
Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98
https://doi.org/10.1186/s13677-022-00376-5

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Improved Jellyfish Algorithm‑based
multi‑aspect task scheduling model for IoT tasks
over fog integrated cloud environment
Nupur Jangu and Zahid Raza* 

Abstract 

Corporations and enterprises creating IoT-based systems frequently use fog computing integrated with cloud com-
puting to harness the benefits offered by both. These computing paradigms use virtualization and a pay-as-you-go
strategy to provide IT resources, including CPU, memory, network and storage. Resource management in such a
hybrid environment becomes a challenging task. This problem is exacerbated in the IoT environment, as it generates
deadline-driven and heterogeneous data demanding real-time processing. This work proposes an efficient two-step
scheduling algorithm comprising a Bi-factor classification task phase based on deadline and priority and a scheduling
phase using an enhanced artificial Jellyfish Search Optimizer (JS) proposed as an Improved Jellyfish Algorithm (IJFA).
The model considers a variety of cloud and fog resource parameters, including speed, capacity, task size, number of
tasks, and number of virtual machines for resource provisioning in a fog integrated cloud environment. The model
has been tested for the real-time task scenario with the number of tasks considering both the smaller workload and
the relatively higher workload scenario matching the real-time situation. The model addresses the Quality of Service
(QoS) parameters of minimizing the batch’s make-span time, lowering the batch execution costs, and increasing the
resource utilization. Simulation results prove the effectiveness of the proposed model.

Keywords:  Cloud computing, Fog computing, Fog integrated cloud, Resource provisioning, Task scheduling,
Metaheuristics

Introduction
In recent decades, the scientific community has
embraced meta-heuristic optimization approaches to
solve complicated optimization problems. Neural net-
works, data mining, industrial, mechanical, electrical,
software engineering, and specific issues in location the-
ory are some of the application domains of meta-heuris-
tic algorithms [1–5]. Hussain’s analysis of 1,222 papers on
metaheuristics from 1983 to 2016 (33 years) suggests that
the behaviour of birds, humans, plants, water, the ecosys-
tem, electromagnetic forces, and gravitation have been
employed as metaphors in metaheuristic techniques [6].

Figure 1 presents a division of these techniques into two
groups. The first group includes approaches that imitate
biological or physical events and can be divided into four
sub-categories: Nature-based, Physics-based, Human-
based and Swarm-based methods. The third group con-
sists of those that have been motivated by human events.
The most exciting and widely used metaheuristic algo-
rithms are swarm-intelligence algorithms based on the
collective intelligence of colonies of ants, termites, bees,
flocks of birds, and so on [7]. Their success can be attrib-
uted to the fact that they leverage shared knowledge
among several agents, allowing self-organization, co-evo-
lution and learning to aid in creating high-quality prod-
ucts during cycles. Although not all swarm-intelligence
algorithms succeed, a handful has been quite effective

*Correspondence: zahidraza75@gmail.com

School of Computer and Systems Sciences, Jawaharlal Nehru University, New
Delhi 110067, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00376-5&domain=pdf

Page 2 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

and have thus become popular tools for tackling real-
world problems [8].

Working in the same trend, cloud computing research
has also leveraged the benefits of many meta-heuristics
to target its’ complex problems, e.g., virtual machine allo-
cation [9–11], virtual machine placement [12, 13], load
balancing [14], task scheduling [15–27], workload predic-
tion [28], resource allocation [29, 30], workflow sched-
uling [31, 32], virtual machine migration [33] and many
more.

Computing paradigms like cloud and related tech-
nologies, fog and edge computing are built on the pay-
as-you-go model. Resources are provided based on the
service-level agreements (SLA) between the service
providers and the consumers. Resources are of utmost
importance for these technologies. Accordingly, resource

provisioning for task scheduling becomes one of the sig-
nificant concerns for these paradigms alongwith other
challenges like security, performance, resource manage-
ment, reliability etc. Therefore, to achieve an efficient
performance and to make the best use of the scarce fog
or cloud resources, the users’ tasks must be scheduled
intelligently on the available resources while meeting the
desired QoS. There are numerous factors to be consid-
ered for designing any task-scheduling algorithm. Some
of critical factors are task completion time, makespan,
security, and response time from a user’s standpoint.
From the service provider’s Provider’s standpoint, the
crucial parameters considered are resource utilization,
fault tolerance, and power consumption to name a few.

Owing to the large solution space and time required to
obtain an optimal solution, job scheduling, also known as

Fig. 1  Classification of Meta-Heuristic Algorithms

Page 3 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

resource provisioning for the cloud and peers, has been
classed as NP-hard [34]. Optimization methodologies
using meta-heuristic methods based on performance
factors, e.g., completion time, cost, resource utilization
offer a solution to address the resource provisioning
problem. Although cloud computing meets the criteria
of executing IoT operations locally, it impacts task per-
formance and requires a platform to handle these tasks.
Furthermore, IoT applications conduct various tasks with
varying priorities and deadlines that must be performed
without delay. Still, remote execution of these tasks in
the cloud server creates multiple issues, including higher
latency and limited bandwidth availability. These chal-
lenges can be overcome by processing IoT tasks at the
network’s edge, called fog computing [35]. The goal of fog
computing is to complete work before the deadline with
local workload execution. The hybrid fog-cloud architec-
ture offers a promising arrangement to improve the QoS
with a broaded horizon. The fog layer assists the cloud
layer in the task execution. Some appropriate tasks are
executed at the fog level, with the remainder of the work-
load offloading to the cloud. Scheduling tasks in the fog-
cloud layers promise to achieve reduced make-span time
in executing these tasks with a better resource utilization.

Looking at the immense benefits of using meta-heu-
ristics in computing literature, this study proposes an
Improved Jellyfish algorithm (IJFA) model for schedul-
ing classified tasks over the Fog integrated cloud envi-
ronment. The work considers the tasks originating from
the Internet of Things (IoT) devices, resulting in a het-
erogeneous task generation. The model uses a bi-factor
classification method based on task category considering
the priority and deadline, and the resource requirements
aiming to minimize the make-span time of the batch of
jobs. This, in turn, will lower the execution cost of tasks
submitted for execution while improving the overall
resource efficiency and utilization.

The proposed algorithm IJFA is based on a recently
developed population-based nature-inspired meta-heu-
ristic algorithm, an artificial Jellyfish Search Optimizer
(JS), inspired by the behaviour of Jellyfish in the ocean.
The simulation of jellyfish search behaviour includes
their following of the ocean current, their motion within
a jellyfish swarm as active and passive motions, a tem-
poral control system for switching between these move-
ments, and their convergence into a jellyfish bloom. On
benchmark functions and optimization problems, the
new approach performes admirably. The population size
and the number of iterations are the only two control
parameters in JS. As a result, it requires minimum effors
in deployment and could be an excellent meta-heuristic
algorithm for addressing optimization problems. This
work modifies the the JS algorithm in order to to achieve

faster convergence by improving its exploration phase
resulting in a wider exploration of the solution space to
attain efficient scheduling decisions [36].

The remaining section of this research is systematized
as follows. Literature survey section provides the lit-
erature survey of the various works reported in the lit-
erature in the domain. The proposed multi-aspect task
scheduling approach section details the proposed model
including Improved Jellyfish algorithm (IJFA) based on
task scheduling principles. Experimental results section
discusses the simulation setup, simulation results and a
performance evaluation of the proposed model. Conclu-
sion and future works section 5 presents the conclusion
drawn from the work and possible future directions.

Literature survey
Cloud computing is the most popular distributed com-
puting paradigm that provides self-service, dynamically
scaled and metered access to a shared pool of resources
with guaranteed Quality of Service (QoS) to the users.
The jobs must be efficiently mapped to the offered
resources to achieve QoS. Otherwise, it may violate Ser-
vice Level Agreements (SLA). As a result, users will be
hesitant to pay if the desired performance is not realized.
Therefore, cloud computing systems consider scheduling
a significant theme, where obtaining a subpar solution in
a short period is desirable. No algorithms can solve the
scheduling issue in polynomial time and provide opti-
mal results owing to the vast search space in the actual
implementation of the computing world. Therefore, com-
bining meta-heuristic algorithms with the optimization
of essential parameters reduces search space complex-
ity and execution time. Also, the goal of task schedul-
ing changes from one application to the next according
to the QoS standard requirements. As a result, numer-
ous studies in cloud and fog computing focus on meta-
heuristics-based job scheduling. This section provides a
comprehensive review of several scheduling techniques
using various metaheuristics in the realm of cloud and
fog computing.

Meta‑heuristics in cloud computing
When implementing a task scheduling approach, at least
one objective function ensures high performance. The
most prevalent objectives are make-span, monetary cost,
computational cost (i.e., CPU, memory, storage, GPU,
bandwidth, etc.), reliability and availability, elasticity or
scalability, energy consumption, security, resource usage,
and throughput [37]. Researchers have explored these
single-objective and multiobjective areas interestingly
using various metaheuristics.

In [38], the authors introduced a new single objective
strategy based on the Firefly algorithm for scheduling

Page 4 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

submitted tasks in clouds to reduce make-span. Their
proposed Firefly Algorithm (FFA) outperforms Simu-
lated Annealing (SA) and the Cuckoo Search Algorithm
(CSA) in the experiments. Though this work minimizes
the make-span successfully, other parameters, such as
monetary cost, scalability, and availability, were ignored.
The work in [22] suggested a hybrid task scheduling tech-
nique MSA using two metaheuristics MSDE (Hybrid
Moth Search Algorithm and Differential Evolution),
which is an integration of the Moth Search Algorithm
(MSA) and Differential Evolution (DE) algorithms with a
single goal of minimizing the make-span time required.
The model offers exploration and exploitation capabili-
ties based on Lévy’s flight and phototaxis ideas. How-
ever, since MSA’s exploitation capability is restricted, the
DE algorithm has been utilized for local search, offer-
ing superior exploitation capability. Their results show
that the proposed hybrid MSDE algorithm outperforms
state-of-the-art heuristic and meta-heuristic scheduling
algorithms regarding system make-span and throughput.
Likewise, in [39], the authors proposed a hybrid method
that combines the benefits of Ant Colony Optimization
(ACO) and Cuckoo search that tries to lower the make-
span or completion time. The work achieved this objec-
tive using the hybrid algorithm because the jobs were
completed by allocating sufficient resources inside the set
time interval. The findings suggest that the Hybrid algo-
rithm outperforms the ACO method in terms of algo-
rithm performance and time to completion.

