
Xin et al. Journal of Cloud Computing (2023) 12:7
https://doi.org/10.1186/s13677-022-00383-6

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Robust and accurate performance anomaly
detection and prediction for cloud applications:
a novel ensemble learning‑based framework
Ruyue Xin1, Hongyun Liu1, Peng Chen2* and Zhiming Zhao1* 

Abstract 

Effectively detecting run-time performance anomalies is crucial for clouds to identify abnormal performance behavior
and forestall future incidents. To be used for real-world applications, an effective anomaly detection framework should
meet three main challenging requirements: high accuracy for identifying anomalies, good robustness when applica-
tion patterns change, and prediction ability for upcoming anomalies. Unfortunately, existing research about perfor-
mance anomaly detection usually focuses on improving detection accuracy, while little research tackles the three
challenges simultaneously. We conduct experiments for existing detection methods on multiple application monitor-
ing data, and results show that existing detection methods usually focus on different features in data, which will lead
to their diverse performance on different data patterns. Therefore, existing anomaly detection methods have difficulty
improving detection accuracy and robustness and predicting anomalies. To address the three requirements, we
propose an Ensemble Learning-Based Detection (ELBD) framework which integrates existing well-selected detection
methods. The framework includes three classic linear ensemble methods (maximum, average, and weighted aver-
age) and a novel deep ensemble method. Our experiments show that the ELBD framework realizes better detection
accuracy and robustness, where the deep ensemble method can achieve the most accurate and robust detection for
cloud applications. In addition, it can predict anomalies in the next four minutes with an F1 score higher than 0.8. The
paper also proposes a new indicator ARP_score to measure detection accuracy, robustness, and multi-step prediction
ability. The ARP_score of the deep ensemble method is 5.1821, which is much higher than other detection methods.

Keywords  Performance anomaly detection, Algorithm robustness, Anomaly prediction, Ensemble learning, Deep
ensemble

Introduction
The run-time status of cloud applications can be con-
tinuously monitored through system-related metrics,
e.g., CPU and memory usage [1]. Performance anomaly

detection plays a vital role in operating cloud services,
and applications [2, 3]. Cloud performance anomalies
such as degraded response time, often caused by under-
lying system resource shortages, may severely affect
the quality of an application’s user experience (QoE)
and service (QoS). Therefore, effectively analyzing pat-
terns of monitoring system-related metrics and identi-
fying abnormal performance in real-time is crucial for
continuously delivering the business value of a cloud
application. In this context, we can highlight three chal-
lenging requirements for a performance anomaly detec-
tion framework. First, the detection must achieve high
accuracy to ensure anomalies can be found as accurately

*Correspondence:
Peng Chen
chenpeng@mail.xhu.edu.cn
Zhiming Zhao
z.zhao@uva.nl
1 Multiscale Networked Systems (MNS) research group, University
of Amsterdam, Amsterdam, Netherlands
2 School of Computer and Software Engineering, Xihua University,
Chengdu, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00383-6&domain=pdf

Page 2 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

as possible. Second, detection algorithm robustness is
essential. Different data distributions exist in multiple
monitoring data, which requires a robust algorithm to
meet changes in data patterns and maintain performance
consistency. Finally, to prevent potential application vio-
lations effectively, it is vital to make a multi-step predic-
tion of future anomalies.

Existing anomaly detection methods have often been
developed using statistics [4] or machine learning [5, 6]
based methods. Most methods focus on improving detec-
tion accuracy. For example, Audibert et al. [7] developed
the USAD based on an adversely trained AutoEncoder
and achieved the best detection accuracy. Studies on
improving the robustness of detection methods usually
use adversarial training, which needs to make a trade-off
between robustness and accuracy [8], rather than simulta-
neously improving accuracy and robustness. In addition,
research on anomaly prediction mainly focuses on one-
step prediction [9], which has limited effect in prevent-
ing potential performance anomalies. Existing research
explores different aspects of the three challenging require-
ments, but few studies simultaneously tackle the chal-
lenges of accuracy, robustness, and multi-step prediction
ability. Besides, there are also no effective indicators to
measure the combination of the three requirements.

Moreover, the development of performance anomaly
detection has to handle two data challenges.

•	 Missing data labels. Most of the monitoring data
does not contain labels that can be immediately used
for training a machine learning-based model, and
labeling time-series data is often manual and time-
consuming.

•	 Data noise. Monitoring data collected from a distrib-
uted network often contain noises, which can sig-
nificantly influence the performance of the anomaly
detection methods and increase the false-positive
detection.

Thus, for performance anomaly detection, we define
our research question as “how to effectively detect and
predict performance anomalies with high accuracy and
good robustness?”. To address the two data challenges, we
focus on unsupervised and weakly supervised detection
methods and provide feature extraction to filter noise in
data. To answer our research question, we first explore
existing unsupervised anomaly detection methods and
observe their detection performance on different data-
sets. Then, to improve detection accuracy, robustness,
and prediction ability, we develop an Ensemble Learning-
Based Detection (ELBD) framework that incorporates
classic detection methods rather than enhances a single
model. The contributions in this paper mainly include:

•	 We characterize four typical base detection meth-
ods on different datasets, and the results show that
their detection performance is not good for detection
accuracy, robustness, and prediction.

•	 Based on base detection methods, we propose
an ELBD framework including three classic lin-
ear ensemble methods (maximum, average, and
weighted average) and a deep ensemble method.

•	 We propose ARP_score to evaluate detection perfor-
mance in terms of accuracy, robustness, and multi-
step prediction.

•	 We evaluated the methods in the ELBD framework
on different datasets, and the results show that
the deep ensemble method achieves the highest
ARP_score 5.1821.

The rest of the paper is organized as follows. In Related
works section, we review existing performance anomaly
detection methods, specifically ensemble learning. In
Base performance anomaly detection methods section,
we provide base detection methods and an evaluation of
their performance. In Ensemble learning-based detection
framework section, we propose the ELBD framework and
evaluate detection accuracy, robustness, and prediction
ability. Finally, discussion and conclusion are provided in
Discussion and Conclusion and future work sections.

Related works
Performance anomaly detection is a process of detect-
ing abnormal performance phenomena and predicting
anomalies to forestall future incidents [10]. Research
about performance anomaly detection is ongoing rapidly,
and machine learning methods are widely applied [11].
This section will briefly review machine learning-based
anomaly detection methods and specifically highlight
ensemble learning.

Machine learning‑based anomaly detection methods
Machine learning-based anomaly detection methods can
be reviewed in terms of supervised, semi-supervised,
and unsupervised learning. Supervised learning methods
have high accuracy [5], but they are ineffective for appli-
cation monitoring data because data labels are usually
missing in reality and manually labeling data manually
is time-consuming. Semi-supervised learning methods
are developed when fewer labels exist, and unsupervised
learning methods are used when no labels exist. Semi-
supervised methods typically outperform unsupervised
methods, but unsupervised methods are better suited for
actual industrial scenarios [12].

In Table 1, we provide a classification of unsuper-
vised performance anomaly detection methods. The
table includes traditional methods such as tree-based,

Page 3 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

kernel-based, distance-based, and density-based.
They usually focus on different features in data, and
their performance varies for different datasets, which
will be verified in Base performance anomaly detec-
tion methods section. Deep learning methods are also
developing rapidly recently. For example, Su et al. [13]
provide a stochastic recurrent neural network named
OmniAnomaly for multivariate time series anomaly
detection. Deep learning methods can achieve high
detection accuracy, but model training is usually
time-consuming.

