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Abstract 

Corporations and enterprises creating IoT-based systems frequently use fog computing integrated with cloud com-
puting to harness the benefits offered by both. These computing paradigms use virtualization and a pay-as-you-go 
strategy to provide IT resources, including CPU, memory, network and storage. Resource management in such a 
hybrid environment becomes a challenging task. This problem is exacerbated in the IoT environment, as it generates 
deadline-driven and heterogeneous data demanding real-time processing. This work proposes an efficient two-step 
scheduling algorithm comprising a Bi-factor classification task phase based on deadline and priority and a scheduling 
phase using an enhanced artificial Jellyfish Search Optimizer (JS) proposed as an Improved Jellyfish Algorithm (IJFA). 
The model considers a variety of cloud and fog resource parameters, including speed, capacity, task size, number of 
tasks, and number of virtual machines for resource provisioning in a fog integrated cloud environment. The model 
has been tested for the real-time task scenario with the number of tasks considering both the smaller workload and 
the relatively higher workload scenario matching the real-time situation. The model addresses the Quality of Service 
(QoS) parameters of minimizing the batch’s make-span time, lowering the batch execution costs, and increasing the 
resource utilization. Simulation results prove the effectiveness of the proposed model.

Keywords:  Cloud computing, Fog computing, Fog integrated cloud, Resource provisioning, Task scheduling, 
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Introduction
In recent decades, the scientific community has 
embraced meta-heuristic optimization approaches to 
solve complicated optimization problems. Neural net-
works, data mining, industrial, mechanical, electrical, 
software engineering, and specific issues in location the-
ory are some of the application domains of meta-heuris-
tic algorithms [1–5]. Hussain’s analysis of 1,222 papers on 
metaheuristics from 1983 to 2016 (33 years) suggests that 
the behaviour of birds, humans, plants, water, the ecosys-
tem, electromagnetic forces, and gravitation have been 
employed as metaphors in metaheuristic techniques [6]. 

Figure 1 presents a division of these techniques into two 
groups. The first group includes approaches that imitate 
biological or physical events and can be divided into four 
sub-categories: Nature-based, Physics-based, Human-
based and Swarm-based methods. The third group con-
sists of those that have been motivated by human events. 
The most exciting and widely used metaheuristic algo-
rithms are swarm-intelligence algorithms based on the 
collective intelligence of colonies of ants, termites, bees, 
flocks of birds, and so on [7]. Their success can be attrib-
uted to the fact that they leverage shared knowledge 
among several agents, allowing self-organization, co-evo-
lution and learning to aid in creating high-quality prod-
ucts during cycles. Although not all swarm-intelligence 
algorithms succeed, a handful has been quite effective 
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and have thus become popular tools for tackling real-
world problems [8].

Working in the same trend, cloud computing research 
has also leveraged the benefits of many meta-heuristics 
to target its’ complex problems, e.g., virtual machine allo-
cation [9–11], virtual machine placement [12, 13], load 
balancing [14], task scheduling [15–27], workload predic-
tion [28], resource allocation [29, 30], workflow sched-
uling [31, 32], virtual machine migration [33] and many 
more.

Computing paradigms like cloud and related tech-
nologies, fog and edge computing are built on the pay-
as-you-go model. Resources are provided based on the 
service-level agreements (SLA) between the service 
providers and the consumers. Resources are of utmost 
importance for these technologies. Accordingly, resource 

provisioning for task scheduling becomes one of the sig-
nificant concerns for these paradigms alongwith other 
challenges like security, performance, resource manage-
ment, reliability etc. Therefore, to achieve an efficient 
performance and to make the best use of the scarce fog 
or cloud resources, the users’ tasks must be scheduled 
intelligently on the available resources while meeting the 
desired QoS. There are numerous factors to be consid-
ered for designing any task-scheduling algorithm. Some 
of critical factors are task completion time, makespan, 
security, and response time from a user’s standpoint. 
From the service provider’s Provider’s standpoint, the 
crucial parameters considered are resource utilization, 
fault tolerance, and power consumption to name a few.

Owing to the large solution space and time required to 
obtain an optimal solution, job scheduling, also known as 

Fig. 1  Classification of Meta-Heuristic Algorithms
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resource provisioning for the cloud and peers, has been 
classed as NP-hard [34]. Optimization methodologies 
using meta-heuristic methods based on performance 
factors, e.g., completion time, cost, resource utilization 
offer a solution to address the resource provisioning 
problem. Although cloud computing meets the criteria 
of executing IoT operations locally, it impacts task per-
formance and requires a platform to handle these tasks. 
Furthermore, IoT applications conduct various tasks with 
varying priorities and deadlines that must be performed 
without delay. Still, remote execution of these tasks in 
the cloud server creates multiple issues, including higher 
latency and limited bandwidth availability. These chal-
lenges can be overcome by processing IoT tasks at the 
network’s edge, called fog computing [35]. The goal of fog 
computing is to complete work before the deadline with 
local workload execution. The hybrid fog-cloud architec-
ture offers a promising arrangement to improve the QoS 
with a broaded horizon. The fog layer assists the cloud 
layer in the task execution. Some appropriate tasks are 
executed at the fog level, with the remainder of the work-
load offloading to the cloud. Scheduling tasks in the fog-
cloud layers promise to achieve reduced make-span time 
in executing these tasks with a better resource utilization.

Looking at the immense benefits of using meta-heu-
ristics in computing literature, this study proposes an 
Improved Jellyfish algorithm (IJFA) model for schedul-
ing classified tasks over the Fog integrated cloud envi-
ronment. The work considers the tasks originating from 
the Internet of Things (IoT) devices, resulting in a het-
erogeneous task generation. The model uses a bi-factor 
classification method based on task category considering 
the priority and deadline, and the resource requirements 
aiming to minimize the make-span time of the batch of 
jobs. This, in turn, will lower the execution cost of tasks 
submitted for execution while improving the overall 
resource efficiency and utilization.

The proposed algorithm IJFA is based on a recently 
developed population-based nature-inspired meta-heu-
ristic algorithm, an artificial Jellyfish Search Optimizer 
(JS), inspired by the behaviour of Jellyfish in the ocean. 
The simulation of jellyfish search behaviour includes 
their following of the ocean current, their motion within 
a jellyfish swarm as active and passive motions, a tem-
poral control system for switching between these move-
ments, and their convergence into a jellyfish bloom. On 
benchmark functions and optimization problems, the 
new approach performes admirably. The population size 
and the number of iterations are the only two control 
parameters in JS. As a result, it requires minimum effors 
in deployment and could be an excellent meta-heuristic 
algorithm for addressing optimization problems. This 
work modifies the the JS algorithm in order to to achieve 

faster convergence by improving its exploration phase 
resulting in a wider exploration of the solution space to 
attain efficient scheduling decisions [36].