An improved ant colony algorithm for multiobjective
optimization scheduling based on a resource cost model
(relationship between the user’s resource costs and the
budget costs) was reported in [40]. The model achieved
multiobjective performance and price optimization by
including the make-span and the user’s budget costs as
optimization constraints. Their multiobjective optimi-
zation method performed better than similar meth-
ods based on the make-span, cost, deadline violation
rate and resource utilization. Using the benefits like the
speed and accuracy of the PSO algorithm, the authors
in [41] proposed a comprehensive multiobjective model
to give better QoS to Cloud customers by reducing the
task execution/transferring time and cost. The authors
tried to achieve it by moving extra tasks from an over-
loaded VM rather than migrating the complete overload
and eliminating the use of the VM pre-copy process. The
simulation results reveal that the suggested method dra-
matically decreases the load balancing time compared to
standard load balancing methodologies.

Similarly, research in [42] proposes a PSO-based Adap-
tive Multiobjective Task Scheduling (AMTS) strategy
that considers both processing and transmission time
and produces a better quasi-optimal solution in terms

of average cost, job completion time and energy con-
sumption, according to experimental results. The work
reported using an adaptive acceleration coefficient to
preserve particle diversity. Following the same trend, [43]
also sed a load-balanced scheduling strategy based on
the New Particle Swarm Optimization (NPSO) method.
A new cost assessment function was employed to reduce
the monetary cost of processing tasks on VMs. The sug-
gested method improves efficiency through cost optimi-
zation (minimized cost) based on a statistical analysis of
the total cost (execution and transfer) on a data set with
many iterations and particles.

To build a complete multiobjective optimization model
for task scheduling, the authors in [44] included four
conflicting objectives: task transfer time, task execution
cost, power consumption, and task queue length to lower
expenses for customers and providers. Using the Multi-
objective Particle Swarm Optimization (MOPSO) and
Multiobjective Genetic Algorithm (MOGA), their pro-
posed multiobjective model achieves optimal trade-off
solutions among the four conflicting objectives, reducing
job response time and make-span significantly. Findings
say that the proposed model is faster and more accurate,
improving QoS and lowering provider costs. Authors in
[45] introduced a novel Multi-objective Cuckoo Search
Optimization (MOCSO) technique for dealing with
the resource scheduling problem in cloud computing
to lower cloud user costs and improve performance by
reducing make-span time. This helps cloud providers
earn revenue or profit by maximizing utilization. The
investigations and evaluation of the proposed method
show that it outperforms MOACO, MOGA, MOMM,
and MOPSO in balancing numerous objectives such as
projected time to completion and cost. [46] proposed an
ACO, PSO, and GA-based task-level and service-level
dynamic resource scheduling technique, in which a task
is assigned to a VM and a task is assigned to a service,
respectively. This solution optimizes the make-span and
CPU time while also lowering the overall operational cost
of data centres. Still, the model does not perform well
when allocating resources to global tasks. Table 1 sum-
marises some of the recent single objective and multiob-
jective meta-heuristic algorithms employed in the cloud
to address various QoS parameters.

Meta‑heuristics in fog integrated cloud computing
Taking inspiration from the usage of metaheuristics in
fellow cloud computing, researchers have explored the
aspect of task scheduling using the same in fog comput-
ing and fog integrated cloud environments. In the work
[47], the authors offered an energy-saving method based
on a meta-heuristic known as the Harris Hawks opti-
mization technique to increase QoS while main-

Page 5 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

taining SLA. The proposed algorithm is based on
the fact that task scheduling is essential and adds
to fog servers’ energy usage when managing Indus-
trial IoT (IIOT) applications. It reportedly beats other
known algorithms such as Particle Swarm Optimiza-
tion (PSO) and Teaching Learning Based Optimization
(TLBO) while considering the performance in terms of
energy consumption and other QoS factors. In [48], the
authors introduced an Adaptive Double fitness Genetic
Task Scheduling (ADGTS) algorithm to maximize task
make-span and communication cost at the same time
using collaborative task and fog resource scheduling.
Simulation results suggest that the ADGTS algorithm
can simultaneously balance communication cost and task
make-span performance. It performs better considering
task make-span than the Min–Min method. Authors in
[49] proposed a task scheduling algorithm based on a
Moth-Flame Optimization (TS-MFO) algorithm. The
proposed technique assigns an appropriate set of tasks to
fog nodes to meet the quality-of-service criteria of Cyber-
Physical Systems (CPS) applications while minimizing
task execution time. The simulation study suggests the
outperformance of the model over the PSO, NSGA-II,
and (Bees Life Algorithm) BLA techniques in terms of
total task execution time. The authors in [50], provides an
optimization technique for IoT based applications using
modified version of genetic algorithms with a focus on
reducing latencies.

On the other hand, few works tried to explore multi-
objective scenarios. In one such work [51], the authors
tried to improve the QoS supplied to users in (Indus-
trial IoT) IIoT applications to propose an energy-aware
meta-heuristic based on a Harris Hawks Optimisation
algorithm based on a Local search Strategy (HHOLS)
for Task Scheduling in Fog Computing (TSFC) aided

by the normalizing and scaling phase in solving the dis-
crete TSFC. The quality of the solution was improved
even more by balancing workloads across all virtual
machines due to the swap mutation. The work com-
pared their HHOLS method with other meta-heuristics
based on various performance indicators, such as energy
consumption, make-span, cost, flow time, and emission
rate of CO2. Using the same meta-heuristic, the authors
in [52] proposed an enhanced elitism genetic algorithm
(IEGA) to solve the work scheduling problem for FC and
increase the quality of services provided to IoT device
consumers. The proposed method demonstrates superior
performance in make-span, flow time, fitness function,
carbon dioxide emission rate, and energy consumption
compared to other peers. The benefits of IEGA come
from two main phases: first, the mutation rate and the
crossover rate being manipulated to aid the algorithms in
exploring the majority of the possible combinations that
could form the near-optimal permutation; and second,
several solutions being mutated based on a certain prob-
ability to avoid becoming trapped in local minima and to
find a better solution.

Another work reported in [53] demonstrates a novel
scheduling method based on the ant colony algorithm
allowing for more accurate job scheduling and execu-
tion. It is a three-step method in which tasks are sepa-
rated into two groups based on their completion time
and cost, followed by prioritization based on comple-
tion time and cost. Then, the ant colony method is uti-
lized to choose the best virtual computer to run the
jobs. Simulation results suggest that the proposed
method provides acceptable performance in make-span,
response time, and energy usage compared to others.
The work in [54] presents a Novel Bio-Inspired Hybrid
Algorithm (NBIHA), a mix of Modified Particle Swarm

Table 1  Meta-Heuristics used in cloud computing

Research Optimization technique used Objective

Single Objective [38] Firefly algorithm Reduce make-span

[22] Moth Search Algorithm (MSA) and Differential Evolution
(DE) algorithms

Multiobjective [39] ACO (Ant Colony algorithm) and Cuckoo search

[40] Ant Colony algorithm Performance and Cost

[41] PSO (Particle Swarm Optimization) Load balancing and better QoS

[42] Best resource utilization, Average cost, the average time to
complete a task, and average energy usage

[43] Cost Minimisation

[44] MOPSO (Multi-Objective Particle Swarm Optimization) and
MOGA (Multiobjective Genetic Algorithm)

Reducing job response time and make-span, Provider and
consumer cost

[45] MOCSO (Multi-objective Cuckoo Search Optimization) Reducing Make-span

[46] ACO, PSO, and GA Optimizes the make-span and CPU time and lowers the
overall operational cost

Page 6 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

Optimisation (MPSO) and Modified Cat Swarm Opti-
misation (MCSO) to lower average reaction time and
optimize the resource consumption by efficiently sched-
uling jobs and managing available fog resources. The
proposed algorithm outperforms three other algorithms
viz by minimizing the execution time. First Come First
Serve (FCFS), Shortest Job First (SJF), and MPSO. In the
work [55], the authors proposed a Priority-aware Genetic
Algorithm (PGA) which is a hybrid technique combining
task prioritization with a genetic algorithm implemen-
tation. The objective is to determine the best compute
node for each task by considering various job require-
ments while considering the diverse nature of fog and
cloud nodes. It is a novel fog-cloud scheduling algorithm
that optimizes a multiobjective function, a weighted
sum of overall computation time, energy consumption,
and Percentage of Deadline Satisfied Tasks (PDST). The
work [56] introduced a Discrete Non-Dominated Sorting
Genetic Algorithm II (DNSGA-II) based optimization
model to schedule tasks dynamically aiming to reduce
the makespan and costs in a fog-cloud environment. The
model deals with the discrete multiobjective scheduling
problem, allocates computing resources either on cloud
or fog nodes and organizes the distribution of workloads.
Another work in [57] attempts to reduce the makespan
and energy consumption in the fog-cloud environment
by using an integration of the Cultural Evolution Algo-
rithm (CEA) and the Invasive Weed Optimization (IWO)
named as hybrid (IWO-CA). The Dynamic Voltage and
Frequency Scaling (DVFS) technique is presented to
minimize the consumption of energy. Whale Optimiza-
tion algorithm in smart healthcare application has been

explored in [58] to address the massive data generated
in the process aiming to minimize the average energy
consumption and cost. Table 2 summarises some of the
recent single objective and multiobjective meta-heuristic
algorithms used in fog environment for addressing vari-
ous QoS parameters.

