more
focused, this paper mainly studies the requirements of
mainstream application scenarios in modern enterprises,
involving artificial intelligence, big data, etc. All chal-
lenges are classified according to the dimensions of the
model. The challenges in dimension x and y are mainly
related to extensibility in depth, while those in dimension
z and t are mainly related to extensibility in breadth.

Extensibility dimension x: diverse application modes
The key to enabling extensibility in the application
dimension is to support diverse application modes. Its
main challenges include diverse scheduling modes and
runtime environment dependency.

Diverse scheduling modes
Mainstream enterprise applications usually require two
main scheduling modes: microservice and batch job.
For each application framework, there are also diverse
scheduling (sub)modes for specific workload types. For
the microservice mode, service stacks need to deal with

issues including service discovery, traffic routing and
high availability. For the batch job mode, service stacks
need to support the schematized behaviors of scheduling
stateful runtime among tasks such as gang-scheduling.
Container-based service stacks are microservice friendly,
but they generally do not provide deep adaptation for
batch jobs. Although open-source adaptors like Kubeflow
[20] and Volcano [21] are available, they provide either
application-specific high-level abstraction or fine-grained
widgets. A universal batch job management mechanism
and a universal abstraction for diverse scheduling modes
are important for an extensible stack.

Runtime environment dependency
An application’s runtime environment dependency
involves hardware and software. On the hardware side,
artificial intelligence and big data applications often
require compute accelerators (e.g. GPU, FPGA) and high-
speed network cards (e.g. InfiniBand, RoCE). However,
not all container orchestrators provide native abstrac-
tions to manage these special devices. Especially when
dealing with diverse models and specs, simple resource
matching mechanisms like label selector appears to be
insufficient. On the software side, although the container
technology aims at solving the problem of dependencies
in a self-contained way, some complicated cases are not
covered. For example, the versions of CUDA and OFED
libraries are coupled with the versions of the underlying
GPU and InfiniBand drivers. A service stack needs to
decide whether to put the libraries inside or outside con-
tainers, and how to make sure the versions are compat-
ible with those of the drivers on hosts.

Extensibility dimension y: heterogeneous infrastructures
Extensibility issues related to the infrastructure dimen-
sion mainly stem from heterogeneity. The resources of
compute, storage and network have their own distinct
challenges.

Heterogeneous IaaS
A container-based service stack usually uses bare-metal-
or virtual-machine-based infrastructure as its host envi-
ronment. To provide a consistent execution environment
for upper-layer applications, some of the software-level
heterogeneity issues should be handled and hidden by
the service stack. For example, the IaaS APIs are dif-
ferent among cloud providers, so tailored adaptation
is necessary to enable dynamic resource provisioning
and multi-cloud resource access. A typical issue in this
aspect is the mechanism of public network accessibility
and load balancing, in which the implementation is sub-
ject to complicated factors like network address transla-
tion and security policy. Conversely, some hardware-level

Page 6 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

heterogeneity issues such as the instruction set architec-
ture are often perceived by the upper-layer application
developers, especially for an environment combining
clouds and edges. In this case, a service stack should pro-
vide architecture-aware orchestration mechanisms.

Storage locality
The separation architecture of compute and storage [22]
is popular in cloud-native environments. In this archi-
tecture, independent storage clusters are built using
generic underlying storage systems like the object stor-
age, while multiple compatible interfaces like the HDFS
API are exported to compute clusters. This architecture
is friendly to dynamic, elastic and stateless containerized
compute workloads. However, for small/medium-scale
on-premise clusters in enterprises, the separation archi-
tecture has potential disadvantages including the high
sensitivity of network performance, the low utilization
of storage resources, and the complexity of construction
and maintenance. It is worthwhile to introduce classic
local storage mode into containerized environments to
solve these problems. The main challenges involve the
dynamic allocation and reclamation of persistent storage
space, the performance optimization of disk and network
access, and the affinity between compute and storage
containers.

Virtualization of high‑performance hardware
Multiplexing of high-performance hardware like GPU
and InfiniBand is important for cost savings. Although
some devices provide native multiplexing or virtualiza-
tion mechanisms, potential problems remain with their
applications in cloud-native environments. Firstly, device
plugins of container orchestrators are required to enable
virtual devices in container clusters, but the ecosystem
of device plugins is immature. For example, the existing
InfiniBand plugin cannot constrain RDMA traffics on
virtual devices [23]. Secondly, the configuration for using
high-performance hardware in applications is gener-
ally complicated, while virtualization introduces further
cumbersome factors. For example, a virtual function of
a RoCE device has its additional index, which results in
poor environmental portability for applications in con-
tainers. Besides, the security isolation and performance
isolation among workloads sharing the same device are
relatively weak due to the limitation of the container
mechanism.

Extensibility dimension z: multi‑tenant on‑demand
clusters
In the tenant dimension, the extensibility issues are
reflected in the provisioning of independent virtual

execution environments on-demand for multiple tenants
in a secure and efficient manner.

Framework on‑demand provisioning
On-demand provisioning is an important feature of cloud
computing. Even in a single enterprise, users are always
making continuous requests for resources in accordance
with diversified business needs. According to the appli-
cation dimension, cloud-native service stacks can pro-
vide on-demand resources for tenants at different scales:
process group (job), application framework or applica-
tion cluster. Application-specific stacks (e.g. a Kubeflow
on Kubernetes cluster for artificial intelligence) usually
only support the job-scale provisioning. When the ten-
ant dimension is introduced, on-demand provisioning
at the application framework or application cluster scale
becomes necessary because it can provide fully controlla-
ble virtual execution environments for different tenants.
Fine-grained resource allocation and access control for
the users and groups inside a tenant (organization) are
feasible in the virtual execution environments in a frame-
work-native way. The challenge is how to implement it
for diverse frameworks with different characteristics and
requirements.

Security isolation
Security is a fundamental requirement in production sys-
tems, which involves factors such as runtime isolation,
data privacy and traffic policy. In an enterprise-oriented
multi-tenant environment, flexible security strategies
can be adopted at different layers. The isolation between
tenants (organizations) usually needs to be mandatory
and physical, while that between users inside a tenant
is usually just optional or logical. At the container level,
achieving strong isolation by using the weak isolation
techniques of containerization is a challenge. At the con-
tainer cluster level, the multi-tenancy feature is not avail-
able at a product level in mainstream orchestrators [24].
Thus, cloud-native service stacks need to fill these gaps.
The designs should balance security with additional over-
head, resource utilization and application transparency.

