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Abstract 

Multi-cloud computing is becoming a promising paradigm to provide abundant computation resources for Internet-
of-Things (IoT) devices. For a multi-device multi-cloud network, the real-time computing requirements, frequently 
varied wireless channel gains and changeable network scale, make the system more dynamic. It is critical to satisfy 
the dynamic nature of network with different constraints of IoT devices in multi-cloud environment. In this paper, 
we establish a continuous-discrete hybrid decision offloading model, each device should learn to make coordinated 
actions, including cloud server selection, offloading ratio and local computation capacity. Therefore, both continuous-
discrete hybrid decision and coordination among IoT devices are challenging. To this end, we first develop a probabil-
istic method to relax the discrete action (e.g. cloud server selection) to a continuous set. Then, by leveraging a central-
ized training and distributed execution strategy, we design a cooperative multi-agent deep reinforcement learning 
(CMADRL) based framework to minimize the total system cost in terms of the energy consumption of IoT device and 
the renting charge of cloud servers. Each IoT device acts as an agent, which not only learns efficient decentralized pol-
icies, but also relieves IoT devices’ computing pressure. Experimental results demonstrate that the proposed CMADRL 
could efficiently learn dynamic offloading polices at each IoT device, and significantly outperform the four state-of-
the-art DRL based agents and two heuristic algorithms with lower system cost.

Keywords:  Computation offloading, Continuous-discrete hybrid decision, Deep reinforcement learning, Internet of 
Things, Multi-cloud computing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the development of mobile communication net-
works, the number of Internet-of-Things (IoT) devices, 
such as smartphones, wearables, and sensors, has a 
rapid growth. Moreover, the new advanced applications 
with computation-intensive tasks are emerging [1–3]. 
However, IoT devices usually have limited computation, 
battery and communication capacity [4, 5]. To address 
the conflict between computation-intensive tasks and 
resource-limited IoT devices, cloud computing has been 

considered as an emerging paradigm [6, 7], which sup-
ports IoT devices to offload some computation tasks to 
the cloud servers with sufficient computation capability.

Nevertheless, it is still challenging for IoT devices to 
acquire satisfactory computation services [8]. On one 
hand, there may be a large number of IoT devices require 
computation intensive services simultaneously. With lim-
ited storage and computation resources, it will be hard 
for a single cloud server to provide its computation ser-
vices, especially in hotspot scenario [9]. On the other 
hand, IoT application relies only on a single cloud server, 
which increases the risk of cloud server lock-in. Thus, it 
is more promising to study the scenario with multi-cloud 
collaboration. Although multi-cloud computing technol-
ogy maintains satisfactory service requirements of IoT 
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applications, it is still challenging to achieve efficient uti-
lization of computation resources for service charging 
multi-cloud system. Hence, it is non-trivial to investigate 
the task offloading mechanism in multi-cloud networks.

So far, many researchers have dedicated to design com-
puting offloading policies. For the case of static optimi-
zation, some strategies are proposed in [10–12]. In [10], 
the authors studied a problem of multi-cloud systems 
fault-tolerant workflow scheduling, and proposed a 
fault-tolerant cost-efficient workflow scheduling algo-
rithm based on mathematic method to improve the sci-
entific applications execution reliability and reduce their 
execution cost, respectively. Besides, ant-colony-based 
optimization technique was applied in [11] to derive 
optimal coalition of virtual machines (VMs), and then a 
first-price sealed-bid auction game was used to allocate 
and migrate the VMs for multi-cloud environments, 
where federation profit was improved at the expense of 
increased latency. Further, Alnoman et  al. [12] applied 
dynamic programming and exhaustive search approach 
to jointly optimize the power consumption, cloud 
response time and user energy in heterogeneous cloud 
radio access cloud-edge networks. The traditional off-
loading strategies often require complete and accurate 
network information, which is difficult to obtain in real 
networks due to highly dynamic multi-cloud networks. 
Besides, for large-scale dynamic environment, some 
traditional approaches,normally need a considerable 
amount of iterations to achieve a satisfying local opti-
mum. Meanwhile, the computation complexity of the 
above-mentioned traditional solutions increases signifi-
cantly, which makes them very difficult to be suitable for 
dynamic environment.

Since deep reinforcement learning (DRL) based 
methods could make intelligent decision with no prior 
knowledge through exploring the dynamic network envi-
ronments [13, 14]. Recently, some researchers apply DRL 
methods to deal with decision optimization problem in 
multi-cloud networks [15–21]. In [15], an asynchronous 
advantage actor critic (A3C) and residual recurrent neu-
ral network (R2N2) based scheduler were investigated 
for heterogeneous edge-cloud environment to obtain 
optimal energy consumption, response time, Service-
Level-Agreement and running cost. Zhang et  al. [16] 
considered a three-layer distributed multi-cloud multi-
access edge, and proposed a multi-agent reinforcement 
learning to make task offloading and resource allocation 
strategy. Zhao et al. [17] studied a scheduling policy with 
DRL in a hybrid multi-cloud environment to maximize 
renewable energy utilization. In [18], a deep Q-network 
(DQN) based collaborative task placement algorithm was 
proposed to optimize system utility. In [19], by combin-
ing multiple parallel deep neural networks (DNNs) with 

Q-learning, a deep meta reinforcement learning-based 
offloading (DMRO) algorithm is applied to migrate com-
plex tasks from IoT devices to edge-cloud servers. Chen 
et al. [20] proposed a multiple buffer deep deterministic 
policy gradient (MBDDPG) to learn preferable micros-
ervice-based service deployment strategy, and improve 
the average waiting time. Chen et  al. [21] investigated 
the long-term dynamic task allocation and service migra-
tion (DTASM) problem in edge-cloud IoT systems, twin-
delayed deep deterministic policy gradient (DDPG) was 
proposed to minimize the total computing load for-
warded to the cloud server while satisfying the seamless 
service migration constraint.

