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Abstract 

Nowadays, smart medical cloud platforms have become a new direction in the industry. However, because the medi-
cal system involves personal physiological data, user privacy in data transmission and processing is also easy to leak 
in the smart medical cloud platform. This paper proposed a medical data privacy preserving framework named PMHE 
based on blockchain and fully homomorphic encryption technology. The framework receives personal physiological 
data from wearable devices on the client side, and uses blockchain as data storage to ensure that the data cannot 
be tampered with or forged; Besides, it uses fully homomorphic encryption method to design disease prediction 
models implemented by smart contracts. In PMHE, data is encoded and encrypted on the client side, and encrypted 
data is uploaded to the cloud platform via the public Internet, preventing privacy leakage caused by channel eaves-
dropping; smart contracts run on the blockchain platform for disease prediction, and the operators participating in 
computing are encrypted user data too. So, privacy and security issues caused by platform data leakage are avoided. 
The client-to-cloud interaction protocol is also designed to overcome the defect that fully homomorphic encryp-
tion only supports addition and multiplication by submitting tuples on the client side, to ensure that the prediction 
model can perform complex computing. In addition, the design of the smart contract is introduced in detail, and the 
performance of the system is analyzed. Finally, experiments are conducted to verify the operating effect of the system, 
ensuring that user privacy is not leaked without affecting the accuracy of the model, and realizing a smart medical 
cloud platform in which data can be used but cannot be borrowed.
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Introduction
In recent years, with the application of new technologies 
such as smart healthcare and mobile healthcare, medical 
data, such as electronic health records, clinical measures, 
personal health status records perceived by wearable sen-
sors, have all shown explosive growth [1, 2]. In online 
medical system, the procedure of authorization distri-
bution, transmission and processing of data involves not 
only data exchange and transmission technology, but also 
the privacy security of data source [3, 4] and the trust of 

multiple nodes participating in data sharing [5]. Further-
more, in the mobile and health medical service system, 
People’s awareness of data privacy preserving is weak, 
and attackers tend to connect users’ medical data with 
network behaviors, which makes the impact of medical 
privacy disclosure more serious [6].

With the development of blockchain technology, it has 
gradually been applied in the medical field. The main 
application areas of blockchain include the secure shar-
ing and privacy protection of medical data, among which 
the privacy protection of medical and health data is the 
research focus [7]. The essence of blockchain technol-
ogy is decentralization, which ensures that medical data 
will not be manipulated or damaged in an environment 
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of mutual distrust. The encryption algorithm provides 
anonymity for blockchain and protects the privacy of 
patients’ information. In view of the privacy disclosure 
and information islands of medical data, the decentral-
ized, distributed storage, anonymity and other features 
of blockchain not only guarantee the privacy and security 
of medical data, but also provide possibilities for the safe 
transfer of medical data, which has attached extensive 
attention of researchers in the medical field.

Blockchain ensures that data cannot be tampered with 
or forged. However, on the smart medical cloud platform 
deployed on Internet, users need to upload physiologi-
cal data to the cloud platform through the public link. 
And then physiological data will be evaluated on cloud 
platform using the preset model to predict diseases and 
monitor health. There is a risk of data leakage during this 
process. In addition, models on cloud platforms require 
user data as raw formation for computing. Cloud plat-
forms are untrusted third parties, and data may be leaked 
on cloud platforms.

In this paper, we present a smart medical cloud plat-
form framework based on privacy computing, and its 
abbreviation is PMHE. The platform calculates users’ 
physiological data that is encrypted on client side, and 
uses the results to predict diseases. It can protect users’ 
privacy in communication and computing. Although 
the data is encrypted, the accuracy of the model is not 
affected.

Contributions
PMHE utilizing blockchain and fully homomorphic 
encryption technology builds an intelligent medical data 
and privacy protection framework to solve many prob-
lems. Those problems include privacy disclosure and data 
tampering caused by data loss and hacking.

The advantages mentioned above enable the data con-
sumers and data providers to realize the trust transac-
tion of medical data on the platform without the trust 
endorsement of the third-party platform [8]. People can 
enjoy the disease prediction, health monitoring and other 
medical services provided by the platform securely. The 
main contributions in this paper can be summarized as 
follows:

•	 Propose the PMHE framework. This is a privacy 
protection scheme of smart medical data based 
on blockchain technology and fully homomorphic 
encryption technology. Compared with most existing 
schemes, PMHE does not rely on any trusted third-
party or tamper-proof hardware, but only involves 
portable wearable medical devices, blockchain and 
(untrusted) clouds. In terms of storage and comput-
ing costs, PMHE also makes significant improve-

ments to existing medical data management solu-
tions based on blockchain.

•	 Design interaction protocols with desired function-
ality for PMHE under the universally compostable 
framework. Generally, the computing model in the 
cloud involves complex operations, but holomorphic 
encryption algorithm only supports addition and 
multiplication. The interaction protocol allows any 
computation to participate in homomorphic evalua-
tions.

•	 Implement PMHE scheme based on Hyperledger 
Fabric, and conduct comprehensive experiments to 
evaluate PMHE’S performance. The experimental 
results show that PMHE increases affordable com-
munication costs and storage costs while providing 
safe, full-featured disease prediction and health mon-
itoring functions.

Structure
This paper is divided into seven parts. Introduction sec-
tion  introduces the research motivation and contribu-
tion, Related Works and Preparation section introduces 
correlational researches and preparatory knowledge, Sys-
tem Architecture and Security Model section and The 
Framework of PMHE  introduce the process and results 
of implementing PMHE, Discussion and Analysis section 
deeply studies the privacy security of PMHE, and Experi-
ment and Evaluation section carries out specific experi-
ments and analyzes experimental data. Finally, the paper 
is summarized in Summary and Conclusion section.