Resource utilization
The percentage of resources used by effective workloads
is an important indicator of a software stack, especially
for that in an on-premise cluster. Multi-tenancy intro-
duces additional issues on resource utilization. Typi-
cal issues are as follows. Firstly, the isolation of virtual
execution environments among tenants limits the elas-
tic scheduling of free resources, while the per-tenant
components also take up more resources than shared
components. Secondly, when introducing the sepa-
ration architecture of compute and storage in small/

Page 7 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

medium-scale clusters, the storage utilization may be rel-
atively low compared with that in the traditional coupling
architecture. Thirdly, to fully utilize expansive high-per-
formance hardware, the trade-off between multiplexing
and security is inevitable. A cloud-native service stack
should deal with the above problems in a systematic way.

Extensibility dimension t: automated workflows
The workflow dimension focuses on achieving connectiv-
ity and automation across the entire life-cycle of business
on the cloud. This dimension is the embodiment of the
cloud-native software engineering paradigm.

Inter‑job workflow
Batch job schedulers generally handle intra-job work-
flows, while common workflow engines in the cloud-
native ecosystem generally handle workflows over
containers or pods rather than batch jobs. For artificial
intelligence and big data applications, higher-level work-
flows are often required to meet the needs of compre-
hensive businesses. For example, an artificial intelligence
workflow involves model development, training, serving
and verification, where different steps have diverse sched-
uling and interaction modes. To handle this kind of busi-
ness, the workflow mechanism needs to be extensible for
both universality (application adaptability) and scalability
(task scale). Meanwhile, usability is another value that
workflow mechanisms can bring. Application-specific
workflow plans and routine steps can be made implicit in
the upper layers of a service stack, while the lower layers
are responsible for generic capabilities.

CI/CD workflow
When the concepts of continuous integration and con-
tinuous delivery are introduced in a service stack, the
workflow designs will expand at multiple angles. In
terms of environmental coverage, a CI/CD workflow
may cover multiple clusters involving development and
production environments. In terms of objects to be man-
aged, a CI/CD workflow deals with not only executable
tasks, but also entities like data assets and software arti-
facts. Although the general CI/CD toolchains in soft-
ware engineering are relatively mature, adaptive designs
are required when applying them in specific application
scenarios. For example, a CI/CD workflow for artificial
intelligence needs to manage the logics of models’ com-
pilation for specific inference devices, encapsulation for
specific runtime environments, documentation of meta-
information, etc. Besides, the programmable mechanism
is helpful for a CI/CD workflow, which enhances the con-
figurability of complicated automation pipelines.

Multi‑dimensional extensible architecture
Guided by the cloud-native light-cone model, a multi-
dimensional extensible architecture is designed. It
focuses on addressing the challenges of implementing
extensible cloud-native service stacks. The composition
of this architecture and the relationship among main
components are shown in Fig. 2. Intuitively, it inher-
its and extends the idea of the hourglass model. The
architecture defines the service stack as a bridging layer
logically. It emphasizes that the service components
should treat the applications and infrastructures in a
hierarchical view like the protocol stack of computer
networking. The introduction of tenant and workflow
emphasizes two meanings: (1) The virtual execution
environments for tenants define the spatial division of a
service stack, while the orchestration and scheduling of
workflows define the temporal organization of a service
stack. (2) The workflows carry the inputs of business
logic, while the tenants receive the outputs of business
logic.

Referring to the perspective view in Table 2, this archi-
tecture also embodies six main functions of a service
stack by connecting four dimensions:

(1) x + z : business management. Enterprise tenants
typically have business management policies consistent
with their administrative regulations. The service stack
should provide flexible mechanisms to allow tenants to
implement their policies.

(2) x + t : runtime abstraction. The business logic car-
ried by workflows will be abstracted into application
runtime entities of appropriate granularities so that
either the service stack or the users can manage the busi-
ness logic in a uniform manner respectively.

(3) y+ z : environment allocation. The infrastruc-
tures will be partitioned or packaged as multiple virtual
execution environments to serve different tenants or
businesses. The service stack ensures a tenant-specific
resource view.

(4) y+ t : resource maintenance. The infrastructure as
the critical basis needs to be operated and maintained
effectively. The service stack should meet the proprie-
tor’s need for stability and availability to host workflows
in production.

(5) x + y : architecture adaption. The infrastructures
will be utilized in an organized way according to the
applications’ requirements. Architecture adaptation
interfaces between hardware and software at the appro-
priate level will be implemented by the service stack.

(6) z + t : logic orchestration. The workflows stand for
the business processes requested by tenants, which are
scheduled by the service stack to ensure that the orches-
tration logic meets the tenants’ expectations as in the
physical world.

Page 8 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

Designs of key technologies
Based on the multi-dimensional extensible architecture, a
group of key technologies are designed. They aim to solve
the concrete challenges so that an extensible cloud-native
service stack for enterprises can be implemented sys-
tematically. Representative designs are introduced in this
section. The correspondence between the designs of key
technologies and the challenges they address is presented
in Fig. 3.

Unified runtime abstraction
The unified runtime abstraction [25] is designed for job
management. It includes two layers: the universal inter-
face and extensible drivers. The universal interface is an
abstract data structure describing the runtime entities
as well as their resource requirements and scheduling
policies of a job. It supports either using the fine-grained
“process group” structure to describe any job in a free
way or using the templated “application job” structure
to describe jobs of classic application frameworks in a
concise way. Taking the artificial intelligence job as an

example, the templated structure abstracts typical dis-
tribution modes like PS-Worker, Allreduce and MPI
as standard options of scheduling policy. The universal
interface can be expressed and stored in JSON.

Extensible drivers are employed to support diverse
application modes. For the microservice mode, the driver
is implemented using the mechanisms of native Kuber-
netes and Istio [26]. For the batch job mode, the generic
driver is implemented by synthesizing the mechanisms
of Volcano, the network and affinity policies of Kuber-
netes, as well as several improved designs implementing
the schematized scheduling behaviors. Some of the spe-
cific drivers for classic application frameworks are imple-
mented using the operator mechanism of Kubernetes.

To solve the runtime environment dependency prob-
lem, the runtime abstract provides fields for environment
matching. To support special devices with quantitative
specifications (e.g. GPU’s model and memory), and also
to match the versions of drivers on hosts, a resource
expression matching mechanism is designed to extend
the simple label selector mechanism. It implements

Fig. 2 The composition of the multi-dimensional extensible architecture

Page 9 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

arithmetic, string and set operations, so complicated
matching conditions can be expressed.

Kubernetes cluster bootstrapped creation
The Kubernetes cluster bootstrapped creation mecha-
nism [27] is designed for the life-cycle management of
containerized application clusters. It can create inde-
pendent Kubernetes clusters dynamically for different
tenants. The mechanism includes the universal abstrac-
tion and extensible bootstrapped drivers. The universal
abstraction describes the requirements of a Kubernetes
cluster. Advanced configuration items involving network
and storage infrastructures are supported.

