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Abstract 

Fog computing is an emerging research domain to provide computational services such as data transmission, appli-
cation processing and storage mechanism. Fog computing consists of a set of fog server machines used to com-
municate with the mobile user in the edge network. Fog is introduced in cloud computing to meet data and com-
munication needs for Internet of Things (IoT) devices. However, the vital challenges in this system are job scheduling, 
which is solved by examining the makespan, minimizing energy depletion and proper resource allocation. In this 
paper, we introduced a reinforced strategy Dynamic Opposition Learning based Social Spider Optimization (DOLSSO) 
Algorithm to enhance individual superiority and schedule workflow in Fog computing. The extensive experiments 
were conducted using the FogSim simulator to generate the dataset and an energy-efficient open-source tool uti-
lized to model and simulate resource management in fog computing. The performance of the formulated model is 
ratified using two test cases. The proposed algorithm attained the optimized schedule with minimized cost function 
concerning the CPU processing period and assigned memory. Our simulation outcomes show the efficacy of the 
introduced technique in handling job scheduling issues, and the results are contrasted with five existing metaheuris-
tic techniques. The results show that the proposed method achieves 10% - 15% better CPU utilization and 5%-10% 
less energy consumption than the other techniques.
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Introduction
The everyday needs of society are facilitated using cloud 
computing [1]. Cloud computing system uses master-
slave infrastructure among service providers. The cli-
ent users access cloud computing on-demand to access 
the service using “pay-as-you-go” [2]. Cloud services 
are assessed anywhere at any time through the internet. 
Besides their benefit, cloud computing consumes high 
latency and higher network bandwidth, since data centers 
are available far from the client user. A novel architecture 

is to integrate fog computing in the cloud environment to 
eradicate the above-said issue. The idea of fog computing 
extends direct communication among edge nodes of the 
network [3]. Fog computing network consists of fog serv-
ers with a wireless communication device, data storage 
memory and computational unit [4]. The energy-efficient 
resource utilization plays a significant role in this net-
work. Therefore, any deviation in cloud data might result 
in a substantial change in energy consumption, affecting 
starvation. This situation can be eradicated by efficiently 
scheduling the jobs into the fog server. But it is observed 
that dynamic job scheduling is tricky due to complicated 
task flow and perplexing issues [5].

Job scheduling problem (JSP) is an NP-hard combina-
torial optimization problem due to various numbers of 
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all feasible solutions is t!pm where t denotes the count of 
jobs/tasks, and pm specifies the total count of physical 
machines. Individual jobs deal with the unique opera-
tion sequence. The main aim of job scheduling is to 
reduce the response time and maximise the company’s 
revenue. However, the JSP suffers two main challenges: 
choosing an adequate facility and determining the best 
order of operations to reduce the makespan. Several 
researchers have contributed to solving job scheduling 
using mathematical models, namely exact, heuristic and 
meta-heuristic approaches. Firstly, Exact strategies like 
the dynamic approach, branch and bound method, and 
component and price approaches are adequate to solve 
the small-scale problem and to provide optimal solutions. 
However, these exact approaches are time-consuming 
and suffer to solve large-scale real-time issues. The minor 
JSPs problems can be optimally solved using the CPLEX 
application [6].

In the real-time, most JSPs are large scale and generic 
mathematical models cannot guarantee optimal solu-
tions. Still, they can provide near-optimal solutions con-
cerning colossal time consumption. Recent research has 
used meta-heuristic algorithms, namely evolutionary 
algorithm and swarm intelligence algorithm, to solve 
the JSPs problem. A hybrid Genetic algorithm [7] was 
utilized to minimize the maximum completion time. 
However, the model fails to provide the optimal solu-
tion due to poor convergence. The multi-objective arti-
ficial bee colony algorithm [8] was introduced to address 
the multi-objectives, assignment vector, job permutation 
and machine speed selection. The Pareto archive particle 
swarm optimization algorithm [9] combines the Crowing 
distance-based archive and mutation process to handle 
the JSP issues. Due to the method’s limited exploration 
ability, it becomes stuck in local optima. In [10], the 
ant colony method was used to overcome the problems 
with flexible job shops. The outcomes demonstrate that 
the strategy produces superior results to the compared 
algorithms.