Related works and preparation
Related works
At present, in the field of smart healthcare, there are 
many researches on privacy preservation in the process 
of data sharing, but it is difficult to combine the privacy 
and availability of medical data. In 2019, Hylock et  al. 
proposed a mixed-block blockchain framework to sup-
port immutable logging and editable patient blocks [9]. 
This framework presents patients and providers with 
access to consistent and comprehensive medical records 
by integrating a structured, interoperable design with 
patient-accumulated and generated data shared through 
smart contracts into a universally accessible blockchain. 
Proxy re-encryption (PRE) is used to improve the data 
security in [9], but when the medical data is trained in 
the cloud, the cloud service provider needs to decrypt 
the data using private key, and privacy is not fundamen-
tally preserved. Ruijin Wang et  al. in 2019 put forward 
a model of decentralized medical data sharing based on 
blockchain [10]. This model uses ring signature tech-
nology in blockchain to construct a private data storage 
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protocol, which can protect the privacy of medical data 
and patient identity. Although [10] implements medical 
information sharing with a strict access control manage-
ment mechanism based on smart contract, it only shuf-
fles the mapping between unencrypted medical data and 
data owner essentially. There is also a threat from online 
eavesdropping. In 2021, Jingwei Liu et  al. proposed a 
privacy-preserving medical data sharing scheme based 
on consortium blockchain [11]. The pseudo-identity is 
used to preserve the users’ privacy in [11], and malicious 
users can be tracked by the conditional anonymous trac-
ing mechanism when malicious behavior occurs. How-
ever, [11] only lessens the damage after privacy disclosure 
and cannot realize real-time defense against privacy 
leakage like PMHE architecture. Zhou Zhengqiang et al. 
proposed a medical data security sharing scheme based 
on consortium blockchain in 2021[12]. The scheme uses 
consortium blockchain to store metadata and cloud stor-
age to store ciphertext of medical data. In addition, the 
combination of time-limited smart contract and cipher-
text-policy attribute-based encryption (CP-ABE) tech-
nology realizes fine-grained access control and secure 
storage of medical data. Although [12] ensures the pri-
vacy of medical data on blockchain in different ways, the 
operability of data is greatly reduced by using traditional 
encryption methods. Homomorphic encryption technol-
ogy can solve this problem well.

The research on the combination of homomorphic 
encryption technology and machine learning is mainly 
focused on training the model with encrypted data. 
Crawford et al. [13] have made remarkable achievements 
in training small logistic regression models on encrypted 
data relying on operation “deep within the bootstrap-
ping regime”, but in his scheme, the number of features in 
training data is small to support disease prediction well. 
In 2018, Kim et al. adapted a novel homomorphic encryp-
tion scheme optimized for real numbers computation, 
and using new packaging and parallelization techniques, 
which solved the calculation problem of ciphertext logis-
tic regression [14]. Kim leverages least squares approxi-
mation to substitute non-polynomial functions, which 
will greatly increase computation load inevitably. In 2020, 
Kangyu Lui realized logistic regression model training in 
encrypted data set [15]. Although Kim and Kangyu Lui 
evaluate the performance of the model by using real-
world data sets, there is still a gap in accuracy between 
the machine learning with homomorphically encrypted 
data and that with original data. In addition, because 
the training of model involves a large number of calcula-
tions, introducing homomorphic encryption algorithm in 
training phase will greatly increase the time cost.

PMHE solves the problem of privacy disclosure in the 
field of smart healthcare and realizes the combination of 

privacy and availability of medical data. By introducing 
CKKS homomorphic encryption scheme, PMHE guar-
antees data privacy in communication and calculation, 
and homomorphism ensures that the medical data after 
encrypting can be further evaluated. Besides, comput-
ing cost of non-polynomial functions is reduced utilizing 
interaction protocols. Finally, experimental results show 
that the accuracy of AI model in PMHE is higher than 
existing scheme.

Blockchain and smart contract
The structural concept of blockchain was proposed 
as early as in the 1990s, and it was not until 2008 that 
Satoshi Nakamoto put forward the concept of blockchain 
for the first time in his published paper [16]. Blockchain 
can be regard as a decentralized database of blocks that 
can be added continuously, a self-referential data struc-
ture that is open, transparent, immutable, and traceable. 
Smart contract, known as Chaincode in Hyperledger, is 
essentially a program that runs on blockchain. And the 
code and data onto smart contract are stored on block-
chain too. The problem of limited flexibility is solved by 
allowing authorized participants to manipulate applica-
tions and reach consensus on the blockchain. In addi-
tion, since the preparation of a complete smart contract 
involves many aspects such as privacy, security, legal 
issues and mechanism design [17], it is a key issue for 
practical application to design a safe smart contract 
which is fair, reliable and complies with specifications.

Fully homomorphic encryption and CKKS
As early as 1978, Rivest et  al. first proposed the idea of 
Fully Homomorphic Encryption (FHE) [18, 19]. Since 
then, the study of Fully Homomorphic Encryption algo-
rithm has been listed as a research difficulty in the field 
of cryptography. It was not until 2009 that Gentry con-
structed the world’s first fully homomorphic encryption 
scheme based on lattice cryptography [20], which was 
homomorphic for fixed number of operation operations 
(usually called circuit depth). Then researchers began to 
improve on the basis of Gentry’s work, and developed 
more perfect homomorphic encryption algorithm. CKKS 
homomorphic encryption scheme was proposed by 
Cheon et al. in 2017 [21]. It supports approximate float-
ing-point operations and is one of the most important 
and suitable similar algorithms in homomorphic encryp-
tion field.

