
Chen et al. Journal of Cloud Computing (2022) 11:90
https://doi.org/10.1186/s13677-022-00372-9

RESEARCH

Task offloading in hybrid‑decision‑based
multi‑cloud computing network: a cooperative
multi‑agent deep reinforcement learning
Juan Chen1, Peng Chen1*, Xianhua Niu1, Zongling Wu2, Ling Xiong1 and Canghong Shi1 

Abstract 

Multi-cloud computing is becoming a promising paradigm to provide abundant computation resources for Internet-
of-Things (IoT) devices. For a multi-device multi-cloud network, the real-time computing requirements, frequently
varied wireless channel gains and changeable network scale, make the system more dynamic. It is critical to satisfy
the dynamic nature of network with different constraints of IoT devices in multi-cloud environment. In this paper,
we establish a continuous-discrete hybrid decision offloading model, each device should learn to make coordinated
actions, including cloud server selection, offloading ratio and local computation capacity. Therefore, both continuous-
discrete hybrid decision and coordination among IoT devices are challenging. To this end, we first develop a probabil-
istic method to relax the discrete action (e.g. cloud server selection) to a continuous set. Then, by leveraging a central-
ized training and distributed execution strategy, we design a cooperative multi-agent deep reinforcement learning
(CMADRL) based framework to minimize the total system cost in terms of the energy consumption of IoT device and
the renting charge of cloud servers. Each IoT device acts as an agent, which not only learns efficient decentralized pol-
icies, but also relieves IoT devices’ computing pressure. Experimental results demonstrate that the proposed CMADRL
could efficiently learn dynamic offloading polices at each IoT device, and significantly outperform the four state-of-
the-art DRL based agents and two heuristic algorithms with lower system cost.

Keywords:  Computation offloading, Continuous-discrete hybrid decision, Deep reinforcement learning, Internet of
Things, Multi-cloud computing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the development of mobile communication net-
works, the number of Internet-of-Things (IoT) devices,
such as smartphones, wearables, and sensors, has a
rapid growth. Moreover, the new advanced applications
with computation-intensive tasks are emerging [1–3].
However, IoT devices usually have limited computation,
battery and communication capacity [4, 5]. To address
the conflict between computation-intensive tasks and
resource-limited IoT devices, cloud computing has been

considered as an emerging paradigm [6, 7], which sup-
ports IoT devices to offload some computation tasks to
the cloud servers with sufficient computation capability.

Nevertheless, it is still challenging for IoT devices to
acquire satisfactory computation services [8]. On one
hand, there may be a large number of IoT devices require
computation intensive services simultaneously. With lim-
ited storage and computation resources, it will be hard
for a single cloud server to provide its computation ser-
vices, especially in hotspot scenario [9]. On the other
hand, IoT application relies only on a single cloud server,
which increases the risk of cloud server lock-in. Thus, it
is more promising to study the scenario with multi-cloud
collaboration. Although multi-cloud computing technol-
ogy maintains satisfactory service requirements of IoT

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: chenpeng@mail.xhu.edu.cn

1 School of Computer and Software Engineering, Xihua University, Chengdu,
China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00372-9&domain=pdf

Page 2 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

applications, it is still challenging to achieve efficient uti-
lization of computation resources for service charging
multi-cloud system. Hence, it is non-trivial to investigate
the task offloading mechanism in multi-cloud networks.

So far, many researchers have dedicated to design com-
puting offloading policies. For the case of static optimi-
zation, some strategies are proposed in [10–12]. In [10],
the authors studied a problem of multi-cloud systems
fault-tolerant workflow scheduling, and proposed a
fault-tolerant cost-efficient workflow scheduling algo-
rithm based on mathematic method to improve the sci-
entific applications execution reliability and reduce their
execution cost, respectively. Besides, ant-colony-based
optimization technique was applied in [11] to derive
optimal coalition of virtual machines (VMs), and then a
first-price sealed-bid auction game was used to allocate
and migrate the VMs for multi-cloud environments,
where federation profit was improved at the expense of
increased latency. Further, Alnoman et al. [12] applied
dynamic programming and exhaustive search approach
to jointly optimize the power consumption, cloud
response time and user energy in heterogeneous cloud
radio access cloud-edge networks. The traditional off-
loading strategies often require complete and accurate
network information, which is difficult to obtain in real
networks due to highly dynamic multi-cloud networks.
Besides, for large-scale dynamic environment, some
traditional approaches,normally need a considerable
amount of iterations to achieve a satisfying local opti-
mum. Meanwhile, the computation complexity of the
above-mentioned traditional solutions increases signifi-
cantly, which makes them very difficult to be suitable for
dynamic environment.

Since deep reinforcement learning (DRL) based
methods could make intelligent decision with no prior
knowledge through exploring the dynamic network envi-
ronments [13, 14]. Recently, some researchers apply DRL
methods to deal with decision optimization problem in
multi-cloud networks [15–21]. In [15], an asynchronous
advantage actor critic (A3C) and residual recurrent neu-
ral network (R2N2) based scheduler were investigated
for heterogeneous edge-cloud environment to obtain
optimal energy consumption, response time, Service-
Level-Agreement and running cost. Zhang et al. [16]
considered a three-layer distributed multi-cloud multi-
access edge, and proposed a multi-agent reinforcement
learning to make task offloading and resource allocation
strategy. Zhao et al. [17] studied a scheduling policy with
DRL in a hybrid multi-cloud environment to maximize
renewable energy utilization. In [18], a deep Q-network
(DQN) based collaborative task placement algorithm was
proposed to optimize system utility. In [19], by combin-
ing multiple parallel deep neural networks (DNNs) with

Q-learning, a deep meta reinforcement learning-based
offloading (DMRO) algorithm is applied to migrate com-
plex tasks from IoT devices to edge-cloud servers. Chen
et al. [20] proposed a multiple buffer deep deterministic
policy gradient (MBDDPG) to learn preferable micros-
ervice-based service deployment strategy, and improve
the average waiting time. Chen et al. [21] investigated
the long-term dynamic task allocation and service migra-
tion (DTASM) problem in edge-cloud IoT systems, twin-
delayed deep deterministic policy gradient (DDPG) was
proposed to minimize the total computing load for-
warded to the cloud server while satisfying the seamless
service migration constraint.

However, these above methods modeled in either a dis-
crete or a continuous action space, which restricted the
optimization of offloading decisions in limited action
space. In reality, the action space of offloading problem
is generally continuous-discrete hybrid [22]. The agent
should decide continuous actions (e.g., offloading ratio
or local computation capacity) and discrete (e.g., whether
to offload or which cloud server to select) actions to exe-
cute offloading computation. Thus, these methods may
not perform well when the action space becomes large.
On the other hand, if the number of IoT devices or cloud
servers is large, the state and action may grow exponen-
tially, which results in a serious performance of conver-
gence and generalizability degradation.