The hybrid genetic and cuckoo search technique 
devised by Singh Satyendra et  al. [11] produces bet-
ter results in small-scale instances but falls short in 
medium- and large-scale ones. Wang et  al. [12] used 
hybrid discrete differential evolution to handle task 
scheduling challenges and reduce the maximum turno-
ver time. However, the algorithm is significantly more 
complicated because of the problem with the solution 
update. Lu et al. [13] suggested a cellular grey wolf opti-
misation to reduce cycle time in blocking flow shops. 
To strengthen the search process by adding new control 
factors, the author of [14] recently presented hybrid 
whale optimization with the Levy flight and DE algo-
rithm. They also used the technique to shorten the 

JSP problem’s turnaround time. The spotted hyena 
optimizer was devised to address the discrete work 
sequence difficulties [5]. Atay et  al. [15] suggested a 
clonal selection algorithm to address the JSP difficul-
ties. The proposed approach yields superior results in 
terms of reducing completion time.

The main objective of the flower pollination algorithm 
[16] is to shorten the time complexity of task sequence 
issues. The author in [17] introduced the bi-objective 
optimization technique to lower the makespan and cost 
factors. The author also used the goal programming 
method to submit multi-objective task sequence assign-
ments in cloud-fog computing [18]. The simulation 
results offer superior outcomes in terms of access level 
control, deadline measures, and service delay times. A 
modified pigeon-inspired optimization technique [19] 
was applied to deal with job sequence issues. The results 
of the experiment outperform the compared algorithms. 
However, due to the complexity of the algorithms, task 
assignment takes a lengthy time.

Social Spider Optimization (SSO) technique is a 
recently introduced swarm intelligence algorithm that 
mimics the social conduct of a spider. The technique 
deliberates the working principle of spiders concern-
ing the biotic actions of cooperative groups. The SSO 
approach segregates the total population into numer-
ous search agents, namely male and female spiders 
and adequately processes the specialized operators for 
each search agent. These operators aid the algorithm in 
trade-off the search process towards finding the opti-
mal solutions. Initially, SSO was introduced to handle 
global optimization problems [20]. In later work, some 
researchers modified the generic SSO algorithm to solve 
binary optimization problems, namely clustering and 
classifications [21]. Further, the generic SSO algorithm 
has been utilized for several complex problems, namely 
constraint optimization problems [22], load balancing 
in a grid environment [23], clustering analysis [24], and 
multi-level thresholding problems [25].

The major highlights of this work are stated as follows;

•	 Our proposed technique integrates the dynamic 
opposition-based learning technique into the social 
spider algorithm to enhance the exploration capabil-
ity and to maximize the convergence rate.

•	 This novel DOLSSO technique handles job sched-
uling issues in cloud environments. It enhances the 
diversity of scheduling solutions and reduces the 
local optimal struck.

•	 Extensive experimentation was conducted using Fog-
Sim with two different test scenarios to validate the 
efficacy of the proposed system in handling the job 
scheduling problem.
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•	 The solution quality of the proposed algorithm is 
compared with five recent state-of-art meta-heuristic 
algorithms.

•	 The results show that the proposed method achieves 
10% - 15% better CPU utilization and 5%-10% less 
energy consumption than the other techniques.

The rest of the article is structured as Literature work 
section deliberates existing works in the literature on 
fog computing infrastructure for handling scheduling 
problems. The JSP in FOG computing section discusses 
the system prototype and Proposed methodology sec-
tion presents the problem definition and shows a repre-
sentation of the SSO algorithm to solve job scheduling 
problems, and Experimental analysis section illustrates 
the simulation analysis. Finally, Conclusion section con-
cludes the work with its outcome and future directions.

Literature work
The scheduling issue is the sharing of present resources 
concerning the count of tasks/jobs. The JSP is a signifi-
cant problem and complex, like the scheduling problem. 
The job scheduling problem on a heterogeneous system 
is considered an NP complex problem [26]. Graph par-
titioning strategy is adapted to balance the load in fog 
computing infrastructure [27]. The authors used dynamic 
graph partitioning for load balancing and cloud auto-
mation technology for building virtual machines. Data 
stream processing [28] is implemented in fog computing 
with QoS aware scheduler, and it will monitor incoming 
and outgoing data for node utilization and inter-node 
communication. Load balancing in fog computing creates 
an issue with the quality of experience [29]. The authors 
proposed a reduced task scheduling algorithm to process 
load balancing in fog computing. Based on the scheduling 
process, resources are allocated to serve fog nodes called 
small cells. Van den Boss et  al. [30] focus on the cost-
efficiently schedule based on deadline constraint heuris-
tic on public and private clouds. The budget constraint 
schedule is implemented in the cloud environment and 
is based on the advantage of comparative methodology. 
This algorithm suits extensive scale networks due to its 
higher complexity [31].