The remaining section of this research is systematized 
as follows. Literature survey  section provides the lit-
erature survey of the various works reported in the lit-
erature in the domain. The proposed multi-aspect task 
scheduling approach section details the proposed model 
including Improved Jellyfish algorithm (IJFA) based on 
task scheduling principles. Experimental results section 
discusses the simulation setup, simulation results and a 
performance evaluation of the proposed model. Conclu-
sion and future works section 5 presents the conclusion 
drawn from the work and possible future directions.

Literature survey
Cloud computing is the most popular distributed com-
puting paradigm that provides self-service, dynamically 
scaled and metered access to a shared pool of resources 
with guaranteed Quality of Service (QoS) to the users. 
The jobs must be efficiently mapped to the offered 
resources to achieve QoS. Otherwise, it may violate Ser-
vice Level Agreements (SLA). As a result, users will be 
hesitant to pay if the desired performance is not realized. 
Therefore, cloud computing systems consider scheduling 
a significant theme, where obtaining a subpar solution in 
a short period is desirable. No algorithms can solve the 
scheduling issue in polynomial time and provide opti-
mal results owing to the vast search space in the actual 
implementation of the computing world. Therefore, com-
bining meta-heuristic algorithms with the optimization 
of essential parameters reduces search space complex-
ity and execution time. Also, the goal of task schedul-
ing changes from one application to the next according 
to the QoS standard requirements. As a result, numer-
ous studies in cloud and fog computing focus on meta-
heuristics-based job scheduling. This section provides a 
comprehensive review of several scheduling techniques 
using various metaheuristics in the realm of cloud and 
fog computing.

Meta‑heuristics in cloud computing
When implementing a task scheduling approach, at least 
one objective function ensures high performance. The 
most prevalent objectives are make-span, monetary cost, 
computational cost (i.e., CPU, memory, storage, GPU, 
bandwidth, etc.), reliability and availability, elasticity or 
scalability, energy consumption, security, resource usage, 
and throughput [37]. Researchers have explored these 
single-objective and multiobjective areas interestingly 
using various metaheuristics.

In [38], the authors introduced a new single objective 
strategy based on the Firefly algorithm for scheduling 
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submitted tasks in clouds to reduce make-span. Their 
proposed Firefly Algorithm (FFA) outperforms Simu-
lated Annealing (SA) and the Cuckoo Search Algorithm 
(CSA) in the experiments. Though this work minimizes 
the make-span successfully, other parameters, such as 
monetary cost, scalability, and availability, were ignored. 
The work in [22] suggested a hybrid task scheduling tech-
nique MSA using  two metaheuristics MSDE (Hybrid 
Moth Search Algorithm and Differential Evolution), 
which is an integration of the Moth Search Algorithm 
(MSA) and Differential Evolution (DE) algorithms with a 
single goal of minimizing  the make-span time required. 
The model offers exploration and exploitation capabili-
ties based on Lévy’s flight and phototaxis ideas. How-
ever, since MSA’s exploitation capability is restricted, the 
DE algorithm has been utilized for local search, offer-
ing superior exploitation capability. Their results show 
that the proposed hybrid MSDE algorithm outperforms 
state-of-the-art heuristic and meta-heuristic scheduling 
algorithms regarding system make-span and throughput. 
Likewise, in [39], the authors proposed a hybrid method 
that combines the benefits of Ant Colony Optimization 
(ACO) and Cuckoo search that tries to lower the make-
span or completion time. The work achieved this objec-
tive using the hybrid algorithm because the jobs were 
completed by allocating sufficient resources inside the set 
time interval. The findings suggest that the Hybrid algo-
rithm outperforms the ACO method in terms of algo-
rithm performance and time to completion.

An improved ant colony algorithm for multiobjective 
optimization scheduling based on a resource cost model 
(relationship between the user’s resource costs and the 
budget costs) was reported in [40]. The model achieved 
multiobjective performance and price optimization by 
including the make-span and the user’s budget costs  as 
optimization constraints. Their multiobjective optimi-
zation method performed better than similar meth-
ods based on the make-span, cost, deadline violation 
rate and resource utilization. Using the benefits like the 
speed and accuracy of the PSO algorithm, the authors 
in [41] proposed a comprehensive multiobjective model 
to give better QoS to Cloud customers by reducing the 
task execution/transferring time and cost. The authors 
tried to achieve it by moving extra tasks from an over-
loaded VM rather than migrating the complete overload 
and eliminating the use of the VM pre-copy process. The 
simulation results reveal that the suggested method dra-
matically decreases the load balancing time compared to 
standard load balancing methodologies.

Similarly, research in [42] proposes a PSO-based Adap-
tive Multiobjective Task Scheduling (AMTS) strategy 
that considers both processing and transmission time 
and produces a better quasi-optimal solution in terms 

of average cost, job completion time and energy con-
sumption, according to experimental results. The work 
reported using an adaptive acceleration coefficient to 
preserve particle diversity. Following the same trend, [43] 
also sed a load-balanced scheduling strategy based on 
the New Particle Swarm Optimization (NPSO) method. 
A new cost assessment function was employed to reduce 
the monetary cost of processing tasks on VMs. The sug-
gested method improves efficiency through cost optimi-
zation (minimized cost) based on a statistical analysis of 
the total cost (execution and transfer) on a data set with 
many iterations and particles.

To build a complete multiobjective optimization model 
for task scheduling, the authors in [44] included four 
conflicting objectives: task transfer time, task execution 
cost, power consumption, and task queue length to lower 
expenses for customers and providers. Using the Multi-
objective Particle Swarm Optimization (MOPSO) and 
Multiobjective Genetic Algorithm (MOGA), their pro-
posed multiobjective model achieves optimal trade-off 
solutions among the four conflicting objectives, reducing 
job response time and make-span significantly. Findings 
say that the proposed model is faster and more accurate, 
improving QoS and lowering provider costs. Authors in 
[45] introduced a novel Multi-objective Cuckoo Search 
Optimization (MOCSO) technique for dealing with 
the resource scheduling problem in cloud computing 
to lower cloud user costs and improve performance by 
reducing make-span time. This helps cloud providers 
earn revenue or profit by maximizing utilization. The 
investigations and evaluation of the proposed method 
show that it outperforms MOACO, MOGA, MOMM, 
and MOPSO in balancing numerous objectives such as 
projected time to completion and cost. [46] proposed an 
ACO, PSO, and GA-based task-level and service-level 
dynamic resource scheduling technique, in which a task 
is assigned to a VM and a task is assigned to a service, 
respectively. This solution optimizes the make-span and 
CPU time while also lowering the overall operational cost 
of data centres. Still, the model does not perform well 
when allocating resources to global tasks. Table  1 sum-
marises some of the recent single objective and multiob-
jective meta-heuristic algorithms employed in the cloud 
to address various QoS parameters.