To tackle these problems, this paper investigates
hybrid-decision-based collaborative multi-cloud system,
where multiple cloud servers are designed to offload com-
putation tasks of IoT devices under time-varying wireless
channels and task arrivals. The task offloading optimiza-
tion problem is formulated to minimize the total system
cost in terms of energy consumption of IoT devices and
renting charge of cloud servers. Particularly, the decision
of each IoT device is interdependent in the hybrid-deci-
sion-based multi-cloud environments. To solve the issues
of hybrid decision and collaboration among different
devices, we address the issues in two steps. To be specific,
we first relax discrete action (e.g. cloud server selection)
into a continuous set by designing a probabilistic method.
Then, a cooperative multi-agent DRL (CMADRL) [23]
based framework, which employs centralized training
process and distributed execution strategy, is designed to
obtain the optimal cloud server selection, offloading ratio
and local computation capacity. The major contributions
of our work are the following:

•	 We establish a computation offloading framework for
multiple IoT devices with multi-cloud, where the task
arrivals, channel gains and computation capacity of
cloud servers are time-varying. The dynamic compu-
tation offloading problem is formulated to minimize

Page 3 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

the total system cost of energy consumption and
renting charge, by jointly designing the cloud server
selection, offloading ratio and local computation
capacity.

•	 We relax discrete decision (i.e. cloud server selection)
into a continuous set by designing a probabilistic
method. Thus, the continuous-discrete hybrid deci-
sion is transformed as a continuous decision. Then,
we design a novel CMADRL framework with each
IoT device acting as an agent to stabilize the training
and alleviate on-device computational burden. That
is to say, we use global state information collecting at
the proxy server to train a locally observable policy
function for each IoT device.

•	 We conduct extensive simulations to evaluate the
performance of the proposed CMADRL. The results
demonstrate the superiority of the proposed algo-
rithm by comparing with four state of art DRL-based
frameworks and two heuristic algorithms, especially
in terms of flexibility to the change of currently pro-
cessed task, adaptability to the variation of commu-
nication resources, and generalizability to the exten-
sion of network scale.

The remainder of this paper is organized as follows. The
system model and problem formulation are provided in
“System model and problem formulation” section. The
proposed CMADRL is introduced in “The proposed

CMADRL” section. Simulation results section analyzes
and discusses the experimental results, and “Conclusions
and future work” section concludes this paper.

System model and problem formulation
In this section, we consider a multi-cloud computing
system consisting of M cloud servers, base station (BS),
a proxy server, and N IoT devices. Each IoT device can
communicate with the BS with a wireless link, whereas
the BS and cloud servers are connected by a wired link.
The proxy server deploying near BS plays a role of train-
ing equipment, which assists the BS for centralized train-
ing and will be explained in detail in “Multi-agent DRL
framework” section. As shown in Fig. 1, a set of cloud
servers M = {1, . . . ,M} can provide offloading com-
puting services for a set of IoT devices N = {1, . . . ,N } .
Without loss of generality, we assume each IoT device n
∈ N maintains a computation-intensive task to be pro-
cessed during each time slot t ∈ T  , where T = {1, . . . ,T } .
We assume each task data are fine-grained and can be
partitioned into subsets of any size [24]. Namely one
part to be executed on IoT device n, and the other to be
offloaded to one of the cloud servers m ∈ M for remotely
processing.

Let atn denote offloading ratio, which can be con-
sider as the percentage of the task’s data size (in bit) to
be offloaded to the cloud server, satisfying atn ∈ [0,1]. Let
f tn and Fmax

n denote local and maximum computation

Fig. 1  An example multi-cloud computing system with task offloading

Page 4 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

capacity, which can be viewed as the CPU-cycle fre-
quency to process the task data. We assume local com-
putation capacity f tn ∈ [0,Fmax

n  ] is flexibly controlled via
chip voltage adjustment using the dynamic voltage and
frequency scaling (DVFS) technique [25].

At each time slot t, IoT device n needs to decide which
cloud server mt

n to offloading the task, then offloads αt
n

parts of the task data to the cloud server mt
n for remote

computing. Meanwhile, IoT device n executes the
remaining 1-αt

n parts of the task data locally. In other
words, the task offloading need to be consider three deci-
sions, including cloud server select mt

n , offloading ratio
αt
n , the local computation capacity f tn .
Since both energy consumption and renting charge play

a significant role in the performance evaluation of com-
putation offloading for IoT devices, we consider these two
objectives as total system cost. Following illustrates the
detailed operation of task queue, local computing, offload-
ing computing and problem formulation, respectively.

Task queue model
We adopt a task queue to represent this dynamic nature
of the multi-cloud system. Due to the task may fail to
be completed with the limited computation resource of
IoT devices, the task execution result in current time
slot is relevant to the task load in next time slot. Spe-
cifically, computation tasks of IoT device n in time slot
t are denoted as Tastn={Ldtn,dtn,D̄t

n,ctn }, in which Ldtn,dtn,D̄t
n

and ctn indicate the size of computation data in the task
queue (in bits), the currently processed task data size (in
bits), the maximum tolerable delay, and required com-
putational resources to complete the whole task (in CPU
cycles/bit) [26]. In addition, we update Ldt+1

n with the
residual task in current time slot and the new arrived task
in next time slot, which is given as

where [x]+=max(x,0), and d̆t+1
n is a new arrived task gen-

erated in next time slot t + 1 . droptn is a bool variable,
droptn=False represents the task of IoT device n in time
slot t is processed successfully.

Local computing
For partial task data (1− αt

n) · d
t
n , the processing delay

Dloc
n (t) and energy consumption Eloc

n (t) incurred on IoT
device n, are given as [27]

(1)Ldt+1
n = Ldtn − dtn1droptn=False

+
+ d̆t+1

n

(2)Dloc
n (t) =

(1− αt
n) · d

t
n · c

t
n

f tn

(3)Eloc
n (t) = κ · (f tn)

2 · (1− αt
n) · d

t
n · c

t
n

where κ is an effectively switching capacitance constant.

Offloading computing
To take advantage of the rich computation resources of
the multi-cloud servers, computation offloading involves
three step. Firstly, the IoT device n offloads the partial
task data to an appropriate cloud server m for remote
execution. Then, cloud servers handle tasks offloaded
from IoT device. Finally, cloud server returns the task
execution results to the device. Specifically, computa-
tion offloading incurs both transmission delay and energy
consumption between the IoT device and the selected
cloud server. In this paper, we simplify the system
model and assume that the size of task execution results
obtained from the cloud server is small [28], therefore the
transmission delay and energy consumption of feedback
transmission are negligible compared with that for local
computing of offloading. Moreover, we assume the multi-
cloud server connected to the BS via optic fiber or copper
wires, so we ignore the transmission delay between the
BS and the selected cloud server.