Extensible bootstrapped drivers are responsible for
creating Kubernetes clusters on bare-metal- or virtual-
machine-based IaaS clusters. Two environments are
related to a driver: the host environment where the driver
runs, and the target environment where the new Kuber-
netes cluster is created. “Bootstrap” means that a driver
is a self-contained job in a container running in the host
environment. The self-contained job depends on only the
standard IaaS APIs of the target environment, but not any
other components of it. The implementation of drivers
leverages some IaC (Infrastructure as Code) toolchains
like Terraform [28]. The complexity of programming in
the IaC DSL (domain-specific language) is hidden in the
drivers, while the support for high-performance devices
is extended in specially developed plugins.

Support for multiple heterogeneous cloud environ-
ments demonstrates the extensibility of this mechanism.
The design of extensible providers in the IaC toolchain
allows the target environment to be set on either a pri-
vate cloud based on OpenStack with Magnum, or IaaS
clusters of mainstream public clouds. This enables a
cloud-native service stack to support hybrid cloud and
multi-cloud environments [29] for performance and
availability.

Intranet penetration mechanisms
To solve the network accessibility issues in complicated
network environments, a group of intranet penetration
mechanisms are employed. Traditionally, VPN (virtual
private network) and cloud load balancer are common
mechanisms for accessing the intranets inside contain-
erized clusters from the Internet. They offer the benefits
of reliability and performance, but they are subject to the
capabilities of cloud providers and are costly. Two new
flexible mechanisms are designed. One is the container-
cluster-oriented reverse proxy mechanism, and another is
the MQTT (message queuing telemetry transport)-based
message broker. They require only the virtual IP service
from cloud providers, and provide lightweight channels
for intranet penetration at a low cost.

The container-cluster-oriented reverse proxy mecha-
nism includes a load gateway and a group of Istio ser-
vices. The load gateway works as the entry of traffic which
supports dynamic virtual IP binding, while the Istio

Fig. 3 The designs of key technologies and the challenges they address

Page 10 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

services are responsible for the routing of traffic within
the intranet. The MQTT-based message broker contains
peer services in different network environments, which
are designed for transmitting control messages on unre-
liable connections. Typical application scenarios of these
mechanisms include: implementing a hybrid cloud where
the cloud-native service is in a private cluster but the tar-
get environments are on public clouds, implementing an
application across clouds and edges in which the edge
sides have their own private networks, etc.

Full‑stack application‑specific controllers
The full-stack application-specific controller is a compre-
hensive technology to implement on-demand provision-
ing of application frameworks or application clusters.
Compared with common Kubernetes operators [30], the
concept of “full-stack” emphasizes that the technology
covers not only the runtime entities of frameworks/clus-
ters, but also the underlying resources including storage
and network.

A typical example of these controllers is the HDFS-
on-Kubernetes provisioner. It is a full-stack opera-
tor that aims to provision multiple on-demand storage
clusters, and also addresses the challenges of storage
locality and network performance sensitivity. This pro-
visioner includes the designs of CRD (custom resource
definition)-based workload abstraction, endpoint provi-
sioning mechanism for port allocation and reclamation,
and volume provisioning mechanism for disk partition-
ing and mounting. When a request for an HDFS cluster
is received, the provisioner will find a group of hosts with
enough disk space, partition the disks using LVM (logical
volume manager), and then create the corresponding PV
(persistent volume) objects for the service pods. To avoid
the overhead of the overlay network, the host network is
used in this scenario. The allocation records of the ports
on hosts are managed by the provisioner so that differ-
ent containerized HDFS clusters can share the same port
space without conflicts.

To achieve network isolation, the controllers can also
use the MAC-based VLAN and route policies to restrict
the security risks among different application frame-
works/clusters. As a general entry for a set of related
objects, the Kubernetes operator-based controller design
also facilitates the implementation of multi-tenant access
control.

Device multiplexing plugins
The device multiplexing plugins are designed for shar-
ing the high-performance hardware with multiple jobs
to improve resource utilization. The main devices that
need to be multiplexed include compute accelerators and
high-speed network cards. On the GPU side, a new GPU

device plugin for Kubernetes with its scheduler extender
is developed. Compared to the existing solutions [31,
32], it supports matching GPU by model and allocat-
ing resources by both computing power and memory,
where the computing power is abstracted as “milli-GPU”.
To enforce performance isolation, system call intercep-
tion and external resource monitoring mechanisms are
adopted. On the RDMA side, new device plugins are
developed by improving the open-source solution for
InfiniBand [33]. The SR-IOV-based virtualization is used
to implement mandatory resource constraints, while
compatibility design is also made to multiplex other
RDMA devices like RoCE.

In order to solve the complexity issues of configuring
high-performance devices in containerized environ-
ments, several utilities are developed. An RDMA device
information detector is developed for fetching the addi-
tional indexes of virtualized devices, which helps the
applications in containers to bind network interfaces. An
RDMA job launcher is developed for setting essential sys-
tem parameters like the pinned memory size in a secure
manner. Other utilities like the multi-network IP address
mapper, the shared memory setup tool and the GPU
monitor agent are also available. For the application-spe-
cific container images supplied by a service stack, these
utilities can be integrated and executed implicitly to pro-
mote the usability and portability of the stack.

High‑performance containerized communication
The device multiplexing plugins for high-performance
hardware solve the feasibility and utilization issues. Fur-
ther, performance optimization needs to be considered.
Several designs for high-performance containerized
communication are proposed. Representative technolo-
gies are introduced as follows.

To accelerate distributed big data jobs, an RDMA-
based remote shuffle service [34] is designed. Its basic
idea inherits the existing work [35] in the industry, while
its innovation is mainly in the cloud-native design and
RDMA communication. This shuffle service runs as a
container cluster. Benefiting from the provisioning mech-
anism of the full-stack operator, the local disk-based stor-
age can be partitioned and mounted automatically. An
RDMA-based shuffle client integrated with the Spark
framework is developed to enable high-throughput com-
munication with the shuffle service. The client and ser-
vice use control messages to manage the allocation of
pinned communication buffers.

To adapt the separation architecture of compute and
storage, and provide better performance in this case, a
containerized storage access layer [36] is proposed. This
layer runs in the compute cluster as a cache service. The
core implementation is based on Alluxio [37], and the

Page 11 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

containerized provisioning is also based on the full-stack
operator. To accelerate upper-layer applications that do
not support RDMA, the IPoIB network is introduced.
The multi-network IP address mapper will help applica-
tions to find this network plane for data access.