However, these above methods modeled in either a dis-
crete or a continuous action space, which restricted the 
optimization of offloading decisions in limited action 
space. In reality, the action space of offloading problem 
is generally continuous-discrete hybrid [22]. The agent 
should decide continuous actions (e.g., offloading ratio 
or local computation capacity) and discrete (e.g., whether 
to offload or which cloud server to select) actions to exe-
cute offloading computation. Thus, these methods may 
not perform well when the action space becomes large. 
On the other hand, if the number of IoT devices or cloud 
servers is large, the state and action may grow exponen-
tially, which results in a serious performance of conver-
gence and generalizability degradation.

To tackle these problems, this paper investigates 
hybrid-decision-based collaborative multi-cloud system, 
where multiple cloud servers are designed to offload com-
putation tasks of IoT devices under time-varying wireless 
channels and task arrivals. The task offloading optimiza-
tion problem is formulated to minimize the total system 
cost in terms of energy consumption of IoT devices and 
renting charge of cloud servers. Particularly, the decision 
of each IoT device is interdependent in the hybrid-deci-
sion-based multi-cloud environments. To solve the issues 
of hybrid decision and collaboration among different 
devices, we address the issues in two steps. To be specific, 
we first relax discrete action (e.g. cloud server selection) 
into a continuous set by designing a probabilistic method. 
Then, a cooperative multi-agent DRL (CMADRL) [23] 
based framework, which employs centralized training 
process and distributed execution strategy, is designed to 
obtain the optimal cloud server selection, offloading ratio 
and local computation capacity. The major contributions 
of our work are the following:

•	 We establish a computation offloading framework for 
multiple IoT devices with multi-cloud, where the task 
arrivals, channel gains and computation capacity of 
cloud servers are time-varying. The dynamic compu-
tation offloading problem is formulated to minimize 
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the total system cost of energy consumption and 
renting charge, by jointly designing the cloud server 
selection, offloading ratio and local computation 
capacity.

•	 We relax discrete decision (i.e. cloud server selection) 
into a continuous set by designing a probabilistic 
method. Thus, the continuous-discrete hybrid deci-
sion is transformed as a continuous decision. Then, 
we design a novel CMADRL framework with each 
IoT device acting as an agent to stabilize the training 
and alleviate on-device computational burden. That 
is to say, we use global state information collecting at 
the proxy server to train a locally observable policy 
function for each IoT device.

•	 We conduct extensive simulations to evaluate the 
performance of the proposed CMADRL. The results 
demonstrate the superiority of the proposed algo-
rithm by comparing with four state of art DRL-based 
frameworks and two heuristic algorithms, especially 
in terms of flexibility to the change of currently pro-
cessed task, adaptability to the variation of commu-
nication resources, and generalizability to the exten-
sion of network scale.

The remainder of this paper is organized as follows. The 
system model and problem formulation are provided in 
“System model and problem formulation” section. The 
proposed CMADRL is introduced in “The proposed 

CMADRL” section.  Simulation results section analyzes 
and discusses the experimental results, and “Conclusions 
and future work” section concludes this paper.

System model and problem formulation
In this section, we consider a multi-cloud computing 
system consisting of M cloud servers, base station (BS), 
a proxy server, and N IoT devices. Each IoT device can 
communicate with the BS with a wireless link, whereas 
the BS and cloud servers are connected by a wired link. 
The proxy server deploying near BS plays a role of train-
ing equipment, which assists the BS for centralized train-
ing and will be explained in detail in “Multi-agent DRL 
framework” section. As shown in Fig.  1, a set of cloud 
servers M = {1, . . . ,M} can provide offloading com-
puting services for a set of IoT devices N  = {1, . . . ,N } . 
Without loss of generality, we assume each IoT device n 
∈ N  maintains a computation-intensive task to be pro-
cessed during each time slot t ∈ T  , where T  = {1, . . . ,T } . 
We assume each task data are fine-grained and can be 
partitioned into subsets of any size [24]. Namely one 
part to be executed on IoT device n, and the other to be 
offloaded to one of the cloud servers m ∈ M for remotely 
processing.

Let atn denote offloading ratio, which can be con-
sider as the percentage of the task’s data size (in bit) to 
be offloaded to the cloud server, satisfying atn ∈ [0,1]. Let 
f tn  and Fmax

n  denote local and maximum computation 

Fig. 1  An example multi-cloud computing system with task offloading
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capacity, which can be viewed as the CPU-cycle fre-
quency to process the task data. We assume local com-
putation capacity f tn  ∈ [0,Fmax

n  ] is flexibly controlled via 
chip voltage adjustment using the dynamic voltage and 
frequency scaling (DVFS) technique [25].

At each time slot t, IoT device n needs to decide which 
cloud server mt

n to offloading the task, then offloads αt
n 

parts of the task data to the cloud server mt
n for remote 

computing. Meanwhile, IoT device n executes the 
remaining 1-αt

n parts of the task data locally. In other 
words, the task offloading need to be consider three deci-
sions, including cloud server select mt

n , offloading ratio 
αt
n , the local computation capacity f tn .
Since both energy consumption and renting charge play 

a significant role in the performance evaluation of com-
putation offloading for IoT devices, we consider these two 
objectives as total system cost. Following illustrates the 
detailed operation of task queue, local computing, offload-
ing computing and problem formulation, respectively.