Researchers usually improve algorithm robustness
through adversarial training, which uses deep learning
methods to defend generated adversarial examples [23].
For example, Hashemi et al. [24] enhance the robust-
ness of an intrusion detection system in the presence
of adversarial examples by utilizing denoising autoen-
coders. However, there is usually a trade-off between
model accuracy and robustness [8], which makes it a
challenge to improve model robustness and accuracy
simultaneously. In addition, research on anomaly pre-
diction usually focuses on univariate data and one-step
prediction. For example, Wu et al. [9] provide a pre-
diction-driven anomaly detection method that relies
on Long Short Term Memory (LSTM) with univariate
time-series data.

In conclusion, machine learning methods, especially
semi-supervised and unsupervised methods, can be
considered for performance anomaly detection because
fewer labels exist. While different methods usually focus
on different data features, we can consider integrating
existing methods, for example, LOF, KNN, OCSVM, and
IForest, in Table 1. To improve detection accuracy and
robustness simultaneously, ensemble learning instead of
adversarial training to integrate existing detection meth-
ods can be considered. We will introduce related work to

ensemble learning next. In addition, we provide a multi-
step prediction based on multi-variate metrics for perfor-
mance anomalies in this paper.

Ensemble learning
Ensemble learning is proposed to improve the accuracy
and reduce the variance of an automated decision-making
system [25]. The primary assumption of ensemble learn-
ing is that by combining several base models, the errors of
a single model will likely be compensated by other mod-
els [26]. For anomaly detection, the ensemble of anomaly
scores by taking the maximum, and average actions can
be found in [27]. Research about ensemble learning can
be reviewed based on supervised classification, semi-
supervised and unsupervised clustering ensemble.

Some research already focuses on ensemble learn-
ing with machine learning methods. As for supervised
ensemble learning, Tyralis et al. [28] propose an ensem-
ble learning method by combining ten machine learning
algorithms and estimating the weights through a k-fold
cross-validation procedure. Tama et al. [29] propose
a stacked ensemble, which uses three classifiers (ran-
dom forest, gradient boosting machine, and XGBoost)
and provides a generalized linear model (GLM) as a
combiner. Adeyemo et al. [30] focus on network intru-
sion detection and implement two ensemble methods
and a deep learning method (LSTM). The two ensemble
methods include a homogeneous method that uses an
optimized bagged random forest algorithm and a hetero-
geneous method that is an averaged probability method
of a voting ensemble for four standard classifiers. These
studies of ensemble learning mainly focus on weight cal-
culations or linear combinations of different base models.

Semi-supervised ensemble learning mainly focuses
on expanding the labeled training set and utilizing the
expanded training set to do classification or regression
[31]. For example, Jian et al. [32] present a sample infor-
mation-based synthetic minority oversampling technique
to balance the labeled dataset and use variable weighted
voting for integrating base models. This research focuses
on the data label issue with semi-supervised learning, but
the ensemble is linear. Unsupervised ensemble learning,
also known as consensus clustering, is to find the optimal
combination strategy of individual clustering. Ensemble
clustering can be classified into three categories, pair-
wise co-occurrence based methods [33], graph parti-
tioning based methods [34] and median partition-based
methods [35]. Unlu et al. [36] provide a weighting policy
based on internal clustering quality measures, which
gives different importance to individual clustering. This
research provides a weighted policy to integrate individ-
ual models, but it works linearly.

Table 1  A classification of classic unsupervised performance
anomaly detection methods

Type Method Description

Density-based LOF [6] Local Outlier Factor

COF [14] Connectivity-based Outlier Factor

LOCI [15] Local Correlation Integral

Distance-Based KNN [16] K-Nearest Neighbors

LDOF [17] Local Distance-based Outlier Factor

Kernel-based OCSVM [18] One-Class Support Vector Machines

RSVM [19] Robust Support Vector Machines

Tree-based IForest [20] Isolation Forest

Deep learning AutoEncoder [21] Fully connected AutoEncoder

VAE [22] Variational AutoEncoder

Page 4 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

For ensemble learning, we can see that combining differ-
ent methods is challenging, and many methods focus on
linear combinations, which limits information extraction
and detection performance improvement. Therefore, to get
an effective model that improves detection accuracy and
robustness and makes prediction of performance anom-
aly detection, the nonlinear combination of different base
detection methods is further investigated in this paper.

Base performance anomaly detection methods
For performance anomaly detection of cloud applica-
tions, we provide feature extraction for original data and
explore the performance of four base detection methods
in this section.

Problem definition
Multivariate time-series data are timestamped data
points sequences and can be represented as D. Then each
data point will be Dt

i ( i = [1, ..., n] is the index of resource
metrics. n is the number of resource metrics. t ∈ N ∗
is the index of timestamps). Multivariate time-series
data anomaly detection is to learn the characteristics of
data D and determine whether an observation Dn+1 is
anomalous or not. For multi-step anomaly prediction,
we will use data D for training, and determine whether
Dn+1,Dn+2, ...,Dn+p is anomalous.

In this paper, we first provide the performance of clas-
sic detection methods. Then we propose an ELBD frame-
work, which is developed based on ensemble learning
and aims to improve detection accuracy and robustness
by integrating information extracted by classic detection
methods non-linearly. In addition, we implement multi-
step prediction ability in the deep ensemble method in
ELBD framework.

Feature extraction
Multivariate data usually contains noise, which can
induce unnecessary variance in a model. Therefore, pre-
processing data through feature extraction to remove
redundant information and reduce data dimension is
needed. For feature extraction, Principal Components
Analysis (PCA) [37] is a classic and most used method.
PCA is an unsupervised method that uses eigenvalue
decomposition to compress and denoise data, which is
suitable as the feature extraction method considering
there are no labels or fewer labels in reality.

PCA is a method to transform a dataset with lots of
variables into a smaller one containing most of the origi-
nal information. The process steps of PCA are: 1) getting
the covariance matrix of original features; 2) calculating
eigenvectors and eigenvalues of the covariance matrix to
identify principal components; 3) sorting eigenvalues and
selecting eigenvectors with high eigenvalues as feature

vectors; 4) recasting original data based on feature vec-
tors. In step 3, the number of selected eigenvectors deter-
mines the data dimensions after reduction. In practice,
we set the reduction dimension based on a calculated
percentage of variance [38]. According to these calcula-
tions, PCA achieves principal feature selection and data
dimension reduction. Finally, we apply PCA to all moni-
toring data and use the data with low dimensions as the
input of anomaly detection methods.

Base detection methods
Different anomaly detection methods usually focus on dif-
ferent features in data, such as density-based and distance-
based, and result in diverse performance on data. Therefore,
to comprehensively understand the characteristics of moni-
toring data, we select four classic methods (IForest, KNN,
LOF, OCSVM) in Table 1 as base detection methods.

IForest is based on the Decision Tree algorithm [39].
Many isolation trees make up an isolation forest to make
anomaly detection results more credible. KNN is a dis-
tance-based algorithm [16]. It calculates each point’s
distance (such as Euclidean, Manhattan) with k nearest
neighbors and sets the distance as an anomaly score. LOF
is a density-based algorithm [6]. By comparing a point’s
local density to its neighbors’ local densities, nodes with
lower densities than their neighbors will be considered
anomalies. OCSVM is based on Support Vector Machine
(SVM) [18]. SVM can project data through a non-linear
function to a high-dimensional space, and points are
separated into different classes. Because kernel function
calculation is time-consuming, it usually works slowly for
large-scale data.