Homomorphic encryption (HE) is a cryptographic 
scheme that enables homomorphic operations on 
encrypted data without decryption. For arbitrary func-
tion f and message m, holomorphic encryption has the 
properties of Formula 1. Enc refers to the encryption 
algorithm, and Dec refers to the decryption algorithm.
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Fully homomorphic encryption scheme supports both 
homomorphic addition and multiplication, and the num-
ber of operation rounds is unlimited. At present, homo-
morphic encryption technology plays an important role 
in privacy security of cloud computing system. After 
encoding and encrypting, the user stores the ciphertext 
in blockchain. Without the user’s private key, the real 
plaintext data of the user cannot be obtained [22]. The 
detail process of full homomorphic encryption is shown 
in Fig. 1.

In the cloud computing system, the functions in the left 
box are implemented in client side, while the functions in 
the right box are implemented in cloud system. In opera-
tion procedure, encrypted plaintext is involved in homo-
morphic evaluations. After completion of operation 
using ciphertext, user can decrypt the result C using his/
her private key, and the output of decryption operation is 
almost the same as computation result on original data.

Unlike other LWE-based encryption schemes, rescaling 
is introduced in CKKS scheme for managing the mag-
nitude of plaintext [17]. And CKKS uses Ecd, Dcd and 
scaling factor Δ to map messages to plaintext. For exam-
ple, the message is complex number, and the plaintext 
is an element on the cyclotomic polynomial ring Rˉ = Z 
[ X] (ΦM (X)). Dcd first divides the plaintext polynomial 
m(X) by factor Δ, then computes the function value of the 
plaintext polynomial at the root of the cyclotomic poly-
nomial ring ΦM (X), and rounds numbers to get the final 
complex number vector of message. Ecd is the inverse 
transformation of Dcd [24].

In PMHE framework, the cloud system is divided into 
cloud server and blockchain according to functions. 
The basic Web application is implemented on the cloud 
server, and the disease prediction AI model written by 
smart contract is run on the blockchain. The homomor-
phic operations in AI model are implemented with CKKS 
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) encryption scheme. Homomorphic encryption technol-
ogy is a reliable tool and security basis for users to con-
duct data mining and analysis calculation in blockchain 
network [23]. Blockchain technology is combined with 
homomorphic encryption technology in PMHE, and 
CKKS encryption algorithm for approximate arithme-
tic is introduced to realize homomorphic evaluations on 
encrypted medical data.

System architecture and security model
This section describes the system architecture and secu-
rity model in terms of desired functionality firstly, then, 
the design goals of privacy-protected solution defined 
with the desired functionality in PMHE is introduced. 
For the sake of description, Table  1 lists the symbols 
involved in PMHE.

System architecture
As shown in Fig.  2, the PMHE framework involves five 
types of entities: portable wearable medical devices, cli-
ent apps, cloud servers, disease prediction models, and 
the blockchain with smart contracts. In our proposal, we 
combine blockchain, machine learning and homomor-
phic encryption technology to obtain a scheme that can 
analyze medical data in blockchain network. The scheme 
uses homomorphic encryption technology to ensure 
both the privacy and availability of medical data.

•	 Portable wearable medical devices. Portable wearable 
medical devices mainly refer to portable electronic 
devices that can be directly worn in clinical or daily 
health monitoring [6]. The intelligent medical devices 
mainly used in this paper include smart bracelets, 
smart watches and ECG underwear. Portable wear-
able medical devices can continuously collect physio-
logical data of the human body at anytime, anywhere 
and in any environment. It mainly collects such data 
as heart rate, ECG, respiration and blood pressure 

Fig. 1  Privacy homomorphic encryption
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through sensors arranged in body surface, so as to 
prediction of diseases later.

•	 Client APP. It is used to receive data from wearable 
devices, perform preliminary filtering on original 
data, then encode and encrypt the filtered data, and 
finally upload the ciphertext to the cloud platform. In 
addition, it receives the data tuples after homomor-
phic operations returned from the cloud platform. If 
the data tuples contain resulting message, it decrypts 
the results to get the plaintext, and shows the corre-
sponding health status for user. Last but not least, it 
generates public/private key pairs for secure commu-
nication and signature generation, and interacts with 
the server through the protocol to determine the for-
mat of the data to be uploaded.

•	 Cloud server. The cloud server, which does not need 
full trust, is responsible for receiving and processing 
the user’s health data and returning the data tuples 
after homomorphic operations to the client. Model 
selection server is also deployed on the cloud server. 
The server determines the data format that the cli-
ent needs to provide according to model selection 
algorithm. Besides, because the client does not know 
the meaning of plaintext results after decoding, the 
server also needs to send the specific meaning of 
each part of the plaintext results to the client.

Table 1  PMHE symbol definition

Symbol Definition Description

S Server

C Client

E Encoding operation

D Decoding operation

P Original data

B Plaintext

M Encrypted plaintext

Enc Encryption operation

Dec Decryption operation

x Unknown number

T The intermediary result of homomorphic operation

X The vector of user physiological feature

xi The value of user physiological feature

N(xi) The name of user physiological feature

F(x) Basic elementary function (except for positive Exponen-
tial power functions)

pk Public key

Req(pk) Request public key

mi Intermediate modulus in coefficient_modulus

h The number of modules in coefficient_modulus

NCH The maximum number of homomorphic multiplications

NRE The number of rescaling

ILE The initial “level” of ciphertext

Fig. 2  The architecture of PMHE system
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•	 Disease prediction model. Disease prediction mod-
els are written using smart contracts and run on 
blockchain. The model uses specific AI algorithm 
to analyze and calculate encrypted health data, so 
as to realize early warning and health monitoring. 
Through machine learning algorithm, the disease 
prediction model can not only be used for the moni-
toring and early warning of heart disease or hyper-
tension, but also can be widely used for other field 
such as pregnant women care, the early warning of 
lung disease and Alzheimer’s disease. The AI models 
of disease prediction in PMHE are based on logistic 
regression. Logistic regression algorithm has good 
classification ability [25]. It is a standard method of 
supervised machine learning to classify data, and it 
has been successfully used in medical research, for 
example to help determine whether a patient has 
a disease [26]. The predictive function of logistic 
regression is shown in Formula 2.