Task queue model
We adopt a task queue to represent this dynamic nature 
of the multi-cloud system. Due to the task may fail to 
be completed with the limited computation resource of 
IoT devices, the task execution result in current time 
slot is relevant to the task load in next time slot. Spe-
cifically, computation tasks of IoT device n in time slot 
t are denoted as Tastn={Ldtn,dtn,D̄t

n,ctn }, in which Ldtn,dtn,D̄t
n 

and ctn indicate the size of computation data in the task 
queue (in bits), the currently processed task data size (in 
bits), the maximum tolerable delay, and required com-
putational resources to complete the whole task (in CPU 
cycles/bit) [26]. In addition, we update Ldt+1

n  with the 
residual task in current time slot and the new arrived task 
in next time slot, which is given as

where [x]+=max(x,0), and d̆t+1
n  is a new arrived task gen-

erated in next time slot t + 1 . droptn is a bool variable, 
droptn=False represents the task of IoT device n in time 
slot t is processed successfully.

Local computing
For partial task data (1− αt

n) · d
t
n , the processing delay 

Dloc
n (t) and energy consumption Eloc

n (t) incurred on IoT 
device n, are given as [27]

(1)Ldt+1
n = Ldtn − dtn1droptn=False

+
+ d̆t+1

n

(2)Dloc
n (t) =

(1− αt
n) · d

t
n · c

t
n

f tn

(3)Eloc
n (t) = κ · (f tn )

2 · (1− αt
n) · d

t
n · c

t
n

where κ is an effectively switching capacitance constant.

Offloading computing
To take advantage of the rich computation resources of 
the multi-cloud servers, computation offloading involves 
three step. Firstly, the IoT device n offloads the partial 
task data to an appropriate cloud server m for remote 
execution. Then, cloud servers handle tasks offloaded 
from IoT device. Finally, cloud server returns the task 
execution results to the device. Specifically, computa-
tion offloading incurs both transmission delay and energy 
consumption between the IoT device and the selected 
cloud server. In this paper, we simplify the system 
model and assume that the size of task execution results 
obtained from the cloud server is small [28], therefore the 
transmission delay and energy consumption of feedback 
transmission are negligible compared with that for local 
computing of offloading. Moreover, we assume the multi-
cloud server connected to the BS via optic fiber or copper 
wires, so we ignore the transmission delay between the 
BS and the selected cloud server.

In order to eliminate wireless channel interference 
among IoT devices, similar to [29], orthogonal frequency 
division multiple access (OFDMA) is adopted as a multi-
ple access technology. Thus, the system bandwidth W can 
be divided into equivalent sub-bands distributed to each 
IoT device equally. According the Shannon formula, the 
uplink transmission rate for IoT device n to cloud server 
m, vtran,m(t) is

where Pt
n,m , gtn,m and ̺2 are the transmission power, 

channel gain and noise power in time slot t, respectively.
The transmission delay and energy consumption 

incurred for offloading the partial input data αt
n · d

t
n , from 

IoT device n to the cloud server m, Dtra
n,m(t) and Etra

n,m(t) , are

According to Eq. (3), and Eq. (6), total energy consump-
tion of IoT device n for processing the task data dtn , Et

n , 
are formulated as

The processing delay for computing task in cloud server 
depends on the task data size and cloud server’s compu-
tation capacity. For each cloud server, due to one cloud 
server may also support the computation requests from 

(4)vtran,m(t) = W · log2(1+ (Pt
n,m · gtn,m)/̺

2)

(5)Dtra
n,m(t) =

αt
n · d

t
n

vtran,m(t)

(6)Etra
n,m(t) = Pt

n,m · Dtra
n,m(t)

(7)Et
n = Eloc

n (t)+ Etra
n,m(t)
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other IoT devices, its computation capability is time 
varying. Therefore, we assume the cloud server’s remain-
ing computation capacity varies randomly between dif-
ferent time slots but keep fixed in each time slot. Let 
f toccup = Pr(ε) · f unitser  be the occupied computation 
resource, which is modeled as an i.i.d. Possion process 
with parameter ε , where f unitisser  is the occupied computa-
tion resource for each unit [22]. The computation capac-
ity of server m, f tm , can be defined as f tm = Fmax

ser − f toccup , 
where Fmax

ser  is the maximum computation capacity of 
cloud server m ∈ M.

When processing the partial task data αt
n · d

t
n on cloud 

server m, the incurred execution delay can be expressed as

The executing delay Dm
n (t) brings server charge to an 

IoT device for a server provider in cloud computing. In 
other words, due to the IoT device rents the comput-
ing resources of the cloud server to execute the task, the 
cloud computing provider will charge the IoT device. Let 
c(f tm) = e(−η) · (f tm − 1) · β denote price per time unit at 
computing capability f tm [30], where η and β are two coef-
ficients. Therefore, the service charge Cm

n (t) required to 
execute IoT device n’s partial task on cloud server m is 
obtain by

Problem formulation
The dynamic computing offloading problem concerned is 
to minimize the total system cost of the energy consump-
tion Et

n and the renting charge Cm
n (t) in the long term, as 

formulated in Eq. (10).

s.t. 

 where ω1 and ω2 are the tradeoff weight. Constraint 
(10a) defines that for an arbitrary task, its actual task 
completion time cannot exceed its associated maximum 

(8)Dm
n (t) =

∑N
n=1(1mt

n=m · αt
n · d

t
n · c

t
n)

f tm

(9)Cm
n (t) = c(f tm) · D

m
n (t)

(10)min
mt

n
,�t

n
,f t
n

(

lim
T→∞

1

T

T
∑

t=1

(

N
∑

n=1

(

�1 ⋅ E
t
n
+ �2 ⋅ C

m
n
(t)

)

))