For each base method, the input is preprocessed data.
The processing of input data includes model initializa-
tion, fitting data, and output anomaly scores. Model ini-
tialization includes the setup of hyper-parameters, such
as anomaly fractions, which can be set based on data
characteristics. After fitting the data, an anomaly score
vector will be output. We use the anomaly score vector of
each detection method to identify anomalies and evalu-
ate the performance of each detection method.

Experiments and results
Dataset
In our experiments, we use a Decentralized Application
(DApp) monitoring data and two public datasets.

DApps monitoring data. In business scenarios where
real-time transactions are required, e.g., energy trad-
ing or crowd journalisms [40], the Quality of Service
(QoS) metrics of a DApp, such as transaction through-
put, latency, and failure rates, are critical to the busi-
ness value. To deliver such a quality-critical DApp in
cloud environments, one needs to select cloud services

Page 5 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

carefully, customize their capacities, and monitor the
run-time status of the application. Figure 1 shows a DApp
example developed with Hyperledger Fabric1. For the
DApp, different organizations, which contain many peer
nodes, are deployed on different cloud infrastructure ser-
vices (VMs) and monitored by a tool Prometheus2. We
use Prometheus to collect real-time data and use Caliper3
to simulate workload generation.

For a running DApp, we mainly collect system resource
metrics, which can be seen in Table 2. When the DApp
receives transaction requests stably, we add system
pressures with stress-ng4, such as disk pressure to inject
anomalies manually. We increase disk pressure by 20
minutes every hour. We monitor the DApp for twelve
hours and collect data at 15-second intervals. Ultimately,
the DApp monitoring data contains 3237 samples and
229 resource-related metrics for our experiments. The
general information can be seen in the Table 3.

Public dataset. SMD is divided into two subsets of
equal size: the first half is the training set and the second
half is the testing set. SMD (Server Machine Dataset) is
a dataset collected and made publicly available by a large
internet company [13]. It contains data collected from
many different server machines and includes 38 metrics.
In addition, domain experts have labeled anomalies in
SMD based on incident reports.

Vichalana is a multivariate time-series dataset that can
be used for performance anomaly detection in API Gate-
ways [41]. It has different anomalies, such as high CPU
and memory usage. Performance metrics in this dataset
are collected when the system operates in normal and
anomalous mode. The information of SMD and Vicha-
lana data used in our experiments can be seen in Table 3.

Experimental settings
The DApp monitoring data is collected from a deployed
DApp in a cloud environment. We use Microsoft Azure5
as the cloud environment and deploy the monitor com-
ponent and DApp separately. The monitor component is

Fig. 1  The monitor component and a DApp in cloud

Table 2  Description of system resource metrics

Resource Metrics Description

CPU related Per core and overall load, usage, idle time, I/O wait
time, hard and soft interrupt counts, context switch
count, etc.

Memory related Free, cached, active, inactive, dirty memory, etc.

Disk related Disk space used, IOps, I/O usage, read/write rate, etc.

Network related Receive/transmit network traffic, etc.

Table 3  General information of three datasets

Dataset Number
of
samples

Number
of
features

Number of
extracted
features

Anomaly
fraction
(%)

DApp monitor-
ing data

3237 229 15 28.14

SMD data 28479 38 5 9.46

Vichalana data 45486 13 6 6.45

1  https://​www.​hyper​ledger.​org/​use/​fabric
2  https://​prome​theus.​io/
3  https://​www.​hyper​ledger.​org/​use/​calip​er
4  https://​kernel.​ubuntu.​com/​~cking/​tarba​lls/​stress-​ng/ 5  https://​azure.​micro​soft.​com/​en-​us/

https://www.hyperledger.org/use/fabric
https://prometheus.io/
https://www.hyperledger.org/use/caliper
https://kernel.ubuntu.com/%7ecking/tarballs/stress-ng/
https://azure.microsoft.com/en-us/

Page 6 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

deployed on a VM, with the following properties: Ubuntu
18.04 as the operating system; 2CPU; 4G Memory; and
32GB of Storage. The DApp is deployed on VMs with
Ubuntu 18.04 as the operating system, 4CPU, 16G mem-
ory, and 32GB of storage.

For feature extraction in data pre-processing, PCA
needs to retain as much variance information of the
original data as possible, such as 95%. Therefore, we set
reduction dimensions as 15 for DApp monitoring data, 5
for SMD data, and 6 for Vichalana data based on a calcu-
lated percentage of variance [38].

As for each base detection method, their hyper-param-
eters are set as below. Anomaly fractions need to be
determined first. For the DApp monitoring data, because
we inject anomalies 20 minutes every hour, the anomaly
fraction is set as 0.3. For SMD and Vichalana data, we
use the default anomaly fraction, which is 0.1. Next, the
hyper-parameters of each base method need to be deter-
mined. We set the tree number for IForest to 100. The
neighbor number in KNN is 5. In LOF, we set the neigh-
bor number as 20. In OCSVM, we use the Radial Basis
Function (RBF) kernel function.

Evaluation indicators
The performance of these detection methods is evaluated
in three aspects: accuracy, robustness, and prediction
ability. We use Precision, Recall, and F1 score to indi-
cate accuracy. Precision is about how much of the data
detected as anomalies is true anomalies, while recall is
about how much of the real anomaly data is detected as
anomalies. The F1 score is a function of both Precision
and Recall.

Therefore, we mainly focus on the F1 score for detec-
tion accuracy. Our experiment results also evaluate and
present the time spent on each unsupervised detection
method and test time for the deep ensemble method.
For robustness, we test detection methods on three dif-
ferent datasets and rank detection accuracy to represent

(1)F1 score = 2 ∗
Precision ∗ Recall

Precision+ Recall

performance consistency, which can clearly show the
detection performance comparison [42]. We calculate
robustness as the average ranking of detection methods
on the three datasets. Finally, we normalize the rank and
get the robustness score:

Here, Rankmax is the maximum of rank numbers, and
Rankmin is the minimum of rank numbers. We evalu-
ate prediction ability with accuracy, which is also repre-
sented by the F1 score. We set the threshold of 0.8 and
calculate the prediction score with

Here, pt is the furthest predicted time in minutes. The
prediction score considers both the furthest prediction
time and prediction accuracy because the longer time
and more accurate prediction can make it easier to avoid
anomalies for applications. Finally, we define the indica-
tor ARP_score for each method considering detection
accuracy, robustness, and prediction as:

Here, d is the number of datasets. We take the total of
these three scores as the detection performance of a
detection method on a dataset. We take the average
of each detection method on different datasets with
multiple datasets as the final indicator of its detection
performance.

Experimental results
We apply the four base methods (IForest, KNN, LOF, and
OCSVM) to the DApp monitoring data, SMD, and Vicha-
lana data. The performance of their detection accuracy
can be seen in Table 4.