Dynamic interactive workflow
For typical application scenarios with inter-job work-
flows, it is necessary to design general underlying mech-
anisms and dedicated upper-layer routines to balance
universality and usability. The key point of co-designing
these two types of components is how to effectively
combine manual operations with automated processes.
The dynamic interactive workflow design is proposed to
address this issue. At the lower layer, an enhanced work-
flow engine is designed. It supports scheduling logic
based on dynamic DAG (directed acyclic graph) so that
the manual interactions can be inserted dynamically, and
complex conditional concurrency can be implemented.
At the upper layer, dedicated interactive tools need to be
customized to make the underlying orchestration trans-
parent to the users.

One case of the dynamic interactive workflow design
is the guided automatic learning technology [38] for the
artificial intelligence model development. The under-
lying workflow connects the phases of online labeling,
data pre-processing, model training, model serving and
verification. In the model training phase, a set of batch
jobs will be launched concurrently according to the algo-
rithms of automatic hyperparameter tuning and neural
network architecture search. The jobs may be created or
terminated dynamically when triggered by certain condi-
tions. This design allows not only to execute a workflow
linearly, but also to jump between steps following cer-
tain rules. This kind of manual intervention is used to
push the model’s evolution to the desired direction. His-
torical execution paths created by dynamic interactive
workflows can be accurately recorded by the provenance
mechanism [39].

Structured asset delivery management
The structured asset delivery management mechanism
[40] is designed to maintain the data assets and software
artifacts involved in workflows of artificial intelligence
and big data application frameworks. It aims to pro-
duce deliverable assets with complete encapsulation and
documentation. The service consists of a DSL for asset
meta-information and a continuous delivery engine for
asset building. It allows the users to define the deliverable
assets in a declarative language, through which the work-
flow will be created and scheduled automatically, and
the encapsulation and documentation will be generated
according to the meta-information of input objects.

The DSL for asset meta-information is based on JSON.
It describes a deliverable asset using five sets of fields:
general, inputs, outputs, dependencies and extensions.
The general fields include the basic meta-information of
the asset like its name, type and version, which deter-
mines the application framework and job type for build-
ing the asset. The inputs and outputs provide essential
information to create the job for building the asset. The
dependencies are used to build the DAG for workflow
orchestration. The extensions are used for creating docu-
ments and other subsidiary artifacts. The asset meta-
information in this DSL can be manually written by the
users or automatically generated by the service stack
through graphical configuration.

The continuous delivery engine for asset building has
two main responsibilities: maintaining the meta-informa-
tion database and driving the workflow engine. Its input
is parsed from the asset meta-information in the DSL.
The workflow is often inter-service or inter-cluster, espe-
cially for the final steps of encapsulation, documentation
and delivery, so the engine supports distributed asyn-
chronous workflows. The aforementioned provenance
mechanism is also employed to trace the relationship
among assets.

Product implementation of the OMStack
The multi-dimensional extensible architecture as well as
its key technologies has been implemented in a newly
proposed service stack – OMStack (Oriental Mind
Stack). This service stack consists of a series of produc-
tion-grade cloud services. The relationship between the
services and their key designs is shown in Fig. 3.

OMStack overview
OMStack is a cloud-native service stack providing various
types of PaaS and SaaS services. It uses containerization
technology as a common base, and high-performance
computing technology as a characteristic ability. It aims
at serving the mainstream workloads widely used by
modern enterprises such as artificial intelligence and big
data.

The overall architecture of OMStack is shown in Fig. 4.
The component layout of OMStack is guided by the
dimensional analysis using the cloud-native light-cone
model. Different PaaS services cover four scales (A1–A4
in Table 1) of the application dimension, while the infra-
structures used by the stack are organized into four scales
(I1–I4 in Table 1) of the infrastructure dimension. The
SaaS layer includes an integrated portal and application
services for end-users. The dependencies between com-
ponents are represented by dotted lines in the figure.

Page 12 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

PaaS services
Two layers of PaaS services are implemented. The lower
layer is a general-purpose container cluster orchestra-
tion service covering the application cluster (A4) scale,
while the upper layer is a group of domain-specific con-
tainer application services covering the process (A1) to
the application framework (A3) scales. These container
application services involve supporting both batch jobs
and microservices, where container-based scheduling is
their core duty.

OMCC – container cluster service
OMCC [27] takes the managed Kubernetes cluster
as the first-class entity, and provides rich capabilities
inside and outside container clusters. Inside a con-
tainer cluster, OMCC supports workload management,
service orchestration and automatic maintenance for
containerized applications, which significantly expands
the functionality of traditional dashboards. Outside of
container clusters, OMCC supports on-demand pro-
visioning, elastic scaling and multi-cloud deployment
for Kubernetes clusters, which can be considered as an
extension of the IaaS layer. OMCC is a bridging layer

that hides the complexity of the infrastructure, and
offers consistent and universal capabilities for upper-
layer services.

OMCC provides a subsidiary service named OMCC-
OSB. It supports on-demand provisioning for common
service middleware such as databases, web servers and
cache services via the OSB (open service broker) inter-
face. In an enterprise environment, it provides users with
an easy-to-use service catalog that helps reduce the costs
of operation and maintenance.

OMBD – big data service
OMBD is a big data analysis and processing service that
supplies application frameworks of multiple paradigms
including batch (Hadoop, Spark), streaming (Flink, Spark
Streaming), NoSQL database (HBase), data warehouse
(Hive), etc. On compute, it supports either scheduling
jobs in a shared framework instance or provisioning inde-
pendent framework instances for different businesses.
On storage, it can provide on-demand containerized
HDFS clusters, while external storage services are also
supported. It allows the compute and storage clusters
to run on either separated or shared infrastructure. The

Fig. 4 The overall architecture of OMStack

Page 13 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

high-performance RDMA network is adopted to imple-
ment efficient communication for distributed jobs.

OMAI – artificial intelligence service
OMAI [25] serves the full life-cycle of artificial intelli-
gence including algorithm development, model training
and online inference. Diverse AI engines like Tensor-
Flow, PyTorch and MindSpore are integrated. Training
modes based on custom algorithms, preset algorithms
and guided automatic learning are ready for users with
different knowledge backgrounds. Scheduling of large-
scale distributed jobs with multiple distribution modes
is supported by the scheduler with specific policies,
and accelerated by the optional RDMA communica-
tion. Object storage is the standard storage service that
enables data sharing in the whole pipeline, while other
storage services are also compatible via the CSI (con-
tainer storage interface) mechanism.