In order to eliminate wireless channel interference
among IoT devices, similar to [29], orthogonal frequency
division multiple access (OFDMA) is adopted as a multi-
ple access technology. Thus, the system bandwidth W can
be divided into equivalent sub-bands distributed to each
IoT device equally. According the Shannon formula, the
uplink transmission rate for IoT device n to cloud server
m, vtran,m(t) is

where Pt
n,m , gtn,m and ̺2 are the transmission power,

channel gain and noise power in time slot t, respectively.
The transmission delay and energy consumption

incurred for offloading the partial input data αt
n · d

t
n , from

IoT device n to the cloud server m, Dtra
n,m(t) and Etra

n,m(t) , are

According to Eq. (3), and Eq. (6), total energy consump-
tion of IoT device n for processing the task data dtn , Et

n ,
are formulated as

The processing delay for computing task in cloud server
depends on the task data size and cloud server’s compu-
tation capacity. For each cloud server, due to one cloud
server may also support the computation requests from

(4)vtran,m(t) = W · log2(1+ (Pt
n,m · gtn,m)/̺

2)

(5)Dtra
n,m(t) =

αt
n · d

t
n

vtran,m(t)

(6)Etra
n,m(t) = Pt

n,m · Dtra
n,m(t)

(7)Et
n = Eloc

n (t)+ Etra
n,m(t)

Page 5 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

other IoT devices, its computation capability is time
varying. Therefore, we assume the cloud server’s remain-
ing computation capacity varies randomly between dif-
ferent time slots but keep fixed in each time slot. Let
f toccup = Pr(ε) · f unitser be the occupied computation
resource, which is modeled as an i.i.d. Possion process
with parameter ε , where f unitisser is the occupied computa-
tion resource for each unit [22]. The computation capac-
ity of server m, f tm , can be defined as f tm = Fmax

ser − f toccup ,
where Fmax

ser is the maximum computation capacity of
cloud server m ∈ M.

When processing the partial task data αt
n · d

t
n on cloud

server m, the incurred execution delay can be expressed as

The executing delay Dm
n (t) brings server charge to an

IoT device for a server provider in cloud computing. In
other words, due to the IoT device rents the comput-
ing resources of the cloud server to execute the task, the
cloud computing provider will charge the IoT device. Let
c(f tm) = e(−η) · (f tm − 1) · β denote price per time unit at
computing capability f tm [30], where η and β are two coef-
ficients. Therefore, the service charge Cm

n (t) required to
execute IoT device n’s partial task on cloud server m is
obtain by

Problem formulation
The dynamic computing offloading problem concerned is
to minimize the total system cost of the energy consump-
tion Et

n and the renting charge Cm
n (t) in the long term, as

formulated in Eq. (10).

s.t.

 where ω1 and ω2 are the tradeoff weight. Constraint
(10a) defines that for an arbitrary task, its actual task
completion time cannot exceed its associated maximum

(8)Dm
n (t) =

∑N
n=1(1mt

n=m · αt
n · d

t
n · c

t
n)

f tm

(9)Cm
n (t) = c(f tm) · D

m
n (t)

(10)min
mt

n
,�t

n
,f t
n

(

lim
T→∞

1

T

T
∑

t=1

(

N
∑

n=1

(

�1 ⋅ E
t
n
+ �2 ⋅ C

m
n
(t)

)

))

(10a)
C1 ∶ max(Dloc

n
(t),Dtra

n,m
(t) + Dm

n
(t)) ≤ ̄Dt

n
, ∀n ∈ N,∀t ∈ T

(10b)C2 : mt
n ∈ M,∀m ∈ M,∀n ∈ N ,∀t ∈ T

(10c)C3 : 0 ≤ αt
n ≤ 1, ∀n ∈ N ,∀t ∈ T

(10d)C4 : 0 ≤ f tn ≤ Fmax
n , ∀n ∈ N , ∀t ∈ T

tolerable delay. Constraint (10b) defines that for each IoT
device, its task can be offloaded to only one of cloud serv-
ers. Constraint (10c) specifies offloading ratio is a varia-
ble between 0 and 1 for each task. Constraint (10d) states
that for each IoT device, the local computation capac-
ity cannot exceed its associated maximum computation
capacity. Note that, mt

n , αt
n and f tn are the continue-dis-

crete hybrid decision variables associated with IoT device
n, where αt

n and f tn is continue variable, and mt
n is discrete

variable.
Generally, the objective function and constraints in Eq.

(10) are nonconvex, and the challenges of this dynamic
computation offloading problem lies in three aspects:
(1) the decision process contains both continuous deci-
sions and discrete decision; (2) the decision of IoT devices
is highly dynamic with the large solution space; (3) the
optimal offloading strategy should coordinate among IoT
devices. Therefore, it is intractable to find optimal policies
through traditional optimization-based schemes.

The proposed CMADRL
In this section, we first relax the continue-discrete deci-
sion variable to continue decision variable. Then, we
model a multi-agent Markov Decision Process (MDP) for
task offloading optimal problem. Finally, the procedure
of cooperative twin delayed DDPG (CMATD3) is intro-
duced in detail.

Discrete decision variable relaxation
To address these challenges in Eq. (10), for the discrete deci-
sion variable mt

n , we adopt a probabilistic method to con-
vert it as a continuous variable. In particular, let
Pro(mt

n) ∈ [m−1
M , mM] be the probability of the task offloads

to cloud server m. In other words, if the IoT device n
chooses a continue decision variable Pro(mt

n) , which can be
considered as the IoT device n selects cloud server m to
offload its task at time slot t. Taking the number of cloud
servers M = 5 as an example, if the Pro(mt

n) ∈
[

1
5 ,

2
5

]

 , we
can choose server m = 2 to offload the task. Therefore, the
total system cost minimization problem can be reformu-
lated as follows,

s.t.

(11)min
Pro(mt

n
),�t

n
,f t
n

(

lim
T→∞

1

T

T
∑

t=1

(

N
∑

n=1

(

�1 ⋅ E
t
n
+ �2 ⋅ C

m
n
(t)

)

))

(11a)
C1 ∶ max(Dloc

n
(t),Dtra

n,m
(t) + Dm

n
(t)) ≤ ̄Dt

n
, ∀n ∈ N,∀t ∈ T

(11b)
C2 : 0 ≤ Pro(mt

n) ≤ 1, ∀m ∈ M,∀n ∈ N ,∀t ∈ T

Page 6 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

Based on this setting, DRL agent will be introduced to
solve this dynamic offloading problem. For centralized
decision making DRL, which require the BS to collect
the environment state from all IoT devices. However, this
would increase the communication overhead. Therefore,
this paper aims at obtaining promising computing off-
loading solutions with multiagent settings.

Since the network environment is non-stationarity,
other agents change their policy in the training process,
this leads to the performance of traditional multiagent
DRL becomes unstable. In order to guarantee conver-
gence, we design a cooperative multi-agent deep rein-
forcement learning based framework, which leverages
the strategy of centralized training and distributed execu-
tion by using locally executable actor networks and fully
observable critic networks [31].