(2)Robustness score =
Rank − Rankmax

Rankmin − Rankmax

(3)Prediction score =

pt

i=1

F1 scorei

(4)

ARP_score =
1

d

d∑

i=1

(F1 scorei + Robustness scorei

+ Prediction scorei)

Table 4  Performance of different detection methods on three datasets. For each dataset, the F1 score of the best detection method is
shown in bold

Detection
methods

DApp monitoring data SMD data Vichalana data

F1 score Time(s) F1 score Time(s) F1 score Time(s)

IForest 0.791 0.318±0.0121 0.7515 1.278±0.0195 0.658 1.9814±0.0704

KNN 0.8033 0.0246±0.0021 0.5713 0.311±0.0047 0.5519 0.7758±0.0693

LOF 0.5143 0.0439±0.0015 0.5468 0.5379±0.0108 0.5128 1.4684±0.1229

OCSVM 0.737 0.3054±0.0076 0.6047 23.9234±0.8924 0.6778 190.118±10.5769

Page 7 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

For the DApp monitoring data, we can see that the
KNN has the highest F1 score, 0.8033, demonstrating
that the data has clustering characteristics because KNN
is good at identifying clusters in data. IForest takes into
account different features in the data. IForest usually has
good detection performance [43], as well as on the DApp
monitoring data with an F1 score of 0.791. If the abnor-
mal features are concentrated in a few dimensions, it will
be hard to detect anomalies for LOF. Therefore, LOF has
the lowest F1 score, 0.5143, for the DApp monitoring
data. The F1 score of OCSVM is 0.737, which is not high
enough because the projection through a kernel function
cannot be divided into normal and abnormal data very
well. For time spent, we can see that IForest and OCSVM
spend about 0.3s, which is higher than other base meth-
ods because the calculation of features takes some time,
but the time spent is under 0.5s overall, which is not high
actually. As a result, for the DApp monitoring data, the
KNN is the best of the four base methods.

For SMD data, we can see that IForest has the high-
est F1 score, 0.7515, which shows the advantage of IFor-
est for anomaly classification through multiple features.
However, F1 scores are not high for other base methods,
showing too much noise in this dataset, and the over-
all distribution of normal and abnormal data is similar.
Thus, we can say that anomalies may be mainly in a few
features in the SMD data. In addition, the time spent
on OCSVM is higher than on others because the kernel
function calculation in OCSVM is time-consuming. On
the other hand, IForest has the best detection accuracy
and takes about 1.3 s, which is the best detection method.

For Vichalana data, we can see that OCSVM has the
highest F1 score, 0.6778, showing that the non-linear
projection can classify normal and abnormal data but is
not very accurate. The F1 score of IForest is 0.658, slightly
lower than OCSVM, which means that abnormal data
distribution varies in different features, making it hard
to detect. The F1 scores of KNN and LOF are pretty
low, showing that the overall distribution of normal and
abnormal data is also similar. It is worth noting that the
time spent on OCSVM is relatively high because the
dataset includes more than 40k samples, and it takes too
much time for kernel function calculation in OCSVM.
Here, IForest only takes about 2s, which is quite faster
than OCSVM.

In conclusion, we can see that detection accuracy is
not high enough for these base detection methods. In
addition, the performance of these methods varies for
the three datasets. For example, KNN performs the
best on the DApp monitoring data but relatively poorly
on the SMD and Vichalana data. Furthermore, these
detection methods have no prediction ability. Thus, for

the three challenges: high accuracy, good robustness,
and multi-step prediction, it is critical to develop suit-
able performance anomaly detection methods for cloud
applications.

Ensemble learning‑based detection framework
Base detection methods focus on different features in
data and have diverse performances. Therefore, it is rea-
sonable to consider that the integration of base meth-
ods can extract more features from data and improve
detection performance. Furthermore, ensemble learn-
ing is proposed with the assumption that by combining
several base models, the errors of a single model will be
compensated by others. Therefore, we consider integrat-
ing base methods with ensemble learning and propose an
Ensemble Learning-Based Detection (ELBD) framework,
including three classic linear ensemble methods (maxi-
mum, average, and weighted average) and a deep ensem-
ble method.

Basic idea
The ELBD framework can be seen in Fig. 2. First, input
data is multivariate time-series monitoring data, includ-
ing system and service level data, which can be collected
and used as input. In this paper, we mainly focus on sys-
tem resource data. We can represent input data as Dt

i
( i = [1, ..., n] is the index of resource metrics. n is number
of resource metrics. t ∈ N ∗ is the index of timestamps).
Next, pre-processing needs to be done for the input data,
including feature extraction and train/test split. Fea-
ture extraction has been introduced in Feature extrac-
tion section. There is no need to do the train/test split
for unsupervised learning. However, the train/test split
is important to avoid over-fitting for weakly-supervised
learning. Therefore, we do the train/test split for the deep
ensemble method, as seen in the experimental settings.
After pre-processing, data Dt

j ( j = [1, ..., d] is the index
of data dimensions. d is data dimensions after reduction)
will be the input of anomaly detection methods.

The base method selection provides unsupervised
detection methods. In this paper, we manually select
four typical base methods, which have been introduced
in detail in Base detection methods section. The output
of base methods can be assembled as an anomaly score
matrix. For the matrix, we provide three linear ensemble
methods without training and a deep ensemble method,
which needs to be trained with a neural network. The
output of anomaly detection methods can be repre-
sented as Ct

m (m is the index of all detection methods).
We mainly focus on accuracy, robustness, and multi-
step prediction ability to evaluate the multiple detection
methods.

Page 8 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

Linear ensemble methods
The outputs of base methods have different meanings
and scales. For example, the anomaly score of IForest
is calculated based on path depth, and KNN is based
on distance. Because all the features should be meas-
ured in the same units, we apply z-score normalization
[44] to ensure that all outputs have the same scale. The
z-score method uses the mean and standard deviation
of the original data for normalization so that the pro-
cessed data follows the normal distribution. After nor-
malization, we can represent the anomaly score vector
Ct
k (k represents base detection methods) of each base

method as Ot
k . Here, k is the index of base detection

methods and k ∈ [1, r] , r is the number of base meth-
ods. Therefore, by taking each anomaly score vector as
a column, we can get the anomaly scores matrix M:

The left side of Table 5 can be seen as an example of the
matrix. For matrix M, we provide linear ensemble meth-
ods first, including maximum ensemble, average ensem-
ble, and weighted average ensemble.

The maximum ensemble is to select the max value
of each row in matrix M and form a new anomaly score
vector.

M =





O1
1 O1

2 O1
3 O1

4

O2
1 O2

2 O2
3 O2

4
...

...
...

...
Ot
1 Ot

2 Ot
3 Ot

4
...

...
...

...





(5)Vmax = max
k

Ot
k , t ∈ N ∗

Fig. 2  ELBD framework, including three classic ensemble methods without training (blue line) and a deep ensemble method which need to train a
neural network (red line)

Page 9 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

The average ensemble is to calculate the average of each
row and form a new anomaly score vector.

A limitation of the average ensemble is that each base
detection method contributes equally to the final anom-
aly scores. However, some methods perform better or
worse than others. Therefore, we can consider assign-
ing different weights for these methods. For example,
we assign more weights to better methods and fewer to
worse ones. Weighted average ensemble is a method
developed based on this idea.