X = (1, x1, · · · xn) ∈ Rn+1 , xi(1 ≤ i ≤ n) refers to the 
user’s physiological data in PMHE, which is collected by 
wearable devices or input by the user on the client, and 
n is the number of user features required by the model. 
θ = (θ0, θ1, · · · , θn) ∈ Rn+1  refers to the regression coeffi-
cient. The model is obtained off-line from the training on 
unencrypted data set, and CKKS algorithm is introduced 
into the model to support prediction on encrypted fea-
ture data. The predictive function of logistic regression 
after introducing CKKS algorithm is shown in Formula 3.

The blockchain with smart contracts. Smart medical 
care involves a large amount of personal health data. Tra-
ditional cloud storage uses traditional database systems 
to manage user information, which is easy to be tam-
pered with and forged by malicious users, posing a great 
threat to data security. In PMHE, consortium blockchain 
is used to store user data, and AI prediction algorithms 
are written using smart contract. Medical data and the 
program will be stored synchronously at different nodes 
on the blockchain network, which ensures the failure 
of a single node will not cause the collapse of the entire 
system. Smart contracts also ensure the security and reli-
ability of the AI model. Blockchain and smart contracts 
can avoid data loss, program change, data leakage and 
other problems, greatly ensure data security.
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1
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=
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Security model
In cloud computing system, user data faces two risks 
about privacy disclosure. One is that off-line data may 
be eavesdropped during network transmission, while 
another is that data leakage will happen in the cloud.

•	 Network eavesdropping. Network eavesdropping is 
a kind of passive attack. The cloud system commu-
nicates with the client via the public link over Inter-
net. Attackers can gain user data by eavesdropping 
communication channel between the client and the 
cloud system. The most powerful way to eliminate 
the threat of eavesdropping is to encrypt off-line data 
and then transmit ciphertext over the Internet.

•	 Data leakage. If the cloud server is not fully trusted, 
it may expose users’ personal medical data. Or the 
cloud system could be trusted, but an attacker could 
still gain access to user data by hacking into the cloud 
system. Encryption is the most suitable solution to 
this security problem. In the cloud system, cipher-
text is received and evaluated on AI model. Without 
a secret key, even if an attacker has access to the data, 
he or she cannot know the user’s privacy.

The PMHE framework can achieve the following secu-
rity objectives:

•	 Security. In the process of data up-chain and AI 
model calculation, the data is in ciphertext form, 
which ensures the safety of data processing. As 
for data storage, data is stored using blockchain to 
ensure data storage security.

•	 Privacy. Even if the data is eavesdropped during 
transmission or leaked in the cloud, the attacker can 
only obtain the ciphertext encrypted with the user’s 
public key. Without knowing the user’s private key, 
the attacker cannot obtain the valuable information 
contained in the data.

The framework of PMHE
PMHE is a cloud computing framework for smart medi-
cal systems based on blockchain and homomorphic 
encryption technology. The wearable medical device 
transmits the collected physiological data of the user to 
the client, and then the client encodes and encrypts the 
data. The encrypted plaintext is transmitted to the block-
chain and triggers a smart contract on the blockchain. 
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The AI prediction model written using smart contract 
calculates the ciphertext and predicts the results. The cli-
ent receives the resulting message after homomorphic 
operations from the cloud server, and finally gets the pre-
dictive plaintext by homomorphic decryption. Accord-
ing to the plaintext information, the client can predict 
the user’s disease or evaluate the user’s health status. The 
program framework of PMHE with CKKS is shown in 
Fig. 3.

The basic idea of PMHE is to use CKKS encryption 
algorithm to encrypt plaintext into ciphertext during 
medical data transmission, calculation, and storage. And 
the entire process of computing is encrypted to ensure 
data integrity, privacy and security. Therefore, it is neces-
sary to improve each stage in order to use ciphertext to 
achieve its function.

Model conversion algorithm
CKKS encryption algorithm only supports addition and 
multiplication, but AI model involves some functional 
operations which do not meet homomorphism, such as 
exponential function, logarithmic  function  , square root 
function etc. Although some functions can be converted 
to addition and multiplication by polynomial fitting (for 
example, sigmoid can be fitted using polynomial approx-
imation), a lot of ciphertext operations need to be per-
formed in blockchain network. These extra operations 
will not only result in a loss of efficiency, but will more 
likely exceed the CKKS multiplication limit.

In PMHE, the AI model is converted into two basic 
operation units, basic elementary function (except for 
positive exponential power functions) and polynomial, 
which are stored in the stack. CKKS can directly execute 
polynomial operation, and the homomorphic addition 
and multiplication between operation units can also be 
supported on CKKS algorithm. The intermediary result 
outputted by CKKS algorithm is saved to participate in 
the subsequent homomorphic evaluations. The AI mod-
els of disease prediction running on PMHE are based on 
logistic regression, and the process of prediction function 
decomposition and CKKS execution is shown in Fig. 4.