MDP Formulation
We model the task offloading optimal problem as a multi-
agent Markov decision process (MDP). The multi-agent
MDP can be denoted by a 4 tuple (N , Sn,An, rn) , where
N is the agent space, Sn is the state space of agent n, An is
the action space of agent n, and rn is the reward function
of agent n, respectively.

•	 Agent space N : N = {1, . . . ,N } , where N is the
number of IoT devices, each IoT device acts as an
agent. For agent n, n = 1, 2, . . . ,N  , by determining
the server selection Pro(mt

n) , offloading ratio αt
n , and

local computation capacity f tn  , the agent can obtain
the minimum total system cost.

•	 State space Sn : For IoT device n, the state stn is com-
posed of computation task, the channel gain between
IoT device n and BS in time slot t, and computation
capacity of all cloud servers in the multi-cloud sys-
tem.

•	 Action space An : Since each IoT device is required
to determine probability of its selected cloud server
Pro(mt

n) , offloading ratio αt
n and local computing

capability f tn  , the action space can be given by

•	 Reward function rn : To obtain the near-optimal policy
for the task offloading optimization problem in Eq.

(11c)C3 : 0 ≤ αt
n ≤ 1, ∀n ∈ N , ∀t ∈ T

(11d)C4 : 0 ≤ f tn ≤ Fmax
n ,∀n ∈ N ,∀t ∈ T

(12)s
t
n =

{

Tastn; g
t
n; f

t
1 , · · · , f

t
m

}

(13)a
t
n =

{

Pro(mt
n),α

t
n, f

t
n

}

(11), the numbers of agent should cooperate to mini-
mize the total system cost. In other words, reward
function rtn is set to instruct agent working at IoT
device n to learn to make decisions that satisfy the
constraints. The action is successful if the decision
variables corresponding to the action do not violate
any of the constraints defined in Eqs. (11a) - (11d),
then the reward is defined as the product of the
reciprocal of the weight sum (ω1 · E

t
n + ω2 · C

m
n (t))

and a constant C1 . Otherwise, the reward is defined
as a negative value, which represents a punishment,
denoted by −C2 . The immediate reward obtained at
each time slot t is expressed as

 where C1 and C2 are positive constants. It is noted
that, to maximize the estimation of discounted accu-
mulative rewards, for a successful action, lower total
system cost corresponding multi-cloud offloading
decision leads to higher immediate reward.

Multi‑agent DRL framework
For centralized decision making DRL, which requires the
BS to collect the environment state from all IoT devices
and cloud servers. However, with the number of IoT
devices or cloud servers increasing, the communication
overhead would increase, as well as the state-action space
may grow exponentially, resulting in the poor conver-
gence efficiency. To deal with these challenges, we aim
at obtaining promising computation offloading solu-
tions with multiagent DRL settings. However, traditional
multi-agent DRLs still hit bottlenecks of overestimate
and high variance, considering the high-dimensional
discreate-continuous action space, The TD3 algorithm
is designed to find efficient probability of selected cloud
server Pro(mt

n) , offloading ratio αt
n and local com-

puting capability f tn  , based on dynamic multi-cloud
environments.

In the multi-cloud offloading system, take advantage
of local observations at each IoT device, IoT device n
determines their server selection Pro(mt

n) , task offload-
ing ratio αt

n and local compution capacity f tn  . Thus,
twin delayed DDPG (TD3) agent is employed to learn
distributed computation offloading policies by jointly
optimizing above three variables for each IoT device.
This is referred to as the cooperative multi-agent TD3
(CMATD3) framework [32]. Figure 2 is the framework
of the CMATD3 in multi-cloud system. Following the
centralized training and distributed execution strat-
egy, each agent’s actor network makes offloading deci-
sion according to the local observation of the network

(14)rn(t) =

{

C1

ω1·Et
n+ω2·Cm

n (t)
a
t
n is successful

−C2 otherwise

Page 7 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

state, which will also be trained in proxy server located
near BS. Then, the training parameters are periodically
synchronized to each agent’s actor network. On the
other hand, each agent’s two-critic network with global
observation is deployed in the proxy server, i.e. states
and actions of all agents. Therefore, from the perspec-
tive of each agent, the learning environment is station-
ary, regardless of any agent’s policy changes.

The training stages of CMATD3 agent is illustrated as
follows. In each time slot t, for each agent n, the global
observable two-critic network in the proxy server is
exploited to train actor network, so as to obtain the
computation offloading strategy. In addition, to stabi-
lize training process and improve the training effective-
ness, for each agent n, the local experience transition
(

s
t
n, a

t
n, r

t
n, s

t+1
n

)

 will be store in the experience replay
buffer deployed in the proxy server, which concatenates
the local experience transition of all agents together as
a global experience replay buffer B , expressed as
(�t , �t , rt , �t+1) =

(

�
t
1
, �t

1
, rt

1
, �t+1

1
; ⋅ ⋅ ⋅ ;�t

n
, �t

n
, rt

n
, �t+1

n
; ⋅ ⋅ ⋅ ;�t

N
, �t

N
, rt

N
, �t+1

N

)

.
Then, for each agent n, n = 1, 2, · · · ,N  , the actor func-

tion is approximated by DNN with parameter θµn as
π
µ
n (sn) , which takes the state sn as input. Besides, the

two-critic network Q-function is also approximated by
two DNN with parameter θQi

n as Qθi
n (s, a|θ

Qi
n) , i = 1, 2 ,,

which takes the global state s = (s1, · · · , sN) and action

set a = (a1, · · · , aN) as input. During the training process,
each agent randomly samples a mini-batch {sj , aj , rj , s′j}

I
j=1

from the global experience replay buffer B . The policy gra-
dient of the evaluation actor network can be derived as

In addition, to avoid over-fitting on the narrow
peaks of Q-values, the target action a′j is defined as
a
′
j = π

µ′

n (s′j)+ N , where N ∽ clip(N(0, σ̆ 2),−1, 1) is
clipped noise adding to target actor network with mean
0 and standard deviation σ̆ . This noise helps TD3 to
achieve smoother state-action estimation. Based on the
target policy smoothing scheme above, the target values
yj is defined as

Then, as mentioned above, the two Q-functions, includ-
ing Qθ1

n (sj , aj) and Qθ2
n (sj , aj) , are concurrently obtained

from two-critic network. The weight parameters θQi
n of

Q
θi
n (sj , aj), i = 1, 2 , are updated by minimizing the loss

function L(θi) , given as

(15)∇
�
�n J (�

�n) ≈ �

[

∇
�
�n �

�

n
(�j) ⋅ ∇an

Q
�1

n (�, �|�Q
1
n)|an=�

�

n (sn)

]

(16)yj = rj + γ min
i=1,2

Q
θ ′i
n

(

s
′
j , a

′
j|θ

Qi
n

)

, i = 1, 2.