Based on the assumption that if a mixed model can
maximize the information provided by each model,
the mixed model has the best weight distribution
strategy. Mutual Information (MI) can measure the
difference between models, which can be used to cal-
culate the weight of each base method [45]. To calcu-
late the mutual information of two models, we first
need to transfer anomaly scores into anomaly classes
(0 or 1). We assume n samples in the two models, a
and b. Next, we use Na

0 and Na
1 to represent the num-

ber of normal and abnormal data in model a, and Nb
0

and Nb
1 to represent the number of normal and abnor-

mal data in model b. In addition, Nab
0 and Nab

1 repre-
sent the data that is detected as normal and abnormal
by both models. Then we can calculate the MI of mod-
els a and b:

To normalize it, we can calculate:

(6)Vavg =
1

r

r∑

k=1

Ot
k , t ∈ N ∗

(7)

I(A,B) =Nab

0
log

n ∗ N
ab

0

N
a

0
∗ N

b

0

+ (Na

0
− N

ab

0
) log

n ∗ (Na

0
− N

ab

0
)

N
a

0
∗ N

b

1

+ (Nb

0
− N

ab

0
) log

n ∗ (Nb

0
− N

ab

0
)

N
a

1
∗ N

b

0

+ N
ab

1
log

n ∗ N
ab

1

N
a

1
∗ N

b

1

Therefore, the average mutual information of base
method is:

Here, each base method is �(k) . σk is the standard value
of the difference between models and σk ∈ [0, 1] . The
smaller the value, the greater the difference between the
two models. Based on the difference value of each model,
we calculate the weights with wk = σk ∗ Z , Z is the nor-
malization factor. The new anomaly score vector can be
calculated as:

In Table 5, we provide five samples as an example to show
how maximum, average, and weighted average ensem-
ble methods work. In the left part of the table, we show
the anomaly scores of four detection methods. In the
right part, we can easily get the maximum and average
anomaly scores. As for the weighted average ensemble,
we assign the weights as (0.39, 0.28, 0.04, 0.29) for base
methods based on the calculation. These new anomaly
score vectors will be used to identify anomalies and eval-
uate the performance of these ensemble methods.

The deep ensemble method
The ensemble methods above try to combine different anom-
aly scores linearly. However, the linear combination may
not represent the information extracted by each model well.
Therefore, we provide a deep ensemble method in Fig. 3,

(8)

φ(A,B) =
I(A,B)√(∑1

i=0 N
a
i
log

N
a
i

n

)(∑1
i=0 N

b
i
log

N
b
i

n

)

(9)σk =
1

r − 1

r∑

l=1,l �=k

φ

(
�
(k), �(l)

)
, k ∈ [1, r]

(10)Vw_avg =
1

r

r∑

k=1

σk ∗ O
t
k , t ∈ N ∗

Table 5  Linear ensemble methods example: on the left side is anomaly scores obtained by each base method; on the right side is
anomaly scores obtained through ensemble methods

Index IForest KNN LOF OCSVM Max Avg Weighted Avg

1 -0.41 -0.23 0.14 -0.88 0.14 -0.35 -0.49

2 -0.18 -0.03 0.63 -0.86 0.63 -0.11 -0.33

3 2.29 5.14 1.07 0.62 5.14 2.28 2.76

4 2.36 4.56 0.86 0.11 4.56 1.97 2.42

5 1.99 1.5 -0.3 -0.19 1.99 0.75 1.14

Page 10 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

and it combines base methods in a nonlinear way by using an
Multi-Layer Perceptron (MLP). An MLP is a supplement to
a feed-forward neural network. It consists of three layers: the
input layer, the output layer, and the hidden layer. An MLP
is suitable for classification or regression problems where
inputs are assigned a class or real-value label. Therefore, the
deep ensemble method is weakly-supervised and needs to
be trained with some labels. Considering that there are fewer
labels in reality, we design to train the deep ensemble with
fewer labels and then test the trained model.

We provide the MLP architecture in Fig. 3. The input
layer receives the anomaly score matrix M at first. We
have two hidden layers consisting of an arbitrary num-
ber of neurons and use ReLU as an activation function.
The output layer has one neuron and outputs the prob-
ability using the softmax activation function. We define
x = [Ot

1,O
t
2,O

t
3,O

t
4] . W

(1) and b(1) are weights and biases
of the first layer. W (2) , b(2) and W (3) , b(3) are weights and
bias of the two hidden layers. The output can be calcu-
lated based on the below functions.

For the output h(3) , we can calculate the difference
between the predicted and actual results y with the

(11)

z(1) =W (1)x + b(1),

h(1) =ReLu(z(1)),

z(2) =W (2)h(1) + b(2),

h(2) =ReLu(z(2)),

z(3) =W (3)h(2) + b(3),

h(3) =softmax
(
z(3)

)

cross-entropy error function below. Here, y is the label
at time t. The optimization goal is to minimize this
equation by constantly adjusting parameters.

The deep ensemble method needs to be trained with
fewer labels, and then the trained model can be applied
to other data to detect anomalies. If we let y be the label
of time t + s (s is steps), we can train a model with pre-
diction ability. We provide an ELBD framework for
improving detection accuracy, robustness, and predicting
anomalies. Experimental results can be seen next.

Experiments and results
Experimental settings
We design two experiments to evaluate the performance
of the ELBD framework and compare them with results
in Base performance anomaly detection methods section.

•	 Performance of methods in the ELBD framework.
To evaluate the improvement in detection accuracy
and algorithm robustness, we compare the perfor-
mance of methods in the ELBD framework with the
best-performing base detection method. Experi-
ment results can be seen in E1.

•	 Multi-step prediction of the deep ensemble method.
As for the deep ensemble method, we evaluate its
multi-step prediction ability, which can be seen in E2.

No hyper-parameter exists for maximum, average, and
weighted average ensemble methods. We first do the

(12)l = −yT log h(3)

Fig. 3  The architecture of deep ensemble method includes four steps: (a)pre-processing data is sent to four (b)base methods; then after
normalization, the (c)ensemble of their outputs forms a score matrix; we finally input the score matrix into an (d)MLP for training

Page 11 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

train/test split for the deep ensemble method. Because
there are fewer labels in real scenarios, we use only 10%
of data with labels to train the model. Next, hyper-param-
eters in the MLP for the three datasets are the same. The
input layer has 4 neurons because we have 4 base meth-
ods. In addition, we set 20 neurons in the two hidden lay-
ers and the output layer as 1. We train 100 epochs and
set the batch size to 20. We use the Adam optimizer for
stochastic gradient descent with an initial learning rate of
10−3 during model training. We train the deep ensemble
method 10 times. We show the error bar in figures and
take the average of evaluation metrics in tables, such as
F1 score and time, as the final result.

Experimental results
E1: Performance of methods in ELBD framework. We
provide different methods in the ELBD framework to
improve detection performance. We apply these methods
to the DApp monitoring, SMD, and Vichalana datasets
to evaluate them. We compare these methods with the
best-performing base method and evaluate the detection
accuracy and robustness.

For the DApp monitoring data in Fig. 4, we can see that
the F1 score of the weighted average ensemble is higher
than KNN, maximum, and average ensemble, which
shows that ensemble methods can improve the detection
accuracy by integrating extracted information of base
methods. In addition, the weighted average ensemble
assigns weights to base methods to highlight their differ-
ent contributions. The most noteworthy thing in Fig 4 is
that the deep ensemble method has the highest F1 score,
0.8381. We train the deep ensemble method with only
10% labels, but the improvement is significant. The result
shows that the nonlinear combination of base methods
can extract more information and help improve detection
accuracy. As for time spent, in Fig. 5, we can see that the
deep ensemble method spends about 0.9s for data test-
ing, and other ensemble methods spend about 0.8s. Time
spent on each method for the DApp monitoring data is
under 1s, which is not high overall.

For SMD data in Fig. 4, we can see that the F1 score
of the IForest is 0.7515, which is higher than the maxi-
mum, average, and weighted average ensemble methods.
Ensemble methods rely heavily on base methods, and
other base methods (KNN, LOF, and OCSVM) perform

Fig. 4  Detection accuracy of methods in ELBD framework for three datasets

Page 12 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

poorly. The most important thing is that the deep ensem-
ble has the best F1 score, 0.8152, which is much higher
than other methods, showing its superior detection abil-
ity by integrating information non-linearly. Figure 5 pre-
sents the time spent of these methods. We can see that
the maximum, average, and weighted average ensemble
spend about 26.2s, and the deep ensemble spends about
27.8s. Still, ensemble methods rely on base methods, so
their time spent is mainly because of the kernel function
calculation in OCSVM and the computational cost of the
neural network.