OMPredict – AI inference service
OMPredict is a professional AI inference service. It
is well suited for enterprises or cloud service provid-
ers with diverse and variable AI inference requests. It
supports running either model files in the FaaS mode
or model images in the CaaS mode. Container-based
elastic scaling mechanism is designed, which supports
“scale to zero” to save resources for idle services. Access
control and usage measurement are implemented in a
universal gateway layer so that a complete commercial
model service can be easily implemented using native
models. Models produced by OMAI can be encapsu-
lated and deployed in OMPredict automatically by the
structured asset delivery mechanism.

OMBatch – batch processing service
OMBatch is a general-purpose batch processing ser-
vice that implements the unified runtime abstraction
and serves the scheduling of batch jobs. It is a basis of
OMAI and OMBD, and it also works as an inter-job
workflow engine within a service. OMBatch addresses
the key issues of mapping stateful semantics like gang-
scheduling to container-based microservices.

OMAutomation – automated workflow service
OMAutomation is a workflow orchestrator support-
ing inter-service and inter-cluster task orchestration. It
serves many cases of service coordination in OMStack,
such as the structured asset delivery and the implicit
incremental training. When building a business-spe-
cific system with OMStack, OMAutomation can work
as a general coordinator for upper-layer applications
and lower-layer services.

SaaS services
The SaaS layer supplies business-oriented application
services to present the functionalities of OMStack to
the end-users. It represents the value extension of our
model and architecture to the application level.

OMCloud – integration portal
OMCloud is a portal that integrates the user inter-
faces of all the OMStack services. Under the unified
graphical interface, a set of universal mechanisms are
designed to achieve standardized modular integration
of services, which involve a user system, a billing sys-
tem, a messaging service, a monitor service and so on.
In on-premise clusters for enterprises, OMCloud can
be easily integrated with existing IT systems due to its
open designs.

OMAI Market – AI market service
OMAI Market provides an on-demand service trad-
ing platform for the supply and demand sides of arti-
ficial intelligence models. Neural network models from
OMAI and statistical learning models from OMBD
can be packaged as pay-as-you-go services with both
auto-generated GUIs and RESTful APIs via this plat-
form. Elastic model serving is supported by leveraging
OMPredict. Usability designs including model accu-
racy assessment and JSON parsing guidance are also
available.

OMVision – machine vision service
OMVision is an image and video analysis platform. It
supports intelligent capabilities such as target detec-
tion, entity recognition and event discovery by using
machine vision algorithms. Benefiting from the cloud-
native design, algorithms can be dynamically deployed
and elastically scaled on both cloud and edge sides
according to requirements. Implicit incremental train-
ing and transfer learning for various scenarios are the
key features enabled by the underlying OMAI and
OMPredict.

Evaluation
To demonstrate the practicality, efficiency and reli-
ability of OMStack, a set of performance experiments
are performed and analyzed, representative results of
which are presented in this section. OMStack has also
been deployed and used in many production applica-
tions. This section will introduce some typical cases.

Performance experiments
Three typical experiments are introduced to illustrate
the performance characteristics of OMStack. They

Page 14 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

cover the life-cycle of interface invocation, job sched-
uling and job execution. The test environment is an
OMStack cluster deployed on an OpenStack-based
VM cluster with 120 nodes. Each virtual node has 16×
vCPU, 64GB memory, and a 200GB data disk. The data
plane network is a 10G ethernet supporting RoCE. The
software environment involves CentOS 7.8, Kubernetes
1.19, Spark 3.0.2 and HiBench 8.0.

Service interface invocation
This experiment focuses on the response time of call-
ing the REST APIs of OMAI concurrently. Each “view”
interface synchronously returns a query result from an
100,000-record table, while each “create” interface asyn-
chronously returns a state code for generating a single
object. The components handling the requests involve
OMCC, Kubernetes and PostgreSQL in addition to
OMAI. A multi-thread client calls each interface with 10,
50 and 100 concurrent invocations, and the total num-
ber of requests is 1,000 for each interface in each case.
The results are shown in Fig. 5. It shows that the response
time increases linearly with the concurrency. For most
interfaces, the response time of 10-concurrency is less
than 200ms, and that of 100-concurrency is less than 2s.
This reflects the high efficiency of OMStack components
under high pressure.

Large‑scale job scheduling
This experiment focuses on the time overheads for the
main parts in the life-cycles of concurrent jobs in OMAI.
The test load is a logistic regression training algorithm.
The recorded times include creation time (in Kuber-
netes and PostgreSQL), scheduling time (in Kubernetes),

and execution time (in containers). Sufficient CPUs and
memory are prepared so that all the concurrent jobs
do not need to be queued for resources. The results are
shown in Fig. 6, where time is the average time of all con-
current jobs. It shows that creation and scheduling times
are roughly linearly related to the number of jobs. This
behavior is consistent with the Kubernetes modeling
analysis given by [41]. The execution time remains basi-
cally constant, which reflects the scalability of OMStack
in the number of jobs.

Distributed job execution
This experiment compares the execution time of a typi-
cal big data job with different configurations. The test
load is the TeraSort benchmark in HiBench [42], while
the objects of comparison involve the containerized
environment provided by OMBD vs. the traditional VM
environment, as well as the remote shuffle service vs.
the built-in shuffle mechanism in Spark. The results are
shown in Fig. 7. In terms of containerization, OMBD
has acceptable overheads for some cases with small data
sizes, but it shows an advantage in the 1TB case. Besides
the performance fluctuation of Java applications, it is
probably because containers provide better performance
isolation [43]. In terms of shuffle, our design shows a sig-
nificant advantage at 1TB data.

Application cases
The full stack or parts of OMStack has been applied in
many scenarios in industry and academia to serve real
businesses. It provides cloud-native services involving
container clusters, big data, and artificial intelligence to
support upper-layer applications.

