
Kuppusamy et al. Journal of Cloud Computing (2022) 11:99
https://doi.org/10.1186/s13677-022-00380-9

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Job scheduling problem in fog‑cloud‑based
environment using reinforced social spider
optimization
P. Kuppusamy1, N. Marline Joys Kumari2, Wael Y. Alghamdi3, Hashem Alyami3, Rajakumar Ramalingam4,
Abdul Rehman Javed5,6 and Mamoon Rashid7* 

Abstract 

Fog computing is an emerging research domain to provide computational services such as data transmission, appli-
cation processing and storage mechanism. Fog computing consists of a set of fog server machines used to com-
municate with the mobile user in the edge network. Fog is introduced in cloud computing to meet data and com-
munication needs for Internet of Things (IoT) devices. However, the vital challenges in this system are job scheduling,
which is solved by examining the makespan, minimizing energy depletion and proper resource allocation. In this
paper, we introduced a reinforced strategy Dynamic Opposition Learning based Social Spider Optimization (DOLSSO)
Algorithm to enhance individual superiority and schedule workflow in Fog computing. The extensive experiments
were conducted using the FogSim simulator to generate the dataset and an energy-efficient open-source tool uti-
lized to model and simulate resource management in fog computing. The performance of the formulated model is
ratified using two test cases. The proposed algorithm attained the optimized schedule with minimized cost function
concerning the CPU processing period and assigned memory. Our simulation outcomes show the efficacy of the
introduced technique in handling job scheduling issues, and the results are contrasted with five existing metaheuris-
tic techniques. The results show that the proposed method achieves 10% - 15% better CPU utilization and 5%-10%
less energy consumption than the other techniques.

Keywords:  Social spider algorithm, Job scheduling, Fog computing, Cloud computing

Introduction
The everyday needs of society are facilitated using cloud
computing [1]. Cloud computing system uses master-
slave infrastructure among service providers. The cli-
ent users access cloud computing on-demand to access
the service using “pay-as-you-go” [2]. Cloud services
are assessed anywhere at any time through the internet.
Besides their benefit, cloud computing consumes high
latency and higher network bandwidth, since data centers
are available far from the client user. A novel architecture

is to integrate fog computing in the cloud environment to
eradicate the above-said issue. The idea of fog computing
extends direct communication among edge nodes of the
network [3]. Fog computing network consists of fog serv-
ers with a wireless communication device, data storage
memory and computational unit [4]. The energy-efficient
resource utilization plays a significant role in this net-
work. Therefore, any deviation in cloud data might result
in a substantial change in energy consumption, affecting
starvation. This situation can be eradicated by efficiently
scheduling the jobs into the fog server. But it is observed
that dynamic job scheduling is tricky due to complicated
task flow and perplexing issues [5].

Job scheduling problem (JSP) is an NP-hard combina-
torial optimization problem due to various numbers of

*Correspondence: mamoon873@gmail.com

7 Department of Computer Engineering, Faculty of Science and Technology,
Vishwakarma University, Pune 411048, India
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00380-9&domain=pdf

Page 2 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

all feasible solutions is t!pm where t denotes the count of
jobs/tasks, and pm specifies the total count of physical
machines. Individual jobs deal with the unique opera-
tion sequence. The main aim of job scheduling is to
reduce the response time and maximise the company’s
revenue. However, the JSP suffers two main challenges:
choosing an adequate facility and determining the best
order of operations to reduce the makespan. Several
researchers have contributed to solving job scheduling
using mathematical models, namely exact, heuristic and
meta-heuristic approaches. Firstly, Exact strategies like
the dynamic approach, branch and bound method, and
component and price approaches are adequate to solve
the small-scale problem and to provide optimal solutions.
However, these exact approaches are time-consuming
and suffer to solve large-scale real-time issues. The minor
JSPs problems can be optimally solved using the CPLEX
application [6].

In the real-time, most JSPs are large scale and generic
mathematical models cannot guarantee optimal solu-
tions. Still, they can provide near-optimal solutions con-
cerning colossal time consumption. Recent research has
used meta-heuristic algorithms, namely evolutionary
algorithm and swarm intelligence algorithm, to solve
the JSPs problem. A hybrid Genetic algorithm [7] was
utilized to minimize the maximum completion time.
However, the model fails to provide the optimal solu-
tion due to poor convergence. The multi-objective arti-
ficial bee colony algorithm [8] was introduced to address
the multi-objectives, assignment vector, job permutation
and machine speed selection. The Pareto archive particle
swarm optimization algorithm [9] combines the Crowing
distance-based archive and mutation process to handle
the JSP issues. Due to the method’s limited exploration
ability, it becomes stuck in local optima. In [10], the
ant colony method was used to overcome the problems
with flexible job shops. The outcomes demonstrate that
the strategy produces superior results to the compared
algorithms.

The hybrid genetic and cuckoo search technique
devised by Singh Satyendra et al. [11] produces bet-
ter results in small-scale instances but falls short in
medium- and large-scale ones. Wang et al. [12] used
hybrid discrete differential evolution to handle task
scheduling challenges and reduce the maximum turno-
ver time. However, the algorithm is significantly more
complicated because of the problem with the solution
update. Lu et al. [13] suggested a cellular grey wolf opti-
misation to reduce cycle time in blocking flow shops.
To strengthen the search process by adding new control
factors, the author of [14] recently presented hybrid
whale optimization with the Levy flight and DE algo-
rithm. They also used the technique to shorten the

JSP problem’s turnaround time. The spotted hyena
optimizer was devised to address the discrete work
sequence difficulties [5]. Atay et al. [15] suggested a
clonal selection algorithm to address the JSP difficul-
ties. The proposed approach yields superior results in
terms of reducing completion time.