For Vichalana data in Fig. 4, we can see that the F1
scores of the maximum and average ensembles are higher
than OCSVM, which shows the detection performance
improvement of ensemble-based methods. In contrast,
the weighted average ensemble does not assign weights
well. In addition, the deep ensemble has the best F1 score,
0.8438, which greatly improves detection accuracy com-
pared with other methods, and it shows the advantages

of the non-linear combination of base methods. Fig-
ure 5 presents the time spent of these methods. We
can see that the maximum, average, and weighted aver-
age ensemble spend about 190s, and the deep ensemble
spends about 194s. The time spent is still mainly because
the large-scale data makes the kernel function calculation
in OCSVM time-consuming. In addition, the neural net-
work’s computational cost takes a little time.

As for algorithm robustness, we provide rank results in
the Table 6. We rank the detection accuracy of all meth-
ods, including base methods and methods in the ELBD
framework, and calculate their average rank and robust-
ness score, respectively. In the Table 6, we can see that
the deep ensemble method has the best detection accu-
racy on the three different datasets, the DApp monitor-
ing data, SMD, and Vichalana data, which shows that it
has not only superior detection accuracy but outstanding
robustness for different data distributions. Other ensem-
ble methods have good robustness compared with base

Fig. 5  Time spent of methods in ELBD framework for three datasets

Table 6  Rank results of algorithm robustness

Method IForest KNN LOF OCSVM Emsemble_max Ensemble_avg Ensemble_w_avg Deep_
ensemble

DApp monitoring data 4 3 8 7 6 5 2 1
SMD 2 7 8 6 3 5 4 1
Vichalana data 5 7 8 4 2 3 6 1
Average rank 3.7 5.7 8 5.7 3.7 4.3 4 1
Robustness score 0.6143 0.3286 0 0.3286 0.6143 0.5286 0.5714 1

Page 13 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

detection methods. In contrast, base methods show per-
formance inconsistency, except for IForest. IForest has
quite good robustness compared with other base detec-
tion methods. In conclusion, we can say that methods in
the ELBD framework improve detection performance in
terms of detection accuracy and robustness, especially
the deep ensemble method.

E2: Multi-step prediction of the deep ensemble
method. With the deep ensemble method, we can pre-
dict multi-step performance anomalies. We mainly test
its prediction ability on the DApp monitoring data. The

time interval in the DApp monitoring data is 15s. Thus,
we can use every 4 steps, which is 1 minute, as the pre-
diction step. Then, we predict whether the anomaly will
happen or not after one or two or three minutes. To
evaluate the prediction ability, we present the prediction
accuracy with the F1 score in Fig. 6.

In Fig. 6, we can see that the longer the prediction time,
the lower the detection accuracy, which means that it is
difficult to predict long-term anomalies because depend-
ency between data diminishes over time. In addition, we
can see that all F1 scores are higher within four minutes

Fig. 6  Prediction accuracy and time spent for different time steps of the deep ensemble method on the DApp monitoring data

Table 7  Comparison results of all detection methods

Challenge Indicator IForest KNN LOF OCSVM Emsemble_max Ensemble_avg Ensemble_w_
avg

Deep_ensemble

Detection accu-
racy

F1 score 0.7335 0.6422 0.5246 0.6732 0.7453 0.7188 0.7169 0.8324

Algorithm robust-
ness

Robustness score 0.6143 0.3286 0 0.3286 0.6143 0.5286 0.5714 1

Multi-step predic-
tion

Prediction score - - - - - - - 3.3497

ARP_score 1.3478 0.9708 0.5246 1.0018 1.3596 1.2474 1.2883 5.1821

Page 14 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

than 0.8, which is good detection accuracy. Therefore, we
can say that it is available for the deep ensemble to pre-
dict anomalies in the next four minutes with high accu-
racy. We also show the time spent testing the prediction
ability in Fig. 6. We can see that the testing time is around
1.1s, meaning that the deep ensemble method can pre-
dict anomalies quickly.

For all the detection methods, we provide a Table 7 to
compare their performance in terms of detection accu-
racy, algorithm robustness, and multi-step prediction.
In the table, we can see that neither base detection nor
linear ensemble methods have prediction ability. In addi-
tion, we can notice that IForest and weighted average
ensemble methods have good detection accuracy and
robustness. The most important thing is that the deep
ensemble method perfectly addresses three challenges
and has the highest ARP_score 5.1821, which is much
better than other methods.

In conclusion, we provide the performance evalua-
tion of ensemble methods in the ELBD framework. Our
experiments show that these methods improve detec-
tion accuracy and robustness by integrating extracted
information from base methods. Among those, the deep
ensemble method has superior detection performance in
terms of accuracy, robustness, and multi-step prediction.
In addition, results show that the deep ensemble method
can predict anomalies in the next four minutes with high
accuracy.

Discussion
This paper provides an ELBD framework for perfor-
mance anomaly detection and prediction of cloud appli-
cations. They are developed based on four base methods
to improve detection performance. Our experiments
evaluate the performance of methods in the ELBD frame-
work and show an improvement in detection accuracy,
robustness, and multi-step prediction ability. However,
some aspects of these methods and experiments in this
paper can still be improved.

For noise in monitoring data, we first provide feature
extraction for pre-processing data. We use PCA to filter
features and reduce data dimensions. The PCA is a gen-
eral feature extraction method that can easily be used on
many datasets and improve detection efficiency. How-
ever, PCA has some limitations, like assuming features
in data are linearly dependent. Therefore, other feature
extraction methods like AutoEncoder [46] can be consid-
ered in the future.

Our experiments show that the four base detection
methods’ performances vary on three datasets. The per-
formance inconsistency is because each method extracts
different features from the data. Moreover, the outputs
of these base methods are assembled as the following

methods’ inputs, which will severely affect detection per-
formance. In this paper, we manually select the four base
detection methods based on their differences. However,
a method to automatically select suitable base detec-
tion methods while considering data distribution can be
researched in the future.

The capacity of the deep ensemble can be tested fur-
ther. In our experiments, the deep ensemble is trained
with fewer labels and has outstanding performance
compared with other detection methods. Next, we can
test the effects of different numbers of labels. Also, we
can consider replacing the MLP with other deep neural
networks like LSTM [47] to improve detection accuracy.

Performance anomaly detection methods can be
applied to other monitoring data, such as blockchain-
level data in DApps. Furthermore, based on performance
anomaly detection, root cause analysis can be researched
in the future to localize root causes of performance
anomalies. For example, when application response time
is high, we need to determine the root causes of cloud
resource problems or service-level delays.

Conclusions and future work
This paper focuses on performance anomaly detection
and prediction of cloud applications, which need to sat-
isfy three challenging requirements: high detection accu-
racy, robustness, and multi-step prediction. Based on our
survey, many machine learning-based methods have been
developed for performance anomaly detection. However,
these detection methods have inconsistent performance
for different datasets and rarely simultaneously solve the
three requirements. Therefore, based on existing perfor-
mance anomaly detection methods, we provide an ELBD
framework that integrates existing detection methods to
address the three requirements.