Motivation and objective
Literature survey reveals that owing to the NP class
nature of the scheduling problem, the work done con-
sidering both single-objective and multiobjective prob-
lems addressed the scheduling problem in different ways
while proposing or utilizing a variety of well-known
metaheuristics. However, many of them ignored the
need of classifying heterogeneous end-user requests. The
present study takes into account the importance of task
categorization and is based on the novel approach JS (Jel-
lyFish Search Optimiser) [36]. JS has proven to be better
than peers e.g. Whale Optimization Algorithm (WOA),
Tree-Seed Algorithm (TSA), Symbiotic Organisms
Search (SOS), Teaching–Learning-Based Optimization
(TLBO), Firefly Algorithm (FA), Gravitation Search Algo-
rithm (GSA), Artificial Bee Colony (ABC), Differential
Evolution (DE), Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA) algorithms in the mathemati-
cal benchmark tests. Additionally, JS has fewer internal
parameters resulting in an efficient design, implemen-
tation and tuning of the simulation in the proposed
work. This work proposes a multi-aspect task sched-
uler based on the Improved Jellyfish Algorithm (IJFA)
which attempts to improve the exploration characteris-
tics of the traditional JS for achieving better scheduling

Table 2  Meta-Heuristics used in fog integrated cloud environment

Research Computing model Optimization technique used Objective

Single Objective [47] Fog Harris Hawks technique Energy-saving

[48] Fog-Cloud Genetic Algorithm Make-span

[49] Fog-Cloud Moth-Flame Optimization Total task execution time

[50] Fog-Cloud Genetic Algorithm (GA) Latency

Multiobjective [51] Fog Harris Hawks Technique Energy Consumption, make-
span, cost, flow time, and emission rate of CO2

[52] Fog Genetic Algorithm make-span, flow time, fitness function, carbon
dioxide emission rate, and energy consumption

[53] Fog Ant colony algorithm Make-span, response time, and energy usage

[54] Fog-Cloud Particle Swarm Optimization and Cat Swarm
Optimization

Execution time, energy consumption, and aver-
age response time

[55] Fog-Cloud Genetic Algorithm Computation time, energy consumption, and
more percentage of jobs that meet deadlines

[56] Fog-Cloud Discrete Non-Dominated Sorting Genetic
Algorithm II

Makespan and costs

[57] Fog-Cloud Cultural Evolution Algorithm (CEA) and the
Invasive Weed Optimization (IWO)

Makespan and energy consumption

[58] Fog Whale Optimization Algorithm Energy consumption and cost

Page 7 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

decisions for the heterogeneous IoT tasks. Further, the
classification of jobs in the batch before making schedul-
ing decisions results in a model suitable for real time and
deadline aware tasks.

The proposed multi‑aspect task scheduling approach
The system’s design, problem statement, suggested model
and algorithm, simulation setup, and evaluation pro-
cedures are all presented in this section. To ensure the
effective success of the objectives and aims, the research
methodology is built over similar works in the domain of
classification of tasks of IoT and its’ scheduling employ-
ing metaheuristics.

Methodology design
The work aims to schedule the jobs in the fog integrated
cloud environment to minimize the make-span time for
the jobs. The main research challenge identified is sched-
uling the requests from various IoT devices with het-
erogeneous demands in large volumes seeking different
QoS needs. The ample search space makes scheduling
these requests an even more complicated task. Several
previous works and studies have been examined to dis-
cover competent qualities that may be utilized to classify
and schedule requests. Classification is essential before
scheduling for two main reasons: first, the requests are
heterogeneous and second, to make use of the integrated

environment of cloud and fog layers working with dif-
ferent capabilities and purposes. Fog layer aids real-time
processing, necessitating ultra-low latency, location
awareness, edge resource pooling, mobility, and most
importantly preventing cloud server overloading. It’s also
helpful in places where connectivity is inconsistent. On
the other hand, cloud is more centralized and powerful
than fog exhibiting features like availability, computing
capabilities and storage capacity. It also aids in the long-
term storage of data used for analysis and decision-mak-
ing. Figure 2 presents the fog integrated cloud system
architecture.

All user demands are first submitted to a broker or a
gateway with respective parameter values. The central-
ized broker, which is also a centralized decision-maker,
is an intermediate party between the users and the pro-
viders and draws its inspiration from the broker used in
[59]. The role of the broker is to manage the fog-cloud
resource provisioning upon the user requests. It has the
same role as a cloud broker, described as “an entity that
manages the use, performance and delivery of cloud ser-
vices, and negotiates relationships between cloud provid-
ers and consumers” [60]. The centralized broker records
dynamically changing and uncertain resources from mul-
tiple fog and cloud providers along with the various IoT
devices generating heterogeneous requests. Therefore,
it minimizes the complexity arising out of many request

Fig. 2  Fog integrated cloud system architecture

Page 8 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

handlers by providing a single point solution in the fog
integrated Cloud environment. Once the broker recevices
the requests, first, the bi-factor classification algorithm
categorizes it based on the deadline and the priority.
Next, these tasks are scheduled using the Improved Jel-
lyfish algorithm (IJFA) based on the task category of the
requests and their resource requirement to fog nodes or
cloud nodes accordingly.

The most important properties of the requests coming
from IoT devices are their deadline and priority, which
can be used to classify them and then schedule them
accordingly. For this purpose, this work proposes a bi-
factor classification algorithm to ascertain the task cate-
gory. The work proposes an Improved Jellyfish Algorithm
(IJFA) strengthening the exploration properties of JS
algorithm. JS is chosen for improvement as it is a promis-
ing meta-heuristic because of its simplicity and the use of
only two control parameters, i.e., population size and the
number of iterations. Figure 3 presents the workflow of
the proposed model.

Problem statement
The IoT devices in the given environment produce data
required to be processed for various applications for
which it has been deployed. The computationally con-
strained nature of IoT devices makes it necessary for the
devices to offload the data to other computing nodes for
processing. In the proposed fog integrated cloud environ-
ment, the node assigned with a task and performing com-
putation might be the fog node controlling the network
of that geographical location or the cloud node present

in a remote location. These nodes consider the process-
ing of data as a task. Each task will be assigned either to
a fog node or a cloud node executed as a virtual machine.
The VM configuration can be the same if the tasks are of
the same type or different depending on the task types.
The tasks to for which computation is required can be
denoted as,

where Tk is the number of tasks submitted by the IoT
devices. Ti represents the ith task in the task sequence.
These tasks are later clubbed together to form a batch
of tasks to be executed as per the QoS requirements.
For every task a suitable fog or cloud node is decided for
allocation. As with many scheduling approaches, the pro-
posed also aims to minimize the makespan of the tasks
submitted by the IoT devices. Each task Ti possesses
some features which can be formulated as,

Here,TID
i is the task identifier, TTL

i the job length (unit:
million instructions), Tp

i the priority level, and Tdl
i dead-

line of execution of any given task Ti . The nodes which
process the tasks can be a fog node NDf  , represented as

or a node NDc in the cloud data center denoted as,

(1)T = {T1,T2, ..Ti . . .Tk}; 1, . . . , i ∈ k

(2)Ti = [TID
i ,TTL

i ,T
p
i ,T

dl
i]

(3)NDf = {N1,N2, , ,Nj . . .Nn}; 1, . . . , j ∈ n

(4)NDc = {N1,N2, , ,Nr . . .Nm}; 1, . . . , r ∈ m

Fig. 3  Workflow of the proposed model

Page 9 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

Each node Nj and Nr possesses certain features as
defined in Eqs. 5 and 6 as

Here, Nid
j and Nid

r denote the identification or the
serial number of a node at the fog layer or the cloud layer,
NMIPS
j and NMIPS

r the information processing speed of
nodes (unit: millions-of-instructions-per-second, MIPS),
Nm
j and Nm

r the memory availability and Nds
j and Nds

r the
disk space availability corresponding to nodes Nj and Nr
respectively. The allocation of a task Ti to node Nj or Nr
obeys certain conditions which are expressed as follows,

Here, Aij is the allocation vector representing the place-
ment of task Ti on node Nj . The above equations describe
that the allocation of tasks will be carried out only if
the resource availability of the node is greater than the
resource requirements of the task. The Expect Com-
plete Time (ECT) matrix of size [ Nk ∗ Nn] represents the
expected execution time to run the task individually on
each computing resource of the fog layer resources as,

Similarly, the matrix of size [ Nk ∗ Nm] represents the
expected execution time to run the tasks on each com-
puting resource (VM) of cloud resources individually as,

One of the aims of the proposed model while mak-
ing a scheduling decision is to minimize the make-span
by locating the most efficient group of tasks on virtual
machines. ECTij for the same can be computed as,

(5)Nj = [Nid
j ,NMIPS

j ,Nm
j ,Nds

j]

(6)Nr = [Nid
r ,NMIPS

r ,Nm
r ,Nds

r]

(7)
n

i=1

T
cpu
i × Aij ≤ N

cpu
j

(8)
n

∑

i=1

Tm
i × Aij ≤ Nm

j

(9)
n

∑

i=1

Tds
i × Aij ≤ Nds

j

(10)ECTf =

ECT1, 1 ECT1, 2 ECT1,Nn

ECT2, 1 ECT2, 2 ECT2,Nn

ECTNk , 1 ECTNk , 2 ECTNk ,Nn

(11)ECTC =

ECT1, 1 ECT1, 2 ECT1,Nm

ECT2, 1 ECT2, 2 ECT2,Nm

ECTNk , 1 ECTNk , 2 ECTNk ,Nm

(12)ECTij =
TL(Ti)

NMIPS
j

i = 1, 2, 3k , j = 1, 2, 3n

where ECTij refers to the required execution time of i
th task on j th virtual machine of fog layer, TL(Ti) is the
task–length of the i th task. Similarly, ECTir refers to the
expected execution time of i th task on r th VM in the
cloud layer represented as Eq. 13.