In a standard JSP problem, there is the job block which 
determines the tasks and a block of physical systems 
with its resources [32]. In JSP, the general strategy is to 
process each job in the sequence of physical machines 
with the allocated resource constraints. However, allot-
ted resource constraints are not sufficient in real-world 
situations. Economic factors and globalization force the 
IT industries to sustain by modifying single-standard 
facilities into multi-facility production. Hence, several 
researchers have started to perform their research on JSP, 

which is a much more perplexing problem and schedule 
jobs by minimizing production cost and computational 
time [33].

Based on recent research works, it is examined that 
several researchers have worked on single objective 
constraints such as reducing makespan. Further, in 
multi-objective restrictions such as reducing makes-
pan, increasing workload, and overall power utiliza-
tion of companies). Hongtao Tang et al. [34] introduced 
hybrid teaching and learning-based approach to solv-
ing the scattered and casting job scheduling issue. The 
author presented a three-layer coding method and five 
neighbourhood formations to handle the local search 
process in the algorithm. A real-time casting enterprise 
case study evaluates the algorithm’s performance. The 
observed results are compared with the six state-of-art 
metaheuristic algorithms to prove their efficacy. Hui Li 
et  al. [35] proposed a hybrid differential evolution algo-
rithm to tackle adaptable work planning by reevaluating 
tasks and job priority limitations. Chromosome encryp-
tion and decryption strategy are introduced to handle the 
real-time constraints and to attain a high-quality initial 
population. Further, genetic operators with self-adjusting 
conditions are incorporated to widen the search regions 
and increase the convergence rate.

SSO algorithm is a recently proposed metaheuristic 
algorithm that works based on the working principle of 
the social spider. Erik et al. [22] proposed an SSO algo-
rithm to solve global continuous optimization problems. 
A robust clustering approach using SSO with a chaotic 
technique was presented in 2018 [36]. The literature 
review discussed above deliberates that few works are 
carried out to solve JSPs in fog computing using meta-
heuristic techniques. In addition, none of the research-
ers has utilized the SSO algorithm in literature to handle 
the JSP issue. Hence, we introduced a novel discrete SSO 
to run JSP, and the outcome specifies that DOLSSO has 
attained a better result than existing methods.

The JSP in FOG computing
In this section, the overview of JSP is discussed with the 
set of jobs, sequences and challenges in JSP. Later, the sys-
tem design for fog computing infrastructure is illustrated. 
In addition, the mathematical formulation of large-scale 
JSP is represented.

The overview of JSP
JSP is considered a significant scheduling issue that 
needs to process the sequence of jobs on the system or 
server by considering the number of constraints and 
objectives. A \× ℓ JSP can be expressed as a set of \ jobs 
ψ = ψ1,ψ2, . . . ,ψ\  that is executed on a set of fog 
servers Υ = {Υ1, Υ2, …, Υℓ}. Each task ψi is expressed by 
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order of \i process Pij
(

j = 1, 2, . . . , \i
)

 to be processed in 
a sequence completion order of jobs in a scheduled list. 
The challenge of JSP is to identify the adequate server for 
each process (known as Server selection) and the process 
execution order on the server (known as process order-
ing). According to the constraints of server election and 
job execution on one or more servers. The JSP is classi-
fied into three major classifications: JSP, partial-JSP and 
total-JSP. In JSP, the jobs are executed only on one elected 
server, whereas partial-JSP jobs can be performed on one 
or more partial machines. Finally, total-JSP is hugely flex-
ible and can be implemented on any number of servers, 
as shown in Fig. 1.

System design
Fog computing infrastructure consists of \ number of the 
fog server machine. In our architecture, the cloud admin-
istrator is responsible for partitioning ψ job into T tasks. 
The decomposition of employment into the scheme is 
based on the number of available Fog server machines. 
We propose an SSO algorithm executed by the cloud 
administrator to ensure optimal scheduling in the Fog 
server.

Job scheduling is represented by a Directed Weight 
Graph (DWG); DWG is a weighted-node directed 
graph denoted by  DWG = (T, E, F, μ, δ). T represents 
a set of tasks to be performed, and E indicates data 
dependencies among tasks. Let cloud consist of Υ set 
of Fog server, Υ = {Υ1, Υ2, …, Υℓ}. There are \ jobs sub-
mitted to schedule and executed by the Fog server. 
The jobs are portioned into tasks, and each assign-
ment is apportioned to one fog server to schedule. 
Let Job ψ be partitioned into tasks and represented as 
ψ =

{

ψ1,ψ2, . . . ,ψ\

}

 , where \ =| Y | .E represents the 
set of edges among nodes in T.