(17)L(θQ
i
n) ≈ E

[

yj − Qθi
n (sj , aj)

]2
, i = 1, 2.

Fig. 2  The framework of proposed CMATD3 in multi-cloud system

Page 8 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

Next, based on the Eq. (15) and Eq. (17), let � be the
learning rate, the weight of evaluation actor network and
two evaluation critic networks are updated by

In the end, to reduce temporal difference (TD) error,
each agent updates the evaluation actor network’s
weights with a lower frequency. Here, the each IoT device
updates the evaluation actor network every Ŵ time slots.

Algorithm 1 Training stage for computation offload-
ing via CMATD3Finally, aiming at stabilize the training
process, each agent copys the weights of corresponding
evaluation networks, and updates the weights of target
actor network and target two-critic network. Thus, the
the weights of target actor network and target two critic
network are obtained as

(18)
θµn ←θµn − �∇θµn J (θ

µn)

θQ
i
n ←θQ

i
n − �∇

θQ
i
n
L(θQ

i
n), i = 1, 2.

where η is the updating rate.
The time complexity of Algorithm 1 mainly depends

on the number of IoT devices, as well as the structure
of the neural networks for executing the actor and two-
critic network of each TD3 agent. For each TD3 agent,
we assume that number of fully connected layers of actor
network and two-critic network is J and 2L, respectively.
Thus, the time complexity can be calculated as

where N is the number of agents in the multi-device,
multi-cloud environment, uA,l stands for the unit num-
ber of layer l in the actor network, uC ,j represents the unit
number of layer j in the two-critic network. Note that
uA,0 and uC ,0 are the same as input size of actor network
and two-critic network, respectively.

Simulation results
Experiment setup
In this experiment, IoT devices are devised to interact
with multi-cloud servers, which is to present in detail
how the offloading policy changes with the environment.
The d̆tn satisfies a Poisson process with the mean data
arriving rate 300 kbps. The dtn is uniformly distributed in
[1, 7] Mbits, the D̄t

n is uniformly generated in [2, 5] s, the
ctn is uniformly generated in [200, 500] cycles/bit. Each
time slot last 1 s.

Besides, the system parameters are set as: maxi-
mum computation capacity Fmax

n = 0.5GHz , the noise
power ̺2 = −174dBm/Hz [33], transmission power
Pn = 2Watt , and effectively switching capacitance con-
stant κ = 10−27 . Channel gain gtn is exponentially distrib-
uted with mean g0 · (rad0/radn)e , where the path-loss
constant g0 = −30dB , the reference distance, rad0 = 1m ,
the distance between BS and IoT device n, radn , and the
path-loss exponent e = 3 , respectively.The computing
capability of each cloud server f tm is uniformly generated
in [2, 6] GHz.

For the proposed CMATD3 framework, both the
actor and two-critic networks are four-layer fully con-
nected neural network with two hidden layers, where
the number of neurons in the two layers are 400 and 300,
respectively. The learning rates of the actor network is
initialized as 0.0001. We set the maximum experience

(19)
θµ

′
n =ηθµn + (1− η)θµ

′
n

θQ
i′
n =ηθQ

i
n + (1− η)θQ

i′
n , i = 1, 2.

(20)

N ⋅

(

2

L
∑

l=0

(

uA,l ⋅ uA,l+1 + 4

J
∑

j=0

(

uC ,j ⋅ uC ,j+1
)

))

= O

(

N ⋅

(

L
∑

l=0

(

uA,l ⋅ uA,l+1 +

J
∑

j=0

(

uC ,j ⋅ uC ,j+1
)

)))

Page 9 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

Fig. 3  Normalized average rewards of CMATD3 agent with (a) different learning rates and (b) different batch sizes

Page 10 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

replay buffer size B = 2.5 × 105 , the target net update rate
η = 0.005 , and the discount factor γ = 0.99 , respec-
tively. In the training stage, the total number of episodes
Kmax = 2000 , and maximal time slots in each episode is
T = 200 . The Adam optimizer is used to optimize the
loss function during training. In the testing stage, the
results obtained in 100 runs are averaged.

We run all experiments on a workstation with Intel
Xeon E5-2667V4 8Core CPU× 2 @3.2GHz, 128 GB RAM,
and 4 ×NVIDIA GTX Titan V 12G GPU. It takes around
130 sec to run an episode on average.

Parameter study of CMATD3 agent
To verify the training efficiency, we study the impact
of parameters on the performance of the proposed
CMATD3 agent, including the learning rate and batch
size, as shown in Fig. 3(a) and (b). The training process
of CMATD3 agent is usually conducted offline. The
number of cloud servers M is set to 3, the number of
IoT devices N is set to 3. Figure 3(a) shows the normal-
ized average reward of CMATD3 with different learning
rates in two-critic networks. With a small learning rate,
i.e., 0.0001, the CMATD3 agent cannot reach to high

Fig. 4  Normalized average system costs with different number of IoT devices in the case of M = 2 and M = 3

Fig. 5  Energy consumption and renting charge vs weight ω2

Page 11 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

reward values, since the update of DNN’ parameters is
trivial. On the contrary, a large learning rate, i.e., 0.01,
may leads to rapid changes to the weight parameters of
DNN. Obviously, 0.001 is more appropriate than 0.01 and
0.0001. Thus, we hereafter fix the learning rate to 0.001.
Figure 3(b) depicts the normalized average rewards
of CMATD3 with different batch sizes. As shown in
Fig. 3(b), both 32 and 128 lead to a deteriorated training
performance, and the cumulative reward curve oscillates
at low values. This is because a small batch size cannot
efficiently cover the majority of transitions stored in the
experience replay buffer. While a large batch size may
lead to previously non-effective transitions are frequently
sampled and trained from the experience replay buffer.
Hence, we hereafter set the batch size to 64.

In order to investigate the scalability of our proposed
CMATD3 agent, we evaluate the performance with
different numbers of cloud servers and IoT devices,
as shown in Fig. 4. We can find that with the number
of IoT devices increases, there are more computation
waiting to be offloading, which results in the higher
total system cost. On the other hand, there are more
cloud servers participating in computation offloading,
as the number of cloud server M increasing. Besides,
when the number of IoT devices and tasks is constant,
the more cloud server participating in, the lower total
system cost will be obtained. Nevertheless, it is unnec-
essary for more cloud servers to participate in com-
puting offloading with a few of IoT devices and tasks.
Take the number of IoT devices N = 3 as an example,

the performance of M = 2 is almost similar to that of
M = 3 . Moreover, when the number of cloud server M
fixes to 3 and the number of IoT device N increases to
8, the CMATD3 agent is still competent for the multi-
cloud computation offloading problem. These above
verify the high scalability of the proposed CMATD3
agent with regard to cloud servers, state and action
spaces.