Meta‑heuristics in fog integrated cloud computing
Taking inspiration from the usage of metaheuristics in 
fellow cloud computing, researchers have explored the 
aspect of task scheduling using the same in fog comput-
ing and fog integrated cloud environments. In the work 
[47], the authors offered an energy-saving method based 
on a meta-heuristic known as the Harris  Hawks  opti-
mization  technique  to  increase  QoS  while  main-



Page 5 of 21Jangu and Raza ﻿Journal of Cloud Computing           (2022) 11:98 	

taining  SLA.  The proposed algorithm is based on 
the fact that task scheduling is essential and adds 
to fog servers’ energy usage when managing Indus-
trial IoT (IIOT) applications. It reportedly beats other 
known  algorithms  such  as  Particle Swarm Optimiza-
tion (PSO)  and  Teaching Learning Based Optimization 
(TLBO) while considering the performance in terms of 
energy consumption and other QoS  factors. In [48], the 
authors introduced an Adaptive Double fitness Genetic 
Task Scheduling (ADGTS) algorithm to maximize task 
make-span and communication cost at the same time 
using collaborative task and fog resource scheduling. 
Simulation results suggest that the ADGTS algorithm 
can simultaneously balance communication cost and task 
make-span performance. It performs better considering 
task make-span than the Min–Min method. Authors in 
[49] proposed a task scheduling algorithm based on a 
Moth-Flame Optimization (TS-MFO) algorithm. The 
proposed technique assigns an appropriate set of tasks to 
fog nodes to meet the quality-of-service criteria of Cyber-
Physical Systems (CPS) applications while minimizing 
task execution time. The simulation study suggests the 
outperformance of the model over the PSO, NSGA-II, 
and (Bees Life Algorithm) BLA techniques in terms of 
total task execution time. The authors in [50], provides an 
optimization technique for IoT based applications using 
modified version of genetic algorithms with a focus on 
reducing latencies.

On the other hand, few works tried to explore multi-
objective scenarios. In one such work [51], the authors 
tried to improve the QoS supplied to users in (Indus-
trial IoT) IIoT applications to propose an energy-aware 
meta-heuristic based on a Harris Hawks Optimisation 
algorithm based on a Local search Strategy (HHOLS) 
for Task Scheduling in Fog Computing (TSFC) aided 

by the normalizing and scaling phase in solving the dis-
crete TSFC. The quality of the solution was improved 
even more by balancing workloads across all virtual 
machines due to the swap mutation. The work com-
pared their HHOLS method with other meta-heuristics 
based on various performance indicators, such as energy 
consumption, make-span, cost, flow time, and emission 
rate of CO2. Using the same meta-heuristic, the authors 
in [52] proposed an enhanced elitism genetic algorithm 
(IEGA) to solve the work scheduling problem for FC and 
increase the quality of services provided to IoT device 
consumers. The proposed method demonstrates superior 
performance in make-span, flow time, fitness function, 
carbon dioxide emission rate, and energy consumption 
compared to other peers. The benefits of IEGA come 
from two main phases: first, the mutation rate and the 
crossover rate being manipulated to aid the algorithms in 
exploring the majority of the possible combinations that 
could form the near-optimal permutation; and second, 
several solutions being mutated based on a certain prob-
ability to avoid becoming trapped in local minima and to 
find a better solution.

Another work reported in [53] demonstrates a novel 
scheduling method based on the ant colony algorithm 
allowing for more accurate job scheduling and execu-
tion. It is a three-step method in which tasks are sepa-
rated into two groups based on their completion time 
and cost, followed by prioritization based on comple-
tion time and cost. Then, the ant colony method is uti-
lized to choose the best virtual computer to run the 
jobs. Simulation results suggest that the proposed 
method provides acceptable performance in make-span, 
response time, and energy usage compared to others. 
The work in [54] presents a Novel Bio-Inspired Hybrid 
Algorithm (NBIHA), a mix of Modified Particle Swarm 

Table 1  Meta-Heuristics used in cloud computing

Research Optimization technique used Objective

Single Objective [38] Firefly algorithm Reduce make-span

[22] Moth Search Algorithm (MSA) and Differential Evolution 
(DE) algorithms

Multiobjective [39] ACO (Ant Colony algorithm) and Cuckoo search

[40] Ant Colony algorithm Performance and Cost

[41] PSO (Particle Swarm Optimization) Load balancing and better QoS

[42] Best resource utilization, Average cost, the average time to 
complete a task, and average energy usage

[43] Cost Minimisation

[44] MOPSO (Multi-Objective Particle Swarm Optimization) and 
MOGA (Multiobjective Genetic Algorithm)

Reducing job response time and make-span, Provider and 
consumer cost

[45] MOCSO (Multi-objective Cuckoo Search Optimization) Reducing Make-span

[46] ACO, PSO, and GA Optimizes the make-span and CPU time and lowers the 
overall operational cost
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Optimisation (MPSO) and Modified Cat Swarm Opti-
misation (MCSO) to lower average reaction time and 
optimize the resource consumption by efficiently sched-
uling jobs and managing available fog resources. The 
proposed algorithm outperforms three other algorithms 
viz by minimizing the execution time. First Come First 
Serve (FCFS), Shortest Job First (SJF), and MPSO. In the 
work [55], the authors proposed a Priority-aware Genetic 
Algorithm (PGA) which is a hybrid technique combining 
task prioritization with a genetic algorithm implemen-
tation. The objective is to determine the best compute 
node for each task by considering various job require-
ments while considering the diverse nature of fog and 
cloud nodes. It is a novel fog-cloud scheduling algorithm 
that optimizes a multiobjective function, a weighted 
sum of overall computation time, energy consumption, 
and Percentage of Deadline Satisfied Tasks  (PDST). The 
work [56] introduced a Discrete Non-Dominated Sorting 
Genetic Algorithm II (DNSGA-II) based optimization 
model to schedule tasks dynamically aiming to reduce 
the makespan and costs in a fog-cloud environment. The 
model deals with the discrete multiobjective scheduling 
problem, allocates computing resources either on cloud 
or fog nodes and organizes the distribution of workloads. 
Another work in [57] attempts to reduce the makespan 
and energy consumption in the fog-cloud environment 
by using an integration of the Cultural Evolution Algo-
rithm (CEA) and the Invasive Weed Optimization (IWO) 
named as hybrid (IWO-CA). The Dynamic Voltage and 
Frequency Scaling (DVFS) technique is presented to 
minimize the consumption of energy. Whale Optimiza-
tion algorithm in smart healthcare application has been 

explored in [58] to address the massive data generated 
in the process aiming to minimize the average energy 
consumption and cost. Table 2 summarises some of the 
recent single objective and multiobjective meta-heuristic 
algorithms used in fog environment for addressing vari-
ous QoS parameters.