Definition 1
In DWG, assume any task can be processed on any Fog 
server machine in the formulated architecture. The 
numeral of edges in the graph is denoted by 
|E| ⊆ |Υ| × |T|. Each task Ti is processed on the Fog 
server machine concerning task execution time and allo-
cated memory to process, and it is represented as, 

Ti =

[

µi

δi

]

 . The CPU execution time of the task Ti on 

Fog, server is represented as μi. δi is used to represent 
allocated memory for the task Ti to perform.

Definition 2
In DWG, input for the graph is assigned using the Initial-
ization Matrix (IG) IG = (Υi, j)n ∗ n. The initialization matrix 
consists of i task to be executed on j fog server machine. 
The element in the initialization matrix is one if the job 
is assigned to the fog server or else it is 0, and it can be 
represented as Υi, j ∈ 0, 1.

The objective of job scheduling is minimizing the total 
cost of execution time on processing tasks and, thus Opti-
mal Scheduled Matrix (OG) is given as OG =

(

Yi,j

)

n∗n
.

The mathematical formulation of large‑scale JSP
This section discusses the mathematical formulation 
of the large-scale job scheduling problem. Large-scale 
JSP is an extension of JSP in the number of jobs and 
machines. Therefore, Large scale JSP consists of the 
same mathematical model of JSPs. The constraints and 
objective functions of large-scale JSP are mathematically 
modelled and given as follows.

(1)Yi,j =











1, if task is allocated to Fog server
machine

0, otherwise

Fig. 1  a JSP (b) P-JSP (c) T-JSP
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1)	 Once the ith job of jth the task is assigned to the ℓth 
server, it cannot be interrupted until it completes its 
execution. Then, the Pij is computed as an additive of 
its initial time and handling time.

where, Cijℓ, Sijℓ and Eijℓ are denoted as culmination time, 
initial time and handling time of the jth task of the ith job 
Pij on server ℓ, respectively.

2)	 The initial time of the ith job of jth task Pij on the 
server, ℓ is calculated based on the peak period of the 
earlier task μ on the server and the peak time of the 
earlier task.

3)	 Server ℓ closes down when the last jobs are com-
pleted its execution.

where, Ψℓ denotes the shutdown time of the server ℓ, ϑ 
indicates the end job on sever ℓ, Ψϑℓ represents the peak 
time of the previous job on server ℓ.

4)	 Some set of limitations on the server for the execu-
tion of the process. Thus, the constraints are speci-
fied below.

where n and m indicate the sequence of jobs and servers, 
respectively. Cωℓ, Eωℓ specifies the culmination time and 
handling time of job ω on server ℓ, Υ determines the size-
able positive integer. χiωℓ denotes the handling sequence 
priority of job i and job ω on server ℓ. If job i Is executed 
on the server ℓ then χiωℓ ∈ 1, otherwise 0.

5)	 A single server suffers from handling more than one 
operation simultaneously.

where, Τijωtℓ denoted as whether the ith job of the jth task 
Pij is handled earlier than the tth task of the ωth job Pωt 

(2)Cijℓ = Sijℓ + Eijℓ

(3)Sijℓ = max
{

S(i−1)µℓ + E(i−1)µℓ,Ci(j−1)(ℓ−1)

}

(4)�ℓ = �ϑℓ

(5)Cωℓ − Ciℓ + Y(1− χiωℓ) ≥ Eωℓ
i,ω = 1, 2, . . . , n; ℓ = 1, 2, . . . ,m

(6)Sijℓ ≥ Cωtℓ − Tijωtℓ.Y,∀ℓ ∈ Yij ∩ Yωt

(7)Sωtℓ ≥ Cijℓ −
(

1− Tijωtℓ

)

.Y,∀ℓ ∈ Yij ∩ Yωt

on server ℓ, if it is executed, then 1; otherwise, 0. Υij ∩ Υωt 
indicates the vacant server set that can able to handle the 
tasks Pij and Pωt simultaneously.

6)	 When the task has numerous operations on a similar 
job, it is essential to process through the determined 
order.

where, φi denotes the numeral tasks of job i.

7)	 When the server is scheduled, then the entire jobs 
can access at the initial time (S = 0)

8)	 For each job, one server can be chosen for its execu-
tion.

where βijℓ represented as whether the server ℓ handles 
the job Pij, one deliberates the process is executing, 0 
determines the process is not completed.

The objective of the JSP optimization problem incorpo-
rates max culmination time, max server load, min execu-
tion cost, etc. This work utilizes the max culmination time 
to ensure the proposed algorithm’s efficacy, which can be 
mathematically modelled as follows.

where Makespan denotes the max culmination time of all 
servers, it is the initial specification to calculate the han-
dling efficacy. Ψℓ is mathematically expressed as.