Fig. 5 Test results of service interface invocation

Page 15 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

AI service in Big Earth Data
OMStack supports the construction of the artificial intel-
ligence cloud service in the SDG (Sustainable Develop-
ment Goals) Big Data Platform of the Big Earth Data
program [44]. Scientists in fields such as remote sensing
and physical geography use OMAI to develop and train
models to facilitate their research. To lower the threshold
for the non-computer professionals to use AI algorithms,
a variety of domain-oriented models are preset, which are
managed by the structured asset delivery mechanism so
that the release and iteration can be automated. Guided
automatic learning processes for geographic image pro-
cessing and analysis are designed. Dedicated labeling
tools and image pre-processing algorithms are developed
to serve typical applications such as surface semantic

segmentation and object detection in a pure GUI way.
On the system side, the device multiplexing mechanism
for high-performance accelerators improves the utili-
zation of GPUs. The public cloud service of AI [45] has
been launched and serves many institutions, which veri-
fies the stability and reliability of OMStack.

iPaaS platform for enterprises
An iPaaS (Integration Platform as a Service) platform
is designed based on OMStack. It aims to provide self-
service provisioning and management of common PaaS-
layer services for developers in the private/hybrid clouds
of enterprises. OMCC and its affiliated OMCC-OSB are
the core of the iPaaS platform. Benefiting from the unified
runtime abstraction and full-stack application-specific

Fig. 6 Test results of large-scale job scheduling

Fig. 7 Test results of distributed job execution

Page 16 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

controllers, various services with different distributed
architectures and scheduling modes can be organized
and orchestrated uniformly. The service catalog already
covers dozens of services including web applications, big
data frameworks, message middleware, etc. Based on the
DevOps concept, the automation designs in OMStack
significantly reduce the cost of IT operations. The iPaaS
platform has been adopted by several enterprise custom-
ers involving telecom operators, software manufacturers
and hospitals.

Smart industrial inspection solution
Our team proposes a smart industrial inspection solu-
tion using the components in OMStack. This allows
traditional industries to benefit from the advantages of
cloud-native and artificial intelligence. The core of the
solution is customized based on OMVision. Algorithms
developed for specific inspection scenarios are executed
by the inference service of OMVision and dynamically
scheduled on demand. The implicit incremental training
and transfer learning technologies enable the accuracy
of models to be automatically improved in use based on
user feedback. The intranet penetration mechanism can
solve the problem that some businesses need to access
edge-side networks or enterprise intranet from the
Internet securely. This solution has been deployed for
customers in multiple industries including machinery
manufacturing, road maintenance and railway vehicles.

Related work
On the architecture analysis of cloud computing, besides
the dimension- or taxonomy-based methods introduced
in the section of background, formalized or quantitative
methods have also been proposed. Binz et al. [46] pro-
posed an enterprise topology graph model to match the
architecture of cloud infrastructure with the organization
structure for optimizing operational costs. Andrikopou-
los et al. [47] designed a quantitative estimation method
to analyze the CAP (Consistency–Availability–Partition
tolerance) properties of cloud-native applications. Hal-
abi et al. [48] designed a quantitative evaluation method
using relative matrices to study the security properties
of cloud service providers. Szalay et al. [49] proposed a
quantitative model to formalize the state placement prob-
lem of cloud-native applications, which can guide the
architecture optimization for cloud databases. Salmon
et al. [50] applied classic models like End-User Com-
puting Satisfaction (EUCS) to characterize the multifac-
eted properties of cloud services. Chemashkin et al. [51]
used a control theory model to characterize Kubernetes
operators, which aims to guide the state-space design
of application-specific controllers. These subdomain-
focused methods are instructive for designing a complete

formalized and quantitative analysis methodology for
cloud-native service stacks.

On the architecture design of cloud-native service
stacks, theoretical studies and engineering practices are
emerging. Balalaie et al. [52] reported the experience of
migrating traditional architectures to the cloud-native
architecture, which provides a common pattern for build-
ing DevOps-enabled microservice stacks. Pahl et al. [53]
summarized a group of architectural definitions, princi-
ples and patterns for cloud service stacks, and proposed a
reference architectural style. Moreno et al. [54] proposed
a complete cloud architecture for enterprises to serve the
full life-cycle of big data and artificial intelligence appli-
cations. Kosińska et al. [55] designed AMoCNA, a cloud-
native framework with autonomic computing features
for provisioning and scheduling diverse applications to
improve manageability. Gundu et al. [56] aimed at solv-
ing load balancing challenges in multi-cloud and hybrid
IT infrastructures in order to enhance the scalability of
cloud computing architectures. Moreover, Goniwada [3]
summarized and detailed many classic designs of overall
and partial architectures in cloud-native systems. These
studies and practices provide useful inputs for the model
and architecture designs of this paper.

Conclusion
Cloud-native computing is popular in recent years. This
paper aims at designing a practical architecture and
a service stack to improve the existing designs in the
cloud-native ecosystem. A cloud-native light-cone model
extending the classic hourglass model is proposed, which
highlights the extensibility features of a service stack
on four dimensions: application, infrastructure, ten-
ant and workflow. Guided by the model, the challenges
in designing an extensible service stack are categorized
and analyzed by dimension. Key issues such as diverse
scheduling modes and framework on-demand provi-
sioning are identified. To solve these challenges, a multi-
dimensional extensible cloud-native architecture and a
set of key technologies are designed by using a system-
atic approach based on the above model. These designs
revolve around six main functions: business manage-
ment, runtime abstraction, environment allocation,
resource maintenance, architecture adaption and logic
orchestration. Representative technologies including the
Kubernetes cluster bootstrapped creation and full-stack
application-specific controllers are developed to improve
these functions.

These designs are not limited to theoretical and tech-
nical ideas, but are implemented as production-grade
software and applied in real businesses. OMStack is pro-
posed to realize the multi-dimensional extensible cloud-
native architecture. A group of PaaS and SaaS services

Page 17 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

integrating the key technologies are implemented in
OMStack to serve enterprise applications. Typical ser-
vices include the OMCC container cluster service, the
OMBD big data service and the OMAI artificial intel-
ligence service. The functionality and performance of
these services and the underlying technologies have been
verified by experiments. OMStack has supported many
projects in industry and academia. Its value has been
proven in practice.

In the future, the quantitative analysis method based on
the cloud-native light-cone model will be explored so that
the model’s guidance to practice will be enhanced. The
AIOps technique will be studied to improve the full-stack
autonomy. In addition, more cloud-native services, espe-
cially IaaS services, will be designed and implemented to
promote the completeness of OMStack.

Acknowledgements
We would like to thank the Oriental Mind team for the contributions to the
high-quality implementation of this software stack.

Authors’ contributions
Jian Lin is the leader of the OMStack project. He put forward the main ideas
of architectural modeling and analysis, and wrote the main part of this
manuscript. Dongming Xie is the software architect of OMStack. He designed
many key technologies and wrote the part of application cases. Jinjun Huang,
Zinan Liao and Long Ye are the software architects and chief developers of
the sub-systems of OMStack. Jinjun Huang is responsible for the performance
experiments. All the authors reviewed and approved this manuscript.

Funding
This research is supported in part by the Strategic Priority Research Program of
the Chinese Academy of Sciences (XDA19020400) and the 13th “3551 Optics
Valley Talent Schema” (2020).