The main objective of the flower pollination algorithm
[16] is to shorten the time complexity of task sequence
issues. The author in [17] introduced the bi-objective
optimization technique to lower the makespan and cost
factors. The author also used the goal programming
method to submit multi-objective task sequence assign-
ments in cloud-fog computing [18]. The simulation
results offer superior outcomes in terms of access level
control, deadline measures, and service delay times. A
modified pigeon-inspired optimization technique [19]
was applied to deal with job sequence issues. The results
of the experiment outperform the compared algorithms.
However, due to the complexity of the algorithms, task
assignment takes a lengthy time.

Social Spider Optimization (SSO) technique is a
recently introduced swarm intelligence algorithm that
mimics the social conduct of a spider. The technique
deliberates the working principle of spiders concern-
ing the biotic actions of cooperative groups. The SSO
approach segregates the total population into numer-
ous search agents, namely male and female spiders
and adequately processes the specialized operators for
each search agent. These operators aid the algorithm in
trade-off the search process towards finding the opti-
mal solutions. Initially, SSO was introduced to handle
global optimization problems [20]. In later work, some
researchers modified the generic SSO algorithm to solve
binary optimization problems, namely clustering and
classifications [21]. Further, the generic SSO algorithm
has been utilized for several complex problems, namely
constraint optimization problems [22], load balancing
in a grid environment [23], clustering analysis [24], and
multi-level thresholding problems [25].

The major highlights of this work are stated as follows;

•	 Our proposed technique integrates the dynamic
opposition-based learning technique into the social
spider algorithm to enhance the exploration capabil-
ity and to maximize the convergence rate.

•	 This novel DOLSSO technique handles job sched-
uling issues in cloud environments. It enhances the
diversity of scheduling solutions and reduces the
local optimal struck.

•	 Extensive experimentation was conducted using Fog-
Sim with two different test scenarios to validate the
efficacy of the proposed system in handling the job
scheduling problem.

Page 3 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

•	 The solution quality of the proposed algorithm is
compared with five recent state-of-art meta-heuristic
algorithms.

•	 The results show that the proposed method achieves
10% - 15% better CPU utilization and 5%-10% less
energy consumption than the other techniques.

The rest of the article is structured as Literature work
section deliberates existing works in the literature on
fog computing infrastructure for handling scheduling
problems. The JSP in FOG computing section discusses
the system prototype and Proposed methodology sec-
tion presents the problem definition and shows a repre-
sentation of the SSO algorithm to solve job scheduling
problems, and Experimental analysis section illustrates
the simulation analysis. Finally, Conclusion section con-
cludes the work with its outcome and future directions.

Literature work
The scheduling issue is the sharing of present resources
concerning the count of tasks/jobs. The JSP is a signifi-
cant problem and complex, like the scheduling problem.
The job scheduling problem on a heterogeneous system
is considered an NP complex problem [26]. Graph par-
titioning strategy is adapted to balance the load in fog
computing infrastructure [27]. The authors used dynamic
graph partitioning for load balancing and cloud auto-
mation technology for building virtual machines. Data
stream processing [28] is implemented in fog computing
with QoS aware scheduler, and it will monitor incoming
and outgoing data for node utilization and inter-node
communication. Load balancing in fog computing creates
an issue with the quality of experience [29]. The authors
proposed a reduced task scheduling algorithm to process
load balancing in fog computing. Based on the scheduling
process, resources are allocated to serve fog nodes called
small cells. Van den Boss et al. [30] focus on the cost-
efficiently schedule based on deadline constraint heuris-
tic on public and private clouds. The budget constraint
schedule is implemented in the cloud environment and
is based on the advantage of comparative methodology.
This algorithm suits extensive scale networks due to its
higher complexity [31].

In a standard JSP problem, there is the job block which
determines the tasks and a block of physical systems
with its resources [32]. In JSP, the general strategy is to
process each job in the sequence of physical machines
with the allocated resource constraints. However, allot-
ted resource constraints are not sufficient in real-world
situations. Economic factors and globalization force the
IT industries to sustain by modifying single-standard
facilities into multi-facility production. Hence, several
researchers have started to perform their research on JSP,

which is a much more perplexing problem and schedule
jobs by minimizing production cost and computational
time [33].

Based on recent research works, it is examined that
several researchers have worked on single objective
constraints such as reducing makespan. Further, in
multi-objective restrictions such as reducing makes-
pan, increasing workload, and overall power utiliza-
tion of companies). Hongtao Tang et al. [34] introduced
hybrid teaching and learning-based approach to solv-
ing the scattered and casting job scheduling issue. The
author presented a three-layer coding method and five
neighbourhood formations to handle the local search
process in the algorithm. A real-time casting enterprise
case study evaluates the algorithm’s performance. The
observed results are compared with the six state-of-art
metaheuristic algorithms to prove their efficacy. Hui Li
et al. [35] proposed a hybrid differential evolution algo-
rithm to tackle adaptable work planning by reevaluating
tasks and job priority limitations. Chromosome encryp-
tion and decryption strategy are introduced to handle the
real-time constraints and to attain a high-quality initial
population. Further, genetic operators with self-adjusting
conditions are incorporated to widen the search regions
and increase the convergence rate.

SSO algorithm is a recently proposed metaheuristic
algorithm that works based on the working principle of
the social spider. Erik et al. [22] proposed an SSO algo-
rithm to solve global continuous optimization problems.
A robust clustering approach using SSO with a chaotic
technique was presented in 2018 [36]. The literature
review discussed above deliberates that few works are
carried out to solve JSPs in fog computing using meta-
heuristic techniques. In addition, none of the research-
ers has utilized the SSO algorithm in literature to handle
the JSP issue. Hence, we introduced a novel discrete SSO
to run JSP, and the outcome specifies that DOLSSO has
attained a better result than existing methods.

The JSP in FOG computing
In this section, the overview of JSP is discussed with the
set of jobs, sequences and challenges in JSP. Later, the sys-
tem design for fog computing infrastructure is illustrated.
In addition, the mathematical formulation of large-scale
JSP is represented.