Proposed methodology
This section discusses the overview of generic social 
spider optimization algorithm, the dynamic opposite 
learning concept and the formulation of the proposed 
algorithm.

(8)
Sijℓ ≥ Ci(j−1)ℓ, ℓ ∈ Yij

∀i = 1, 2, . . . , n, ∀j = 2, . . . ,ϕi

(9)Sijℓ ≥ 0

(10)Cijℓ ≥ 0

(11)
m
∑

ℓ=1

βijℓ = 1

(12)F = min(Makespan) = minmax
1≤ℓ≤m

{

max
1≤i≤n

�ℓ

}

(13)�ℓ =

n
∑

i=1

ϕi
∑

j=1

m
∑

ℓ=1

(

Sijℓβijℓ + Eijℓβijℓ
)
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Overview of social spider optimization algorithm
SSO algorithm mimics the foraging actions of vibration 
sense. The source of food is another social spider or prey 
on the web. The direction of the food source is erudite 
using vibration sense. The spider denotes a feasible solu-
tion in the SSO algorithm, and the web indicates search 
space. SSO consists of male and female agents; the female 
numeral individual is more significant than the male indi-
vidual. The numeral female individual (Nf) and male indi-
viduals (Nm) are calculated using

where rand denotes the arbitrary function within the 
range of [0,1]; Np denotes the numeral populations; each 
spider receives weight Wi in population, Φ using fitness 
calculation. The weight was calculated using

The vibration sense Va, b on the web received by spider a 
and sent by spider b. da, b is the Euclidean distance, which 
can be calculated using

(14)Nf = Floor[(0.9− rand.0.25).Np]

(15)Nm = Np− Nf

(16)Wi =
fit(�)− worst�

best� − worst�

The cooperative behaviour of female agents is calculated 
using

where x, y, z, rl, rand are arbitrary values between [0,1], γ 
is the threshold value, t is the iteration number for near-
est spider c, d. The cooperative behaviour of male agents 
is calculated using

where, 
∑Nm

e=1 me(o).WNf+h
∑Nm

e=1 .WNf+h

 denotes the weighted mean for 

the male population.

(17)Va,b = Wi.e
−d2a,b

(18)fi(t + 1) =

⎧⎪⎪⎨⎪⎪⎩

fi(t) + x.Vi,c .
�
Φc − fi(t)

�
+ y.Vi,d .

�
Φd − fi(t)

�
+ z.

�
rand −

1

2

�
rl < 𝛾

fi(t) − x.Vi,c .
�
Φc − fi(t)

�
− y.Vi,d .

�
Φd − fi(t)

�
+ z.

�
rand −

1

2

�
rl ≥ 𝛾

(19)

mi(o + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

mi(o) + x.Vi,f .
�
Φf −mi(o)

�
+ +z.

�
rand −

1

2

�

if WNf +i
> WNf +m

mi(o) + x.

�∑Nm
e=1

me(o).WNf +h∑Nm
e=1

.WNf +h

−mi(o)

�

if WNf +i
≤ WNf +m
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The dominant male and female agents are used for mat-
ing within radius r can be calculated using

where ubhighj  and lblowj  are the upper and lower con-
fines of the problem. The SSO algorithm is presented in 
algorithm 1.

Dynamic opposite learning method
The dynamic opposite learning method (DOL) is an 
extension of the opposition-based learning (OBL) method 
that is proposed by Xu et  al. [37]. However, the OBL 
method can improve the quality of the algorithm towards 
optimal concerning the exploration of search space. But, 
determining the opposite position from the current situ-
ation is imminent. DOL is familiarized to advance the 
solution quality by eliminating the local optimal struck 
to eradicate the issue. The DOL is moreover similar to 
OBL by changing the opposite number Xo with Xro (i.e., 
Xro =  rand . Xo, rand  ∈ [0, 1]). The stable pursuit region can 
be modified into an unstable pursuit region trademarking 
the active change concerning arbitrary number.

Assumption
Let α denoted as the lower bound of the individual, λ 
denotes the upper bound of the individual. For instance, 
Xro, α and λ consist of two cases, namely Xro ∈ [α, λ] and 
Xro ∉ [α, λ]. The individual Xro, Xo and X consist of three 
associations such as 1) Xro between Xo and X 2) Xro is 
larger than Xo and 3) Xro is minimum than X.

The dynamic opposite number Xdo can be regenerated 
when Xdo ∉ [α, λ]. At the same time, if Xro is exceed the 
upper and lower bound due to the below Eq. (21).

The mathematical model of DOL concerning the 
dynamic opposite number and the active opposite point 
is expressed as follows.

Dynamic opposite value
It is considered to determine the step-by-step process of DOL. 
The mathematical model of Xdo can be expressed in Eq. (22).