Motivation and objective
Literature survey reveals that owing to the NP class 
nature of the scheduling problem, the work done con-
sidering both single-objective and multiobjective prob-
lems addressed the scheduling problem in different ways 
while proposing or utilizing a variety of well-known 
metaheuristics. However, many of them ignored the 
need of classifying heterogeneous end-user requests. The 
present study takes into account the importance of task 
categorization and is based on the novel approach JS (Jel-
lyFish Search Optimiser) [36]. JS has proven to be better 
than peers e.g. Whale Optimization Algorithm (WOA), 
Tree-Seed Algorithm (TSA), Symbiotic Organisms 
Search (SOS), Teaching–Learning-Based Optimization 
(TLBO), Firefly Algorithm (FA), Gravitation Search Algo-
rithm (GSA), Artificial Bee Colony (ABC), Differential 
Evolution (DE), Particle Swarm Optimization (PSO) and 
Genetic Algorithm (GA) algorithms in the mathemati-
cal benchmark tests. Additionally, JS has fewer internal 
parameters resulting in an efficient design, implemen-
tation and tuning of the simulation in the proposed 
work. This work proposes a multi-aspect task sched-
uler based on the Improved Jellyfish Algorithm (IJFA) 
which attempts to improve the exploration characteris-
tics of the traditional JS for achieving better scheduling 

Table 2  Meta-Heuristics used in fog integrated cloud environment

Research Computing model Optimization technique used Objective

Single Objective [47] Fog Harris Hawks technique Energy-saving

[48] Fog-Cloud Genetic Algorithm Make-span

[49] Fog-Cloud Moth-Flame Optimization Total task execution time

[50] Fog-Cloud Genetic Algorithm (GA) Latency

Multiobjective [51] Fog Harris Hawks Technique Energy Consumption, make-
span, cost, flow time, and emission rate of CO2

[52] Fog Genetic Algorithm make-span, flow time, fitness function, carbon 
dioxide emission rate, and energy consumption

[53] Fog Ant colony algorithm Make-span, response time, and energy usage

[54] Fog-Cloud Particle Swarm Optimization and Cat Swarm 
Optimization

Execution time, energy consumption, and aver-
age response time

[55] Fog-Cloud Genetic Algorithm Computation time, energy consumption, and 
more percentage of jobs that meet deadlines

[56] Fog-Cloud Discrete Non-Dominated Sorting Genetic 
Algorithm II

Makespan and costs

[57] Fog-Cloud Cultural Evolution Algorithm (CEA) and the 
Invasive Weed Optimization (IWO)

Makespan and energy consumption

[58] Fog Whale Optimization Algorithm Energy consumption and cost
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decisions for the heterogeneous IoT tasks. Further, the 
classification of jobs in the batch before making schedul-
ing decisions results in a model suitable for real time and 
deadline aware tasks.

The proposed multi‑aspect task scheduling approach
The system’s design, problem statement, suggested model 
and algorithm, simulation setup, and evaluation pro-
cedures are all presented in this section. To ensure the 
effective success of the objectives and aims, the research 
methodology is built over similar works in the domain of 
classification of tasks of IoT and its’ scheduling employ-
ing metaheuristics.

Methodology design
The work aims to schedule the jobs in the fog integrated 
cloud environment to minimize the make-span time for 
the jobs. The main research challenge identified is sched-
uling the requests from various IoT devices with het-
erogeneous demands in large volumes seeking different 
QoS needs. The ample search space makes scheduling 
these requests an even more complicated task. Several 
previous works and studies have been examined to dis-
cover competent qualities that may be utilized to classify 
and schedule requests. Classification is essential before 
scheduling for two main reasons: first, the requests are 
heterogeneous and second, to make use of the integrated 

environment of cloud and fog layers working with dif-
ferent capabilities and purposes. Fog layer aids real-time 
processing, necessitating ultra-low latency, location 
awareness, edge resource pooling, mobility, and most 
importantly preventing cloud server overloading. It’s also 
helpful in places where connectivity is inconsistent. On 
the other hand, cloud is more centralized and powerful 
than fog exhibiting features like availability, computing 
capabilities and storage capacity. It also aids in the long-
term storage of data used for analysis and decision-mak-
ing. Figure  2 presents the fog integrated cloud system 
architecture.

All user demands are first submitted to a broker or a 
gateway with respective parameter values. The central-
ized broker, which is also a centralized decision-maker, 
is an intermediate party between the users and the pro-
viders and draws its inspiration from the broker used in 
[59]. The role of the broker is to manage the fog-cloud 
resource provisioning upon the user requests. It has the 
same role as a cloud broker, described as “an entity that 
manages the use, performance and delivery of cloud ser-
vices, and negotiates relationships between cloud provid-
ers and consumers” [60]. The centralized broker records 
dynamically changing and uncertain resources from mul-
tiple fog and cloud providers along with the various IoT 
devices generating heterogeneous requests. Therefore, 
it minimizes the complexity arising out of many request 

Fig. 2  Fog integrated cloud system architecture
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handlers by providing a single point solution in the fog 
integrated Cloud environment. Once the broker recevices 
the requests, first, the bi-factor classification algorithm 
categorizes it based on the deadline and the priority. 
Next, these tasks are scheduled using the Improved Jel-
lyfish algorithm (IJFA) based on the task category of the 
requests and their resource requirement to fog nodes or 
cloud nodes accordingly.

The most important properties of the requests coming 
from IoT devices are their deadline and priority, which 
can be used to classify them and then schedule them 
accordingly. For this purpose, this work proposes a bi-
factor classification algorithm to ascertain the task cate-
gory. The work proposes an Improved Jellyfish Algorithm 
(IJFA) strengthening the exploration properties of JS 
algorithm. JS is chosen for improvement as it is a promis-
ing meta-heuristic because of its simplicity and the use of 
only two control parameters, i.e., population size and the 
number of iterations. Figure  3 presents the workflow of 
the proposed model.

Problem statement
The IoT devices in the given environment produce data 
required to be processed for various applications for 
which it has been deployed. The computationally con-
strained nature of IoT devices makes it necessary for the 
devices to offload the data to other computing nodes for 
processing. In the proposed fog integrated cloud environ-
ment, the node assigned with a task and performing com-
putation might be the fog node controlling the network 
of that geographical location or the cloud node present 

in a remote location. These nodes consider the process-
ing of data as a task. Each task will be assigned either to 
a fog node or a cloud node executed as a virtual machine. 
The VM configuration can be the same if the tasks are of 
the same type or different depending on the task types. 
The tasks to for which computation is required can be 
denoted as,

where Tk is the number of tasks submitted by the IoT 
devices. Ti represents the ith task in the task sequence. 
These tasks are later clubbed together to form a batch 
of tasks to be executed as per the QoS requirements. 
For every task a suitable fog or cloud node is decided for 
allocation. As with many scheduling approaches, the pro-
posed also aims to minimize the makespan of the tasks 
submitted by the IoT devices. Each task Ti possesses 
some features which can be formulated as,

Here,TID
i  is the task identifier, TTL

i  the job length (unit: 
million instructions), Tp

i  the priority level, and Tdl
i  dead-

line of execution of any given task Ti . The nodes which 
process the tasks can be a fog node NDf  , represented as

or a node NDc in the cloud data center denoted as,

(1)T = {T1,T2, ..Ti . . .Tk}; 1, . . . , i ∈ k

(2)Ti = [TID
i ,TTL

i ,T
p
i ,T

dl
i ]

(3)NDf = {N1,N2, , ,Nj . . .Nn}; 1, . . . , j ∈ n

(4)NDc = {N1,N2, , ,Nr . . .Nm}; 1, . . . , r ∈ m

Fig. 3  Workflow of the proposed model
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Each node Nj and Nr possesses certain features as 
defined in Eqs. 5 and 6 as