(10a)
C1 ∶ max(Dloc

n
(t),Dtra

n,m
(t) + Dm

n
(t)) ≤ ̄Dt

n
, ∀n ∈ N,∀t ∈ T

(10b)C2 : mt
n ∈ M,∀m ∈ M,∀n ∈ N ,∀t ∈ T

(10c)C3 : 0 ≤ αt
n ≤ 1, ∀n ∈ N ,∀t ∈ T

(10d)C4 : 0 ≤ f tn ≤ Fmax
n , ∀n ∈ N , ∀t ∈ T

tolerable delay. Constraint (10b) defines that for each IoT 
device, its task can be offloaded to only one of cloud serv-
ers. Constraint (10c) specifies offloading ratio is a varia-
ble between 0 and 1 for each task. Constraint (10d) states 
that for each IoT device, the local computation capac-
ity cannot exceed its associated maximum computation 
capacity. Note that, mt

n , αt
n and f tn  are the continue-dis-

crete hybrid decision variables associated with IoT device 
n, where αt

n and f tn  is continue variable, and mt
n is discrete 

variable.
Generally, the objective function and constraints in Eq. 

(10) are nonconvex, and the challenges of this dynamic 
computation offloading problem lies in three aspects: 
(1) the decision process contains both continuous deci-
sions and discrete decision; (2) the decision of IoT devices 
is highly dynamic with the large solution space; (3) the 
optimal offloading strategy should coordinate among IoT 
devices. Therefore, it is intractable to find optimal policies 
through traditional optimization-based schemes.

The proposed CMADRL
In this section, we first relax the continue-discrete deci-
sion variable to continue decision variable. Then, we 
model a multi-agent Markov Decision Process (MDP) for 
task offloading optimal problem. Finally, the procedure 
of cooperative twin delayed DDPG (CMATD3) is intro-
duced in detail.

Discrete decision variable relaxation
To address these challenges in Eq. (10), for the discrete deci-
sion variable mt

n , we adopt a probabilistic method to con-
vert it as a continuous variable. In particular, let 
Pro(mt

n) ∈ [m−1
M , mM ] be the probability of the task offloads 

to cloud server m. In other words, if the IoT device n 
chooses a continue decision variable Pro(mt

n) , which can be 
considered as the IoT device n selects cloud server m to 
offload its task at time slot t. Taking the number of cloud 
servers M = 5 as an example, if the Pro(mt

n) ∈
[

1
5 ,

2
5

]

 , we 
can choose server m = 2 to offload the task. Therefore, the 
total system cost minimization problem can be reformu-
lated as follows,

s.t. 

(11)min
Pro(mt

n
),�t

n
,f t
n

(

lim
T→∞

1

T

T
∑

t=1

(

N
∑

n=1

(

�1 ⋅ E
t
n
+ �2 ⋅ C

m
n
(t)

)

))

(11a)
C1 ∶ max(Dloc

n
(t),Dtra

n,m
(t) + Dm

n
(t)) ≤ ̄Dt

n
, ∀n ∈ N,∀t ∈ T

(11b)
C2 : 0 ≤ Pro(mt

n) ≤ 1, ∀m ∈ M,∀n ∈ N ,∀t ∈ T
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Based on this setting, DRL agent will be introduced to 
solve this dynamic offloading problem. For centralized 
decision making DRL, which require the BS to collect 
the environment state from all IoT devices. However, this 
would increase the communication overhead. Therefore, 
this paper aims at obtaining promising computing off-
loading solutions with multiagent settings.

Since the network environment is non-stationarity, 
other agents change their policy in the training process, 
this leads to the performance of traditional multiagent 
DRL becomes unstable. In order to guarantee conver-
gence, we design a cooperative multi-agent deep rein-
forcement learning based framework, which leverages 
the strategy of centralized training and distributed execu-
tion by using locally executable actor networks and fully 
observable critic networks [31].

MDP Formulation
We model the task offloading optimal problem as a multi-
agent Markov decision process (MDP). The multi-agent 
MDP can be denoted by a 4 tuple (N , Sn,An, rn) , where 
N  is the agent space, Sn is the state space of agent n, An is 
the action space of agent n, and rn is the reward function 
of agent n, respectively.

•	 Agent space N : N = {1, . . . ,N } , where N is the 
number of IoT devices, each IoT device acts as an 
agent. For agent n, n = 1, 2, . . . ,N  , by determining 
the server selection Pro(mt

n) , offloading ratio αt
n , and 

local computation capacity f tn  , the agent can obtain 
the minimum total system cost.

•	 State space Sn : For IoT device n, the state stn is com-
posed of computation task, the channel gain between 
IoT device n and BS in time slot t, and computation 
capacity of all cloud servers in the multi-cloud sys-
tem. 

•	 Action space An : Since each IoT device is required 
to determine probability of its selected cloud server 
Pro(mt

n) , offloading ratio αt
n and local computing 

capability f tn  , the action space can be given by 

•	 Reward function rn : To obtain the near-optimal policy 
for the task offloading optimization problem in Eq. 

(11c)C3 : 0 ≤ αt
n ≤ 1, ∀n ∈ N , ∀t ∈ T

(11d)C4 : 0 ≤ f tn ≤ Fmax
n ,∀n ∈ N ,∀t ∈ T

(12)s
t
n =

{

Tastn; g
t
n; f

t
1 , · · · , f

t
m

}

(13)a
t
n =

{

Pro(mt
n),α

t
n, f

t
n

}

(11), the numbers of agent should cooperate to mini-
mize the total system cost. In other words, reward 
function rtn is set to instruct agent working at IoT 
device n to learn to make decisions that satisfy the 
constraints. The action is successful if the decision 
variables corresponding to the action do not violate 
any of the constraints defined in Eqs. (11a) - (11d), 
then the reward is defined as the product of the 
reciprocal of the weight sum (ω1 · E

t
n + ω2 · C

m
n (t)) 

and a constant C1 . Otherwise, the reward is defined 
as a negative value, which represents a punishment, 
denoted by −C2 . The immediate reward obtained at 
each time slot t is expressed as 

 where C1 and C2 are positive constants. It is noted 
that, to maximize the estimation of discounted accu-
mulative rewards, for a successful action, lower total 
system cost corresponding multi-cloud offloading 
decision leads to higher immediate reward.