The overview of JSP
JSP is considered a significant scheduling issue that
needs to process the sequence of jobs on the system or
server by considering the number of constraints and
objectives. A \× ℓ JSP can be expressed as a set of \ jobs
ψ = ψ1,ψ2, . . . ,ψ\ that is executed on a set of fog
servers Υ = {Υ1, Υ2, …, Υℓ}. Each task ψi is expressed by

Page 4 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

order of \i process Pij
(

j = 1, 2, . . . , \i
)

 to be processed in
a sequence completion order of jobs in a scheduled list.
The challenge of JSP is to identify the adequate server for
each process (known as Server selection) and the process
execution order on the server (known as process order-
ing). According to the constraints of server election and
job execution on one or more servers. The JSP is classi-
fied into three major classifications: JSP, partial-JSP and
total-JSP. In JSP, the jobs are executed only on one elected
server, whereas partial-JSP jobs can be performed on one
or more partial machines. Finally, total-JSP is hugely flex-
ible and can be implemented on any number of servers,
as shown in Fig. 1.

System design
Fog computing infrastructure consists of \ number of the
fog server machine. In our architecture, the cloud admin-
istrator is responsible for partitioning ψ job into T tasks.
The decomposition of employment into the scheme is
based on the number of available Fog server machines.
We propose an SSO algorithm executed by the cloud
administrator to ensure optimal scheduling in the Fog
server.

Job scheduling is represented by a Directed Weight
Graph (DWG); DWG is a weighted-node directed
graph denoted by DWG = (T, E, F, μ, δ). T represents
a set of tasks to be performed, and E indicates data
dependencies among tasks. Let cloud consist of Υ set
of Fog server, Υ = {Υ1, Υ2, …, Υℓ}. There are \ jobs sub-
mitted to schedule and executed by the Fog server.
The jobs are portioned into tasks, and each assign-
ment is apportioned to one fog server to schedule.
Let Job ψ be partitioned into tasks and represented as
ψ =

{

ψ1,ψ2, . . . ,ψ\

}

 , where \ =| Y | .E represents the
set of edges among nodes in T.

Definition 1
In DWG, assume any task can be processed on any Fog
server machine in the formulated architecture. The
numeral of edges in the graph is denoted by
|E| ⊆ |Υ| × |T|. Each task Ti is processed on the Fog
server machine concerning task execution time and allo-
cated memory to process, and it is represented as,

Ti =

[

µi

δi

]

 . The CPU execution time of the task Ti on

Fog, server is represented as μi. δi is used to represent
allocated memory for the task Ti to perform.

Definition 2
In DWG, input for the graph is assigned using the Initial-
ization Matrix (IG) IG = (Υi, j)n ∗ n. The initialization matrix
consists of i task to be executed on j fog server machine.
The element in the initialization matrix is one if the job
is assigned to the fog server or else it is 0, and it can be
represented as Υi, j ∈ 0, 1.

The objective of job scheduling is minimizing the total
cost of execution time on processing tasks and, thus Opti-
mal Scheduled Matrix (OG) is given as OG =

(

Yi,j

)

n∗n
.

The mathematical formulation of large‑scale JSP
This section discusses the mathematical formulation
of the large-scale job scheduling problem. Large-scale
JSP is an extension of JSP in the number of jobs and
machines. Therefore, Large scale JSP consists of the
same mathematical model of JSPs. The constraints and
objective functions of large-scale JSP are mathematically
modelled and given as follows.

(1)Yi,j =











1, if task is allocated to Fog server
machine

0, otherwise

Fig. 1  a JSP (b) P-JSP (c) T-JSP

Page 5 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

1)	 Once the ith job of jth the task is assigned to the ℓth
server, it cannot be interrupted until it completes its
execution. Then, the Pij is computed as an additive of
its initial time and handling time.

where, Cijℓ, Sijℓ and Eijℓ are denoted as culmination time,
initial time and handling time of the jth task of the ith job
Pij on server ℓ, respectively.

2)	 The initial time of the ith job of jth task Pij on the
server, ℓ is calculated based on the peak period of the
earlier task μ on the server and the peak time of the
earlier task.

3)	 Server ℓ closes down when the last jobs are com-
pleted its execution.

where, Ψℓ denotes the shutdown time of the server ℓ, ϑ
indicates the end job on sever ℓ, Ψϑℓ represents the peak
time of the previous job on server ℓ.

4)	 Some set of limitations on the server for the execu-
tion of the process. Thus, the constraints are speci-
fied below.

where n and m indicate the sequence of jobs and servers,
respectively. Cωℓ, Eωℓ specifies the culmination time and
handling time of job ω on server ℓ, Υ determines the size-
able positive integer. χiωℓ denotes the handling sequence
priority of job i and job ω on server ℓ. If job i Is executed
on the server ℓ then χiωℓ ∈ 1, otherwise 0.

5)	 A single server suffers from handling more than one
operation simultaneously.

where, Τijωtℓ denoted as whether the ith job of the jth task
Pij is handled earlier than the tth task of the ωth job Pωt

(2)Cijℓ = Sijℓ + Eijℓ

(3)Sijℓ = max
{

S(i−1)µℓ + E(i−1)µℓ,Ci(j−1)(ℓ−1)

}

(4)�ℓ = �ϑℓ

(5)Cωℓ − Ciℓ + Y(1− χiωℓ) ≥ Eωℓ
i,ω = 1, 2, . . . , n; ℓ = 1, 2, . . . ,m

(6)Sijℓ ≥ Cωtℓ − Tijωtℓ.Y,∀ℓ ∈ Yij ∩ Yωt

(7)Sωtℓ ≥ Cijℓ −
(

1− Tijωtℓ

)

.Y,∀ℓ ∈ Yij ∩ Yωt

on server ℓ, if it is executed, then 1; otherwise, 0. Υij ∩ Υωt
indicates the vacant server set that can able to handle the
tasks Pij and Pωt simultaneously.

6)	 When the task has numerous operations on a similar
job, it is essential to process through the determined
order.

where, φi denotes the numeral tasks of job i.

7)	 When the server is scheduled, then the entire jobs
can access at the initial time (S = 0)

8)	 For each job, one server can be chosen for its execu-
tion.

where βijℓ represented as whether the server ℓ handles
the job Pij, one deliberates the process is executing, 0
determines the process is not completed.