The fitness value indicating the suitability of a node for
a task can be defined as:

The proposed model aims to optimize the task’s exe-
cution time and improve the utilization of resources,
thereby achieving the required QoS in terms of comple-
tion time. The primary objectives for the same can be
summarised as,

where, Ru is the resource utilization, QoS the Quality Of
Service to be met and ET the execution time of the tasks/
batch of tasks scheduled in the considered computing
environment.

Bi‑factor task classification
The tasks originating from the IoT devices are aggre-
gated by the Broker/Gateway which classifies tasks and
performs scheduling. The incoming tasks possess vari-
ous priorities and deadlines that should be considered to
effectively categorize the tasks. The classification of tasks
is performed to analyze the tasks in order to achieve an
increased completion rate. The threshold values for pri-
ority and deadline of a task can be computed as,

Here, H
(

T
p
i

)

 and H
(

Tdl
i

)

 are the thresholds corre-
sponding to priority and task execution deadline respec-
tively. Further, Tp

i is the priority value and Tdl
i is the

deadline requirement of the task Ti with the threshold
value ranging from 0 to 1. The priority and deadline are
classified into two classes, namely low and high, and can
be formulated as,

(13)

ECTir =
TL(Ti)

NMIPS
r

i = 1, 2, 3k , r = 1, 2, 3m

(14)fit = max
{

ECTij

}

∀i ∈
[

1, k
]

mapped to jth VM, j = 1,2,… n

(15)maximize ← (Ru,QoS)

(16)minimize ← (ET)

(17)H
(

T
p
i

)

=

n
∑

i=1

T
p
i logT

p
i

(18)H
(

Tdl
i

)

=

n
∑

i=1

Tdl
i logTdl

i

Page 10 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

Table 3 presents the task classification based on task
priority and the deadline. The classification of tasks
is carried out into four major classes: highly intense,
intense, moderate, and low, based on the priority and
deadline of the tasks. These categorized tasks are then
scheduled using the proposed model to meet the desired
QoS.

Multi‑aspect task scheduling
The scheduling of categorized tasks is performed by
the Broker to achieve robust computation of tasks. The
factors considered for effective scheduling of tasks
are task category

(

TC
i

)

 , and resource requirement
(TR

i = TTL
i ,T

p
i ,T

dl
i).

This work proposes Improved Jellyfish Algorithm
(IJFA) to explore the search space for aa better solution
for scheduling of tasks with an increased convergence
rate. As mentioned earlier, IJFA aims to improve the
search space exploration as compared to JS while reduc-
ing the convergence time. To computationally realize the
same, initially, the Jellyfish vectors are initialized as,

where,
−→
K 0 denotes the initial vector of the Jellyfish,

and
−→
K J is the vector that holds the chaotic values of J

th Jellyfish. η is aconstant which is taken as four in the
proposed approach. Once the initialization is over, the
selection of solution based on Ft is performed to select
the location with maximum food

−→
K

∗
 . Following it, the

time control mechanism is utilized to switch between
the motions of Jellyfish either towards ocean current or
inside the swarms. The motion towards the ocean cur-
rent can be formulated as,

(19)H
(

T
p
i

)

=

{

low, if 0 ≤ H
(

T
p
i

)

≤ 0.5

high, if 0.5 ≤ H
(

T
p
i

)

≤ 1

(20)H
�

Tdl
i

�

=







low, if 0 ≤ H
�

Tdl
i

�

≤ 0.5

high, if 0.5 ≤ H
�

Tdl
i

�

≤ 1

(21)−→
K J+1 = η

−→
K J

(

1− KJ

)

, 0 ≤
−→
K 0 ≤ 1

(22)

−→
K J(t + 1) =

−→
K J(t)+

−→rn . ∗
(

−→
K

∗
− β ∗ rn1 ∗ µ

)

Here, ���⃗rn, rn1 represents a random number in the range
of 0 to 1, β the distribution coefficient and µ is the popu-
lation mean. The motion of Jellyfish inside the swarm is
emulated in two ways using action motion and passive
motion. The determination of a new location using pas-
sive motion can be computed as,

Here, γ is a constant representing the motion length,
rn3 a random number in the range of 0 to 1, upb the upper
bound of search space and lwb the lower bound of the
search space. The determination of a new location using
active motion can be computed as,

Here, −→Dr denotes the motion direction of the Jellyfish
to locate the best food and can be expressed as,

In the above equation, l represents the jellyfish index
that is selected randomly. The control function ϑ(t) for
switching of motion of Jellyfish can be written as,

If the value of ϑ(t) is greater than or equal to the con-
stant ϑ0, the Jellyfish follows the ocean current. Other-
wise, the Jellyfish tends to move inside the swarm. If the
randomly generated number rn4 is greater than 1− ϑ(t)
then the Jellyfish moves in a passive motion else it moves
in an active motion. Improving JS, the enhancement is in
the exploration capabilities of IJFA which prevents pre-
mature convergence. IJFA aims to achieving faster con-
vergence while reducing the search time. This can be
accomplished by using the randomization concept in
investigating the swarm’s locations. Initially, the popu-
lation, as usual is random to have diversity. Later on, it
exploits some local optimum, but the introduced ran-
domness also avoids premature convergence. The new
formulation can be written as,

The improved algorithm selects three random solu-
tions from the population and updates each population
accordingly to ensure a fast convergence rate. Further, it
has a higher chance of moving towards global optimum.

(23)−→
K J(t + 1) =

−→
K J(t)+ rn3 ∗ γ ∗

(

upb − lwb

)

(24)−→
K J(t + 1) =

−→
K J(t)+

−→rn ∗
−→
Dr

(25)
−→
Dr =

{−→
K J(t)−

−→
K l(t), ifFt

(

−→
K J

)

< Ft
(

−→
K l

)

−→
K l(t)−

−→
K J(t), otherwise

(26)ϑ(t) =

(

1−
t

tmax

)

∗ (2 ∗ rn− 1)

(27)
��⃗K�(t + 1) = ��⃗K�(t) + rn ∗

(

��⃗Krn1
(t) − ��⃗Krn2

(t)

)

+ (1 − rn) ∗

(

K
∗
− ��⃗Krn3

(t)

)Table 3  Task classification table

Priority Deadline Task classified

High High Highly Intensive

High Low Intensive

Low High Moderately intensive

Low Low Low intensive

Page 11 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

Figure 4 presents the proposed multi-aspect task
scheduling using IJFA, which runs at the broker site. The
user requests from various IoT devices are submitted and
categorized using the bi-classification algorithm and then
forwarded to the scheduler. Based on task requirement
and category, the scheduler then schedules a task on the
fog or cloud layer after initializing the algorithm’s param-
eters and computing and evaluating the fitness of the
tasks. The time control mechanism governs the switching
between the two types of movement of Jellyfish moving
in the ocean in search of food. They are more attracted to
locations where the available quantity of food is more sig-
nificant. The location and corresponding objective func-
tion determine the amount of food found.

The pseudocode of the IJFA based task scheduling pro-
cess is presented in the box below, scheduling of tasks
based on task category and resource requirements.

Experimental results
This section presents the simulation framework and the
experimental result analysis of the proposed model fea-
turing a multi-aspect task scheduler using the Improved
Jelly Fish Algorithm (IJFA) for the fog integrated cloud
environment. The scheduler uses IJFA to optimize the
scheduling of IoT tasks based on the task’s priority, dead-
line and resource requirements. The requests are classi-
fied based on deadline and priority and then accordingly
scheduled on either the fog or the cloud layer.

Simulation environment
Experimenting on real-world data in a real-world cloud
environment is costly and complicated. Furthermore, if
the experiment does not go as intended, crucial data may
be lost. As a result, a simulator that can simulate the real-
world cloud environment is necessary to test and vali-
date various strategies and procedures presented for the
benefit of the stakeholders. Once approved, these strate-
gies and mechanisms can be used in a real-world context
without the risk of data loss.

The classification before scheduling across the data center
is essential in IoT tasks due to its effectiveness in manag-
ing the execution by executing real-time requests with high
priority within their deadline. This work uses a Bi-factor
classification algorithm to classify requests before schedul-
ing them to address the concern. The experimental param-
eters are based on previous literature work reported in the
literature for cloud and fog based resource provisioning.

The experiments were conducted by simulating a
hybrid fog-cloud environment and heterogeneous task
transfer. Table 4 summarises the simulation attributes
used in the work. For effective simulation, MATLAB
toolbox named Distributed System is utilized. This tool-
box can be used to emulate any distributed network
including fog integrated cloud environment. All experi-
ments were executed for twenty different runs, including
3000 iterations for optimization.

The different batch sizes of Real-Time (RT) and Non-
Real Time (NRT) requests were randomly generated and
submitted. The distribution of VMs for fog and cloud
nodes was kept at 30% and 70%, respectively. In each
simulation, VMs, cloud and fog nodes were randomly
generated with different processing capacities and con-
figurations within the range in accordance with Table 5
as presented in the coming section.