Multi‑agent DRL framework
For centralized decision making DRL, which requires the 
BS to collect the environment state from all IoT devices 
and cloud servers. However, with the number of IoT 
devices or cloud servers increasing, the communication 
overhead would increase, as well as the state-action space 
may grow exponentially, resulting in the poor conver-
gence efficiency. To deal with these challenges, we aim 
at obtaining promising computation offloading solu-
tions with multiagent DRL settings. However, traditional 
multi-agent DRLs still hit bottlenecks of overestimate 
and high variance, considering the high-dimensional 
discreate-continuous action space, The TD3 algorithm 
is designed to find efficient probability of selected cloud 
server Pro(mt

n) , offloading ratio αt
n and local com-

puting capability f tn  , based on dynamic multi-cloud 
environments.

In the multi-cloud offloading system, take advantage 
of local observations at each IoT device, IoT device n 
determines their server selection Pro(mt

n) , task offload-
ing ratio αt

n and local compution capacity f tn  . Thus, 
twin delayed DDPG (TD3) agent is employed to learn 
distributed computation offloading policies by jointly 
optimizing above three variables for each IoT device. 
This is referred to as the cooperative multi-agent TD3 
(CMATD3) framework [32]. Figure 2 is the framework 
of the CMATD3 in multi-cloud system. Following the 
centralized training and distributed execution strat-
egy, each agent’s actor network makes offloading deci-
sion according to the local observation of the network 

(14)rn(t) =

{

C1

ω1·Et
n+ω2·Cm

n (t)
a
t
n is successful

−C2 otherwise



Page 7 of 17Chen et al. Journal of Cloud Computing           (2022) 11:90 	

state, which will also be trained in proxy server located 
near BS. Then, the training parameters are periodically 
synchronized to each agent’s actor network. On the 
other hand, each agent’s two-critic network with global 
observation is deployed in the proxy server, i.e. states 
and actions of all agents. Therefore, from the perspec-
tive of each agent, the learning environment is station-
ary, regardless of any agent’s policy changes.

The training stages of CMATD3 agent is illustrated as 
follows. In each time slot t, for each agent n, the global 
observable two-critic network in the proxy server is 
exploited to train actor network, so as to obtain the 
computation offloading strategy. In addition, to stabi-
lize training process and improve the training effective-
ness, for each agent n, the local experience transition 
(

s
t
n, a

t
n, r

t
n, s

t+1
n

)

 will be store in the experience replay 
buffer deployed in the proxy server, which concatenates 
the local experience transition of all agents together as 
a global experience replay buffer B , expressed as 
(�t , �t , rt , �t+1) =

(

�
t
1
, �t

1
, rt

1
, �t+1

1
; ⋅ ⋅ ⋅ ;�t

n
, �t

n
, rt

n
, �t+1

n
; ⋅ ⋅ ⋅ ;�t

N
, �t

N
, rt

N
, �t+1

N

)

.
Then, for each agent n, n = 1, 2, · · · ,N  , the actor func-

tion is approximated by DNN with parameter θµn as 
π
µ
n (sn) , which takes the state sn as input. Besides, the 

two-critic network Q-function is also approximated by 
two DNN with parameter θQi

n as Qθi
n (s, a|θ

Qi
n) , i = 1, 2 ,, 

which takes the global state s = (s1, · · · , sN ) and action 

set a = (a1, · · · , aN ) as input. During the training process, 
each agent randomly samples a mini-batch {sj , aj , rj , s′j}

I
j=1

 
from the global experience replay buffer B . The policy gra-
dient of the evaluation actor network can be derived as

In addition, to avoid over-fitting on the narrow 
peaks of Q-values, the target action a′j is defined as 
a
′
j = π

µ′

n (s′j)+ N , where N ∽ clip(N(0, σ̆ 2),−1, 1) is 
clipped noise adding to target actor network with mean 
0 and standard deviation σ̆ . This noise helps TD3 to 
achieve smoother state-action estimation. Based on the 
target policy smoothing scheme above, the target values 
yj is defined as

Then, as mentioned above, the two Q-functions, includ-
ing Qθ1

n (sj , aj) and Qθ2
n (sj , aj) , are concurrently obtained 

from two-critic network. The weight parameters θQi
n of 

Q
θi
n (sj , aj), i = 1, 2 , are updated by minimizing the loss 

function L(θi) , given as

(15)∇
�
�n J (�

�n ) ≈ �

[

∇
�
�n �

�

n
(�j) ⋅ ∇an

Q
�1

n (�, �|�Q
1
n )|an=�

�

n (sn)

]

(16)yj = rj + γ min
i=1,2

Q
θ ′i
n

(

s
′
j , a

′
j|θ

Qi
n

)

, i = 1, 2.

(17)L(θQ
i
n) ≈ E

[

yj − Qθi
n (sj , aj)

]2
, i = 1, 2.