Here, Nid
j and Nid

r  denote the identification or the 
serial number of a node at the fog layer or the cloud layer, 
NMIPS
j  and NMIPS

r  the information processing speed of 
nodes (unit: millions-of-instructions-per-second, MIPS), 
Nm
j  and Nm

r  the memory availability and Nds
j  and Nds

r   the 
disk space availability corresponding to nodes Nj and Nr 
respectively. The allocation of a task Ti to node Nj or Nr 
obeys certain conditions which are expressed as follows,

Here, Aij is the allocation vector representing the place-
ment of task Ti on node Nj . The above equations describe 
that the allocation of tasks will be carried out only if 
the resource availability of the node is greater than the 
resource requirements of the task. The Expect Com-
plete Time (ECT) matrix of size [ Nk ∗ Nn] represents the 
expected execution time to run the task individually on 
each computing resource of the fog layer resources as,

Similarly, the matrix of size [ Nk ∗ Nm] represents the 
expected execution time to run the tasks on each com-
puting resource (VM) of cloud resources individually as,

One of the aims of the proposed model while mak-
ing a scheduling decision is to minimize the make-span 
by locating the most efficient group of tasks on virtual 
machines. ECTij for the same can be computed as,

(5)Nj = [Nid
j ,NMIPS

j ,Nm
j ,Nds

j ]

(6)Nr = [Nid
r ,NMIPS

r ,Nm
r ,Nds

r ]

(7)
n

i=1

T
cpu
i × Aij ≤ N

cpu
j

(8)
n

∑

i=1

Tm
i × Aij ≤ Nm

j

(9)
n

∑

i=1

Tds
i × Aij ≤ Nds

j

(10)ECTf =

ECT1, 1 ECT1, 2 ECT1,Nn

ECT2, 1 ECT2, 2 ECT2,Nn

ECTNk , 1 ECTNk , 2 ECTNk ,Nn

(11)ECTC =

ECT1, 1 ECT1, 2 ECT1,Nm

ECT2, 1 ECT2, 2 ECT2,Nm

ECTNk , 1 ECTNk , 2 ECTNk ,Nm

(12)ECTij =
TL(Ti)

NMIPS
j

i = 1, 2, 3 . . . .k , j = 1, 2, 3 . . . .n

where ECTij refers to the required execution time of i 
th task on j th virtual machine of fog layer, TL(Ti) is the 
task–length of the i th task. Similarly, ECTir refers to the 
expected execution time of i th task on r th VM in the 
cloud layer represented as Eq. 13.

The fitness value indicating the suitability of a node for 
a task can be defined as:

The proposed model aims to optimize the task’s exe-
cution time and improve the utilization of resources, 
thereby achieving the required QoS in terms of comple-
tion time. The primary objectives for the same can be 
summarised as,

where, Ru is the resource utilization, QoS the Quality Of 
Service to be met and ET the execution time of the tasks/
batch of tasks scheduled in the considered computing 
environment.

Bi‑factor task classification
The tasks originating from the IoT devices are aggre-
gated by the Broker/Gateway which classifies tasks and 
performs scheduling. The incoming tasks possess vari-
ous priorities and deadlines that should be considered to 
effectively categorize the tasks. The classification of tasks 
is performed to analyze the tasks in order to achieve an 
increased completion rate. The threshold values for pri-
ority and deadline of a task can be computed as,

Here, H
(

T
p
i

)

 and H
(

Tdl
i

)

 are the thresholds corre-
sponding to priority and task execution deadline respec-
tively. Further,  Tp

i  is the priority value and Tdl
i  is the 

deadline requirement of the task Ti with the threshold 
value ranging from 0 to 1. The priority and deadline are 
classified into two classes, namely low and high, and can 
be formulated as,

(13)

ECTir =
TL(Ti)

NMIPS
r

i = 1, 2, 3 . . . .k , r = 1, 2, 3 . . . .m

(14)fit = max
{

ECTij

}

∀i ∈
[

1, k
]

mapped to jth VM, j = 1,2,… n

(15)maximize ← (Ru,QoS)

(16)minimize ← (ET )

(17)H
(

T
p
i

)

=

n
∑

i=1

T
p
i logT

p
i

(18)H
(

Tdl
i

)

=

n
∑

i=1

Tdl
i logTdl

i
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Table  3 presents the task classification based on task 
priority and the deadline. The classification of tasks 
is carried out into four major classes: highly intense, 
intense, moderate, and low, based on the priority and 
deadline of the tasks. These categorized tasks are then 
scheduled using the proposed model to meet the desired 
QoS.

Multi‑aspect task scheduling
The scheduling of categorized tasks is performed by 
the Broker to achieve robust computation of tasks. The 
factors considered for effective scheduling of tasks 
are task category 

(

TC
i

)

 , and resource requirement 
(TR

i = TTL
i ,T

p
i ,T

dl
i ).

This work proposes Improved Jellyfish Algorithm 
(IJFA) to explore the search space for aa better solution 
for scheduling of tasks with an increased convergence 
rate. As mentioned earlier, IJFA aims to improve the 
search space exploration as compared to JS while reduc-
ing the convergence time. To computationally realize the 
same, initially, the Jellyfish vectors are initialized as,

where,
−→
K 0 denotes the initial vector of the Jellyfish, 

and 
−→
K J is the vector that holds the chaotic values of J 

th Jellyfish. η is aconstant which is taken as four in the 
proposed approach. Once the initialization is over, the 
selection of solution based on Ft is performed to select 
the location with maximum food 

−→
K

∗
 . Following it, the 

time control mechanism is utilized to switch between 
the motions of Jellyfish either towards ocean current or 
inside the swarms. The motion towards the ocean cur-
rent can be formulated as,

(19)H
(

T
p
i

)

=

{

low, if 0 ≤ H
(

T
p
i

)

≤ 0.5

high, if 0.5 ≤ H
(

T
p
i

)

≤ 1

(20)H
�

Tdl
i

�

=







low, if 0 ≤ H
�

Tdl
i

�

≤ 0.5

high, if 0.5 ≤ H
�

Tdl
i

�

≤ 1

(21)−→
K J+1 = η

−→
K J

(

1− KJ

)

, 0 ≤
−→
K 0 ≤ 1

(22)

−→
K J(t + 1) =

−→
K J(t)+

−→rn . ∗
(

−→
K

∗
− β ∗ rn1 ∗ µ

)

Here, ���⃗rn, rn1 represents a random number in the range 
of 0 to 1, β the distribution coefficient and µ is the popu-
lation mean. The motion of Jellyfish inside the swarm is 
emulated in two ways using action motion and passive 
motion. The determination of a new location using pas-
sive motion can be computed as,

Here, γ is a constant representing the motion length, 
rn3 a random number in the range of 0 to 1, upb the upper 
bound of search space and lwb the lower bound of the 
search space. The determination of a new location using 
active motion can be computed as,