Experimental setting
The proposed work used MATLAB to realize the
fog integrated cloud environment. The experiments
were designed to use five batches comprising of 600,

Page 12 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

1200,1800, 2400 and 3000 tasks respectively. The differ-
ent dataset sizes allow for more complicated task transfer
scheduling testing. As the dataset size grows larger, the
scheduling difficulty becomes more difficult, thus ensur-
ing rigorous testing of the model under a real fog-cloud
like workload. Each task is represented by four parame-
ters: task ID, task size, task deadline, and the task’s prior-
ity. Task ID is a unique transfer identifier while job size
provides an estimate of the computational execution
time. Expected Completion Time (ECT) is used as the
parameter to compare the performance of both JS and
IJFA. In the computing environment, the dataset place-
ment has been evaluated for three different scenarios:
(1) allocating the dataset for execution directly on the
cloud, (2) allocating the dataset for execution directly on
the fog, (3) allocating the dataset for execution across fog

Fig. 4  Multi-aspect task scheduling using IJFA

Table 4  Simulation attributes

Entity Parameter Value of settings

Requests/Tasks Number of tasks 600–3000

Length 10–50 (Mb)

Priority High/Low

Deadline High/Low

Virtual machine
(Cloud)

Number of VMs 30% of the total on
cloud

Processing Capacity
range

[100,1000] (MIPS)

Virtual machine (Fog) Number of VMs 70% of the total on Fog

Processing Capacity
range

[10,100] (MIPS)

Page 13 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

integrated cloud architecture using classification being
the main focus of this work.

Experimental results and analysis
Experiments using meta-heuristic scheduling algo-
rithms, JS and the proposed IJFA were conducted in the
fog-cloud environment. The findings of the experimen-
tation are presented in this section. The simulation’s
goal is to calculate the make-span of these two meta-
heuristic scheduling methods being tested. The ideal
meta-heuristic scheduling method is believed to be the
one with the shortest make-span. Different test scenar-
ios are used to calculate the performance of these two
based on the ECT matrix to ensure the VMs’ balanced
workload. In the proposed model, the task scheduling
phase is proceeded by the bi-factor classification phase,
which improves the overall performance by character-
izing user tasks based on the priority and the deadline.
Accordingly, the incoming tasks in the batch of jobs are
classified into highly intensive, intensive, moderately
intensive, and less intensive based on the priority and
deadline. These two parameters enable the deadline
sensitive and essential tasks to be scheduled at the fog
layer, decreasing latency and time delay. These catego-
rized tasks are then considered for scheduling, aiming
to achieve better makespan.

Scenario 1: batch size variation from 600 to 3000 tasks
with a fixed number of iterations as 3000
In this case, five different batches of tasks comprising
tasks varying in the range 600–3000 were scheduled
using JS and IJFA executed over 100 VMs run over 3000
iterations. Figure 5a-e presents the Expected Comple-
tion Time (ECT) of an optimized schedule for all the
five batches of tasks having 600, 1200, 1800, 2400 and
3000 tasks, respectively based on JS and IJFA algorithms
through the convergence curves. As discussed in The
proposed multi-aspect task scheduling approach sec-
tion, the tasks are classified into four categories, i.e.,
highly intensive, intensive, moderately intensive and
low intensive, based on deadline and priority using a bi-
classification algorithm. These are then offloaded to the
cloud and fog layer of the hybrid architecture based on
their category. In the proposed model, on average, almost
half of the requests generated in different trials are get-
ting served by the fog, which directly improves the sys-
tem’s total performance. The scheduler then, using JS and
IJFA, allocates requests on available fog nodes by calcu-
lating the expected time of completion of each request
of the batch and selects the one with minimum time
among the available nodes at the respective layer where
they have been offloaded to ensure a balanced workload
for VMs. An average ECT scorewas computed for virtual

Table 5  Summary of ECT observations for varying number of tasks for JS and IJFA

S.no Tasks JS IJFA

Best Worst Best Worst

1 600 Trial 1 19.1567 21.5287 14.6579 21.5287

Trial 2 23.0880 25.1006 16.3882 25.1006

Trial 3 10.3659 17.0845 10.5985 16.6051

Average 17.5369 21.2379 13.8815 21.0781
2 1200 Trial 1 40.8966 43.0645 36.0634 43.0645

Trial 2 20.3129 33.8435 20.5149 33.9805

Trial 3 30.5456 44.9759 30.3910 44.0280

Average 30.5850 40.6280 28.9898 40.3577
3 1800 Trial 1 58.6918 63.9129 52.7093 63.9575

Trial 2 32.6999 45.9925 29.2666 49.0941

Trial 3 40.8887 74.6994 38.3106 74.6994

Average 44.0935 61.5349 40.0955 62.5837
4 2400 Trial 1 46.4022 66.4697 48.3129 65.7420

Trial 2 60.3213 101.4393 66.074 101.4393

Trial 3 81.608 88.1454 61.0000 87.6158

Average 62.7772 85.3515 58.4623 84.9324
5 3000 Trial 1 86.3706 95.3073 75.8116 96.2316

Trial 2 92.8842 131.8479 94.0386 132.5835

Trial 3 115.8123 120.5761 100.0861 120.5761

Average 98.3557 115.9104 89.9788 116.4637

Page 14 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

Fig. 5  a Convergence Graph for JS and IJFA for Batch Size of 600 Tasks. b Convergence Graph for JS and IJFA for Batch Size of 1200 Tasks. c
Convergence Graph for JS and IJFA for Batch Size of 1800 Tasks. d Convergence Graph for JS and IJFA for Batch Size of 2400 Tasks. e Convergence
Graph for JS and IJFA for Batch Size of 3000 Tasks

Page 15 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

Fig. 6  a Comparison of IJFA and JS for 20 iterations for 600 Tasks. b Comparison of IJFA and JS for 20 iterations for 1200 Tasks. c Comparison of IJFA
and JS for 20 iterations for 1800 Tasks. d Comparison of IJFA and JS for 20 iterations for 2400 Tasks. e Comparison of IJFA and JS for 20 iterations for
3000 Tasks

Page 16 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

machines at cloud and fog layers using the JS algorithm.
From Fig. 5a-e, it is observed that The IJFA can converge
to a better solution with a better convergence rate in all
the cases, from smaller batches of tasks to bigger ones.
The better convergence of IJFA can be attributed to its
better exploration capability to achieve faster conver-
gence by reducing the search time than the traditional JS.
This was made possible in IJFA by exploring search loca-
tions or solutions which other members could not have
previously explored by randomly picking any three solu-
tions from the population and updating the population
accordingly.

Table 5 summarises the optimized ECT based on the
various experiment scenarios. The results were obtained
for every set of tasks for three different runs. The aver-
age best and average worst performance in ECT reported
by JS and IJFA were observed. The results based on these
three random trials over different task sets indicate that
the optimized ECT observed in the model using the pro-
posed IJFA is way lesser than the one obtained with JS as
a trend due to efficient task scheduling based on multi-
ple aspects by IJFA including bi-classification. The IJFA
has faster convergence due to the improvement in the

exploration phase and achieves the trade-off between
exploration and exploitation with less time consumption
due to implementing a two-directional search strategy
resulting in better solutions. For instance, in the experi-
ment with 600 batches of tasks, the optimized ECT for
IJFA is about 13 s in the average best scenario, which is
better than the average best of 17 s reported by JS. As far
as the average worst scenario is concerned for both JS and
IJFA, it is observed that IJFA is performing at par with JS.
The same trend can be seen in all the different batches of
jobs. It can be concluded that IJFA outperforms JS easily
when used in the fog integrated cloud environment with
randomly generated and scheduled heterogeneous tasks.

The ECT of JS and IJFA implementations for various
task sets spread over 20 iterations is presented in Fig. 6a–
e. A boxplot performance for all five batches of jobs has
been given. It is observed that the median of IJFA is less
than JS in all the cases. For instance, the median for batch
I (600 tasks 100 VMs) is 75 s for IJFA and 95 s for tra-
ditional JS. Also, the ECT for IJFA and JS has been dis-
persed over 167 s to 13 s and 186 s to 17 s, respectively.
The same trend has been observed in all the other four
batches of jobs, too, where range dispersion and median
of IJFA are less than JS. The box plots reflects that IJFA
performs an efficient task scheduling compared to JS,
irrespective of the task set sizes. The result remains the
same even with the change in the number of VMs. The
same has not been reproduced here to avoid redundancy.

The performance of the proposed IJFA algorithm and
traditional JS has also been evaluated by feeding a differ-
ent number of tasks ranging from 600 to 4800to observe
a general trend of the performance of the two algorithms.
The same has been presented in Fig. 7. This is significant
because a wide range of data sizes could be used to sup-
port the task transfer scheduling’s sophisticated testing.
As the data size grows larger, the scheduling becomes
more difficult but still IJFA performes very well as com-
pared to traditional JS. It is worth mentioning that the
performance of IJFA becomes even superior with the
increasing task set size which corresponding with the
fog integrated cloud environment. As the size of the
batch increases, the difference in ECT reported by both

Fig. 7  ECT v/s number of tasks

Table 6  ECT v/s Batch Size for Fog Integrated Cloud, Cloud-Only and Fog-Only Architectures

Task size Fog integrated cloud Cloud-only Fog-only

JS IJS JS IJS JS IJS

Batch I 17.5369 13.8815 37.08718 31.89165 402.4644 321.3767

Batch II 30.58503 28.98977 74.02684 64.11581 781.0749 678.7809

Batch III 44.0935 40.0955 103.9711 100.7851 973.1735 936.5133

Batch IV 62.77717 58.4623 146.9762 127.7616 1541.985 1475.785

Batch V 98.3557 89.97877 183.0033 161.995 1796.823 1664.369

Page 17 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

Fig. 8  a ECT v/s Batch Size for JS and IJFA for the Fog Integrated Cloud Architecture. b ECT v/s Batch Size for JS and IJFA for the Cloud Only
Architecture. c ECT v/s Batch Size for JS and IJFA for the Fog-Only Architecture

Page 18 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

the algorithms also increases. The increased difference
between the two concluded that IJFA is more suitable in
the situation with large size datasets, which is very appro-
priate in the real-world scenarios especially considering
IoT devices as the task generators.