The objective of the JSP optimization problem incorpo-
rates max culmination time, max server load, min execu-
tion cost, etc. This work utilizes the max culmination time
to ensure the proposed algorithm’s efficacy, which can be
mathematically modelled as follows.

where Makespan denotes the max culmination time of all
servers, it is the initial specification to calculate the han-
dling efficacy. Ψℓ is mathematically expressed as.

Proposed methodology
This section discusses the overview of generic social
spider optimization algorithm, the dynamic opposite
learning concept and the formulation of the proposed
algorithm.

(8)
Sijℓ ≥ Ci(j−1)ℓ, ℓ ∈ Yij

∀i = 1, 2, . . . , n, ∀j = 2, . . . ,ϕi

(9)Sijℓ ≥ 0

(10)Cijℓ ≥ 0

(11)
m
∑

ℓ=1

βijℓ = 1

(12)F = min(Makespan) = minmax
1≤ℓ≤m

{

max
1≤i≤n

�ℓ

}

(13)�ℓ =

n
∑

i=1

ϕi
∑

j=1

m
∑

ℓ=1

(

Sijℓβijℓ + Eijℓβijℓ
)

Page 6 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

Overview of social spider optimization algorithm
SSO algorithm mimics the foraging actions of vibration
sense. The source of food is another social spider or prey
on the web. The direction of the food source is erudite
using vibration sense. The spider denotes a feasible solu-
tion in the SSO algorithm, and the web indicates search
space. SSO consists of male and female agents; the female
numeral individual is more significant than the male indi-
vidual. The numeral female individual (Nf) and male indi-
viduals (Nm) are calculated using

where rand denotes the arbitrary function within the
range of [0,1]; Np denotes the numeral populations; each
spider receives weight Wi in population, Φ using fitness
calculation. The weight was calculated using

The vibration sense Va, b on the web received by spider a
and sent by spider b. da, b is the Euclidean distance, which
can be calculated using

(14)Nf = Floor[(0.9− rand.0.25).Np]

(15)Nm = Np− Nf

(16)Wi =
fit(�)− worst�

best� − worst�

The cooperative behaviour of female agents is calculated
using

where x, y, z, rl, rand are arbitrary values between [0,1], γ
is the threshold value, t is the iteration number for near-
est spider c, d. The cooperative behaviour of male agents
is calculated using

where,
∑Nm

e=1 me(o).WNf+h
∑Nm

e=1 .WNf+h

 denotes the weighted mean for

the male population.

(17)Va,b = Wi.e
−d2a,b

(18)fi(t + 1) =

⎧⎪⎪⎨⎪⎪⎩

fi(t) + x.Vi,c .
�
Φc − fi(t)

�
+ y.Vi,d .

�
Φd − fi(t)

�
+ z.

�
rand −

1

2

�
rl < 𝛾

fi(t) − x.Vi,c .
�
Φc − fi(t)

�
− y.Vi,d .

�
Φd − fi(t)

�
+ z.

�
rand −

1

2

�
rl ≥ 𝛾

(19)

mi(o + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

mi(o) + x.Vi,f .
�
Φf −mi(o)

�
+ +z.

�
rand −

1

2

�

if WNf +i
> WNf +m

mi(o) + x.

�∑Nm
e=1

me(o).WNf +h∑Nm
e=1

.WNf +h

−mi(o)

�

if WNf +i
≤ WNf +m

Page 7 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

The dominant male and female agents are used for mat-
ing within radius r can be calculated using

where ubhighj and lblowj are the upper and lower con-
fines of the problem. The SSO algorithm is presented in
algorithm 1.

Dynamic opposite learning method
The dynamic opposite learning method (DOL) is an
extension of the opposition-based learning (OBL) method
that is proposed by Xu et al. [37]. However, the OBL
method can improve the quality of the algorithm towards
optimal concerning the exploration of search space. But,
determining the opposite position from the current situ-
ation is imminent. DOL is familiarized to advance the
solution quality by eliminating the local optimal struck
to eradicate the issue. The DOL is moreover similar to
OBL by changing the opposite number Xo with Xro (i.e.,
Xro =  rand . Xo, rand  ∈ [0, 1]). The stable pursuit region can
be modified into an unstable pursuit region trademarking
the active change concerning arbitrary number.

Assumption
Let α denoted as the lower bound of the individual, λ
denotes the upper bound of the individual. For instance,
Xro, α and λ consist of two cases, namely Xro ∈ [α, λ] and
Xro ∉ [α, λ]. The individual Xro, Xo and X consist of three
associations such as 1) Xro between Xo and X 2) Xro is
larger than Xo and 3) Xro is minimum than X.

The dynamic opposite number Xdo can be regenerated
when Xdo ∉ [α, λ]. At the same time, if Xro is exceed the
upper and lower bound due to the below Eq. (21).

The mathematical model of DOL concerning the
dynamic opposite number and the active opposite point
is expressed as follows.

Dynamic opposite value
It is considered to determine the step-by-step process of DOL.
The mathematical model of Xdo can be expressed in Eq. (22).

(20)r =

∑n
j=1

(

ub
high
j − lblowj

)

2.n

(21)Xdo =

{

X + r1.(Xro − X) if Xro > �

X + r2.(Xro − X) if Xro < α

}

(22)Xdo = X + z.r1.(r2.Xo − X)

(23)Xo = �+ α − X

where, r1 and r2 denoted as arbitrary values with the
bound of [0,1]; z indicates the learning weight value; X
represented as the actual number with the range of [α, λ].

Dynamic opposite point: The expansion of positive con-
tradictory value in the various dimensional search point.
The mathematical model of the active opposite end can
be expressed in Eq. (24).

where, D determines the D-dimensional space that
incorporates various possible individuals; X speci-
fies the present individual with D-dimensional space
(i.e., X = {X1, X2, …, XD} are limited to upper (i.e.,
λ = {λ1, λ2, …, λD} and lower α = {α1, α2, …, αD} bound; r3
and r4 are indicates the arbitrary values with the range of
[0,1].