Figure 5 displays the relationship between the energy
consumption and charge renting with the weight param-
eter ω2 . Note that the weigh parameter ω1 is set to 1. Spe-
cifically, the ω1 and ω2 indicate the relative importance
of energy consumption and renting charge, respectively.
For example, a small ω2 means more weight putting on
the energy consumption. In the Fig. 5, as the weight ω2
increases from 0.2 to 1.8, the renting charge gets more
emphasized, and less tasks are offloaded to cloud server,
which results in less renting charge and more energy con-
sumption. Nevertheless, when the ω2 increases to 1.6 and
1.8, the curve of renting charge decreases slow down.
This is because the computation capacity of the cloud
servers offered are limited, and less offloaded task data
lead to higher energy consumption of IoT devices.

Figure 6 is the performance gap between the proposed
CMATD3 and the theoretical optimal result. We obtain
the theoretical optimal result at each time slot, and mark
it as black line. Besides, the experimental results by imple-
menting CMATD3 according to experiment setup are get.
It can be observed that the theoretical optimal results are
almost close to 0.9, while the normalized system costs

Fig. 6  Performance gap between the proposed CMATD3 and the theoretical optimal result

Page 12 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

oscillate around 0.8. The average gap between optimal
result and experimental result is less than 0.1. This is why
our proposed CMATD3 can achieve near optimal results.

Performance evaluation and analysis
To validate the effectiveness and advantage of the
proposed CMATD3 algorithm for multi-cloud task
offloading, we conduct extensive comparative experi-
ments with changing system parameters. On one hand,
the performance of four DRL based algorithms (i.e.,
MADQN(5), MADQN(10), MD-Hybrid-AC [22], and
MADDPG [34]) are assessed. On the other hand, two
heuristic algorithms (i.e. ACO [11] and SPSO-GA [12])
are also evaluated as follows.

•	 MADQN: Action values will be quantized firstly when
coping with dynamic multi-cloud offloading prob-
lems with a continuous-discrete hybrid action space.
We develop two multi-agent based on the different
number of discretized levels. MADQN(5): For an
agent allocated at an IoT device, range of both deci-
sion variables, e.g. offloading ratio αt

n and computa-
tion capacity f tn  , are equally divided the into 5 levels.
In addition, the range of cloud server selection mt

n
is 3. Thus, the action dimension of each agent is 13.
MADQN(10): For each agent, the range of both deci-
sion variables, e.g. offloading ratio αt

n and computa-
tion capacity f tn  , are equally divided the into 10 lev-
els.

•	 MD-Hybrid-AC [22]: The improvement of actor-
critic architecture to tack the continuous-discrete
hybrid decision based computation offloading prob-

lem, with centralized training and decentralized exe-
cution framework adopted.

•	 MADDPG [34]: A cooperative multi-agent DDPG
framework, which is employed to learn decentralized
dynamic computation offloading policies.

•	 CMATD3: The proposed agent in this paper.

In the MADQN(5), MADQN(10), MD-Hybrid-AC, and
MADDPG, the hyperparameters for the DNNs networks
are exactly the same with CMATD3.

Convergence of the five algorithms
Figure 7 shows the convergence of the five agents dur-
ing training. We can easily observe that the normal-
ized reward steadily grows up, with training episodes
increasing. A larger episode leading to a higher normal-
ized reward. One can see clearly that CMATD3 result in
best convergence among all algorithms in terms of the
normalized reward. This is because the two independ-
ent critic networks in TD3 can efficiently alleviate the
overestimation issue, improving the training stability and
effectiveness.

Performance comparison against currently processed task
data size
Figure 8(a) and (b) display the influence of different cur-
rently processed task data size, dtn , on the performance of
total system cost with the case of cloud server M = 2 and
M = 3 . As the task data size increasing, the total energy
consumption steadily grows up, leading to the perfor-
mance of the five DRL agents deteriorates. Furthermore,
with more cloud server joining in task offloading, the

Fig. 7  Normalized reward values obtained during training

Page 13 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

Fig. 8  Results of normalized average system cost vs. dtm . with a the number of cloud server M = 2 and b the number of cloud server M = 3

Page 14 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

Fig. 9  Results of normalized average system cost vs. W with a the number of cloud server M = 2 and b the number of cloud server M = 3

Page 15 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

lower total system cost can be achieved, which is shown
in Fig. 8(a) and (b). Figure 8 shows the MADQN(5),
MADQN(10) consistently have high system costs
because their inflexible and naive behaviors. The MD-
hybrid-AC agent has a comparable performance with
MADDPG when the task data size is not heavy, and the
performance deteriorates even more with the increase of
the task data size. Besides, the CMATD3 agent outper-
forms MD-Hybrid-AC with lower system cost on aver-
age distribution range of dtn , which means that CMATD3
adapts to new learning task better due to the coordina-
tion among IoT device agents.

Performance comparison against system bandwidth
We evaluate the total system cost of five DRL-based
agents with different system bandwidths in the sce-
narios of cloud server M = 2 and M = 3 . In the Fig. 9,
it can easily observe that as the system bandwidth W
increases, the total system cost of DRL-based optimiza-
tion methods goes down. The is because the transmis-
sion rate for IoT device n to cloud server m gradually
goes up, which results in low transmission energy con-
sumption. Then, the total system cost decreases in each

DRL-based agent with different number of cloud servers.
Clearly, compared with the case of cloud server M = 2 in
Fig. 9(a), more cloud server will participate in computa-
tion offloading with the number of cloud server M = 3
in Fig. 9(b), which contributes to lower total system cost
in five DRL-based optimization methods. Obviously, the
results show that the CMATD3 decreases gradually and
still maintains a lowest system cost among other schemes
when the system bandwidth increases. This is because
CMATD3 makes better decisions on server selection, off-
loading ratio and local computation capacity , compared
with MADQN(5), MADQN(10), MADDPG, and Hybrid-
AC agents.

Performance comparison against number of IoT devices
In multi-cloud environments, coordination among IoT
devices is more challenging since the number of IoT
devices may change with some one leaves or arrives. There-
fore, to further analyze the scalability of the five DRL-based
agents, we discuss the impact of N on the total system
cost. Besides, for the sake of simplicity, all IoT devices are
assumed to randomly scattered between 500m and 1000m
to the BS, the number of cloud server is set to 3.

Fig. 10  Results of normalized average system cost vs. N 

Table 1  Performance comparation with different number of IoT devices

Algorithms 3 4 5 6 7 8

ACO [10] 0.511 0.565 0.646 0.715 0.844 0.998

SPSO-GA [11] 0.309 0.391 0.483 0.571 0.718 0.821

CMATD3 0.281 0.340 0.402 0.454 0.550 0.670

Page 16 of 17Chen et al. Journal of Cloud Computing (2022) 11:90

Figure 10 shows the performance of the five DRL-based
computation offloading schemes with different N. In the
Fig. 10, as the number of IoT devices increases, the aver-
age cost of each agent gradually grows up. The reason is
explained below. A larger N leads to a higher probability
that more IoT devices communicate with the cloud serv-
ers at the same time, resulting into more severe inter-
ference among IoT devices. In this case, it takes more
energy consumption to transmit a given amount of data,
which leads to more average normalized system cost dur-
ing the uplink data transmission process.