Here, −→Dr denotes the motion direction of the Jellyfish 
to locate the best food and can be expressed as,

In the above equation, l represents the jellyfish index 
that is selected randomly. The control function ϑ(t) for 
switching of motion of Jellyfish can be written as,

If the value of ϑ(t) is greater than or equal to the con-
stant ϑ0, the Jellyfish follows the ocean current. Other-
wise, the Jellyfish tends to move inside the swarm. If the 
randomly generated number rn4 is greater than 1− ϑ(t) 
then the Jellyfish moves in a passive motion else it moves 
in an active motion. Improving JS, the enhancement is in 
the exploration capabilities of IJFA which prevents pre-
mature convergence. IJFA aims to achieving faster con-
vergence while reducing the search time. This can be 
accomplished by using the randomization concept in 
investigating the swarm’s locations. Initially, the popu-
lation, as usual is random to have diversity. Later on, it 
exploits some local optimum, but the introduced ran-
domness also avoids premature convergence. The new 
formulation can be written as,

The improved algorithm selects three random solu-
tions from the population and updates each population 
accordingly to ensure a fast convergence rate. Further, it 
has a higher chance of moving towards global optimum.

(23)−→
K J(t + 1) =

−→
K J(t)+ rn3 ∗ γ ∗

(

upb − lwb

)

(24)−→
K J(t + 1) =

−→
K J(t)+

−→rn ∗
−→
Dr

(25)
−→
Dr =

{−→
K J(t)−

−→
K l(t), ifFt

(

−→
K J

)

< Ft
(

−→
K l

)

−→
K l(t)−

−→
K J(t), otherwise

(26)ϑ(t) =

(

1−
t

tmax

)

∗ (2 ∗ rn− 1)

(27)
��⃗K�(t + 1) = ��⃗K�(t) + rn ∗

(

��⃗Krn1
(t) − ��⃗Krn2

(t)

)

+ (1 − rn) ∗

(

K
∗
− ��⃗Krn3

(t)

)Table 3  Task classification table

Priority Deadline Task classified

High High Highly Intensive

High Low Intensive

Low High Moderately intensive

Low Low Low intensive
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Figure  4 presents the proposed multi-aspect task 
scheduling using IJFA, which runs at the broker site. The 
user requests from various IoT devices are submitted and 
categorized using the bi-classification algorithm and then 
forwarded to the scheduler. Based on task requirement 
and category, the scheduler then schedules a task on the 
fog or cloud layer after initializing the algorithm’s param-
eters and computing and evaluating the fitness of the 
tasks. The time control mechanism governs the switching 
between the two types of movement of Jellyfish moving 
in the ocean in search of food. They are more attracted to 
locations where the available quantity of food is more sig-
nificant. The location and corresponding objective func-
tion determine the amount of food found.

The pseudocode of the IJFA based task scheduling pro-
cess is presented in the box below, scheduling of tasks 
based on task category and resource requirements.

Experimental results
This section presents the simulation framework and the 
experimental result analysis of the proposed model fea-
turing a multi-aspect task scheduler using the Improved 
Jelly Fish Algorithm (IJFA) for the fog integrated cloud 
environment. The scheduler uses IJFA to optimize the 
scheduling of IoT tasks based on the task’s priority, dead-
line and resource requirements. The requests are classi-
fied based on deadline and priority and then accordingly 
scheduled on either the fog or the cloud layer.

Simulation environment
Experimenting on real-world data in a real-world cloud 
environment is costly and complicated. Furthermore, if 
the experiment does not go as intended, crucial data may 
be lost. As a result, a simulator that can simulate the real-
world cloud environment is necessary to test and vali-
date various strategies and procedures presented for the 
benefit of the stakeholders. Once approved, these strate-
gies and mechanisms can be used in a real-world context 
without the risk of data loss.

The classification before scheduling across the data center 
is essential in IoT tasks due to its effectiveness in manag-
ing the execution by executing real-time requests with high 
priority within their deadline. This work uses a Bi-factor 
classification algorithm to classify requests before schedul-
ing them to address the concern. The experimental param-
eters are based on previous literature work reported in the 
literature for cloud and fog based resource provisioning.

The experiments were conducted by simulating a 
hybrid fog-cloud environment and heterogeneous task 
transfer. Table  4 summarises the simulation attributes 
used in the work. For effective simulation, MATLAB 
toolbox named Distributed System is utilized. This tool-
box can be used to emulate any distributed network 
including fog integrated cloud environment. All experi-
ments were executed for twenty different runs, including 
3000 iterations for optimization.

The different batch sizes of Real-Time (RT) and Non-
Real Time (NRT) requests were randomly generated and 
submitted. The distribution of VMs for fog and cloud 
nodes was kept at 30% and 70%, respectively. In each 
simulation, VMs, cloud and fog nodes were randomly 
generated with different processing capacities and con-
figurations within the range in accordance with Table  5  
as presented in the coming section.

Experimental setting
The proposed work used MATLAB to realize the 
fog integrated cloud environment. The experiments 
were designed to use five batches comprising of 600, 
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1200,1800, 2400 and 3000 tasks respectively. The differ-
ent dataset sizes allow for more complicated task transfer 
scheduling testing. As the dataset size grows larger, the 
scheduling difficulty becomes more difficult, thus ensur-
ing rigorous testing of the model under a real fog-cloud 
like workload. Each task is represented by four parame-
ters: task ID, task size, task deadline, and the task’s prior-
ity. Task ID is a unique transfer identifier while job size 
provides an estimate of the computational execution 
time. Expected Completion Time (ECT) is used as the 
parameter to compare the performance of both JS and 
IJFA. In the computing environment, the dataset place-
ment has been evaluated for three different scenarios: 
(1) allocating the dataset for execution directly on the 
cloud, (2) allocating the dataset for execution directly on 
the fog, (3) allocating the dataset for execution across fog 

Fig. 4  Multi-aspect task scheduling using IJFA

Table 4  Simulation attributes

Entity Parameter Value of settings

Requests/Tasks Number of tasks 600–3000

Length 10–50 (Mb)

Priority High/Low

Deadline High/Low

Virtual machine 
(Cloud)

Number of VMs 30% of the total on 
cloud

Processing Capacity 
range

[100,1000] (MIPS)

Virtual machine (Fog) Number of VMs 70% of the total on Fog

Processing Capacity 
range

[10,100] (MIPS)
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integrated cloud architecture using classification being 
the main focus of this work.

Experimental results and analysis
Experiments using meta-heuristic scheduling algo-
rithms, JS and the proposed IJFA were conducted in the 
fog-cloud environment. The findings of the experimen-
tation are presented in this section. The simulation’s 
goal is to calculate the make-span of these two meta-
heuristic scheduling methods being tested. The ideal 
meta-heuristic scheduling method is believed to be the 
one with the shortest make-span. Different test scenar-
ios are used to calculate the performance of these two 
based on the ECT matrix to ensure the VMs’ balanced 
workload. In the proposed model, the task scheduling 
phase is proceeded by the bi-factor classification phase, 
which improves the overall performance by character-
izing user tasks based on the priority and the deadline. 
Accordingly, the incoming tasks in the batch of jobs are 
classified into highly intensive, intensive, moderately 
intensive, and less intensive based on the priority and 
deadline. These two parameters enable the deadline 
sensitive and essential tasks to be scheduled at the fog 
layer, decreasing latency and time delay. These catego-
rized tasks are then considered for scheduling, aiming 
to achieve better makespan.