The DOL method is incorporated into the beginning
and rehearsal of the SSO population. In the initializa-
tion process, the opposite population Φdo is generated by
the population Φ (i.e., Φdo ∪ Φ). Then, the fitness of the
population Φdo ∪ Φ is computed and picks the half set of
individuals to the population ΦS. In the generation pro-
cess, if the hopping process gratifies, it produces the Φdo
by ΦS and process the whole population as Φdo ∪ ΦS, then
compute the fitness of Φdo ∪ ΦS and repeat the process
until the process completes. If the solution of Φdo, ΦS and
Φ exceeds the boundary, then regenerate the individual
within the upper and lower limit.

DOL‑based SSO algorithm
In this part, we proposed a novel variant of SSO, namely
DOLSSO, to enhance the standard SSO algorithm to
handle the precocity that constantly riddles several opti-
mization techniques.

Population initialization based on DOL
The opposite solutions based on DOL are generated from
the set of the first half of present individuals. The DOL pop-
ulation is processed with the SSO population initialization
method. The mathematical model is expressed as follows.

where, Φij indicates the jth dimension of ith the solution in
population created by SSO, r1, i and r2, i are two arbitrary
values within the range of [0,1], λj and αj specifies the
upper and lower boundary of jth dimension of ith solution

(24)Xdo,j = Xj + z.r3.
(

r4.Xo,j − Xj

)

, j = 1, 2, . . . ,D

(25)Xo,j = �j + αj − Xj

(26)�do
ij = �ij + r1,i.

(

r2,i.
(

�j + αj −�ij

)

−�ij

)

Page 8 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

�do
ij  , determines the opposite individual of Φij. The DOL

population initialization �do
ij should satisfy the boundary

region as per Eq. (27).

(27)�do
ij = RN , if �do

ij < αj

∥

∥

∥
�do

ij > �j

where RN indicates the arbitrary values within the limit
of [αj, λj].

Generation hopping based on DOL
DOL iteration hopping is analogous to the DOL population
initialization process. This DOL iteration hopping strategy

Fig. 2  Flowchart of DOLSSO algorithm

Page 9 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

can be processed into whole generation to aid the algorithm
to eradicate from local optimal struck. The hopping rate of
the DOL method is represented by δ ∈ [0, 1] to determine the
probability of the technique according to the hop rate. If the
arbitrary value produced is minimal than the hopping rate
factor δ, DOL process the hopping action. The mathematical
model of the hopping process is expressed as follows.

where z denotes the learning weight that differs concern-
ing various scenarios and conditions, r3, i and r4, i are the
two arbitrary values within the range of [0,1].

(28)�do
ij = �ij + z. r3,i.

(

r4,i.
(

�j + αj −�ij

)

−�ij

)

Page 10 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

DOLSSO algorithm
As discussed earlier, DOLSSO is the modified version
of SSO that includes the DOL method in standard SSO.
The SSO algorithm is given in algorithm 1, and the DOL
method is discussed in Dynamic opposite learning method
section. The procedure of DOLSSO is presented in algo-
rithm 2, and the workflow of DOLSSO is sketched in Fig. 2.

Decoding and encoding for JSP
A wide variety of strategies are available to encode and
decode the JSP. Gao et al. [38] introduced one of the
most popular strategies, including server selection and

process ordering vectors. Although the strategy pro-
vides better results for some scenarios, its representa-
tion of individuals increases memory utilisation. In this
work, we utilized the encoding and decoding strategy
from the reference [37].

Exploration and exploitation analysis
We utilized the hopping rate factor (δ) in the proposed
system to trade off the exploration and exploitation pro-
cess. The individual that satisfies the hopping element
then the current individual will undergo the exploration
process using the DOL method. Otherwise, the individ-
ual utilizes the SSO method to exploit the search space.
Therefore, we use δ with the fixed values of 0.5 to deter-
mine the solution update process. The DOLSSO algo-
rithm initiates with a set of random solutions. At each
generation, search individuals update their positions
concerning randomly selected search agents, or the best
individual found so far. Depending on the hopping factor
δ, the proposed algorithm can switch between the explo-
ration and exploitation processes. Finally, the DOLSSO is
terminated by the fulfilment of a stop criterion.

Experimental analysis
The experimentation setup and evaluation of results
are performed to ensure the effectiveness of the pro-
jected system. Later, the obtained outcome of the intro-
duced model is compared with five state-of-art existing
metaheuristic algorithms. We have utilized the FogSim
simulator in this scheduling to generate the dataset. An
energy-efficient open-source tool is used for modelling
and simulating resource management in fog/edge com-
puting. The FogSim is integrated with CloudSim to deal

Table 1  Simulation parameters for experimentation

Parameters Values

Number of processors 4, 8, 12, 16, 20, 24

Number of Tasks 20, 40, 80, 160, 320, 400

Number of fog nodes 5, 10, 15, 20

DOLSSO (Proposed) Max_iter: 100,
Population size: 60,
Hopping rate factor (δ): 0.5,
Learning weight (z): 0.1,
Upper limit (λ): 1

SSO [22] Learning weight (z): 0.1
Coefficient parameter: [0,2]

GOA [39] Attraction force: [2.079,4],
Repulsion factor: [0, 2.079],
coefficient value: [1, 0.0001]

SSA [40] Step size: 10,
Fitness function constant: 0.9

GWO [41] coefficient parameter (a): [2,0]

WOA [42] Parameter (A): [−1, 1]
Random probability (p): 0.5

Fig. 3  Resource Consumption concerning the number of CPUs

Page 11 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

with the actions between fog computing environments.
In CloudSim, different parameters, like data centres, use
communication processes for transmission.