Availability of data and materials
The experiment results of this paper are available from the corresponding
author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 June 2022 Accepted: 12 November 2022

References
 1. Gundu SR, Panem CA, Pratik P (2022) Cloud Computing and its Service

Oriented Mechanism. Akinik Publications, New Delhi
 2. Bulla CM, Bhojannavar SS, Danawade VM (2013) Cloud Computing:

Research Activities and Challenges. Int J Emerg Trends Technol Comput
Sci 2(5):206–214

 3. Goniwada SR (2022) Cloud Native Architecture and Design: A Handbook
for Modern Day Architecture and Design with Enterprise-Grade Exam-
ples. Apress, New York

 4. Cloud Native Computing Foundation. Kubernetes. https:// kuber netes. io.
Accessed 1 June 2022

 5. QingCloud. KubeSphere. https:// kubes phere. io. Accessed 1 June 2022
 6. Red Hat. OpenShift. https:// opens hift. com. Accessed 1 June 2022
 7. Hendrickson S, Sturdevant S, Harter T, Venkataramani V, Arpaci-

Dusseau AC, Arpaci-Dusseau RH (2016) Serverless Computation with

OpenLambda. In: Proceedings of the 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud). USENIX Association, Denver, pp 1–7

 8. Saltzer JH, Reed DP, Clark DD (1984) End-to-end Arguments in System
Design. ACM Trans Comput Syst (TOCS) 2(4):277–288

 9. Foster I, Kesselman C (1998) The Grid: Blueprint for a New Computing
Infrastructure, 1st edn. Morgan Kaufmann, San Francisco

 10. Lin J, Zha L, Xu Z (2013) Consolidated Cluster Systems for Data Centers in
the Cloud Age: a Survey and Analysis. Front Comput Sci 7(1):1–19

 11. Kruchten PB (1995) The 4+1 View Model of Architecture. IEEE Softw
12(6):42–50

 12. Choi H, Yeom K (2002) An Approach to Software Architecture Evaluation
with the 4+1 View Model of Architecture. In: Proceedings of 9th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, Gold Coast, pp
286–293

 13. Thramboulidis K (2010) The 3+1 SysML View-Model in Model Integrated
Mechatronics. J Softw Eng Appl 3(2):109–118

 14. Hamdaqa M, Tahvildari L (2014) The (5+1) Architectural View Model for
Cloud Applications. In: Proceedings of 24th Annual International Confer-
ence on Computer Science and Software Engineering (CASCON). IBM
Corp., Markham, pp 46–60

 15. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2011) NIST Cloud
Computing Reference Architecture. NIST Spec Publ 500–292:1–28

 16. Polash F, Abuhussein A, Shiva S (2014) A Survey of Cloud Computing
Taxonomies: Rationale and Overview. In: Proceedings of the 9th Inter-
national Conference for Internet Technology and Secured Transactions
(ICITST). IEEE, London, pp 459–465

 17. Brogi A, Soldani J, Wang P (2014) TOSCA in a Nutshell: Promises and
Perspectives. In: European Conference on Service-Oriented and Cloud
Computing. Springer, Manchester, pp 171–186

 18. Kratzke N, Peinl R (2016) ClouNS – a Cloud-Native Application Reference
Model for Enterprise Architects. In: Proceedings of the IEEE 20th Inter-
national Enterprise Distributed Object Computing Workshop (EDOCW).
IEEE, Vienna, pp 1–10

 19. Kratzke N, Quint PC (2017) Understanding Cloud-Native Applications
after 10 Years of Cloud Computing - a Systematic Mapping Study. J Syst
Softw 126:1–16

 20. Bisong E (2019) Kubeflow and Kubeflow Pipelines. Building Machine
Learning and Deep Learning Models on Google Cloud Platform. Apress,
New York, pp 671–685

 21. Cloud Native Computing Foundation. Volcano. https:// volca no. sh.
Accessed 1 June 2022

 22. Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I (2011) Disk-Locality in
Datacenter Computing Considered Irrelevant. In: Proceedings of the 13th
Workshop on Hot Topics in Operating Systems (HotOS). USENIX Associa-
tion, Napa, pp 1–5

 23. Link C, Sarran J, Grigoryan G, Kwon M, Rafique MM, Carithers WR (2019)
Container Orchestration by Kubernetes for RDMA Networking. In: Pro-
ceedings of the IEEE 27th International Conference on Network Protocols
(ICNP). IEEE, Chicago, pp 1–2

 24. Baliyan DS. Introduction to Multi-Tenancy in Kubernetes. https:// www.
cncf. io/ blog/ 2021/ 12/ 20/ intro ducti on- to- multi- tenan cy- in- kuber netes/.
Accessed 1 June 2022

 25. Lin J, Xie D, Yu B (2020) Research on Cloud Service Adaptation of Deep
Learning. Softw Guide 19(6):1–8

 26. Istio authors. Istio. https:// istio. io. Accessed 1 June 2022
 27. Xie D, Huang L, Huang J, Lin J (2022) Design and Implementation of

Container Cluster Service for Multi-Cloud. Softw Guide 21(6):169–175
 28. Brikman Y (2019) Terraform: Up & Running: Writing Infrastructure as Code.

O’Reilly Media, Sebastopol
 29. Gundu SR, Panem CA, Anuradha T (2020) Hybrid IT and Multi Cloud an

Emerging Trend and Improved Performance in Cloud Computing. SN
Comput Sci 1(256):1–6

 30. Dobies J, Wood J (2020) Kubernetes Operators: Automating the Con-
tainer Orchestration Platform. O’Reilly Media, Sebastopol

 31. Gu J, Song S, Li Y, Luo H (2018) GaiaGPU: Sharing GPUs in Container
Clouds. In: Proceedings of the IEEE 8th International Conference on Big
Data and Cloud Computing (BDCloud). IEEE, Melbourne, pp 469–476

 32. Alibaba Cloud. GPU Sharing Scheduler Extender in Kubernetes. https://
github. com/ Aliyu nCont ainer Servi ce/ gpush are- sched uler- exten der.
Accessed 1 June 2022

https://kubernetes.io
https://kubesphere.io
https://openshift.com
https://volcano.sh
https://www.cncf.io/blog/2021/12/20/introduction-to-multi-tenancy-in-kubernetes/
https://www.cncf.io/blog/2021/12/20/introduction-to-multi-tenancy-in-kubernetes/
https://istio.io
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://github.com/AliyunContainerService/gpushare-scheduler-extender

Page 18 of 18Lin et al. Journal of Cloud Computing (2022) 11:83

 33. Mellanox. RDMA Shared Device Plugin. https:// github. com/ mella nox/ k8s-
rdma- shared- dev- plugin. Accessed 1 June 2022

 34. Lin J, Hong Z (2022) RDMA-based Big Data Transmission System, Method.
Device and Storage Medium. China Patent 202210047977.3. State Intel-
lectual Property Office, Beijing