Scenario 1: batch size variation from 600 to 3000 tasks 
with a fixed number of iterations as 3000
In this case, five different batches of tasks comprising 
tasks varying in the range 600–3000 were scheduled 
using JS and IJFA executed over 100 VMs run over 3000 
iterations. Figure  5a-e presents the Expected Comple-
tion Time (ECT) of an optimized schedule for all the 
five batches of tasks having 600, 1200, 1800, 2400 and 
3000 tasks, respectively based on JS and IJFA algorithms 
through the convergence curves. As discussed in  The 
proposed multi-aspect task scheduling approach  sec-
tion, the tasks are classified into four categories, i.e., 
highly intensive, intensive, moderately intensive and 
low intensive, based on deadline and priority using a bi-
classification algorithm. These are then offloaded to the 
cloud and fog layer of the hybrid architecture based on 
their category. In the proposed model, on average, almost 
half of the requests generated in different trials are get-
ting served by the fog, which directly improves the sys-
tem’s total performance. The scheduler then, using JS and 
IJFA, allocates requests on available fog nodes by calcu-
lating the expected time of completion of each request 
of the batch and selects the one with minimum time 
among the available nodes at the respective layer where 
they have been offloaded to ensure a balanced workload 
for VMs. An average ECT scorewas computed for virtual 

Table 5  Summary of ECT observations for varying number of tasks for JS and IJFA

S.no Tasks JS IJFA

Best Worst Best Worst

1 600 Trial 1 19.1567 21.5287 14.6579 21.5287

Trial 2 23.0880 25.1006 16.3882 25.1006

Trial 3 10.3659 17.0845 10.5985 16.6051

Average 17.5369 21.2379 13.8815 21.0781
2 1200 Trial 1 40.8966 43.0645 36.0634 43.0645

Trial 2 20.3129 33.8435 20.5149 33.9805

Trial 3 30.5456 44.9759 30.3910 44.0280

Average 30.5850 40.6280 28.9898 40.3577
3 1800 Trial 1 58.6918 63.9129 52.7093 63.9575

Trial 2 32.6999 45.9925 29.2666 49.0941

Trial 3 40.8887 74.6994 38.3106 74.6994

Average 44.0935 61.5349 40.0955 62.5837
4 2400 Trial 1 46.4022 66.4697 48.3129 65.7420

Trial 2 60.3213 101.4393 66.074 101.4393

Trial 3 81.608 88.1454 61.0000 87.6158

Average 62.7772 85.3515 58.4623 84.9324
5 3000 Trial 1 86.3706 95.3073 75.8116 96.2316

Trial 2 92.8842 131.8479 94.0386 132.5835

Trial 3 115.8123 120.5761 100.0861 120.5761

Average 98.3557 115.9104 89.9788 116.4637
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Fig. 5  a Convergence Graph for JS and IJFA for Batch Size of 600 Tasks. b Convergence Graph for JS and IJFA for Batch Size of 1200 Tasks. c 
Convergence Graph for JS and IJFA for Batch Size of 1800 Tasks. d Convergence Graph for JS and IJFA for Batch Size of 2400 Tasks. e Convergence 
Graph for JS and IJFA for Batch Size of 3000 Tasks
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Fig. 6  a Comparison of IJFA and JS for 20 iterations for 600 Tasks. b Comparison of IJFA and JS for 20 iterations for 1200 Tasks. c Comparison of IJFA 
and JS for 20 iterations for 1800 Tasks. d Comparison of IJFA and JS for 20 iterations for 2400 Tasks. e Comparison of IJFA and JS for 20 iterations for 
3000 Tasks
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machines at cloud and fog layers using the JS algorithm. 
From Fig. 5a-e, it is observed that The IJFA can converge 
to a better solution with a better convergence rate in all 
the cases, from smaller batches of tasks to bigger ones. 
The better convergence of IJFA can be attributed to its 
better exploration capability to achieve faster conver-
gence by reducing the search time than the traditional JS. 
This was made possible in IJFA by exploring search loca-
tions or solutions which other members could not have 
previously explored by randomly picking any three solu-
tions from the population and updating the population 
accordingly.

Table  5 summarises the optimized ECT based on the 
various experiment scenarios. The results were obtained 
for every set of tasks for three different runs. The aver-
age best and average worst performance in ECT reported 
by JS and IJFA were observed. The results based on these 
three random trials over different task sets indicate that 
the optimized ECT observed in the model using the pro-
posed IJFA is way lesser than the one obtained with JS as 
a trend due to efficient task scheduling based on multi-
ple aspects by IJFA including bi-classification. The IJFA 
has faster convergence due to the improvement in the 

exploration phase and achieves the trade-off between 
exploration and exploitation with less time consumption 
due to implementing a two-directional search strategy 
resulting in better solutions. For instance, in the experi-
ment with 600 batches of tasks, the optimized ECT for 
IJFA is about 13 s in the average best scenario, which is 
better than the average best of 17 s reported by JS. As far 
as the average worst scenario is concerned for both JS and 
IJFA, it is observed that IJFA is performing at par with JS. 
The same trend can be seen in all the different batches of 
jobs. It can be concluded that IJFA outperforms JS easily 
when used in the fog integrated cloud environment with 
randomly generated and scheduled heterogeneous tasks.

The ECT of JS and IJFA implementations for various 
task sets spread over 20 iterations is presented in Fig. 6a–
e. A boxplot performance for all five batches of jobs has 
been given. It is observed that the median of IJFA is less 
than JS in all the cases. For instance, the median for batch 
I (600 tasks 100 VMs) is 75  s for IJFA and 95  s for tra-
ditional JS. Also, the ECT for IJFA and JS has been dis-
persed over 167 s to 13 s and 186 s to 17 s, respectively. 
The same trend has been observed in all the other four 
batches of jobs, too, where range dispersion and median 
of IJFA are less than JS. The box plots reflects that IJFA 
performs an efficient task scheduling compared to JS, 
irrespective of the task set sizes. The result remains the 
same even with the change in the number of VMs. The 
same has not been reproduced here to avoid redundancy.