Scenario 2: performance evaluation of IJFA using Fog
Integrated Cloud, Cloud‑Only and Fog‑ Only Scheduling
architectures
To understand the usefulness of fog- integrated cloud
architecture over cloud-only and fog-only architectures,
JS and the proposed algorithm IJFA was applied to work
in three scenarios for the above mentioned three archi-
tectures. To realize the same, five batches of tasks with
batch sizes ranging from 600 to 3000 were made, which
were later scheduled on the above three architectures
separately. Accordingly, batches were made with batch I
comprising 600 tasks, batch II comprising 1200 tasks till
batch V comprising 3000 tasks. A comparative analysis of
the minimized makes-span trend for this study has been
presented in Table 6 and a bar chart representation is
depicted in Fig. 8a-c. The ECT observed in both the cases
of using JS and IJFA clearly outlines the outperformance

of IJFA over JS for all the batch sizes over randomly gen-
erated datasets.

Table 7 summarises the results obtained using IJFA as
the scheduling strategy with the results in terms of ECT
for varying batch sizes for the fog-only, cloud-only and
the fog integrated cloud architectures. These results have
been presented pictorially in Fig. 9. It is observed that the
low-capacity nodes at the fog layer led to maximum ECT
in all the used five batches of jobs followed by cloud-only
architecture. For instance, ECT for the batch I dataset
came out to be approximately 13 s, 31 s and 321 s for fog
integrated cloud, cloud-only and fog-only architectures
The same trend can be seen for the remaining batches
too. Therefore, it is established that the proposed IJFA
algorithm performs very well in the hybrid fog-cloud
environment owing to the classification of jobs prior to
actual scheduling, which led to offloading of high priority
and time-sensitive requests to the fog nodes and rest to
the cloud nodes. As per the analysis of the random gen-
eration of requests in different trials, almost 50% of jobs
were executed at the fog layer, resulting in a low ECT in
the hybrid environment. In all the cases, if all the tasks
were offloaded to the fog layer, it resulted in the maxi-
mum ECT as the number of fog devices is limited and
computationally constrained as compared to cloud-only
and fog integrated cloud architecture. The study infers
that it is best to have an integration of fog nodes and
cloud nodes contributing to schedule based on the task
preferences to achieve better performance.

This section studies the experimental results of the
proposed model to optimize the execution of IoT tasks
in the fog integrated cloud architecture. The effect of
the batches of data on the performance was analyzed to
study the results under various scenarios. It is gathered
from the experimental results that the optimization

Table 7  ECT v/s batch size for IJFA for fog integrated cloud,
cloud-only and fog-only architectures

Task size Fog integrated
cloud

Cloud-only Fog-only

Batch I 13.8815 31.89165 321.3767

Batch II 28.98977 64.11581 678.7809

Batch III 40.0955 100.7851 936.5133

Batch IV 58.4623 127.7616 1475.785

Batch V 89.97877 161.995 1664.369

Fig. 9  ECT v/s batch size for IJFA for fog integrated cloud, cloud-only and fog-only architectures

Page 19 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

of tasks in fog-only and cloud-only architecture faced
challenges in scheduling as they did not classify and
categorized the tasks based on their requirements and
nature. This led to an increased ECT in both the sce-
narios. Also, with an increased number of tasks, the
complexity of job scheduling increases, leading to delays
in response and in the worst case request failures. The
integration of classification of jobs with IJFA results in
an efficient ECT reduction of the batch of jobs under
numerous testing cases. Compared to using solely
standard JS algorithm, the proposed model comprising
of two-phase scheduling algorithm allows for adequate
optimization time. The bi-classification phase helps
in characterizing the IoT requests based on the dead-
line and the priority to schedule the tasks using IJFA
on the available computing resources. These available
resources can be either at the cloud layer or fog layer
with their selection ensuring an optimal use of both for
an efficient job execution. Therefore, this work gains
significance as it addresses the efficient resource provi-
sioning in the fog-ingrated cloud environment for the
heterogeneous and delay sensitive IoT tasks to reduce
the execution time leading to a decreased cost of execu-
tion for the batch of jobs.

Conclusion and future works
The Internet of Things (IoT) has emerged as a promi-
nent technology in automation by performing real-time
tasks for various applications with different priorities and
deadlines. An integrated fog-cloud architecture offers
the remote execution of these tasks with an improved
latency and better availability of bandwidth. However,
it is important to have a suitable resource provisioning
scheme for task offloading to fog and cloud resources
while meeting the task and resource requirements. This
work proposes a multi-aspect task scheduling algorithm
based on Improved Jellyfish Algorithm (IJFA) by lever-
aging the benefits of the integrated environment of fog-
cloud. The proposed bi-factor classification phase helps
the tasks to be scheduled to the right place based on their
deadline and priority. The scheduler ensures minimiz-
ing the task completion time while maximizing resource
utilization thus improving the overall QoS. The simula-
tion results reveal that combining the classification phase
with the IJFA speed up the completion of tasks based
on their relevance. The advantage of using fog resources
integrated with cloud resources offering superior task
completion time has been presented. The model was rig-
orously tested to successfully evaluate its performance
from low load to the real-world scenario of large vol-
ume and heterogeneous IoT task requests. The proposed

IJFA based scheduler outperforms the traditional Jellyfish
search optimizer (JS) under various test conditions to
prove its effectiveness.

The authors have already started to take this work fur-
ther to propose a multiobjective model minimizing the
response time and energy for the integrated fog-cloud
architecture aiming an improved QoS to the users while
decreasing the cost for the providers.

Acknowledgements
Not applicable.

Authors’ contributions
Nupur Jangu conceived of the presented idea and developed the theory and
performed the computations. Zahid Raza verified the analytical methods and
supervised the findings of this work. All authors discussed the results and
contributed to the preparation of the final manuscript. The author(s) read and
approved the final manuscript.

Authors’ information
Ms. Nupur Jangu, School of Computer and Systems Sciences, Jawaharlal
Nehru University, India (jangu.nupur21@gmail.com)
Lab 02
School of Computer and Systems Sciences
New Delhi, Delhi 110,067, IN
Nupur Jangu is pursuing PhD in the School of Computer & Systems Sciences,
Jawaharlal Nehru University, New Delhi, India. She received her MCA (Master
of Computer Applications) and BCA (Bachelor of Computer Applications)
degree from Rajasthan Technical University, Rajasthan in the year 2014 and
2011, respectively. She has a teaching experience of about three years. Her
areas of interests are cloud computing, Internet of Things (IoT), fog comput-
ing, optimization and parallel & distributed computing
Dr. Zahid Raza, School of Computer and Systems Sciences, Jawaharlal Nehru
University, India (zahidraza75@gmail.com)
Lab 02
School of Computer and Systems SciencesNew Delhi, Delhi 110,067, IN
Dr. Zahid Raza is currently serving as a Professor in the School of Computer
and Systems Sciences, Jawaharlal Nehru University, New Delhi, India. Dr. Raza
has a M.Sc degree in Electronics in which he was the Gold Medalist, M.Tech.
degree in Computer Science and Ph.D. in Computer Science. Prior to joining
Jawaharlal Nehru University, he served as a Lecturer in Banasthali Vidyapith
University, Rajasthan, India. His research interest is in the area of Parallel and
Distributed Systems. He has proposed various scheduling models for job
scheduling for Computational Grid, Cloud and Parallel Systems. His research
interest also includes the use of machine learning for medical problems.
Dr. Raza has published many research papers in various peer reviewed Interna-
tional Journals and Transactions. He has various publications in proceedings
of various peer-reviewed conferences in India and abroad. Dr. Raza is one of
the authors of the Springer Briefs in Computer Science entitled Auction based
Resource Provisioning in Cloud Computing. He has also contributed a chapter in
an edited book. Various invited talks have been delivered by him throughout
his academic career. Dr. Raza has also served in various committees for various
academic, administrative and evaluation purposes

Funding
This research received no specific grant from any funding agency in the pub-
lic, commercial, or not-for-profit sectors.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 9 May 2022 Accepted: 3 December 2022

Page 20 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98

References
	1.	 Afshar A, Massoumi F, Afshar A, Mariño MA (2015) State of the Art Review

of Ant Colony Optimization Applications in Water Resource Manage-
ment. Water Resour Manage 29:3891–3904. https://​doi.​org/​10.​1007/​
s11269-​015-​1016-9

	2.	 Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm opti-
mization. Part I: background and development. Nat Comput 6:467–484.
https://​doi.​org/​10.​1007/​s11047-​007-​9049-5

	3.	 Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algo-
rithms. Swarm Evol Comput 13:34–46. https://​doi.​org/​10.​1016/J.​SWEVO.​
2013.​06.​001

	4.	 Fister I, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly
algorithms: Perspectives and research challenges. Appl Math Comput
252:155–165. https://​doi.​org/​10.​1016/J.​AMC.​2014.​12.​006

	5.	 Yang XS (2014) Preface. Studies in Computational. Intelligence 585:v–vi.
https://​doi.​org/​10.​1007/​978-3-​319-​02141-6

	6.	 Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2019) Metaheuristic research:
a comprehensive survey. Artif Intell Rev 52:2191–2233. https://​doi.​org/​10.​
1007/​s10462-​017-​9605-z

	7.	 Yang X-S, Chien SF, Ting TO (2014) Computational Intelligence and
Metaheuristic Algorithms with Applications. Sci World J 2014:425853.
https://​doi.​org/​10.​1155/​2014/​425853

	8.	 Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired
algorithms for optimization. Elektroteh Vestn/Electrotech Rev 80:116–122