Fig. 2  The framework of proposed CMATD3 in multi-cloud system
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Next, based on the Eq. (15) and Eq. (17), let � be the 
learning rate, the weight of evaluation actor network and 
two evaluation critic networks are updated by

In the end, to reduce temporal difference (TD) error, 
each agent updates the evaluation actor network’s 
weights with a lower frequency. Here, the each IoT device 
updates the evaluation actor network every Ŵ time slots.

Algorithm  1 Training stage for computation offload-
ing via CMATD3Finally, aiming at stabilize the training 
process, each agent copys the weights of corresponding 
evaluation networks, and updates the weights of target 
actor network and target two-critic network. Thus, the 
the weights of target actor network and target two critic 
network are obtained as

(18)
θµn ←θµn − �∇θµn J (θ

µn)

θQ
i
n ←θQ

i
n − �∇

θQ
i
n
L(θQ

i
n), i = 1, 2.

where η is the updating rate.
The time complexity of Algorithm  1 mainly depends 

on the number of IoT devices, as well as the structure 
of the neural networks for executing the actor and two-
critic network of each TD3 agent. For each TD3 agent, 
we assume that number of fully connected layers of actor 
network and two-critic network is J and 2L, respectively. 
Thus, the time complexity can be calculated as

where N is the number of agents in the multi-device, 
multi-cloud environment, uA,l stands for the unit num-
ber of layer l in the actor network, uC ,j represents the unit 
number of layer j in the two-critic network. Note that 
uA,0 and uC ,0 are the same as input size of actor network 
and two-critic network, respectively.

Simulation results
Experiment setup
In this experiment, IoT devices are devised to interact 
with multi-cloud servers, which is to present in detail 
how the offloading policy changes with the environment. 
The d̆tn satisfies a Poisson process with the mean data 
arriving rate 300 kbps. The dtn is uniformly distributed in 
[1, 7] Mbits, the D̄t

n is uniformly generated in [2, 5] s, the 
ctn is uniformly generated in [200, 500] cycles/bit. Each 
time slot last 1 s.

Besides, the system parameters are set as: maxi-
mum computation capacity Fmax

n = 0.5GHz , the noise 
power ̺2 = −174dBm/Hz [33], transmission power 
Pn = 2Watt , and effectively switching capacitance con-
stant κ = 10−27 . Channel gain gtn is exponentially distrib-
uted with mean g0 · (rad0/radn)e , where the path-loss 
constant g0 = −30dB , the reference distance, rad0 = 1m , 
the distance between BS and IoT device n, radn , and the 
path-loss exponent e = 3 , respectively.The computing 
capability of each cloud server f tm is uniformly generated 
in [2, 6] GHz.

For the proposed CMATD3 framework, both the 
actor and two-critic networks are four-layer fully con-
nected neural network with two hidden layers, where 
the number of neurons in the two layers are 400 and 300, 
respectively. The learning rates of the actor network is 
initialized as 0.0001. We set the maximum experience 

(19)
θµ

′
n =ηθµn + (1− η)θµ

′
n

θQ
i′
n =ηθQ

i
n + (1− η)θQ

i′
n , i = 1, 2.

(20)

N ⋅

(

2

L
∑

l=0

(

uA,l ⋅ uA,l+1 + 4

J
∑

j=0

(

uC ,j ⋅ uC ,j+1
)

))

= O

(

N ⋅

(

L
∑

l=0

(

uA,l ⋅ uA,l+1 +

J
∑

j=0

(

uC ,j ⋅ uC ,j+1
)

)))
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Fig. 3  Normalized average rewards of CMATD3 agent with (a) different learning rates and (b) different batch sizes
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replay buffer size B = 2.5 × 105 , the target net update rate 
η = 0.005 , and the discount factor γ = 0.99 , respec-
tively. In the training stage, the total number of episodes 
Kmax = 2000 , and maximal time slots in each episode is 
T = 200 . The Adam optimizer is used to optimize the 
loss function during training. In the testing stage, the 
results obtained in 100 runs are averaged.

We run all experiments on a workstation with Intel 
Xeon E5-2667V4 8Core CPU× 2 @3.2GHz, 128 GB RAM, 
and 4 ×NVIDIA GTX Titan V 12G GPU. It takes around 
130 sec to run an episode on average.

Parameter study of CMATD3 agent
To verify the training efficiency, we study the impact 
of parameters on the performance of the proposed 
CMATD3 agent, including the learning rate and batch 
size, as shown in Fig.  3(a) and (b). The training process 
of CMATD3 agent is usually conducted offline. The 
number of cloud servers M is set to 3, the number of 
IoT devices N is set to 3. Figure 3(a) shows the normal-
ized average reward of CMATD3 with different learning 
rates in two-critic networks. With a small learning rate, 
i.e., 0.0001, the CMATD3 agent cannot reach to high 

Fig. 4  Normalized average system costs with different number of IoT devices in the case of M = 2 and M = 3

Fig. 5  Energy consumption and renting charge vs weight ω2
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reward values, since the update of DNN’ parameters is 
trivial. On the contrary, a large learning rate, i.e., 0.01, 
may leads to rapid changes to the weight parameters of 
DNN. Obviously, 0.001 is more appropriate than 0.01 and 
0.0001. Thus, we hereafter fix the learning rate to 0.001. 
Figure  3(b) depicts the normalized average rewards 
of CMATD3 with different batch sizes. As shown in 
Fig. 3(b), both 32 and 128 lead to a deteriorated training 
performance, and the cumulative reward curve oscillates 
at low values. This is because a small batch size cannot 
efficiently cover the majority of transitions stored in the 
experience replay buffer. While a large batch size may 
lead to previously non-effective transitions are frequently 
sampled and trained from the experience replay buffer. 
Hence, we hereafter set the batch size to 64.