Initialization is performed firstly. AI model is con-
verted according to computation sequence and inter-
mediary result T is assigned initial value Enc(X). In the 
stack, exand 1

x are basic elementary function, and others 
are polynomial operation. CKKS algorithm performs 
the corresponding countermeasure according to the 
operation unit poped out of stack. When the operation 
is polynomial operation, smart contract substitutes T 
into the polynomial and executes homomorphic opera-
tions. Then, the temporary result is assigned to T. When 
the operation is an elementary function, the smart con-
tract sends the function and intermediary result T to the 

cloud server in the form of data tuples. The cloud server 
retrieves the mapping table between public key and IP 
address based on the pk in the data tuples and obtain 
the client ip address. Ultimately, the cloud server sends 
the data tuples to the corresponding client. The client 
decrypts the intermediary result and decryption result 
t is substituted into the basic elementary function. Then 
the client encrypts the output of function and packages 
it into the data tuples. In the end, the encrypted output is 
assigned intermediary result T and participate in homo-
morphic operations in AI model.

The design of data tuples
In PMHE, the data interacts with each module in the 
form of tuples. The interaction protocol based on data 
tuples is described as follows:

1). The server sends the tuple template to the client.

where N (xi) indicates the name of user physiological 
feature, and Req(pk) indicates the application for user 
public key.

2). The client responds to the server, encodes and 
encrypts the value of physiological features, and sends it 
to the cloud server with public key.

where Bx = E(x), Bi = E(Xi),Mi = Enc(Bi), 0 ≤ i ≤ n.

3). The server receives ciphertext data, creates the pk-
ip mapping table or inserts the user’s pk-ip into it, and 
uploads the data to the blockchain.

4). When the off-stack operation is a basic elementary 
function, the data interaction in PMHE is as follows.

PMHE scheme
In PMHE, a data tuple is generated on the client side 
firstly. And then the data in data tuple is encrypted using 

(4)P =
{

N (x0),N (x1), · · ·N (xn),Req(pk)
}

(5)

(1, x1, x2, · · · xn)
E
→ {B0, B1, · · · , Bn}

Enc
→ {M0,M1, · · · ,Mn}

add(pk)
→

{

M0,M1, · · ·Mn, pk
}

(6)P → M → S

(7)S → B

(8)
{

F(x),T , pk
}

→ S
pk−ip table

→ C

(9)D(Dec(T )) = t

(10)Enc(E(F(t)) = T

(11)
{

T , pk
}

→ S → B
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CKKS homomorphic encryption to hide valuable infor-
mation. An ideal property of the CKKS scheme is that 
the ciphertext can be computed directly without prior 

decryption of the ciphertext. Therefore, privacy security, 
data authorization distribution and secure transmission 
of personal data are ensured.

Fig. 3  The program framework of PMHE with CKKS supporting
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1)	 INITIALIZATION. In the initialization phase, the 
user registers with the client APP, connects the cli-
ent to the wearable device, and generates the public/
private key pair. The public key represents the unique 
identity and is used to protect data in homomorphic 
encryption algorithms. The private key is used to 
sign the submitted data, verify the user’s identity, and 
decrypt the calculation results returned by the cloud.

2)	 SUBMIT. AI model is deployed on the blockchain 
and implemented as a smart contract. The client 
obtains the physiological data collected by the wear-
able device, encrypts them with the public key after 
coding, and submits them to the cloud application. 
The cloud calls the corresponding smart contract, 
performs the data calculation, and saves the data to 
the blockchain.

3)	 PREDICTION. Based on the physiological data col-
lected by wearable devices, ciphertext is calculated 
in the AI model. After the calculation, the result is 
obtained. In the calculation process of AI model 
based on homomorphic encryption technology, the 
valuable information contained in the data cannot be 
observed, which ensures the privacy of user data.

4)	 REPORT. Transforming physiological indicator data 
collected by wearable devices into disease prediction 
results with medical value and providing users with 
low-cost, high-quality and high-precision medical 
information is the meaning of report. For example, 
intelligent heart health assessment algorithm can 
efficiently and accurately predict whether a person 
has coronary heart disease, and is not affected by the 
diagnostic ability of the doctor. However, the result 
in encrypted formation cannot be used for diagnos-
tics, so the server cannot understand it and sends the 
result to the client.

5)	 DIAGNOSIS. After the client receives the opera-
tion result of the ciphertext, it decrypts and decodes 
it  with the private key  to get the unencrypted AI 
model result, and then compares the model reference 
criteria to get the diagnostic result.

Smart contracts
Smart contracts can be used to accomplish more com-
plex business logic when more business and applica-
tion requirements need to be fulfilled in the blockchain. 

Enc( ^T) *x

Enc(-1)*x

Enc(1)+x

Enc( ^T)T

T

Enc(-1)*x

Enc(1)+x

Enc(1)+x

T

T

T=Enc(X)

Intermediary
result Cloud server

t
package

Client

retrieve
return

pk-ip tableForward service

Enc ( result )

Pull and calculate

Assign

T

Fig. 4  Conversion and execution of AI module
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Essentially, smart contract is pieces of executable code 
that run in a blockchain, so it has the same decentral-
ized and autonomous characteristics as blockchain. In 
the PMHE framework, the principle of full homomorphic 
encryption based on smart contracts is as follows [27]:

1)	 setup(m): It refers to the function that selects AI 
model according to parameter m.

2)	 receive(List(tuple)): It refers to receive a list of 
encrypted data tuples from the client.

3)	 send(pk, result): It refers to send the results of the AI 
model operation on encrypted data to the client.

4)	 add(pk, ciphertext1, ciphertext2): It refers to the 
homomorphic function of addition, which can be 
used by users to perform addition calculations on 
ciphertext data

5)	 mult(pk, ciphertext1, ciphertext2): It refers to the 
homomorphic function of multiplication that users 
can use to multiply on ciphertext data.

The formal description of the FHE-Contract algorithm 
is as follows:

•	 Input: The encrypted data tuples uploaded by the cli-
ent.

•	 Output: The result of the homomorphic calculation 
on the encrypted data.

The specific algorithm description is shown in Fig. 5.