	9.	 Soltanshahi M, Asemi R, Shafiei N (2019) Energy-aware virtual machines
allocation by krill herd algorithm in cloud data centers. Heliyon 5:e02066.
https://​doi.​org/​10.​1016/J.​HELIY​ON.​2019.​E02066

	10.	 Kesavaraja D, Shenbagavalli A (2018) QoE enhancement in cloud virtual
machine allocation using Eagle strategy of hybrid krill herd optimization.
J Parallel Distrib Comput 118:267–279. https://​doi.​org/​10.​1016/J.​JPDC.​
2017.​08.​015

	11.	 Usman MJ, Ismail AS, Chizari H et al (2019) Energy-efficient Virtual
Machine Allocation Technique Using Flower Pollination Algorithm
in Cloud Datacenter: A Panacea to Green Computing. J Bionic Eng
16:354–366. https://​doi.​org/​10.​1007/​s42235-​019-​0030-7

	12.	 Liu XF, Zhan ZH, Deng JD et al (2018) An Energy Efficient Ant Colony
System for Virtual Machine Placement in Cloud Computing. IEEE Trans
Evol Comput 22:113–128. https://​doi.​org/​10.​1109/​TEVC.​2016.​26238​03

	13.	 Alresheedi SS, Lu S, Abd Elaziz M, Ewees AA (2019) Improved multiobjec-
tive salp swarm optimization for virtual machine placement in cloud
computing. HCIS 9:15. https://​doi.​org/​10.​1186/​s13673-​019-​0174-9

	14.	 Li G, Wu Z Ant Colony Optimization Task Scheduling Algorithm for SWIM
Based on Load Balancing. https://​doi.​org/​10.​3390/​fi110​40090

	15.	 Natesan G, Chokkalingam A (2019) Optimal task scheduling in the cloud
environment using a mean Grey Wolf Optimization algorithm. Int J Tech
10:126–136. https://​doi.​org/​10.​14716/​ijtech.​v10i1.​1972

	16.	 Sreenu K, Sreelatha M (2019) W-Scheduler: whale optimization for task
scheduling in cloud computing. Cluster Comput 22:1087–1098. https://​
doi.​org/​10.​1007/​s10586-​017-​1055-5

	17.	 Huang X, Li C, Chen H, An D (2020) Task scheduling in cloud comput-
ing using particle swarm optimization with time varying inertia weight
strategies. Cluster Comput 23:1137–1147. https://​doi.​org/​10.​1007/​
s10586-​019-​02983-5

	18.	 Chaudhary D, Singh Chhillar R (2013) A New Load Balancing Technique
for Virtual Machine Cloud Computing Environment. Int J Comput Appl
69:37–40. https://​doi.​org/​10.​5120/​12114-​8498

	19	 Mohammad OKJ (2018) GALO: A new intelligent task scheduling
algorithm in cloud computing environment. Int J Eng Technol (UAE)
7:2088–2094. https://​doi.​org/​10.​14419/​ijet.​v7i4.​16486

	20.	 Chaudhary D, Kumar B (2018) Cloudy GSA for load scheduling in cloud
computing. Appl Soft Comput 71:861–871. https://​doi.​org/​10.​1016/J.​
ASOC.​2018.​07.​046

	21.	 Kaur M, Kadam S (2018) A novel multiobjective bacteria foraging opti-
mization algorithm (MOBFOA) for multiobjective scheduling. Appl Soft
Comput 66:183–195. https://​doi.​org/​10.​1016/J.​ASOC.​2018.​02.​011

	22.	 Elaziz MA, Xiong S, Jayasena KPN, Li L (2019) Task scheduling in cloud
computing based on hybrid moth search algorithm and differential evo-
lution. Knowl Based Syst 169:39–52. https://​doi.​org/​10.​1016/J.​KNOSYS.​
2019.​01.​023

	23.	 Rajagopalan A, Modale DR, Senthilkumar R (2020) Optimal Scheduling
of Tasks in Cloud Computing Using Hybrid Firefly-Genetic Algorithm.

In: Satapathy SC, Raju KS, Shyamala K et al (eds) Advances in Decision
Sciences, Image Processing, Security and Computer Vision. Springer
International Publishing, Cham, pp 678–687

	24.	 Pradeep K, Prem Jacob T (2018) A Hybrid Approach for Task Scheduling
Using the Cuckoo and Harmony Search in Cloud Computing Environ-
ment. Wireless Pers Commun 101:2287–2311. https://​doi.​org/​10.​1007/​
s11277-​018-​5816-0

	25.	 Gabi D, Samad Ismail A, Zainal A, et al Orthogonal Taguchi-based cat
algorithm for solving task scheduling problem in cloud computing.
https://​doi.​org/​10.​1007/​s00521-​016-​2816-4

	26.	 Gobalakrishnan N, Arun C (2018) A New Multi-Objective Optimal Pro-
gramming Model for Task Scheduling using Genetic Gray Wolf Optimiza-
tion in Cloud Computing. Comput J 61:1523–1536. https://​doi.​org/​10.​
1093/​comjnl/​bxy009

	27.	 Abualigah L, Alkhrabsheh M (2022) Amended hybrid multi-verse
optimizer with genetic algorithm for solving task scheduling problem in
cloud computing. J Supercomput 78:740–65. https://​doi.​org/​10.​1007/​
s11227-​021-​03915-0

	28.	 Jeddi S, Sharifian S A water cycle optimized wavelet neural network
algorithm for demand prediction in cloud computing. https://​doi.​org/​10.​
1007/​s10586-​019-​02916-2

	29.	 Jayasena KPN, Li L, AbdElaziz M, Xiong S (2018) Multi-objective Energy
Efficient Resource Allocation Using Virus Colony Search (VCS) Algorithm.
2018 IEEE 20th International Conference on High Performance Comput-
ing and Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). pp 766–773

	30.	 Hamid Hussain Madni S, Shafie Abd Latiff M, Abdulhamid M, Ali J Hybrid
gradient descent cuckoo search (HGDCS) algorithm for resource schedul-
ing in IaaS cloud computing environment. https://​doi.​org/​10.​1007/​
s10586-​018-​2856-x

	31.	 Elsherbiny S, Eldaydamony E, Alrahmawy M, Reyad AE (2018) An
extended Intelligent Water Drops algorithm for workflow scheduling in
cloud computing environment. Egypt Inform J 19:33–55. https://​doi.​org/​
10.​1016/j.​eij.​2017.​07.​001

	32.	 Manasrah AM, Ba Ali H (2018) Workflow Scheduling Using Hybrid
GA-PSO Algorithm in Cloud Computing. Wirel Commun Mob Comput
2018:1934784. https://​doi.​org/​10.​1155/​2018/​19347​84

	33.	 Karthikeyan K, Sunder R, Shankar K et al (2020) Energy consumption
analysis of Virtual Machine migration in cloud using hybrid swarm
optimization (ABC-BA). J Supercomput 76:3374–3390. https://​doi.​org/​10.​
1007/​s11227-​018-​2583-3

	34.	 Kalra M, Singh S (2015) A review of metaheuristic scheduling techniques
in cloud computing. Egypt Inform J 16:275–295. https://​doi.​org/​10.​
1016/J.​EIJ.​2015.​07.​001

	35.	 Consortium O, Working A (2017) Open fog reference architecture for fog
computing. Open Fog Consortium Architecture Working Group. pp 1–162

	36.	 Chou JS, Truong DN (2021) A novel metaheuristic optimizer inspired by
behavior of jellyfish in ocean. Appl Math Comput 389:125535. https://​doi.​
org/​10.​1016/j.​amc.​2020.​125535

	37.	 Houssein EH, Gad AG, Wazery YM, Suganthan PN (2021) Task Scheduling
in Cloud Computing based on Meta-heuristics: Review, Taxonomy, Open
Challenges, and Future Trends. Swarm Evol Comput 62:100841. https://​
doi.​org/​10.​1016/J.​SWEVO.​2021.​100841

	38.	 Mandal T, Acharyya S (2015) Optimal task scheduling in cloud computing
environment: Meta heuristic approaches. 2015 2nd International Confer-
ence on Electrical Information and Communication Technologies (EICT).
pp 24–28

	39.	 Raju R, Babukarthik RG, Chandramohan D et al (2013) Minimizing the
makespan using Hybrid algorithm for cloud computing. 2013 3rd IEEE
International Advance Computing Conference (IACC). pp 957–962

	40.	 Zuo L, Shu L, Dong S, et al Special section on big data services and com-
putational intelligence for industrial systems A Multiobjective Optimiza-
tion Scheduling Method Based on the Ant Colony Algorithm in Cloud
Computing. https://​doi.​org/​10.​1109/​ACCESS.​2015.​25089​40

	41.	 Ramezani F, Jie, Farookh L et al (2014) Task-Based System Load Balancing
in Cloud Computing Using Particle Swarm Optimization. Int J Parallel
Prog 42:739–754. https://​doi.​org/​10.​1007/​s10766-​013-​0275-4