 35. Bansal M, Yang B. Zeus: Uber’s Highly Scalable and Distributed Shuffle as
a Service. https:// datab ricks. com/ sessi on_ na20/ zeus- ubers- highly- scala
ble- and- distr ibuted- shuffl e- as-a- servi ce. Accessed 1 June 2022

 36. Huang L, Yu B, Xie D, Lin J (2021) Alluxio-based Big Data Job Operation
System and Method. China Patent 202111092499.X. State Intellectual
Property Office, Beijing

 37. Li H (2018) Alluxio: A virtual distributed file system. PhD thesis, University
of California, Berkeley

 38. Xie D, Xia J, Yi Q, Lin J (2020) Deep Learning Guide Device and Method.
China Patent 202010675467.1. State Intellectual Property Office, Beijing

 39. Lin J, Xie D (2020) OMProv: Provenance Mechanism for Objects in Deep
Learning. In: Proceedings of the 1st Intelligent Data – From Data to
Knowledge Workshop (DOING). Springer, Lyon, pp 98–109

 40. Lin J, Yu B (2021) Data Asset Meta-Information Processing System and
Method. China Patent 202110023049.9. State Intellectual Property
Office, Beijing

 41. Medel V, Tolosana-Calasanz R, Bañares JÁ, Arronategui U, Rana OF (2018)
Characterising Resource Management Performance in Kubernetes. Com-
put Electr Eng 68:286–297

 42. Huang S, Huang J, Dai J, Xie T, Huang B (2010) The HiBench Benchmark
Suite: Characterization of the MapReduce-based Data Analysis. In: Pro-
ceedings of the IEEE 26th International Conference on Data Engineering
Workshops (ICDEW). IEEE, Long Beach, pp 41–51

 43. Xavier MG, Neves MV, De Rose CAF (2014) A Performance Comparison
of Container-based Virtualization Systems for MapReduce Clusters. In:
Proceedings of the 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP). IEEE, Turin, pp 299–306

 44. Guo H (2017) Big Earth Data: A New Frontier in Earth and Information
Sciences. Big Earth Data 1(1–2):4–20

 45. Big Earth Data Science Engineering Program. Deep Learning Cloud
System of the SDG Big Data Platform. https:// sdg. casea rth. cn/ en/ onlin
eTools/ AI. Accessed 1 June 2022

 46. Binz T, Fehling C, Leymann F, Nowak A, Schumm D (2012) Formalizing
the Cloud through Enterprise Topology Graphs. In: Proceedings of the
IEEE 5th International Conference on Cloud Computing (CLOUD). IEEE,
Honolulu, pp 742–749

 47. Andrikopoulos V, Strauch S, Fehling C, Leymann F (2013) CAP-Oriented
Design for Cloud-Native Applications, Communications in Computer and
Information Science, vol 367. Springer International Publishing, Cham, pp
215–229

 48. Halabi T, Bellaiche M (2017) Towards Quantification and Evaluation of
Security of Cloud Service Providers. J Inf Secur Appl 33:55–65

 49. Szalay M, Mátray P, Toka L (2021) State Management for Cloud-Native
Applications. Electronics 10(4):423

 50. Salmon M, Parmar A (2022) Cloud Computing at Unitec. Tech. rep, United
Institute of Technology

 51. Chemashkin FY, Drobintsev PD (2021) Kubernetes Operators as a Control
System for Cloud-Native Applications. Tech. rep., Peter the Great St.
Petersburg Polytechnic University

 52. Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices Architecture
Enables DevOps: An Experience Report on Migration to a Cloud-Native
Architecture. IEEE Software 33(3):42–52

 53. Pahl C, Jamshidi P, Zimmermann O (2018) Architectural Principles for
Cloud Software. ACM Trans Internet Technol 18(2):1–23

 54. Moreno C, González RAC, Viedma EH (2019) Data and Artificial Intel-
ligence Strategy: A Conceptual Enterprise Big Data Cloud Architecture
to Enable Market-Oriented Organisations. Int J Interact Multimedia Artif
Intell 5(6):7–14

 55. Kosińska J, Zieliński K (2020) Autonomic Management Framework for
Cloud-Native Applications. J Grid Comput 18(4):779–796

 56. Gundu SR, Panem CA, Anuradha T, Gad R (2022) Emerging Computational
Challenges in Cloud Computing and RTEAH Algorithm based Solution. J
Ambient Intell Humanized Comput 13:4249–4263

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/mellanox/k8s-rdma-shared-dev-plugin
https://github.com/mellanox/k8s-rdma-shared-dev-plugin
https://databricks.com/session_na20/zeus-ubers-highly-scalable-and-distributed-shuffle-as-a-service
https://databricks.com/session_na20/zeus-ubers-highly-scalable-and-distributed-shuffle-as-a-service
https://sdg.casearth.cn/en/onlineTools/AI
https://sdg.casearth.cn/en/onlineTools/AI

	A multi-dimensional extensible cloud-native service stack for enterprises
	Abstract
	Introduction
	Background
	Cloud-native technical stacks
	Dimensional analysis models

	Cloud-native light-cone model
	Definition
	Properties
	Discussion

	Challenges of extensible cloud-native service stack
	Extensibility dimension x: diverse application modes
	Diverse scheduling modes
	Runtime environment dependency

	Extensibility dimension y: heterogeneous infrastructures
	Heterogeneous IaaS
	Storage locality
	Virtualization of high-performance hardware

	Extensibility dimension z: multi-tenant on-demand clusters
	Framework on-demand provisioning
	Security isolation
	Resource utilization

	Extensibility dimension t: automated workflows
	Inter-job workflow
	CICD workflow

	Multi-dimensional extensible architecture
	Designs of key technologies
	Unified runtime abstraction
	Kubernetes cluster bootstrapped creation
	Intranet penetration mechanisms
	Full-stack application-specific controllers
	Device multiplexing plugins
	High-performance containerized communication
	Dynamic interactive workflow
	Structured asset delivery management

	Product implementation of the OMStack
	OMStack overview
	PaaS services
	OMCC – container cluster service
	OMBD – big data service
	OMAI – artificial intelligence service
	OMPredict – AI inference service
	OMBatch – batch processing service
	OMAutomation – automated workflow service

	SaaS services
	OMCloud – integration portal
	OMAI Market – AI market service
	OMVision – machine vision service

	Evaluation
	Performance experiments
	Service interface invocation
	Large-scale job scheduling
	Distributed job execution

	Application cases
	AI service in Big Earth Data
	iPaaS platform for enterprises
	Smart industrial inspection solution

	Related work
	Conclusion
	Acknowledgements
	References