Parameter settings
The performance of the SSO algorithm on solving job
scheduling is coded using FogSim with CloudSim under
Windows 10 on an Intel i5 processor with 3.4GHz and
16GB RAM. The empirical result is compared with other
state-of-art metaheuristic algorithms, namely Social Spi-
der Optimization (SSO) [22], grasshopper optimization
algorithm (GOA) [39], Salp swarm algorithm (SSA) [40],
Grey Wolf Optimization (GWO) [41], and Whale Opti-
mization Algorithm (WOA) [42]. For all experimentation
algorithms, the population size, maximum iterations and
number of runs are fixed as 60, 100 and 20, respectively.
The simulation parameters utilized for this experimenta-
tion is illustrated in Table 1.

Result analysis
The dataset is generated with the aid of a FogSim-based
simulation tool. All the proposed and compared algo-
rithms are iterated for 100 epochs for each test case
with varying tasks, and obtained results are graphically

plotted. Further, we experimented on two test cases
concerning the number of processors and fog nodes.
For the first case, the number of processors varies from
4, 8, 12, 16, 20, and 24 with 20, 40, 80, 160, 320 and 400
tasks, respectively. Each task is allocated to an adequate
number of fog servers, and processing orders are deter-
mined by solution representation as specified in DOL-
based SSO algorithm section. For the second case, the
number of fog nodes varies from 5, 10, 15 and 20 with
respect to different jobs.

Case 1: experimentation based on the number of processors
In the first case, we have created varying numbers of
processors with various tasks. The experimentation
results are measured, and the introduced model is con-
trasted with five metaheuristic algorithms: GOA, SSA,
GWO, WOA and SSO. Figure 3 determines the average
resource utilization concerning the number of proces-
sors. Figure 3 shows that the proposed DOL-SSP algo-
rithm provides better than GOA, SSA, GWO, WOA and
SSO. The standard SSA algorithm competes with the
proposed algorithm but fails during iterations. At the
same time, the proposed DOL-SSO algorithm utilizes
the processors effectively by allocating adequate tasks
to the available machines. GWO and WOA algorithm

Table 2  Execution time for Jobs

Fog nodes GOA SSA GWO WOA SSO DOLSSO

5 51.31 52.72 50.45 5.31 51.72 50.15

10 53.87 54.95 52.18 53.14 54.16 51.87

15 56.47 56.39 53.52 53.98 53.78 52.14

20 54.98 55.41 52.49 53.14 52.14 51.89

Fig. 4  Average Energy Consumption Ratio concerning the number of CPUs

Page 12 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

provides moreover similar results in resource utiliza-
tion. Overall, average resource utilization by DOLSSO
was improved on average by 12% more than the standard
SSA algorithm.

The average energy depletion ratio concerning the
number of processors is represented in Fig. 4. In this
experimentation, achieving a lower energy consumption

ratio specifies the algorithm hoards the energy and pro-
vides better performance. Based on Fig. 4, we noticed
that the introduced model gives significant outcomes to
all numbers of processors except eight processors com-
pared to other algorithms. Moreover, GWO and SSA pro-
vide similar results and attain more energy consumption
ratio, which offers less performance than the proposed

Fig. 5  Analysis and comparison of Execution time to process job

Table 3  Allocated memory for jobs

Fog nodes GOA SSA GWO WOA SSO DOLSSO

5 1.2 1.4 1.3 1.2 1.4 1.1

10 2 2.2 1.6 1.8 2.1 1.5

15 2.5 2.5 2.3 2.2 2.4 2.1

20 3 3.1 2.8 3.2 2.9 2.6

Fig. 6  Analysis and comparison of Allocated memory for the job

Page 13 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99 	

method. The standard SSO algorithm and the proposed
algorithm achieve the same results due to the random
initialization of populations. Also, several ways consume
more energy than the proposed algorithm. Though the
proposed algorithm attains the same output in 8 proces-
sors, the resources are more effectively utilized than the
standard SSO algorithm.

Case 2: experimentation based on the number of fog nodes
The efficacy of the proposed model on fog computing
scenarios is validated by varying fog nodes from 5 to 20
with a varying number of jobs. CPU clock rate and allo-
cated memory for heterogeneous nodes are taken from
[43]. We have considered four cases of fog nodes; the
maximum number of iterations is 8000 in all test cases
with 20 runs. The introduced model is contrasted with
five existing metaheuristic algorithms like GOA, SSA,
GWO, WOA and SSO. For evaluation, two performance
metrics are utilized: execution time and allocated mem-
ory for jobs with respect to completion time. Once the
server is distributed with a specific number of jobs, it is
locked until it completes its execution. The experimen-
tation of execution time for various jobs concerning fog
nodes is observed in Table 2. The execution time for jobs
is illustrated in Fig. 5. The table and Fig. 5 clearly show
that the introduced model provides improved results
concerning minimum execution time than the other
compared algorithms.

The allocated memory for jobs concerning the number
of fog nodes is observed in Table 2. The pictorial repre-
sentation of allocated memory for jobs is illustrated in
Fig. 6. As observed from the results, Table 3 and Fig. 6
specifies that the concert of the DOLSSO method out-
performs well than compared algorithms. The maximum
allocated memory concerning 20 fog nodes for various
determined jobs attained by DOLSSO (2.6 GB) is lesser
than the standard SSO (2.9 GB). In addition, allocated
memory for jobs achieved by GWO (2.8 GB) and SSO
(2.9 GB) are closer. Based on the experimentation results,
incorporating the DOL strategy into SSO improves per-
formance by eradicating local optimal struck and a better
convergence rate.

Conclusion
In the last few years, fog computing has given great
attention to researchers, industrialists and the commu-
nity due to its computational services. We addressed the
job scheduling issue in the fog computing setting with
reduced CPU time utilization and memory usage. This
work introduces a novel version of the SSO method by
incorporating the dynamic opposition learning (DOL)
approach, namely the DOLSSO algorithm. The proposed

model enriches the solution quality by eradicating the
local optimal struck and boosting the convergence rate
towards the optimal solution. The experimentation is
carried out in the FogSim simulation tool with two dif-
ferent scenarios. The first scenario pacts with several
processors concerning the number of tasks, and the sec-
ond test case deals with the number of fog nodes con-
cerning the number of jobs. The proposed infrastructure
guarantees the execution of the data request and satisfies
mobile users effectively using the DOLSSO algorithm.
The empirical result shows the algorithm’s effective-
ness in obtaining an optimal schedule in a Fog comput-
ing environment. The results show that the proposed
method achieves ~ 10% - 15% better CPU utilization
and ~ 5%-10% less energy consumption than other algo-
rithms. Further, this work can be extended to handle the
multi-objective flexible job scheduling issue by incor-
porating self-adaptive parameters into the DOLSSO
algorithm.