	42.	 He H, Xu G, Pang S, Zhao Z (2016) AMTS: Adaptive multiobjective task
scheduling strategy in cloud computing. China Commun 13:162–171.
https://​doi.​org/​10.​1109/​CC.​2016.​74641​33

https://doi.org/10.1007/s11269-015-1016-9
https://doi.org/10.1007/s11269-015-1016-9
https://doi.org/10.1007/s11047-007-9049-5
https://doi.org/10.1016/J.SWEVO.2013.06.001
https://doi.org/10.1016/J.SWEVO.2013.06.001
https://doi.org/10.1016/J.AMC.2014.12.006
https://doi.org/10.1007/978-3-319-02141-6
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1155/2014/425853
https://doi.org/10.1016/J.HELIYON.2019.E02066
https://doi.org/10.1016/J.JPDC.2017.08.015
https://doi.org/10.1016/J.JPDC.2017.08.015
https://doi.org/10.1007/s42235-019-0030-7
https://doi.org/10.1109/TEVC.2016.2623803
https://doi.org/10.1186/s13673-019-0174-9
https://doi.org/10.3390/fi11040090
https://doi.org/10.14716/ijtech.v10i1.1972
https://doi.org/10.1007/s10586-017-1055-5
https://doi.org/10.1007/s10586-017-1055-5
https://doi.org/10.1007/s10586-019-02983-5
https://doi.org/10.1007/s10586-019-02983-5
https://doi.org/10.5120/12114-8498
https://doi.org/10.14419/ijet.v7i4.16486
https://doi.org/10.1016/J.ASOC.2018.07.046
https://doi.org/10.1016/J.ASOC.2018.07.046
https://doi.org/10.1016/J.ASOC.2018.02.011
https://doi.org/10.1016/J.KNOSYS.2019.01.023
https://doi.org/10.1016/J.KNOSYS.2019.01.023
https://doi.org/10.1007/s11277-018-5816-0
https://doi.org/10.1007/s11277-018-5816-0
https://doi.org/10.1007/s00521-016-2816-4
https://doi.org/10.1093/comjnl/bxy009
https://doi.org/10.1093/comjnl/bxy009
https://doi.org/10.1007/s11227-021-03915-0
https://doi.org/10.1007/s11227-021-03915-0
https://doi.org/10.1007/s10586-019-02916-2
https://doi.org/10.1007/s10586-019-02916-2
https://doi.org/10.1007/s10586-018-2856-x
https://doi.org/10.1007/s10586-018-2856-x
https://doi.org/10.1016/j.eij.2017.07.001
https://doi.org/10.1016/j.eij.2017.07.001
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1007/s11227-018-2583-3
https://doi.org/10.1007/s11227-018-2583-3
https://doi.org/10.1016/J.EIJ.2015.07.001
https://doi.org/10.1016/J.EIJ.2015.07.001
https://doi.org/10.1016/j.amc.2020.125535
https://doi.org/10.1016/j.amc.2020.125535
https://doi.org/10.1016/J.SWEVO.2021.100841
https://doi.org/10.1016/J.SWEVO.2021.100841
https://doi.org/10.1109/ACCESS.2015.2508940
https://doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1109/CC.2016.7464133

Page 21 of 21Jangu and Raza ﻿Journal of Cloud Computing (2022) 11:98 	

	43.	 Chaudhary D, Kumar B, Khanna R (2017) NPSO Based Cost Optimization
for Load Scheduling in Cloud Computing. In: Thampi S, Martínez Pérez G,
Westphall C, Hu J, Fan C, Gómez Mármol F. (eds) Security in Computing
and Communications. SSCC 2017. Communications in Computer and
Information Science, vol 746. Springer, Singapore. https://​doi.​org/​10.​
1007/​978-​981-​10-​6898-0_9

	44.	 Ramezani F, Lu J, Taheri J et al (2015) Evolutionary algorithm-based
multiobjective task scheduling optimization model in cloud envi-
ronments. World Wide Web 18:1737–1757. https://​doi.​org/​10.​1007/​
s11280-​015-​0335-3

	45.	 Hamid Hussain Madni S, Shafie Abd Latiff M, Ali J, Abdulhamid M (2019)
Multi-objective-Oriented Cuckoo Search Optimization-Based Resource
Scheduling Algorithm for Clouds. Arab J Sci Eng 44:3585–3602. https://​
doi.​org/​10.​1007/​s13369-​018-​3602-7

	46.	 Wu Z, Liu X, Ni Z et al (2013) A market-oriented hierarchical scheduling
strategy in cloud workflow systems. J Supercomput 63:256–293. https://​
doi.​org/​10.​1007/​s11227-​011-​0578-4

	47.	 AL-Amodi S, Patra SS, Bhattacharya S, Mohanty, JR, Kumar V, Barik RK
(2022) Meta-heuristic Algorithm for Energy-Efficient Task Scheduling in
Fog Computing. In: Dhawan A, Tripathi VS, Arya KV, Naik K. (eds) Recent
Trends in Electronics and Communication. Lecture Notes in Electrical
Engineering, vol 777. Springer, Singapore. https://​doi.​org/​10.​1007/​978-​
981-​16-​2761-3_​80

	48.	 Liu Q, Wei Y, Leng S, Chen Y (2017) Task scheduling in fog enabled Inter-
net of Things for smart cities. 2017 IEEE 17th International Conference on
Communication Technology (ICCT). pp 975–980

	49.	 Ghobaei-Arani M, Souri A, Safara F, Norouzi M (2020) An efficient task
scheduling approach using moth-flame optimization algorithm for
cyber-physical system applications in fog computing. Trans Emerg
Telecommun Technol 31:1–14. https://​doi.​org/​10.​1002/​ett.​3770

	50.	 Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling
Internet of Things requests to minimize latency in hybrid Fog–Cloud​
computing. Future Gener Comput Syst 111:539–551. https://​doi.​org/​10.​
1016/j.​future.​2019.​09.​039

	51.	 Abdel-Basset M, El-Shahat D, Elhoseny M, Song H (2021) Energy-Aware
Metaheuristic Algorithm for Industrial-Internet-of-Things Task Schedul-
ing Problems in Fog Computing Applications. IEEE Internet Things J
8:12638–12649. https://​doi.​org/​10.​1109/​JIOT.​2020.​30126​17

	52.	 Abdel-Basset M, Mohamed R, Chakrabortty RK, Ryan MJ (2021) IEGA: An
improved elitism-based genetic algorithm for task scheduling problem in fog
computing. Int J Intell Syst 36:4592–4631. https://​doi.​org/​10.​1002/​int.​22470

	53.	 Ghaffari E (2019) Providing a new scheduling method in fog network
using the ant colony algorithm

	54.	 Rafique H, Shah MA, Islam SU et al (2019) A Novel Bio-Inspired Hybrid Algo-
rithm (NBIHA) for Efficient Resource Management in Fog Computing. IEEE
Access 7:115760–115773. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29249​58

	55.	 Hoseiny F, Azizi S, Shojafar M et al (2021) PGA: A Priority-aware Genetic
Algorithm for Task Scheduling in Heterogeneous Fog-Cloud Computing.
IEEE INFOCOM 2021 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). pp 1–6

	56.	 Ali IM, Sallam KM, Moustafa N et al (2020) An Automated Task Scheduling
Model using Non-Dominated Sorting Genetic Algorithm II for Fog-Cloud
Systems. IEEE Trans Cloud Comput 1. https://​doi.​org/​10.​1109/​TCC.​2020.​
30323​86

	57.	 Hosseinioun P, Kheirabadi M, Kamel Tabbakh SR, Ghaemi R (2020) A new
energy-aware tasks scheduling approach in fog computing using hybrid
meta-heuristic algorithm. J Parallel Distrib Comput 143:88–96. https://​doi.​
org/​10.​1016/j.​jpdc.​2020.​04.​008

	58.	 Jayasena KPN, Thisarasinghe BS (2019) Optimized task scheduling on
fog computing environment using meta heuristic algorithms. 2019 IEEE
International Conference on Smart Cloud (SmartCloud). pp 53–58

	59.	 Ghanavati S, Abawajy J, Izadi D (2022) An Energy Aware Task Scheduling
Model Using Ant-Mating Optimization in Fog Computing Environment. IEEE
Trans Serv Comput 15:2007–2017. https://​doi.​org/​10.​1109/​TSC.​2020.​30285​75

	60.	 Cloud broker. (2022, June 30). In Wikipedia. https://​en.​wikip​edia.​org/​wiki/​
Cloud_​broker. Accessed 20 Feb 2022

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/978-981-10-6898-0_9
https://doi.org/10.1007/978-981-10-6898-0_9
https://doi.org/10.1007/s11280-015-0335-3
https://doi.org/10.1007/s11280-015-0335-3
https://doi.org/10.1007/s13369-018-3602-7
https://doi.org/10.1007/s13369-018-3602-7
https://doi.org/10.1007/s11227-011-0578-4
https://doi.org/10.1007/s11227-011-0578-4
https://doi.org/10.1007/978-981-16-2761-3_80
https://doi.org/10.1007/978-981-16-2761-3_80
https://doi.org/10.1002/ett.3770
https://doi.org/10.1016/j.future.2019.09.039
https://doi.org/10.1016/j.future.2019.09.039
https://doi.org/10.1109/JIOT.2020.3012617
https://doi.org/10.1002/int.22470
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/TCC.2020.3032386
https://doi.org/10.1109/TCC.2020.3032386
https://doi.org/10.1016/j.jpdc.2020.04.008
https://doi.org/10.1016/j.jpdc.2020.04.008
https://doi.org/10.1109/TSC.2020.3028575
https://en.wikipedia.org/wiki/Cloud_broker
https://en.wikipedia.org/wiki/Cloud_broker

	Improved Jellyfish Algorithm-based multi-aspect task scheduling model for IoT tasks over fog integrated cloud environment
	Abstract
	Introduction
	Literature survey
	Meta-heuristics in cloud computing
	Meta-heuristics in fog integrated cloud computing
	Motivation and objective
	The proposed multi-aspect task scheduling approach
	Methodology design
	Problem statement
	Bi-factor task classification
	Multi-aspect task scheduling
	Experimental results
	Simulation environment
	Experimental setting
	Experimental results and analysis
	Scenario 1: batch size variation from 600 to 3000 tasks with a fixed number of iterations as 3000
	Scenario 2: performance evaluation of IJFA using Fog Integrated Cloud, Cloud-Only and Fog- Only Scheduling architectures

	Conclusion and future works
	Acknowledgements
	References