(20)r =

∑n
j=1

(

ub
high
j − lblowj

)

2.n

(21)Xdo =

{

X + r1.(Xro − X) if Xro > �

X + r2.(Xro − X) if Xro < α

}

(22)Xdo = X + z.r1.(r2.Xo − X)

(23)Xo = �+ α − X

where, r1 and r2 denoted as arbitrary values with the 
bound of [0,1]; z indicates the learning weight value; X 
represented as the actual number with the range of [α, λ].

Dynamic opposite point: The expansion of positive con-
tradictory value in the various dimensional search point. 
The mathematical model of the active opposite end can 
be expressed in Eq. (24).

where, D determines the D-dimensional space that 
incorporates various possible individuals; X speci-
fies the present individual with D-dimensional space 
(i.e., X = {X1, X2, …, XD} are limited to upper (i.e., 
λ = {λ1, λ2, …, λD} and lower α = {α1, α2, …, αD} bound; r3 
and r4 are indicates the arbitrary values with the range of 
[0,1].

The DOL method is incorporated into the beginning 
and rehearsal of the SSO population. In the initializa-
tion process, the opposite population Φdo is generated by 
the population Φ (i.e., Φdo ∪ Φ). Then, the fitness of the 
population Φdo ∪ Φ is computed and picks the half set of 
individuals to the population ΦS. In the generation pro-
cess, if the hopping process gratifies, it produces the Φdo 
by ΦS and process the whole population as Φdo ∪ ΦS, then 
compute the fitness of Φdo ∪ ΦS and repeat the process 
until the process completes. If the solution of Φdo, ΦS and 
Φ exceeds the boundary, then regenerate the individual 
within the upper and lower limit.

DOL‑based SSO algorithm
In this part, we proposed a novel variant of SSO, namely 
DOLSSO, to enhance the standard SSO algorithm to 
handle the precocity that constantly riddles several opti-
mization techniques.

Population initialization based on DOL
The opposite solutions based on DOL are generated from 
the set of the first half of present individuals. The DOL pop-
ulation is processed with the SSO population initialization 
method. The mathematical model is expressed as follows.

where, Φij indicates the jth dimension of ith the solution in 
population created by SSO, r1, i and r2, i are two arbitrary 
values within the range of [0,1], λj and αj specifies the 
upper and lower boundary of jth dimension of ith solution 

(24)Xdo,j = Xj + z.r3.
(

r4.Xo,j − Xj

)

, j = 1, 2, . . . ,D

(25)Xo,j = �j + αj − Xj

(26)�do
ij = �ij + r1,i.

(

r2,i.
(

�j + αj −�ij

)

−�ij

)
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�do
ij  , determines the opposite individual of Φij. The DOL 

population initialization �do
ij  should satisfy the boundary 

region as per Eq. (27).

(27)�do
ij = RN , if �do

ij < αj

∥

∥

∥
�do

ij > �j

where RN indicates the arbitrary values within the limit 
of [αj, λj].

Generation hopping based on DOL
DOL iteration hopping is analogous to the DOL population 
initialization process. This DOL iteration hopping strategy 

Fig. 2  Flowchart of DOLSSO algorithm
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can be processed into whole generation to aid the algorithm 
to eradicate from local optimal struck. The hopping rate of 
the DOL method is represented by δ ∈ [0, 1] to determine the 
probability of the technique according to the hop rate. If the 
arbitrary value produced is minimal than the hopping rate 
factor δ, DOL process the hopping action. The mathematical 
model of the hopping process is expressed as follows.

where z denotes the learning weight that differs concern-
ing various scenarios and conditions, r3, i and r4, i are the 
two arbitrary values within the range of [0,1].

(28)�do
ij = �ij + z. r3,i.

(

r4,i.
(

�j + αj −�ij

)

−�ij

)
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DOLSSO algorithm
As discussed earlier, DOLSSO is the modified version 
of SSO that includes the DOL method in standard SSO. 
The SSO algorithm is given in algorithm 1, and the DOL 
method is discussed in Dynamic opposite learning method 
section. The procedure of DOLSSO is presented in algo-
rithm 2, and the workflow of DOLSSO is sketched in Fig. 2.

Decoding and encoding for JSP
A wide variety of strategies are available to encode and 
decode the JSP. Gao et  al. [38] introduced one of the 
most popular strategies, including server selection and 

process ordering vectors. Although the strategy pro-
vides better results for some scenarios, its representa-
tion of individuals increases memory utilisation. In this 
work, we utilized the encoding and decoding strategy 
from the reference [37].