AI models in PMHE
PMHE supports disease prediction on encrypted physi-
ological information. The specific realization and predic-
tion process of disease prediction model will be discussed 
in the section.

Firstly, PMHE trains unencrypted AI models using 
traditional machine learning methods on unencrypted 
public data sets. Specifically, PMHE obtains regression 
coefficient θ in Formula 2. Then, a smart contract that 
supports the operation sequence in the operation stack 
in Fig. 4 will be programmed. In the smart contract, the 
addition and multiplication operation are the most basic 
operation, and all of them are implemented using CKKS 
to support prediction on encrypted physiological data. 
When client uploads the encrypted feature data Enc(X) 
to the cloud server, the smart contract is triggered. The 
operations defined in the smart contract are executed 
sequentially according to the operation order in the stack 
until the encrypted result Enc(result) is finally obtained. 
The client decrypts Enc(result) to obtain the predicted 
result. Figure 5 illustrates the detailed execution logic of 
the AI model on the blockchain. During the whole pro-
cess, the user’s physiological data is encrypted, which 
fundamentally ensures privacy.

Discussion and analysis
In this section, we firstly give a formal security proof of 
privacy under the universally composable framework, 
and then analyze PMHE performance from a communi-
cation and computing perspective.

Fig. 5  FHE-Contract algorithm
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Privacy security
Unlike traditional cloud computing application frame-
works, PMHE consists of three components: client, cloud 
system and blockchain. By using the CKKS algorithm, 
the system realizes the function of data security protec-
tion in communication and calculation. The task of client 
is to generate keys, select CKKS algorithm parameters. 
Besides, it is responsible for encoding and encrypting 
user data. All those operations ensure the security of data 
transmitted over the Internet, and the user data partic-
ipating in operations of the AI model is encrypted too. 
The server sends the calculation result on cryptographic 
state to the client. The client gets an approximation 
which is extremely close to the real result. By comparing 
the result with the reference criteria, we can get a diag-
nostic report.

In the entire process of data processing, encrypted data 
is transmitted on the public link between the server and 
the client, and cloud server and smart contract deal with 
ciphertext, which ensure the security of data in commu-
nication link and model operation. Based on the security 
of CKKS algorithm, brute force attack on the ciphertext 
still faces the problem of computational infeasibility, and 
the user privacy is guaranteed fundamentally. Based on 
the security of the Hyperledger Fabric, the data on block-
chain is difficult to be tampered with, which ensures the 
security of data storage. In conclusion, user’s privacy and 
medical data are protected furthest.

Performance analysis
Compared with the traditional smart medical cloud plat-
forms, PMHE ensures data security. The data is encoded 
to meet the CKKS algorithm, which causes an increasing 
of data size. In the calculation process, each multiplica-
tion involves rescaling and re-linearize operation [28], 
which results in more calculated workload. According to 
the interaction protocol, the tuple transmitted in PMHE 
is several times larger than the original data. As a result, 
PMHE adds additional overhead in terms of communica-
tion, computing, and storage.

Suppose there are twenty items in user physiological 
indicator.

Storage cost
In PMHE, the cloud server system only records the user’s 
basic information and the model parameters used by the 
user, but does not record specific user data. Therefore, 
the storage cost of cloud servers is not high.

User data is stored in blockchain (Hyperledger Fabric’s 
state database). In each uploaded tuple, what we need to 

(12)X = {x0, x1, . . . x19}

store is only twenty pieces of basic user data. Each data 
consists of 8192 floating-point numbers (equivalent to 
polynomial_modulus). The total storage required is about 
1.25 MB, which is quite acceptable.

Computing cost
In PMHE, computing tasks are assigned to the cli-
ent device and the blockchain. Encoding, encryption, 
decryption and decoding of user data are completed on 
the client, while the AI model runs on smart contract 
of blockchain. During client initialization, the opera-
tion of generating key pair causes extra computation 
time. In addition, each sensor data needs to be encoded 
as plaintext (encoded message). The length of plaintext 
is polynomial modulus times longer than original data. 
After encrypting, the length of encrypted plaintext is 
twice as long as plaintext. Compared with traditional cli-
ents in cloud computing system, each data-upload costs 
more computing time, but the interval of one minute for 
uploading data can be ignored.

The AI model performs homomorphic operations on 
encrypted data [21] on blockchain network, and most 
of these operations are multiplication. Since the opera-
tors are polynomial, and the operations such as rescal-
ing and relinearize are required for each multiplication, 
the computational complexity is greatly increased. How-
ever, blockchain itself is a distributed system, made up of 
many nodes, which allows computing to take place with-
out centralization. The structural characteristics of block-
chain can effectively relieve the computational stress.

Communication cost
At communication stage, the first interaction between 
the medical device and the cloud requires setting interac-
tion parameters for each other, and the main cost in the 
rest time is uploading encrypted medical data. Wearable 
devices usually upload data at a frequency of from 1 time 
per minute to 1 time per 10 minutes, depending on the 
user’s physical condition. Even at the highest frequency, 
we assume that the data tuple contains twenty physiolog-
ical indicators. The system need upload approximately 
1.25MB per minute, and the network speed requirement 
is about 175kbps, which is generally acceptable in the 
WiFi environment or 4G environment.

Experiment and evaluation
The PMHE prototype has been implemented on 
Hyperledger Fabric and conducted comprehensive exper-
iments to evaluate its feasibility and performance in stor-
age and computation.
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Experiment setting and parameters selection
Experiment setting
Latigo-ckks [29] is a CKKS framework implemented 
with GO language, which is also the preferred language 
for smart contract on Hyperledger Fabric development.

In the experiment, the DELL R720 was used as the 
server and 8 virtual machines were built with virtual-
ization technology. One is used as a Web application 
server to manage user information, receive user data, 
and invoke smart contracts on blockchain. The others 
are used to build a Hyperledger Fabric environment.