In order to investigate the scalability of our proposed 
CMATD3 agent, we evaluate the performance with 
different numbers of cloud servers and IoT devices, 
as shown in Fig.  4. We can find that with the number 
of IoT devices increases, there are more computation 
waiting to be offloading, which results in the higher 
total system cost. On the other hand, there are more 
cloud servers participating in computation offloading, 
as the number of cloud server M increasing. Besides, 
when the number of IoT devices and tasks is constant, 
the more cloud server participating in, the lower total 
system cost will be obtained. Nevertheless, it is unnec-
essary for more cloud servers to participate in com-
puting offloading with a few of IoT devices and tasks. 
Take the number of IoT devices N = 3 as an example, 

the performance of M = 2 is almost similar to that of 
M = 3 . Moreover, when the number of cloud server M 
fixes to 3 and the number of IoT device N increases to 
8, the CMATD3 agent is still competent for the multi-
cloud computation offloading problem. These above 
verify the high scalability of the proposed CMATD3 
agent with regard to cloud servers, state and action 
spaces.

Figure  5 displays the relationship between the energy 
consumption and charge renting with the weight param-
eter ω2 . Note that the weigh parameter ω1 is set to 1. Spe-
cifically, the ω1 and ω2 indicate the relative importance 
of energy consumption and renting charge, respectively. 
For example, a small ω2 means more weight putting on 
the energy consumption. In the Fig.  5, as the weight ω2 
increases from 0.2 to 1.8, the renting charge gets more 
emphasized, and less tasks are offloaded to cloud server, 
which results in less renting charge and more energy con-
sumption. Nevertheless, when the ω2 increases to 1.6 and 
1.8, the curve of renting charge decreases slow down. 
This is because the computation capacity of the cloud 
servers offered are limited, and less offloaded task data 
lead to higher energy consumption of IoT devices.

Figure 6 is the performance gap between the proposed 
CMATD3 and the theoretical optimal result. We obtain 
the theoretical optimal result at each time slot, and mark 
it as black line. Besides, the experimental results by imple-
menting CMATD3 according to experiment setup are get. 
It can be observed that the theoretical optimal results are 
almost close to 0.9, while the normalized system costs 

Fig. 6  Performance gap between the proposed CMATD3 and the theoretical optimal result
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oscillate around 0.8. The average gap between optimal 
result and experimental result is less than 0.1. This is why 
our proposed CMATD3 can achieve near optimal results.

Performance evaluation and analysis
To validate the effectiveness and advantage of the 
proposed CMATD3 algorithm for multi-cloud task 
offloading, we conduct extensive comparative experi-
ments with changing system parameters. On one hand, 
the performance of four DRL based algorithms (i.e., 
MADQN(5), MADQN(10), MD-Hybrid-AC [22], and 
MADDPG [34]) are assessed. On the other hand, two 
heuristic algorithms (i.e. ACO [11] and SPSO-GA [12]) 
are also evaluated as follows.

•	 MADQN: Action values will be quantized firstly when 
coping with dynamic multi-cloud offloading prob-
lems with a continuous-discrete hybrid action space. 
We develop two multi-agent based on the different 
number of discretized levels. MADQN(5): For an 
agent allocated at an IoT device, range of both deci-
sion variables, e.g. offloading ratio αt

n and computa-
tion capacity f tn  , are equally divided the into 5 levels. 
In addition, the range of cloud server selection mt

n 
is 3. Thus, the action dimension of each agent is 13. 
MADQN(10): For each agent, the range of both deci-
sion variables, e.g. offloading ratio αt

n and computa-
tion capacity f tn  , are equally divided the into 10 lev-
els.

•	 MD-Hybrid-AC [22]: The improvement of actor-
critic architecture to tack the continuous-discrete 
hybrid decision based computation offloading prob-

lem, with centralized training and decentralized exe-
cution framework adopted.

•	 MADDPG [34]: A cooperative multi-agent DDPG 
framework, which is employed to learn decentralized 
dynamic computation offloading policies.

•	 CMATD3: The proposed agent in this paper.

In the MADQN(5), MADQN(10), MD-Hybrid-AC, and 
MADDPG, the hyperparameters for the DNNs networks 
are exactly the same with CMATD3.

Convergence of the five algorithms
Figure  7 shows the convergence of the five agents dur-
ing training. We can easily observe that the normal-
ized reward steadily grows up, with training episodes 
increasing. A larger episode leading to a higher normal-
ized reward. One can see clearly that CMATD3 result in 
best convergence among all algorithms in terms of the 
normalized reward. This is because the two independ-
ent critic networks in TD3 can efficiently alleviate the 
overestimation issue, improving the training stability and 
effectiveness.

Performance comparison against currently processed task 
data size
Figure 8(a) and (b) display the influence of different cur-
rently processed task data size, dtn , on the performance of 
total system cost with the case of cloud server M = 2 and 
M = 3 . As the task data size increasing, the total energy 
consumption steadily grows up, leading to the perfor-
mance of the five DRL agents deteriorates. Furthermore, 
with more cloud server joining in task offloading, the 

Fig. 7  Normalized reward values obtained during training
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Fig. 8  Results of normalized average system cost vs. dtm . with a the number of cloud server M = 2 and b the number of cloud server M = 3
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Fig. 9  Results of normalized average system cost vs. W with a the number of cloud server M = 2 and b the number of cloud server M = 3
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lower total system cost can be achieved, which is shown 
in Fig.  8(a) and (b). Figure  8 shows the MADQN(5), 
MADQN(10) consistently have high system costs 
because their inflexible and naive behaviors. The MD-
hybrid-AC agent has a comparable performance with 
MADDPG when the task data size is not heavy, and the 
performance deteriorates even more with the increase of 
the task data size. Besides, the CMATD3 agent outper-
forms MD-Hybrid-AC with lower system cost on aver-
age distribution range of dtn , which means that CMATD3 
adapts to new learning task better due to the coordina-
tion among IoT device agents.