One can see clearly that the performance of proposed
CMATD3 agent significantly better than the other
four DRL based agents. Then, in the case of N < 6 , the
total system cost of MADDPG agent is closer to both of
CMATD3 and MD-Hybrid-AC agents, this is because the
task data incurred on each IoT device is uniformly distrib-
uted. The performances of MADQN(5) and MADQN(10)
do not exhibit well since the searching space of them is
extremely large as the number of IoT devices increases
and thus resulting in a serious performance degradation.
Compared with MADQN(5), MADQN(10) improves the
performance slightly with the increase of quantized lev-
els, but far lower than the proposed CMATD3. The rea-
son is that the quantization process induces quantization
noise, which loses many features of action and impedes
MADQN to find the optimal policy. Besides, MD-Hybrid-
AC has less performance degradation than CMATD3
under different N since the MD-Hybrid-AC cannot effi-
ciently adapt to the states of network scale.

Table 1 is the performance comparation of CMATD3
with heuristic algorithms, including ACO [11] and
SPSO-GA [12], under different number of IoT devices.
Obviously, STDPG outperforms ACO algorithm and
SPSO-GA algorithm as it always obtains the smallest
normalized system costs. For instance, when the number
of IoT devices N = 8, The normalized system costs of our
proposed CMATD3 is 0.67 as against 0.998 and 0.821for
ACO and SPSO-GA. The following explains why. The
CMATD3 algorithm takes advantage of centralized
training and distributed executing. For ACO and SPSO-
GA algorithms, both of them normally need a consider-
able amount of iterations to achieve a near optimum. As
the number of IoT devices increasing, the search action
grows exponentially, they may easily fall into local opti-
mum during optimal processing.

Conclusions and future work
This paper investigated the dynamic computation off-
loading problem in a hybrid-decision-based collabo-
rative multi-cloud computing network, in which the
time-varying computing requirements, wireless channel

gains and network scale are comprehensively considered.
The optimization problem was formulated to obtain the
minimum long-term average total system cost of energy
consumption of IoT devices and renting charge of cloud
servers. To solve the issues of hybrid decision and col-
laboration among different IoT devices, we addressed the
issues by two steps. Specifically, we first relaxed discrete
action (e.g. cloud server selection) into a continuous set
by designing a probabilistic method. Then, a cooperative
multi-agent DRL (CMADRL) based framework with each
IoT device acting as an agent, was developed to obtain
the optimal cloud server selection, offloading ratio and
local computation capacity. Experimental results have
been performed to verify the effectiveness and superior-
ity of the proposed CMADRL based framework over the
other four state of the art DRL-based frameworks.

For our future work, we will consider to establish edge-
cloud computing network system to execute computing
tasks collaboratively. Moreover, we will study how the
computation complexity and communication overhead of
the training process are reasonably decreased, we will try
to task advantage of federated learning based DRL, which
only requires BS agents to share their model parameters
instead of local training data.

Abbreviations
DRL: Deep reinforcement learning; IoT: Internet-of-Things; BS: Base station;
CMADRL: Cooperative multi-agent deep reinforcement learning; DDPG: Deep
deterministic policy gradient; TD3: Twin delayed DDPG; MATD3: Multi-agent
TD3.

Acknowledgements
The authors would like to thank all the staf and students of school of com-
puter and software engineering in Xihua university for contribution during
this research process.

Authors’ contributions
Problem formulation: Juan Chen, Peng Chen. The proposed algorithm: Peng
Chen, Xianhua Niu. Computer simulations: Ling Xiong, Canghong Shi. Article
preparation: Juan Chen, Zongling Wu. The authors read and approved the final
manuscript.

Funding
The work of this paper is supported by the National Science Foundation of
China (No. 62171387).

Availability of data and materials
The data used during the current study are available from the corresponding
author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Page 17 of 17Chen et al. Journal of Cloud Computing (2022) 11:90 	

Author details
1 School of Computer and Software Engineering, Xihua University, Chengdu,
China. 2 School of Information Science and Technology, Southwest Jiaotong
University, Chengdu, China.

Received: 28 July 2022 Accepted: 19 November 2022

References
	1.	 Gai K, Guo J, Zhu L, Yu S (2020) Blockchain meets cloud computing: a

survey. IEEE Commun Surv Tutorials 22(3):2009–2030
	2.	 Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading

and resource allocation for noma-enabled iot in smart buildings and
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	3.	 Chen C, Zeng Y, Li H, Liu Y, Wan S (2022) A multi-hop task offloading deci-
sion model in mec-enabled internet of vehicles. IEEE Internet Things J: 1.
https://​doi.​org/​10.​1109/​JIOT.​2022.​31435​29

	4.	 Chen Y, Zhao F, Lu Y, Chen X () Dynamic task offloading for mobile edge
computing with hybrid energy supply. Tsinghua Sci Technol https://​doi.​
org/​10.​26599/​TST.​2021.​90100​50

	5.	 Chen Y, Xing H, Ma Z, et al (2022) Cost-efficient edge caching for noma-
enabled iot services. China Communications

	6.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I et al (2010) A view of cloud computing.
Commun ACM 53(4):50–58

	7.	 Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud com-
puting: architecture, applications, and approaches. Wirel Commun Mob
Comput 13(18):1587–1611

	8.	 Huang J, Tong Z, Feng Z (2022) Geographical poi recommendation for
internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst e5161 https://​doi.​org/​10.​1002/​dac.​5161

	9.	 Apostolopoulos PA, Fragkos G, Tsiropoulou EE, Papavassiliou S (2021) Data
offloading in uav-assisted multi-access edge computing systems under
resource uncertainty. IEEE Trans Mob Comput: 1. https://​doi.​org/​10.​1109/​
TMC.​2021.​30699​11

	10.	 Tang X (2021) Reliability-aware cost-efficient scientific workflows schedul-
ing strategy on multi-cloud systems. IEEE Trans Cloud Comput: 1. https://​
doi.​org/​10.​1109/​TCC.​2021.​30574​22

	11.	 Addya SK, Satpathy A, Ghosh BC, Chakraborty S, Ghosh SK, Das SK
(2021) CoMCLOUD: Virtual machine coalition for multi-tier applications
over multi-cloud environments. IEEE Trans Cloud Comput: 1. https://​doi.​
org/​10.​1109/​TCC.​2021.​31224​45

	12.	 Chen X, Zhang J, Lin B, Chen Z, Wolter K, Min G (2022) Energy-efficient
offloading for dnn-based smart iot systems in cloud-edge environments.
IEEE Trans Parallel Distrib Syst 33(3):683–697. https://​doi.​org/​10.​1109/​
TPDS.​2021.​31002​98