Hardware server configuration:

•	 CPU: E5-2697 v3 @ 2.60 GHz
•	 Memory: 16*16GB 1600-MHz DDR3

Virtual Machine configuration:

•	 OS: CentOS 8.0
•	 CPU: 4 vCPUs
•	 Memory: 16G

The client test was conducted on a mobile phone run-
ning the Android operating system.

The configurations of mobile phone are as follows:

•	 OS: Android 11
•	 CPU: Dimensity 1110 2.6GHZ
•	 Memory: 8 GB

The implementation of the PMHE scheme consists 
of five parts: portable wearable medical device, client, 
cloud server, blockchain and smart contract which 
implements disease prediction model. The computing 
results of AI model are used to predict or diagnose the 
health status of users. Because the model implemented 
with CKKS executes approximate arithmetic, there is 
an error between the output of decryption algorithm 
and the real results. Therefore, the focus of the experi-
ment is the computational efficiency of the client, the 
execution efficiency of the smart contract and the accu-
racy of AI model.

CKKS is a public key encryption system, which has 
all the characteristics of public key encryption system, 
such as public key encryption, private key decryption, 
etc. Therefore, the following components are needed in 
the program:

•	 Keygenerator: Generating the key
•	 Encryptor: Encrypting data with a public key
•	 Decryptor: Decrypting ciphertext with a private 

key
•	 Evaluator: Executing homomorphic evaluations

According to the design of PMHE, the first three mod-
ules are realized in the client, and the evaluator module is 
the AI model essentially.

Parameters selection
CKKS requires three preset parameters: poly_modulus_
degree, coefficient_modulus, and scale.

Parameter poly_modulus_degree must be a number of 
powers of 2, such as 1024, 2048, 4096, 8192. Larger value 
supports to perform more complex calculations, but will 
increase the size of the ciphertext. The number of mod-
uli in coeff_modules determines the number of homo-
morphic multiplications that can be performed. The last 
item in coeff_modules is the special modules, whose value 
should be equal to the maximum value of the interme-
diate modules, and the intermediate modules should be 
as close to scale as possible. The relationship between the 
max coeff_modulus bit-length and poly_modules degree is 
shown in Table 2 [29].

Parameter scale can scale floating point numbers, and 
executing multiplication on encrypted data causes scale 
to double. To control the inflation of scale, the operation 
of rescaling needs to be performed [17]. Each rescaling 
operation consumes one intermediate modules mi.The 
reduction of scale is about 2mi,because the intermediate 
modules is close to scale, the scale remains stable, which 
ensures final accuracy. Before each computation, we 
should ensure that the data participating in the homo-
morphic evaluation is on the same "level". The "level" 
of data can only be lowered rather than raised and is 
reduced by one after the operation of rescaling, which 
means the number of homomorphic multiplications 
is finite, and the order of calculation in model design is 
very important. When “level” falls to zero, multiplication 
cannot be performed. The relationship between h, NCH, 
NRE and ILE is shown in Formula 13.

Different disease prediction models have different 
requirements on computation complexity, computation 
time and computation security. Therefore, two groups 
of encryption parameters are selected according to the 

(13)NRE = ILE = log(NCH + 1) = h− 2

Table 2  Relationship between parameters

poly_modulus_degree max coeff_
modulus 
bit-length

1024 27

2048 54

4096 109

8192 218
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above selection principal and actual needs. According to 
Formula 13, the user can choose parameters1 or param-
eters2 when NCH in AI model does not exceed 3. When 
a certain item in the model requires NCH more than 
3, only parameters2 can be selected. NCH does a pre-
liminary filtering of the available parameters. And when 
NCH cannot determine a unique parameter, the user can 
choose the parameter as he or she wishes.

Parameters1:

Parameters2:

Since the AI model running on PMHE requires no 
more than twenty user physiological features in practical 
application, twenty items are set in the data tuples in test.

poly_module_degree = 8196;

coeff _modulus = {60, 40, 40, 60}; scale = 240

poly_module_degree = 8196;

coeff _modulus = {50, 30, 30, 30, 50}; scale = 230

PMHE time consumption testing
Client testing
The size of public and private key file, the length of 
plaintexts after encoding and the length of encrypted 
plaintexts are highly related to the poly_modulus_
degree and the coefficientt_modulus. The larger the 
poly_modulus_degree, the higher the security is, but 
the time of key generation, encoding and encryption 
will increase. In the case of parameters1 and parame-
ters2, thirty experiments were conducted respectively, 
and the average time consumption of each operation is 
obtained. The time statistics for clients to generate key, 
encoding, and encryption are shown in Table 3.

In client, the private key, public key, encryptor, 
encoder and decoder can be reused. The client encodes 
and encrypts the tuple before uploading it. Table  3 
shows that encoding and encrypting a data tuple con-
taining 20 user characteristics take less than 0.03 s. And 
it takes no more than 0.02 s for the user to decode and 
decrypt the result. Client operations do not add much 
time consumption.

AI model testing
In PMHE framework, the AI model is implemented 
by smart contract, the operations on smart contract 
contain only addition and multiplication. Each item in 
polynomial is the multiplication of user data cipher-
text and polynomial coefficients ciphertext. When 
the ciphertext is multiplied, the size of the cipher-
text increases dramatically and the computation time 
increases accordingly. In order to reduce the size of the 
ciphertext and obtain faster computing speed, relin-
earize operation is required. Meanwhile, after every 
multiplication, rescaling operation is required to con-
trol the growth of the scale and reduce the error. The AI 
model running time statistics are shown in Table 4.