Exploration and exploitation analysis
We utilized the hopping rate factor (δ) in the proposed 
system to trade off the exploration and exploitation pro-
cess. The individual that satisfies the hopping element 
then the current individual will undergo the exploration 
process using the DOL method. Otherwise, the individ-
ual utilizes the SSO method to exploit the search space. 
Therefore, we use δ with the fixed values of 0.5 to deter-
mine the solution update process. The DOLSSO algo-
rithm initiates with a set of random solutions. At each 
generation, search individuals update their positions 
concerning randomly selected search agents, or the best 
individual found so far. Depending on the hopping factor 
δ, the proposed algorithm can switch between the explo-
ration and exploitation processes. Finally, the DOLSSO is 
terminated by the fulfilment of a stop criterion.

Experimental analysis
The experimentation setup and evaluation of results 
are performed to ensure the effectiveness of the pro-
jected system. Later, the obtained outcome of the intro-
duced model is compared with five state-of-art existing 
metaheuristic algorithms. We have utilized the FogSim 
simulator in this scheduling to generate the dataset. An 
energy-efficient open-source tool is used for modelling 
and simulating resource management in fog/edge com-
puting. The FogSim is integrated with CloudSim to deal 

Table 1  Simulation parameters for experimentation

Parameters Values

Number of processors 4, 8, 12, 16, 20, 24

Number of Tasks 20, 40, 80, 160, 320, 400

Number of fog nodes 5, 10, 15, 20

DOLSSO (Proposed) Max_iter: 100,
Population size: 60,
Hopping rate factor (δ): 0.5,
Learning weight (z): 0.1,
Upper limit (λ): 1

SSO [22] Learning weight (z): 0.1
Coefficient parameter: [0,2]

GOA [39] Attraction force: [2.079,4],
Repulsion factor: [0, 2.079],
coefficient value: [1, 0.0001]

SSA [40] Step size: 10,
Fitness function constant: 0.9

GWO [41] coefficient parameter (a): [2,0]

WOA [42] Parameter (A): [−1, 1]
Random probability (p): 0.5

Fig. 3  Resource Consumption concerning the number of CPUs
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with the actions between fog computing environments. 
In CloudSim, different parameters, like data centres, use 
communication processes for transmission.

Parameter settings
The performance of the SSO algorithm on solving job 
scheduling is coded using FogSim with CloudSim under 
Windows 10 on an Intel i5 processor with 3.4GHz and 
16GB RAM. The empirical result is compared with other 
state-of-art metaheuristic algorithms, namely Social Spi-
der Optimization (SSO) [22], grasshopper optimization 
algorithm (GOA) [39], Salp swarm algorithm (SSA) [40], 
Grey Wolf Optimization (GWO) [41], and Whale Opti-
mization Algorithm (WOA) [42]. For all experimentation 
algorithms, the population size, maximum iterations and 
number of runs are fixed as 60, 100 and 20, respectively. 
The simulation parameters utilized for this experimenta-
tion is illustrated in Table 1.

Result analysis
The dataset is generated with the aid of a FogSim-based 
simulation tool. All the proposed and compared algo-
rithms are iterated for 100 epochs for each test case 
with varying tasks, and obtained results are graphically 

plotted. Further, we experimented on two test cases 
concerning the number of processors and fog nodes. 
For the first case, the number of processors varies from 
4, 8, 12, 16, 20, and 24 with 20, 40, 80, 160, 320 and 400 
tasks, respectively. Each task is allocated to an adequate 
number of fog servers, and processing orders are deter-
mined by solution representation as specified in DOL-
based SSO algorithm section. For the second case, the 
number of fog nodes varies from 5, 10, 15 and 20 with 
respect to different jobs.

Case 1: experimentation based on the number of processors
In the first case, we have created varying numbers of 
processors with various tasks. The experimentation 
results are measured, and the introduced model is con-
trasted with five metaheuristic algorithms: GOA, SSA, 
GWO, WOA and SSO. Figure 3 determines the average 
resource utilization concerning the number of proces-
sors. Figure  3 shows that the proposed DOL-SSP algo-
rithm provides better than GOA, SSA, GWO, WOA and 
SSO. The standard SSA algorithm competes with the 
proposed algorithm but fails during iterations. At the 
same time, the proposed DOL-SSO algorithm utilizes 
the processors effectively by allocating adequate tasks 
to the available machines. GWO and WOA algorithm 

Table 2  Execution time for Jobs

# Fog nodes GOA SSA GWO WOA SSO DOLSSO

5 51.31 52.72 50.45 5.31 51.72 50.15

10 53.87 54.95 52.18 53.14 54.16 51.87

15 56.47 56.39 53.52 53.98 53.78 52.14

20 54.98 55.41 52.49 53.14 52.14 51.89

Fig. 4  Average Energy Consumption Ratio concerning the number of CPUs
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provides moreover similar results in resource utiliza-
tion. Overall, average resource utilization by DOLSSO 
was improved on average by 12% more than the standard 
SSA algorithm.