We first apply four base detection methods (IForest,
KNN, LOF, OCSVM) to study the monitoring data char-
acteristics. The results show that these base methods per-
form differently on datasets with different data patterns.
Then, based on these methods, we develop an ELBD
framework (maximum, average, weighted average, and
deep ensemble) that integrates existing detection methods
for improving detection performance. Our experiments
show that methods in the ELBD framework significantly
improve detection accuracy and robustness, especially
the deep ensemble method. In addition, the deep ensem-
ble method has the multi-step prediction ability, which
can predict anomalies in the next four minutes with high
accuracy. We also evaluate detection performance with
our indicator, and the results show that the deep ensemble
method has the highest ARP_score 5.1821, which is much
better than other methods.

Page 15 of 16Xin et al. Journal of Cloud Computing (2023) 12:7 	

This paper provides an ensemble-based framework
for performance anomaly detection of cloud applica-
tions, and the results show that the AI-based deep
ensemble method has superior performance in terms
of detection accuracy, robustness, and prediction abil-
ity. However, some aspects of this research can still be
improved. For example, we can perform feature selec-
tion for multivariate monitoring data, and more experi-
ments and extensions for deep ensemble methods can
be researched in the future. In addition, for applying
AI methods to help operators and developers better
implement performance management of cloud appli-
cations, several future research directions can be dis-
cussed based on [48].

Data security. For a running cloud application, large-
scale monitoring data is collected, which makes it neces-
sary to consider implementing secure data governance
for collected data. Collected performance data is mostly
stored in centralized or distributed environments, with
a high risk of being attacked or stolen [49]. Blockchain-
based data storage has been developed recently in IoT
[50]. However, blockchain-based storage technologies
still have challenges such as durability, availability, and
cost, which need to be explored more in the future.

Data labeling. High-quality labeled data can be very
helpful in improving detection accuracy. However, there are
fewer labels in real scenarios, and labeling data manually is
onerous and time-consuming. Nowadays, active learning
[51] has been developed to solve label issues by combin-
ing both machine and human labor. Therefore, we consider
that automated data annotation methods based on active
learning can be explored more in the future, for example, by
reducing human labor and improving the quality of labels.

Detection efficiency. Except for model robustness and
accuracy, efficiency is important for detection methods to
meet users’ requirements considering a large number of
performance data exists. Machine learning methods, espe-
cially deep learning methods, usually have high detection
accuracy but time-consuming model training [52]. Only a
few statistical-based methods for improving detection effi-
ciency have been developed [53]. Therefore, improving the
model efficiency and achieving accurate real-time online
detection is worth exploring in the future.

Model explainability. For detected anomalies, it is
natural to explore why these anomalies happen. Explaina-
ble AI [54] has been researched for deep learning models,
which are typically viewed as black boxes. Self-explaina-
ble methods like IForest have been explored in this paper.
However, the explanation of the deep ensemble method
can be explored more in the future. In addition, root
cause localization to identify metrics that cause anoma-
lies should be investigated more in the future despite
complex dependencies between metrics.

Acknowledgements
Not applicable.

Authors’ contributions
Ruyue Xin put forward the main ideas, designed experiments, and wrote
the manuscript. Hongyun Liu conducted experiments. Peng Chen guided
ideas and experiments. Zhiming Zhao guided the research, and provided
comments for the writing. All authors read and approved the final
manuscript.

Funding
This research is funded by the EU Horizon 2020 research and innovation pro-
gram under grant agreements 825134 (ARTICONF project), 862409 (BlueCloud
project), 824068 (ENVRIFAIR project). The research is partially supported by
EU LifeWatch ERIC. The research is also funded by Science and Technology
Program of Sichuan Province under Grant 2020JDRC0067 and 2020YFG0326.

Availability of data and materials
The data and materials are available from the corresponding author on
reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 May 2022 Accepted: 23 December 2022

References
	1.	 Cid-Fuentes JA, Szabo C, Falkner K (2018) Adaptive performance anomaly

detection in distributed systems using online svms. IEEE Trans Depend-
able Secure Comput 17(5):928–941

	2.	 Borghesi A, Bartolini A, Lombardi M, Milano M, Benini L (2019) A semisu-
pervised autoencoder-based approach for anomaly detection in high
performance computing systems. Eng Appl Artif Intell 85:634–644

	3.	 Zhu M, Ye K, Xu CZ (2018) Network anomaly detection and identification
based on deep learning methods. In: International Conference on Cloud
Computing. Springer, Cham, 219–234

	4.	 Siffer A, Fouque PA, Termier A, Largouet C (2017) Anomaly detection in
streams with extreme value theory. In: Proceedings of the 23rd ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining
(KDD ’17). Association for Computing Machinery, New York, 1067–1075

	5.	 Hu M, Ji Z, Yan K, Guo Y, Feng X, Gong J, Zhao X, Dong L (2018) Detecting
anomalies in time series data via a meta-feature based approach. IEEE
Access 6:27760–27776

	6.	 Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-
based local outliers. In: Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data (SIGMOD ’00). Association for
Computing Machinery, New York, 93–104

	7.	 Audibert J, Michiardi P, Guyard F, Marti S, Zuluaga MA (2020) Usad:
Unsupervised anomaly detection on multivariate time series. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 3395–3404

	8.	 Zhang H, Yu Y, Jiao J, Xing E, El Ghaoui L, Jordan M (2019) Theoretically
principled trade-off between robustness and accuracy. In: Proceed-
ings of the 36th International Conference on Machine Learning (ICML),
Long Beach, California, USA, Vol. 97 of Proceedings of Machine Learning
Research, PMLR. 7472–7482

	9.	 Wu W, He L, Lin W, Su Y, Cui Y, Maple C, Jarvis SA (2020) Developing an
unsupervised real-time anomaly detection scheme for time series with
multi-seasonality. IEEE Trans Knowl Data Eng 34(9):4147–4160

	10.	 Ibidunmoye O (2017) Performance anomaly detection and resolution for
autonomous clouds. PhD thesis, Umeå University

Page 16 of 16Xin et al. Journal of Cloud Computing (2023) 12:7

	11.	 Ibidunmoye O, Hernández-Rodriguez F, Elmroth E (2015) Performance
anomaly detection and bottleneck identification. ACM Comput Surv
(CSUR) 48(1):1–35

	12.	 Qi GJ, Luo J (2020) Small data challenges in big data era: A survey of
recent progress on unsupervised and semi-supervised methods. IEEE
Trans Pattern Anal Mach Intell 44(4):2168–2187

	13.	 Su Y, Zhao Y, Niu C, Liu R, Sun W, Pei D (2019) Robust anomaly detection
for multivariate time series through stochastic recurrent neural network.
In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’19). Association for Comput-
ing Machinery, New York, 2828–2837

	14.	 Tang J, Chen Z, Fu AWC, Cheung DW (2002) Enhancing effectiveness of outlier
detections for low density patterns. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, Berlin, Heidelberg, 535–548

	15.	 Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C (2003) Loci: Fast outlier
detection using the local correlation integral. In: Proceedings 19th international
conference on data engineering (Cat. No. 03CH37405). IEEE, pp 315–326

	16.	 Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining
outliers from large data sets. In: Proceedings of the 2000 ACM SIGMOD
international conference on Management of data (SIGMOD ’00). Associa-
tion for Computing Machinery, New York, pp 427–438

	17.	 Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detec-
tion approach for scattered real-world data. In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Lecture Notes in Computer
Science, vol 5476. Springer, Berlin, Heidelberg, 813–822

	18.	 Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Esti-
mating the support of a high-dimensional distribution. Neural Comput
13(7):1443–1471