Table 3  Computing time of every stage on client

Procedure Average Time(Microsecond)

Parameters1 Parameters2

Generating the private key 3696 3724

Generating the public key 8845 14,666

Generating encryptor 412 468

Generating encoder 1810 2208

Generating decoder 1972 3243

Encoding 6187 9778

Encryption 8499 12,062

Decryption 14,172 18,759

Decoding 495 571

Table 4  Encryption time statistics

Procedure Average Time(Microsecond)

Parameters1 Parameters2

Generating the secret key of relinearize operation 121,565 200,155

Single addition operation 10,792 10,987

Multiplication operation between ciphertexts 34,941 49,108

Multiplication operation between ciphertext and plaintext 11,288 12,203

Square operation of ciphertext 34,339 48,247

The time of relinearize and rescaling operation 121,497 187,206

Total 334,422 507,906

The number of tests 30 30
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Error size analysis of CKKS algorithm
The core function of the smart medical system is disease 
prediction and health monitoring, and finally diagnosis 
is made according to the output of decryption algorithm. 
CKKS algorithm based on approximate arithmetic, and 
noise is introduced into the operations. As a result, there 
is an error between final result and real value. To fig-
ure out the error size, we divided the original data into 
three groups, one-digit, double-digit, and three-digit. 
Because the number of multiplications in the AI model 
exceeds three times, parameters1 supports a maximum 
of three multiplications and does not meet the calcula-
tion requirements, we select parameters2. Each experi-
ment was repeated fifty times. The experimental results 
are shown in Fig. 6.

Figure 6 shows that the error between the final results 
and the real results is very small, and the maximum error 
is no more than 0.02%. In the worst case, the cumulative 
calculation error of the user’s twenty encrypted features 
is less than 0.4%. Since logistic regression is a binary 
model, if the distance between the output of the predic-
tion function and the threshold value exceeds 0.4%, the 
error has no effect on the prediction result. CKKS algo-
rithm can fully meet the needs of disease prediction and 
health monitoring.

AI model accuracy testing
In PMHE, users can select different disease predic-
tion models through model selection algorithm in 
cloud server. In order to comprehensively evaluate 

the accuracy of the models, we chose five different 
data sets, which are Low Birth Weight Study(LBW) 
[30], Heart_UCI [31], Umaru Impact Study(UIS) [32], 
Breast-Cancer-Wisconsin(BCW) [33] and NhanesIII 
[34]. The specific data sets information is shown in 
Table 5. We selected 75% of the data set for training to 
obtain the initial AI model, and introduced the CKKS 
algorithm into the initial AI model to obtain CKKS-AI 
model. The accuracy of initial AI model and CKKS-AI 
model is shown in Fig.  7. Besides, we compared the 
scheme in this paper with that of Lui K [15], and the 
result is shown in Fig. 8.

Experimental results show that the accuracy of 
CKKS-AI model is close to that of the initial AI model, 
for reasons described in Section “Error size analy-
sis of CKKS algorithm”. And CKKS-AI model has 
higher accuracy compared with the model trained in 
encrypted data set.

Fig. 6  Variable error rate of different digits

Table 5  The information of data sets

Dataset Number of 
observations

Number 
of 
features

Low Birth Weight Study 189 9

Heart_UCI 303 14

Umaru Impact Study 575 8

Breast-Cancer-Wisconsin 699 10

NhanesIII 15,649 15
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Summary and conclusion
Medical and health data are of great value both in the sci-
entific research and medical field, such as clinical auxil-
iary diagnosis and health management, but they face the 
risk of privacy disclosure [27]. This paper first introduces 
the research background and significance of medical and 
health data privacy preserving, and then illustrates the 
development of blockchain technology in the privacy 
preserving of medical data by investigating the related 
work world widely. Then it introduces blockchain smart 
contract technology and homomorphic encryption algo-
rithm. On this basis, aiming at the privacy disclosure 

problems faced by medical data in the disease prediction 
model, this paper introduces homomorphic encryption 
technology to propose blockchain-based privacy protec-
tion method of medical and health data. Based on this 
method, we design and implement a privacy preserving 
framework of smart medical data based on blockchain 
and homomorphic encryption, named PMHE. In the 
entire process of data processing, no matter network 
transmission, model calculation, or data storage, involved 
data in this procedure is all ciphertext encrypted with 
public key. On the premise of not affecting the accuracy 
of calculation, PMHE realizes the security of the data 

Fig. 7  The accuracy of initial AI model and CKKS-AI model

Fig. 8  Comparison of two schemes
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on the chain, protecting the privacy of the user. In other 
words, PMHE truly achieves that the data is available but 
uncollectable.

In summary, the proposed solution can be used in fol-
lowing fields:

•	 The ciphertext results generated by the disease pre-
diction model can be used in other health big data 
industries, such as health monitoring, nursing homes 
and medical institutions. Compared with traditional 
big data analysis, this greatly protects users’ privacy.

•	 Encrypted messages can be used to exchange rel-
evant data with healthcare providers, and ultimately 
provide high-quality, low-cost and safe solutions for 
smart medical products. The disease pattern data-
bases built by data exchanged can be used as health 
big data, provide reference for disease diagnosis and 
contribute to social health.

PMHE is an exploration of using blockchain and pri-
vacy computing for smart medical application, there are 
still some problems to be further solved in the future:

•	 The prototype experiment results of the scheme pro-
posed in this paper are satisfactory, but its efficiency 
needs to be further verified when it is used in large-
scale applications with high real-time requirements.

•	 Because the AI model in this paper mainly operates 
on multiplication and addition, it is easy to imple-
ment with CKKS. However, the calculation model of 
many problems is more complex, and the degree of 
fitting polynomials is too high to exceed the “level” 
limit of CKKS. Therefore, the next step is not only to 
optimize the model design, but also to optimize the 
CKKS algorithm itself to improve its universality.
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