Acknowledgements
This research was supported by the Taif University Researchers Supporting
Project number (TURSP-2020/231), Taif University, Taif, Saudi Arabia.

Authors’ contributions
Conceptualization - Kuppusamy P; methodology- Kuppusamy P, N. Marline
Joys Kumari; validation- Rajakumar Ramalingam, Mamoon Rashid, Abdul
Rehman Javed; formal analysis- Wael Y. Alghamdi, Hashem Alyami; writ-
ing—original draft preparation- Kuppusamy P; writing—review and editing-
Mamoon Rashid, Abdul Rehman Javed; supervision- Rajakumar Ramalingam;
funding acquisition- Wael Y. Alghamdi. All authors have read and agreed to the
submitted version of the manuscript.

Funding
Researchers Supporting Project number (TURSP-2020/231), Taif University, Taif,
Saudi Arabia.

Availability of data and materials
The data that support the findings of this study are available from the first
author upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1 School of Computer Science & Engineering, VIT-AP University, Amaravati,
Andhra Pradesh, India. 2 Department of CSE, Anil Neerukonda Institute of Tech-
nology and Sciences, Sanghivalasa, Bheemunipatnam, India. 3 Department
of Computer Science, College of Computers and Information Technology,
Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia. 4 Department of CST,
Madanapalle Institute of Technology & Science, Madanapalle, India. 5 Depart-
ment of Cyber Security, Air University, Islamabad 44000, Pakistan. 6 Depart-
ment of Electrical and Computer Engineering, Lebanese American University,
Byblos, Lebanon. 7 Department of Computer Engineering, Faculty of Science
and Technology, Vishwakarma University, Pune 411048, India.

Received: 25 August 2022 Accepted: 7 December 2022

Page 14 of 14Kuppusamy et al. Journal of Cloud Computing (2022) 11:99

References
	1.	 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud comput-

ing and emerging IT platforms: vision, hype, and reality for delivering
computing as the 5th utility. Futur Gener Comput Syst 25(6):599–616

	2.	 Eleyan A, Eleyan D (2015) Forensic process as a service (FPaaS) for cloud
computing. In: Intelligence and security informatics conference (EISIC),
2015 European. IEEE, pp 157–160

	3.	 The Network.Cisco Delivers Vision of Fog Computing to Accelerate Value
from Billions of Connected Devices. http://​newsr​oom.​cisco.​com/​press-​
relea​se-​conte​nt?​artic​leId=​13341​00.M

	4.	 Deng R, Rongxing L, Lai C, Luan TH, Liang H (2016) Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption. IEEE Internet Things J 3(6):1171–1181

	5.	 Şahman MA (2021) A discrete spotted hyena optimizer for solving distrib-
uted job shop scheduling problems. Appl Soft Comput 106:107349

	6.	 Naderi B, Azab A (2014) Modeling and heuristics for scheduling of distrib-
uted job shops. Expert Syst Appl 41(17):7754–7763

	7.	 Gao J, Chen R (2011) A hybrid genetic algorithm for the distributed permu-
tation flowshop scheduling problem. Int J Comput Intell Syst 4(4):497–508

	8.	 Xie J, Gao L, Pan Q-k, Fatih Tasgetiren M (2019) An effective multi-objec-
tive artificial bee colony algorithm for energy efficient distributed job
shop scheduling. Proc Manufact 39:1194–1203

	9.	 Lei D (2008) Pareto archive particle swarm optimization for multi-
objective fuzzy job shop scheduling problems. Int J Adv Manuf Technol
37(1):157–165

	10.	 Rossi A, Dini G (2007) Flexible job-shop scheduling with routing flexibility
and separable setup times using ant colony optimisation method. Robot
Comput Integr Manuf 23(5):503–516

	11.	 Singh S, Kurmi J, Tiwari SP (2015) A hybrid genetic and cuckoo search
algorithm for job scheduling. Int J Sci Res Publ 5(6):1–4

	12.	 Wang L, Pan Q-K, Suganthan PN, Wang W-H, Wang Y-M (2010) A novel
hybrid discrete differential evolution algorithm for blocking flow shop
scheduling problems. Comput Oper Res 37(3):509–520

	13.	 Lu C, Gao L, Pan Q, Li X, Zheng J (2019) A multi-objective cellular grey
wolf optimizer for hybrid flowshop scheduling problem considering
noise pollution. Appl Soft Comput 75:728–749

	14.	 Liu M, Yao X, Li Y (2020) Hybrid whale optimization algorithm enhanced
with Lévy flight and differential evolution for job shop scheduling prob-
lems. Appl Soft Comput 87:105954

	15.	 Atay Y, Kodaz H (2014) Implementation of CSA with clone-mutation
mechanism to the JSSP. Int J Mach Learn Comput 4(1):6

	16.	 Bezdan T, Zivkovic M, Antonijevic M, Zivkovic T, Bacanin N (2021)
Enhanced flower pollination algorithm for task scheduling in cloud
computing environment. In: Machine learning for predictive analysis.
Springer, Singapore, pp 163–171

	17.	 Yadav AM, Tripathi KN, Sharma SC (2022) A bi-objective task scheduling
approach in fog computing using hybrid fireworks algorithm. J Super-
comput 78(3):4236–4260

	18.	 Najafizadeh A, Salajegheh A, Rahmani AM, Sahafi A (2022) Multi-objective
task scheduling in cloud-fog computing using goal programming
approach. Clust Comput 25(1):141–165