	19.	 Song Q, Hu W, Xie W (2002) Robust support vector machine with bul-
let hole image classification. IEEE Trans Syst Man Cybern C (Appl Rev)
32(4):440–448

	20.	 Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: 2008 eighth ieee
international conference on data mining. IEEE, pp 413–422

	21.	 Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with
nonlinear dimensionality reduction. In: Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis
(MLSDA’14). Association for Computing Machinery, New York, 4–11

	22.	 Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv
preprint arXiv:​1312.​6114

	23.	 Yuan X, He P, Zhu Q, Li X (2019) Adversarial examples: Attacks and defenses
for deep learning. IEEE Trans Neural Netw Learn Syst 30(9):2805–2824

	24.	 Hashemi MJ, Keller E (2020) Enhancing robustness against adversarial
examples in network intrusion detection systems. In: 2020 IEEE Confer-
ence on Network Function Virtualization and Software Defined Networks
(NFV-SDN). Leganes. 37–43

	25.	 Galicia A, Talavera-Llames R, Troncoso A, Koprinska I, Martínez-Álvarez F
(2019) Multi-step forecasting for big data time series based on ensemble
learning. Knowl-Based Syst 163:830–841

	26.	 Zhou ZH (2012) Ensemble methods: foundations and algorithms. Chap-
man and Hall/CRC, New York

	27.	 Aggarwal CC, Sathe S (2015) Theoretical foundations and algorithms for
outlier ensembles. ACM sigkdd Explor Newsl 17(1):24–47

	28.	 Tyralis H, Papacharalampous G, Langousis A (2021) Super ensemble
learning for daily streamflow forecasting: Large-scale demonstration and
comparison with multiple machine learning algorithms. Neural Comput
Applic 33(8):3053–3068

	29.	 Tama BA, Nkenyereye L, Islam SR, Kwak KS (2020) An enhanced anomaly
detection in web traffic using a stack of classifier ensemble. IEEE Access
8:24120–24134

	30.	 Adeyemo VE, Abdullah A, JhanJhi N, Supramaniam M, Balogun AO (2019)
Ensemble and deep-learning methods for two-class and multi-attack
anomaly intrusion detection: an empirical study. Int J Adv Comput Sci
Appl 10(9):520–528

	31.	 Wei C, Sohn K, Mellina C, Yuille A, Yang F (2021) Crest: A class-rebalancing
self-training framework for imbalanced semi-supervised learning. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), virtual. Computer Vision Foundation/IEEE. 10857–10866

	32.	 Jian C, Ao Y (2022) Imbalanced fault diagnosis based on semi-supervised
ensemble learning. J Intell Manuf 34:1–16

	33.	 Fred AL, Jain AK (2005) Combining multiple clusterings using evidence
accumulation. IEEE Trans Pattern Anal Mach Intell 27(6):835–850

	34.	 Huang D, Lai JH, Wang CD (2015) Robust ensemble clustering using
probability trajectories. IEEE Trans Knowl Data Eng 28(5):1312–1326

	35.	 Huang D, Lai J, Wang CD (2016) Ensemble clustering using factor graph.
Pattern Recog 50:131–142

	36.	 Ünlü R, Xanthopoulos P (2019) A weighted framework for unsupervised
ensemble learning based on internal quality measures. Ann Oper Res
276(1):229–247

	37.	 Yang J, Zhang D, Frangi AF, Jy Yang (2004) Two-dimensional pca: a new
approach to appearance-based face representation and recognition. IEEE
Trans Pattern Anal Mach Intell 26(1):131–137

	38.	 Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip
Rev Comput Stat 2(4):433–459

	39.	 Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In:
Proceedings of the Sixteenth International Conference on Machine Learning
(ICML ’99). Morgan Kaufmann Publishers Inc., San Francisco, 124–133

	40.	 Saurabh N, Rubia C, Palanisamy A, Koulouzis S, Sefidanoski M, Chakra-
vorty A, Zhao Z, Karadimce A, Prodan R (2021) The articonf approach to
decentralized car-sharing. Blockchain Res Appl 2(3):100013

	41.	 Geethika D, Jayasinghe M, Gunarathne Y, Gamage TA, Jayathilaka S,
Ranathunga S, Perera S (2019) Anomaly detection in high-performance
api gateways. In: 2019 International Conference on High Performance
Computing & Simulation (HPCS). Dublin. 995–1001

	42.	 Shin K, Fernandes D, Miyazaki S (2011) Consistency measures for feature
selection: a formal definition, relative sensitivity comparison and a fast
algorithm. In: Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI’11). AAAI Press, Barcelona, 1491–1497

	43.	 Chabchoub Y, Togbe MU, Boly A, Chiky R (2022) An in-depth study and
improvement of isolation forest. IEEE Access 10:10219–10237

	44.	 Saranya C, Manikandan G (2013) A study on normalization techniques for
privacy preserving data mining. Int J Eng Technol (IJET) 5(3):2701–2704

	45.	 Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensem-
bles and their relationship with the ensemble accuracy. Mach Learn
51(2):181–207

	46.	 Wang Y, Yao H, Zhao S (2016) Auto-encoder based dimensionality reduc-
tion. Neurocomputing 184:232–242

	47.	 Sundermeyer M, Schlüter R, Ney H (2012) Lstm neural networks for
language modeling. In: Thirteenth annual conference of the International
Speech Communication Association. Portland, ISCA, 194–197

	48.	 Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M, Stanko-
vski V, Wu H, Abraham A et al (2022) AI for next generation computing: Emerg-
ing trends and future directions. Internet Things 19:100514, Piscataway

	49.	 Shah M, Shaikh M, Mishra V, Tuscano G (2020) Decentralized cloud stor-
age using blockchain. In: 2020 4th International conference on trends in
electronics and informatics (ICOEI)(48184). IEEE, pp 384–389

	50.	 Li R, Song T, Mei B, Li H, Cheng X, Sun L (2018) Blockchain for large-scale
internet of things data storage and protection. IEEE Trans Serv Comput
12(5):762–771

	51.	 Ren P, Xiao Y, Chang X, Huang PY, Li Z, Gupta BB, Chen X, Wang X
(2021) A survey of deep active learning. ACM Comput Surv (CSUR)
54(9):1–40

	52.	 Ren H, Xu B, Wang Y, Yi C, Huang C, Kou X, Xing T, Yang M, Tong J, Zhang
Q (2019) Time-series anomaly detection service at microsoft. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’19). Association for Computing Machin-
ery, New York, 3009–3017

	53.	 Li J, Di S, Shen Y, Chen L (2021) Fluxev: A fast and effective unsupervised
framework for time-series anomaly detection. In: Proceedings of the 14th
ACM International Conference on Web Search and Data Mining (WSDM
’21). Association for Computing Machinery, New York, 824–832

	54.	 Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J (2019) Explainable AI: A brief
survey on history, research areas, approaches and challenges. In: CCF
international conference on natural language processing and Chinese
computing. Springer, Cham, 563–574

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1312.6114

	Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework
	Abstract
	Introduction
	Related works
	Machine learning-based anomaly detection methods
	Ensemble learning

	Base performance anomaly detection methods
	Problem definition
	Feature extraction
	Base detection methods
	Experiments and results
	Dataset
	Experimental settings
	Evaluation indicators
	Experimental results

	Ensemble learning-based detection framework
	Basic idea
	Linear ensemble methods
	The deep ensemble method
	Experiments and results
	Experimental settings
	Experimental results

	Discussion
	Conclusions and future work
	Acknowledgements
	References