The performance of the proposed IJFA algorithm and 
traditional JS has also been evaluated by feeding a differ-
ent number of tasks ranging from 600 to 4800to observe 
a general trend of the performance of the two algorithms. 
The same has been presented in Fig. 7. This is significant 
because a wide range of data sizes could be used to sup-
port the task transfer scheduling’s sophisticated testing. 
As the data size grows larger, the scheduling becomes 
more difficult but still IJFA performes very well as com-
pared to traditional JS. It is worth mentioning that the 
performance of IJFA becomes even superior with the 
increasing task set size which corresponding with the 
fog integrated cloud environment. As the size of the 
batch increases, the difference in ECT reported by both 

Fig. 7  ECT v/s number of tasks

Table 6  ECT v/s Batch Size for Fog Integrated Cloud, Cloud-Only and Fog-Only Architectures

Task size Fog integrated cloud Cloud-only Fog-only

JS IJS JS IJS JS IJS

Batch I 17.5369 13.8815 37.08718 31.89165 402.4644 321.3767

Batch II 30.58503 28.98977 74.02684 64.11581 781.0749 678.7809

Batch III 44.0935 40.0955 103.9711 100.7851 973.1735 936.5133

Batch IV 62.77717 58.4623 146.9762 127.7616 1541.985 1475.785

Batch V 98.3557 89.97877 183.0033 161.995 1796.823 1664.369
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Fig. 8  a ECT v/s Batch Size for JS and IJFA for the Fog Integrated Cloud Architecture. b ECT v/s Batch Size for JS and IJFA for the Cloud Only 
Architecture. c ECT v/s Batch Size for JS and IJFA for the Fog-Only Architecture
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the algorithms also increases. The increased difference 
between the two concluded that IJFA is more suitable in 
the situation with large size datasets, which is very appro-
priate in the real-world scenarios especially considering 
IoT devices as the task generators.

Scenario 2: performance evaluation of IJFA using Fog 
Integrated Cloud, Cloud‑Only and Fog‑ Only Scheduling 
architectures
To understand the usefulness of fog- integrated cloud 
architecture over cloud-only and fog-only architectures, 
JS and the proposed algorithm IJFA was applied to work 
in three scenarios for the above mentioned three archi-
tectures. To realize the same, five batches of tasks with 
batch sizes ranging from 600 to 3000 were made, which 
were later scheduled on the above three architectures 
separately. Accordingly, batches were made with batch I 
comprising 600 tasks, batch II comprising 1200 tasks till 
batch V comprising 3000 tasks. A comparative analysis of 
the minimized makes-span trend for this study has been 
presented in Table  6 and a bar chart representation is 
depicted in Fig. 8a-c. The ECT observed in both the cases 
of using JS and IJFA clearly outlines the outperformance 

of IJFA over JS for all the batch sizes over randomly gen-
erated datasets.

Table 7 summarises the results obtained using IJFA as 
the scheduling strategy with the results in terms of ECT 
for varying batch sizes for the fog-only, cloud-only and 
the fog integrated cloud architectures. These results have 
been presented pictorially in Fig. 9. It is observed that the 
low-capacity nodes at the fog layer led to maximum ECT 
in all the used five batches of jobs followed by cloud-only 
architecture. For instance, ECT for the batch I dataset 
came out to be approximately 13 s, 31 s and 321 s for fog 
integrated cloud, cloud-only and fog-only architectures 
The same trend can be seen for the remaining batches 
too. Therefore, it is established that the proposed IJFA 
algorithm performs very well in the hybrid fog-cloud 
environment owing to the classification of jobs prior to 
actual scheduling, which led to offloading of high priority 
and time-sensitive requests to the fog nodes and rest to 
the cloud nodes. As per the analysis of the random gen-
eration of requests in different trials, almost 50% of jobs 
were executed at the fog layer, resulting in a low ECT in 
the hybrid environment. In all the cases, if all the tasks 
were offloaded to the fog layer, it resulted in the maxi-
mum ECT as the number of fog devices is limited and 
computationally constrained as compared to cloud-only 
and fog integrated cloud architecture. The study infers 
that it is best to have an integration of fog nodes and 
cloud nodes contributing to schedule based on the task 
preferences to achieve better performance.

This section studies the experimental results of the 
proposed model to optimize the execution of IoT tasks 
in the fog integrated cloud architecture. The effect of 
the batches of data on the performance was analyzed to 
study the results under various scenarios. It is gathered 
from the experimental results that the optimization 

Table 7  ECT v/s batch size for IJFA for fog integrated cloud, 
cloud-only and fog-only architectures

Task size Fog integrated 
cloud

Cloud-only Fog-only

Batch I 13.8815 31.89165 321.3767

Batch II 28.98977 64.11581 678.7809

Batch III 40.0955 100.7851 936.5133

Batch IV 58.4623 127.7616 1475.785

Batch V 89.97877 161.995 1664.369

Fig. 9  ECT v/s batch size for IJFA for fog integrated cloud, cloud-only and fog-only architectures
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of tasks in fog-only and cloud-only architecture faced 
challenges in scheduling as they did not classify and 
categorized the tasks based on their requirements and 
nature. This led to an increased ECT in both the sce-
narios. Also, with an increased number of tasks, the 
complexity of job scheduling increases, leading to delays 
in response and in the worst case request failures. The 
integration of classification of jobs with IJFA results in 
an efficient ECT reduction of the batch of jobs under 
numerous testing cases. Compared to using solely 
standard JS algorithm, the proposed model comprising 
of two-phase scheduling algorithm allows for adequate 
optimization time. The bi-classification phase helps 
in characterizing the IoT requests based on the dead-
line and the priority to schedule the tasks using IJFA 
on the available computing resources. These available 
resources can be either at the cloud layer or fog layer 
with their selection ensuring an optimal use of both for 
an efficient job execution. Therefore, this work gains 
significance as it addresses the efficient resource provi-
sioning in the fog-ingrated cloud environment for the 
heterogeneous and delay sensitive IoT tasks to reduce 
the execution time leading to a decreased cost of execu-
tion for the batch of jobs.

Conclusion and future works
The Internet of Things (IoT) has emerged as a promi-
nent technology in automation by performing real-time 
tasks for various applications with different priorities and 
deadlines. An integrated fog-cloud architecture offers 
the remote execution of these tasks with an improved 
latency and better availability of bandwidth. However, 
it is important to have a suitable resource provisioning 
scheme for task offloading to fog and cloud resources 
while meeting the task and resource requirements. This 
work proposes a multi-aspect task scheduling algorithm 
based on Improved Jellyfish Algorithm (IJFA) by lever-
aging the benefits of the integrated environment of fog-
cloud. The proposed bi-factor classification phase helps 
the tasks to be scheduled to the right place based on their 
deadline and priority. The scheduler ensures minimiz-
ing the task completion time while maximizing resource 
utilization thus improving the overall QoS. The simula-
tion results reveal that combining the classification phase 
with the IJFA speed up the completion of tasks based 
on their relevance. The advantage of using fog resources 
integrated with cloud resources offering superior task 
completion time has been presented. The model was rig-
orously tested to successfully evaluate its performance 
from low load to the real-world scenario of large  vol-
ume and heterogeneous IoT task requests. The proposed 

IJFA based scheduler outperforms the traditional Jellyfish 
search optimizer (JS) under various test conditions to 
prove its effectiveness.

The authors have already started to take this work fur-
ther to propose a multiobjective model minimizing the 
response time and energy for the integrated fog-cloud 
architecture aiming an improved QoS to the users while 
decreasing the cost for the providers.
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