	19.	 Wu X, Shen X, Zhao N, Shaomin W (2020) An improved discrete pigeon-
inspired optimisation algorithm for flexible job shop scheduling problem.
Int J Bio-Inspir Comput 16(3):181–194

	20.	 Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm
optimization algorithm inspired in the behavior of the social-spider.
Expert Syst Appl 40(16):6374–6384

	21.	 Baş E, Ülker E (2020) A binary social spider algorithm for continuous
optimization task. Soft Comput 24(17):12953–12979

	22.	 Cuevas E, Cienfuegos M (2014) A new algorithm inspired in the behavior
of the social-spider for constrained optimization. Expert Syst Appl
41(2):412–425

	23.	 Mahato DP, Singh RS (2018) On maximizing reliability of grid transaction
processing system considering balanced task allocation using social
spider optimization. Swarm Evol Comput 38:202–217

	24.	 Zhou Y, Zhou Y, Luo Q, Abdel-Basset M (2017) A simplex method-based
social spider optimization algorithm for clustering analysis. Eng Appl Artif
Intell 64:67–82

	25.	 Ouadfel S, Taleb-Ahmed A (2016) Social spiders’ optimization and flower
pollination algorithm for multi-level image thresholding: a performance
study. Expert Syst Appl 55:566–584

	26.	 Shao Z, Zhuge Q, Xue C, Sha EH-M (2005) Efficient assignment and
scheduling for heterogeneous dsp systems. IEEE Trans Parallel Distrib
Syst 16(6):516–525

	27.	 Ningning S, Chao G, Xingshuo A, Qiang Z (2016) Fog computing dynamic
load balancing mechanism based on graph repartitioning. China Com-
mun 13(3):156–164

	28.	 Cardellini V, Grassi V, Presti FL, Nardelli M (2015) On QoS-aware scheduling of
data stream applications over fog computing infrastructures. In: Comput-
ers and communication (ISCC), 2015 IEEE symposium on. IEEE, Larnaca, p
271–76.

	29.	 Oueis J, Strinati EC, Barbarossa S (2015) The fog balancing: load distribu-
tion for small cell cloud computing. In: Vehicular technology conference
(VTC spring), 2015 IEEE 81st. IEEE, Glasgow, p 1–6.

	30.	 den Bossche V, Ruben KV, Broeckhove J (2011) Cost-efficient scheduling
heuristics for deadline constrained workloads on hybrid clouds. In: Cloud
computing technology and science (CloudCom), 2011 IEEE third interna-
tional conference on. IEEE, Athens, p 320–27.

	31.	 Zeng L, Veeravalli B, Li X (2012) Scalestar: budget conscious scheduling
precedence-constrained many-task workflow applications in cloud. In:
Advanced information networking and applications (AINA), 2012 IEEE
26th international conference on. IEEE, Fukuoka, p 534–41.

	32.	 Fleming PJ, Zalzala AMS (editor) (1997) Genetic algorithms in engineering
systems. Institution of Electrical Engineers, Herts

	33.	 Naderi B, Azab A (2015) An improved model and novel simulated annealing
for distributed job shop problems. Int J Adv Manuf Technol 81(1):693–703

	34.	 Tang H, Fang B, Liu R, Li Y, Guo S (2022) A hybrid teaching and learning-
based optimization algorithm for distributed sand-casting job-shop
scheduling problem. Appl Soft Comput 120:108694

	35.	 Li H, Wang X, Peng J (2022) A hybrid differential evolution algorithm for
flexible job shop scheduling with outsourcing operations and job priority
constraints, Expert Systems with Applications, p 117182, ISSN 0957-4174.
https://​doi.​org/​10.​1016/j.​eswa.​2022.​117182

	36.	 Aggarwal S, Chatterjee P, Bhagat RP, Purbey KK, Nanda SJ (2018) A social
spider optimization algorithm with chaotic initialization for robust clus-
tering. Proc Comput Sci 143:450–457

	37.	 Xu Y, Yang Z, Li X, Kang H, Yang X (2020) Dynamic opposite learning
enhanced teaching–learning-based optimization. Knowl-Based Syst
5(188):104966

	38.	 Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for the flex-
ible job-shop scheduling problem. Expert Syst Appl 38(4):3563–3573

	39.	 Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm:
theory and application. Adv Eng Softw 105:30–47

	40.	 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017)
Salp swarm algorithm: a bio-inspired optimizer for engineering design
problems. Adv Eng Softw 114:163–191

	41.	 Natesan G, Chokkalingam A (2019) Task scheduling in heterogeneous
cloud environment using mean grey wolf optimization algorithm. ICT
Express 5(2):110–114

	42.	 Jiang T, Zhang C, Zhu H, Jiuchun G, Deng G (2018) Energy-efficient
scheduling for a job shop using an improved whale optimization algo-
rithm. Mathematics 6(11):220

	43.	 Bitam S, Zeadally S, Mellouk A (2017) Fog computing job scheduling
optimization based on bees swarm. Enterp Inf Syst 12,(4):1–25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://newsroom.cisco.com/press-release-content?articleId=1334100.M
http://newsroom.cisco.com/press-release-content?articleId=1334100.M
https://doi.org/10.1016/j.eswa.2022.117182

	Job scheduling problem in fog-cloud-based environment using reinforced social spider optimization
	Abstract
	Introduction
	Literature work
	The JSP in FOG computing
	The overview of JSP
	System design
	Definition 1
	Definition 2

	The mathematical formulation of large-scale JSP

	Proposed methodology
	Overview of social spider optimization algorithm
	Dynamic opposite learning method
	Assumption
	Dynamic opposite value

	DOL-based SSO algorithm
	Population initialization based on DOL
	Generation hopping based on DOL
	DOLSSO algorithm
	Decoding and encoding for JSP
	Exploration and exploitation analysis

	Experimental analysis
	Parameter settings
	Result analysis
	Case 1: experimentation based on the number of processors
	Case 2: experimentation based on the number of fog nodes

	Conclusion
	Acknowledgements
	References