Performance comparison against system bandwidth
We evaluate the total system cost of five DRL-based 
agents with different system bandwidths in the sce-
narios of cloud server M = 2 and M = 3 . In the Fig.  9, 
it can easily observe that as the system bandwidth W 
increases, the total system cost of DRL-based optimiza-
tion methods goes down. The is because the transmis-
sion rate for IoT device n to cloud server m gradually 
goes up, which results in low transmission energy con-
sumption. Then, the total system cost decreases in each 

DRL-based agent with different number of cloud servers. 
Clearly, compared with the case of cloud server M = 2 in 
Fig. 9(a), more cloud server will participate in computa-
tion offloading with the number of cloud server M = 3 
in Fig. 9(b), which contributes to lower total system cost 
in five DRL-based optimization methods. Obviously, the 
results show that the CMATD3 decreases gradually and 
still maintains a lowest system cost among other schemes 
when the system bandwidth increases. This is because 
CMATD3 makes better decisions on server selection, off-
loading ratio and local computation capacity , compared 
with MADQN(5), MADQN(10), MADDPG, and Hybrid-
AC agents.

Performance comparison against number of IoT devices
In multi-cloud environments, coordination among IoT 
devices is more challenging since the number of IoT 
devices may change with some one leaves or arrives. There-
fore, to further analyze the scalability of the five DRL-based 
agents, we discuss the impact of N on the total system 
cost. Besides, for the sake of simplicity, all IoT devices are 
assumed to randomly scattered between 500m and 1000m 
to the BS, the number of cloud server is set to 3.

Fig. 10  Results of normalized average system cost vs. N 

Table 1  Performance comparation with different number of IoT devices

Algorithms 3 4 5 6 7 8

ACO [10] 0.511 0.565 0.646 0.715 0.844 0.998

SPSO-GA [11] 0.309 0.391 0.483 0.571 0.718 0.821

CMATD3 0.281 0.340 0.402 0.454 0.550 0.670
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Figure 10 shows the performance of the five DRL-based 
computation offloading schemes with different N. In the 
Fig. 10, as the number of IoT devices increases, the aver-
age cost of each agent gradually grows up. The reason is 
explained below. A larger N leads to a higher probability 
that more IoT devices communicate with the cloud serv-
ers at the same time, resulting into more severe inter-
ference among IoT devices. In this case, it takes more 
energy consumption to transmit a given amount of data, 
which leads to more average normalized system cost dur-
ing the uplink data transmission process.

One can see clearly that the performance of proposed 
CMATD3 agent significantly better than the other 
four DRL based agents. Then, in the case of N < 6 , the 
total system cost of MADDPG agent is closer to both of 
CMATD3 and MD-Hybrid-AC agents, this is because the 
task data incurred on each IoT device is uniformly distrib-
uted. The performances of MADQN(5) and MADQN(10) 
do not exhibit well since the searching space of them is 
extremely large as the number of IoT devices increases 
and thus resulting in a serious performance degradation. 
Compared with MADQN(5), MADQN(10) improves the 
performance slightly with the increase of quantized lev-
els, but far lower than the proposed CMATD3. The rea-
son is that the quantization process induces quantization 
noise, which loses many features of action and impedes 
MADQN to find the optimal policy. Besides, MD-Hybrid-
AC has less performance degradation than CMATD3 
under different N since the MD-Hybrid-AC cannot effi-
ciently adapt to the states of network scale.

Table  1 is the performance comparation of CMATD3 
with heuristic algorithms, including ACO [11] and 
SPSO-GA [12], under different number of IoT devices. 
Obviously, STDPG outperforms ACO algorithm and 
SPSO-GA algorithm as it always obtains the smallest 
normalized system costs. For instance, when the number 
of IoT devices N = 8, The normalized system costs of our 
proposed CMATD3 is 0.67 as against 0.998 and 0.821for 
ACO and SPSO-GA. The following explains why. The 
CMATD3 algorithm takes advantage of centralized 
training and distributed executing. For ACO and SPSO-
GA algorithms, both of them normally need a consider-
able amount of iterations to achieve a near optimum. As 
the number of IoT devices increasing, the search action 
grows exponentially, they may easily fall into local opti-
mum during optimal processing.

Conclusions and future work
This paper investigated the dynamic computation off-
loading problem in a hybrid-decision-based collabo-
rative multi-cloud computing network, in which the 
time-varying computing requirements, wireless channel 

gains and network scale are comprehensively considered. 
The optimization problem was formulated to obtain the 
minimum long-term average total system cost of energy 
consumption of IoT devices and renting charge of cloud 
servers. To solve the issues of hybrid decision and col-
laboration among different IoT devices, we addressed the 
issues by two steps. Specifically, we first relaxed discrete 
action (e.g. cloud server selection) into a continuous set 
by designing a probabilistic method. Then, a cooperative 
multi-agent DRL (CMADRL) based framework with each 
IoT device acting as an agent, was developed to obtain 
the optimal cloud server selection, offloading ratio and 
local computation capacity. Experimental results have 
been performed to verify the effectiveness and superior-
ity of the proposed CMADRL based framework over the 
other four state of the art DRL-based frameworks.

For our future work, we will consider to establish edge-
cloud computing network system to execute computing 
tasks collaboratively. Moreover, we will study how the 
computation complexity and communication overhead of 
the training process are reasonably decreased, we will try 
to task advantage of federated learning based DRL, which 
only requires BS agents to share their model parameters 
instead of local training data.
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