The average energy depletion ratio concerning the 
number of processors is represented in Fig.  4. In this 
experimentation, achieving a lower energy consumption 

ratio specifies the algorithm hoards the energy and pro-
vides better performance. Based on Fig.  4, we noticed 
that the introduced model gives significant outcomes to 
all numbers of processors except eight processors com-
pared to other algorithms. Moreover, GWO and SSA pro-
vide similar results and attain more energy consumption 
ratio, which offers less performance than the proposed 

Fig. 5  Analysis and comparison of Execution time to process job

Table 3  Allocated memory for jobs

# Fog nodes GOA SSA GWO WOA SSO DOLSSO

5 1.2 1.4 1.3 1.2 1.4 1.1

10 2 2.2 1.6 1.8 2.1 1.5

15 2.5 2.5 2.3 2.2 2.4 2.1

20 3 3.1 2.8 3.2 2.9 2.6

Fig. 6  Analysis and comparison of Allocated memory for the job
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method. The standard SSO algorithm and the proposed 
algorithm achieve the same results due to the random 
initialization of populations. Also, several ways consume 
more energy than the proposed algorithm. Though the 
proposed algorithm attains the same output in 8 proces-
sors, the resources are more effectively utilized than the 
standard SSO algorithm.

Case 2: experimentation based on the number of fog nodes
The efficacy of the proposed model on fog computing 
scenarios is validated by varying fog nodes from 5 to 20 
with a varying number of jobs. CPU clock rate and allo-
cated memory for heterogeneous nodes are taken from 
[43]. We have considered four cases of fog nodes; the 
maximum number of iterations is 8000 in all test cases 
with 20 runs. The introduced model is contrasted with 
five existing metaheuristic algorithms like GOA, SSA, 
GWO, WOA and SSO. For evaluation, two performance 
metrics are utilized: execution time and allocated mem-
ory for jobs with respect to completion time. Once the 
server is distributed with a specific number of jobs, it is 
locked until it completes its execution. The experimen-
tation of execution time for various jobs concerning fog 
nodes is observed in Table 2. The execution time for jobs 
is illustrated in Fig. 5. The table and Fig. 5 clearly show 
that the introduced model provides improved results 
concerning minimum execution time than the other 
compared algorithms.

The allocated memory for jobs concerning the number 
of fog nodes is observed in Table 2. The pictorial repre-
sentation of allocated memory for jobs is illustrated in 
Fig.  6. As observed from the results, Table  3 and Fig.  6 
specifies that the concert of the DOLSSO method out-
performs well than compared algorithms. The maximum 
allocated memory concerning 20 fog nodes for various 
determined jobs attained by DOLSSO (2.6 GB) is lesser 
than the standard SSO (2.9 GB). In addition, allocated 
memory for jobs achieved by GWO (2.8 GB) and SSO 
(2.9 GB) are closer. Based on the experimentation results, 
incorporating the DOL strategy into SSO improves per-
formance by eradicating local optimal struck and a better 
convergence rate.

Conclusion
In the last few years, fog computing has given great 
attention to researchers, industrialists and the commu-
nity due to its computational services. We addressed the 
job scheduling issue in the fog computing setting with 
reduced CPU time utilization and memory usage. This 
work introduces a novel version of the SSO method by 
incorporating the dynamic opposition learning (DOL) 
approach, namely the DOLSSO algorithm. The proposed 

model enriches the solution quality by eradicating the 
local optimal struck and boosting the convergence rate 
towards the optimal solution. The experimentation is 
carried out in the FogSim simulation tool with two dif-
ferent scenarios. The first scenario pacts with several 
processors concerning the number of tasks, and the sec-
ond test case deals with the number of fog nodes con-
cerning the number of jobs. The proposed infrastructure 
guarantees the execution of the data request and satisfies 
mobile users effectively using the DOLSSO algorithm. 
The empirical result shows the algorithm’s effective-
ness in obtaining an optimal schedule in a Fog comput-
ing environment. The results show that the proposed 
method achieves ~ 10% - 15% better CPU utilization 
and ~ 5%-10% less energy consumption than other algo-
rithms. Further, this work can be extended to handle the 
multi-objective flexible job scheduling issue by incor-
porating self-adaptive parameters into the DOLSSO 
algorithm.
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