	13.	 Chen Y, Zhao J, Wu Y (2022) QoE-aware decentralized task offloading
and resource allocation for end-edge-cloud systems: A game-theoretical
approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2022.​
32231​19

	14.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for iot in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	15.	 Tuli S, Ilager S, Ramamohanarao K, Buyya R (2020) Dynamic scheduling
for stochastic edge-cloud computing environments using a3c learn-
ing and residual recurrent neural networks. IEEE Trans Mob Comput
21(3):940–954. https://​doi.​org/​10.​1109/​TMC.​2020.​30170​79

	16.	 Zhang Y, Di B, Zheng Z, Lin J, Song L (2020) Distributed multi-cloud multi-
access edge computing by multi-agent reinforcement learning. IEEE
Trans Wirel Commun 20(4):2565–2578

	17.	 Chen Z, Hu J, Min G, Luo C, El-Ghazawi T (2022) Adaptive and efficient
resource allocation in cloud datacenters using actor-critic deep
reinforcement learning. IEEE Trans Parallel Distrib Syst 33(8):1911–1923.
https://​doi.​org/​10.​1109/​TPDS.​2021.​31324​22

	18.	 Zhou P, Wu G, Alzahrani B, Barnawi A, Alhindi A, Chen M (2021) Reinforce-
ment learning for task placement in collaborative cloud-edge computing. In:
2021 IEEE Global Communications Conference (GLOBECOM). IEEE, Madrid,
pp 1–6

	19.	 Qu G, Wu H, Li R, Jiao P (2021) Dmro: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing.
IEEE Trans Netw Serv Manag 18(3):3448–3459

	20.	 Chen L, Xu Y, Lu Z, Wu J, Gai K, Hung PC, Qiu M (2020) Iot microservice
deployment in edge-cloud hybrid environment using reinforcement
learning. IEEE Internet Things J 8(16):12610–12622

	21.	 Chen Y, Sun Y, Wang C, Taleb T (2022) Dynamic task allocation and service
migration in edge-cloud iot system based on deep reinforcement learning. IEEE
Internet Things J 9(18):16742–16757. https://​doi.​org/​10.​1109/​JIOT.​2022.​31644​41

	22.	 Zhang J, Du J, Shen Y, Wang J (2020) Dynamic computation offloading
with energy harvesting devices: A hybrid-decision-based deep reinforce-
ment learning approach. IEEE Internet Things J 7(10):9303–9317

	23.	 Oroojlooyjadid A, Hajinezhad D (2019) A review of cooperative multi-agent
deep reinforcement learning. https://​doi.​org/​10.​48550/​arXiv.​1908.​03963

	24.	 Muñoz O, Pascual-Iserte A, Vidal J (2015) Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading. IEEE Trans Veh Technol 64(10):4738–4755.
https://​doi.​org/​10.​1109/​TVT.​2014.​23728​52

	25.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595. https://​doi.​org/​10.​1109/​TVT.​2021.​31335​86

	26.	 Chen J, Wu Z (2021) Dynamic computation offloading with energy har-
vesting devices: A graph-based deep reinforcement learning approach.
IEEE Commun Lett 25(9):2968–2972. https://​doi.​org/​10.​1109/​LCOMM.​
2021.​30948​42

	27.	 Chen J, Xing H, Xiao Z, Xu L, Tao T (2021) A drl agent for jointly optimizing
computation offloading and resource allocation in mec. IEEE Internet
Things J 8(24):17508–17524. https://​doi.​org/​10.​1109/​JIOT.​2021.​30816​94

	28.	 Chen C, Jiang J, Zhou Y, Lv N, Liang X, Wan S (2022) An edge intelligence
empowered flooding process prediction using internet of things in smart
city. J Parallel Distrib Comput 165:66–78

	29.	 Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial iot. Futur Gener Comput Syst 139:29–37

	30.	 Chen C, Li H, Li H, Fu R, Liu Y, Wan S (2022) Efficiency and fairness oriented
dynamic task offloading in internet of vehicles. IEEE Trans Green Commun Netw

	31.	 Lowe R, Wu Y, Tamar A, Harb J (2017) Multi-agent actor-critic for mixed
cooperative-competitive environments. https://​doi.​org/​10.​48550/​arXiv.​
1706.​02275

	32.	 Fujimoto S, Hoof HV, Meger D (2018) Addressing function approximation
error in actor-critic methods. https://​doi.​org/​10.​48550/​arXiv.​1802.​09477

	33.	 Chen Y, Gu W, Xu J, et al (2022a) Dynamic task offloading for digital twin-
empowered mobile edge computing via deep reinforcement learning.
China Commun

	34.	 Chen Z, Zhang L, Pei Y, Jiang C, Yin L (2022) Noma-based multi-user
mobile edge computation offloading via cooperative multi-agent deep
reinforcement learning. IEEE Trans Cogn Commun Netw 8(1):350–364.
https://​doi.​org/​10.​1109/​TCCN.​2021.​30934​36

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1002/dac.5161
https://doi.org/10.1109/TMC.2021.3069911
https://doi.org/10.1109/TMC.2021.3069911
https://doi.org/10.1109/TCC.2021.3057422
https://doi.org/10.1109/TCC.2021.3057422
https://doi.org/10.1109/TCC.2021.3122445
https://doi.org/10.1109/TCC.2021.3122445
https://doi.org/10.1109/TPDS.2021.3100298
https://doi.org/10.1109/TPDS.2021.3100298
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.1109/TMC.2020.3017079
https://doi.org/10.1109/TPDS.2021.3132422
https://doi.org/10.1109/JIOT.2022.3164441
https://doi.org/10.48550/arXiv.1908.03963
https://doi.org/10.1109/TVT.2014.2372852
https://doi.org/10.1109/TVT.2021.3133586
https://doi.org/10.1109/LCOMM.2021.3094842
https://doi.org/10.1109/LCOMM.2021.3094842
https://doi.org/10.1109/JIOT.2021.3081694
https://doi.org/10.48550/arXiv.1706.02275
https://doi.org/10.48550/arXiv.1706.02275
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.1109/TCCN.2021.3093436

	Task offloading in hybrid-decision-based multi-cloud computing network: a cooperative multi-agent deep reinforcement learning
	Abstract
	Introduction
	System model and problem formulation
	Task queue model
	Local computing
	Offloading computing
	Problem formulation

	The proposed CMADRL
	Discrete decision variable relaxation
	MDP Formulation
	Multi-agent DRL framework

	Simulation results
	Experiment setup
	Parameter study of CMATD3 agent
	Performance evaluation and analysis
	Convergence of the five algorithms
	Performance comparison against currently processed task data size
	Performance comparison against system bandwidth
	Performance comparison against number of IoT devices

	Conclusions and future work
	Acknowledgements
	References

