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Abstract 

Effectively detecting run-time performance anomalies is crucial for clouds to identify abnormal performance behavior 
and forestall future incidents. To be used for real-world applications, an effective anomaly detection framework should 
meet three main challenging requirements: high accuracy for identifying anomalies, good robustness when applica-
tion patterns change, and prediction ability for upcoming anomalies. Unfortunately, existing research about perfor-
mance anomaly detection usually focuses on improving detection accuracy, while little research tackles the three 
challenges simultaneously. We conduct experiments for existing detection methods on multiple application monitor-
ing data, and results show that existing detection methods usually focus on different features in data, which will lead 
to their diverse performance on different data patterns. Therefore, existing anomaly detection methods have difficulty 
improving detection accuracy and robustness and predicting anomalies. To address the three requirements, we 
propose an Ensemble Learning-Based Detection (ELBD) framework which integrates existing well-selected detection 
methods. The framework includes three classic linear ensemble methods (maximum, average, and weighted aver-
age) and a novel deep ensemble method. Our experiments show that the ELBD framework realizes better detection 
accuracy and robustness, where the deep ensemble method can achieve the most accurate and robust detection for 
cloud applications. In addition, it can predict anomalies in the next four minutes with an F1 score higher than 0.8. The 
paper also proposes a new indicator ARP_score to measure detection accuracy, robustness, and multi-step prediction 
ability. The ARP_score of the deep ensemble method is 5.1821, which is much higher than other detection methods.

Keywords  Performance anomaly detection, Algorithm robustness, Anomaly prediction, Ensemble learning, Deep 
ensemble

Introduction
The run-time status of cloud applications can be con-
tinuously monitored through system-related metrics, 
e.g., CPU and memory usage [1]. Performance anomaly 

detection plays a vital role in operating cloud services, 
and applications [2, 3]. Cloud performance anomalies 
such as degraded response time, often caused by under-
lying system resource shortages, may severely affect 
the quality of an application’s user experience (QoE) 
and service (QoS). Therefore, effectively analyzing pat-
terns of monitoring system-related metrics and identi-
fying abnormal performance in real-time is crucial for 
continuously delivering the business value of a cloud 
application. In this context, we can highlight three chal-
lenging requirements for a performance anomaly detec-
tion framework. First, the detection must achieve high 
accuracy to ensure anomalies can be found as accurately 
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as possible. Second, detection algorithm robustness is 
essential. Different data distributions exist in multiple 
monitoring data, which requires a robust algorithm to 
meet changes in data patterns and maintain performance 
consistency. Finally, to prevent potential application vio-
lations effectively, it is vital to make a multi-step predic-
tion of future anomalies.

Existing anomaly detection methods have often been 
developed using statistics [4] or machine learning [5, 6] 
based methods. Most methods focus on improving detec-
tion accuracy. For example, Audibert et al. [7] developed 
the USAD based on an adversely trained AutoEncoder 
and achieved the best detection accuracy. Studies on 
improving the robustness of detection methods usually 
use adversarial training, which needs to make a trade-off 
between robustness and accuracy [8], rather than simulta-
neously improving accuracy and robustness. In addition, 
research on anomaly prediction mainly focuses on one-
step prediction [9], which has limited effect in prevent-
ing potential performance anomalies. Existing research 
explores different aspects of the three challenging require-
ments, but few studies simultaneously tackle the chal-
lenges of accuracy, robustness, and multi-step prediction 
ability. Besides, there are also no effective indicators to 
measure the combination of the three requirements.

Moreover, the development of performance anomaly 
detection has to handle two data challenges.

•	 Missing data labels. Most of the monitoring data 
does not contain labels that can be immediately used 
for training a machine learning-based model, and 
labeling time-series data is often manual and time-
consuming.

•	 Data noise. Monitoring data collected from a distrib-
uted network often contain noises, which can sig-
nificantly influence the performance of the anomaly 
detection methods and increase the false-positive 
detection.

Thus, for performance anomaly detection, we define 
our research question as “how to effectively detect and 
predict performance anomalies with high accuracy and 
good robustness?”. To address the two data challenges, we 
focus on unsupervised and weakly supervised detection 
methods and provide feature extraction to filter noise in 
data. To answer our research question, we first explore 
existing unsupervised anomaly detection methods and 
observe their detection performance on different data-
sets. Then, to improve detection accuracy, robustness, 
and prediction ability, we develop an Ensemble Learning-
Based Detection (ELBD) framework that incorporates 
classic detection methods rather than enhances a single 
model. The contributions in this paper mainly include:

•	 We characterize four typical base detection meth-
ods on different datasets, and the results show that 
their detection performance is not good for detection 
accuracy, robustness, and prediction.

•	 Based on base detection methods, we propose 
an ELBD framework including three classic lin-
ear ensemble methods (maximum, average, and 
weighted average) and a deep ensemble method.

•	 We propose ARP_score to evaluate detection perfor-
mance in terms of accuracy, robustness, and multi-
step prediction.

•	 We evaluated the methods in the ELBD framework 
on different datasets, and the results show that 
the deep ensemble method achieves the highest 
ARP_score 5.1821.

The rest of the paper is organized as follows. In Related 
works section, we review existing performance anomaly 
detection methods, specifically ensemble learning. In 
Base performance anomaly detection methods section, 
we provide base detection methods and an evaluation of 
their performance. In Ensemble learning-based detection 
framework section, we propose the ELBD framework and 
evaluate detection accuracy, robustness, and prediction 
ability. Finally, discussion and conclusion are provided in 
Discussion and Conclusion and future work sections.

Related works
Performance anomaly detection is a process of detect-
ing abnormal performance phenomena and predicting 
anomalies to forestall future incidents [10]. Research 
about performance anomaly detection is ongoing rapidly, 
and machine learning methods are widely applied [11]. 
This section will briefly review machine learning-based 
anomaly detection methods and specifically highlight 
ensemble learning.

Machine learning‑based anomaly detection methods
Machine learning-based anomaly detection methods can 
be reviewed in terms of supervised, semi-supervised, 
and unsupervised learning. Supervised learning methods 
have high accuracy [5], but they are ineffective for appli-
cation monitoring data because data labels are usually 
missing in reality and manually labeling data manually 
is time-consuming. Semi-supervised learning methods 
are developed when fewer labels exist, and unsupervised 
learning methods are used when no labels exist. Semi-
supervised methods typically outperform unsupervised 
methods, but unsupervised methods are better suited for 
actual industrial scenarios [12].

In Table  1, we provide a classification of unsuper-
vised performance anomaly detection methods. The 
table includes traditional methods such as tree-based, 
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kernel-based, distance-based, and density-based. 
They usually focus on different features in data, and 
their performance varies for different datasets, which 
will be verified in  Base performance anomaly detec-
tion methods  section. Deep learning methods are also 
developing rapidly recently. For example, Su et al. [13] 
provide a stochastic recurrent neural network named 
OmniAnomaly for multivariate time series anomaly 
detection. Deep learning methods can achieve high 
detection accuracy, but model training is usually 
time-consuming.

Researchers usually improve algorithm robustness 
through adversarial training, which uses deep learning 
methods to defend generated adversarial examples [23]. 
For example, Hashemi et  al. [24] enhance the robust-
ness of an intrusion detection system in the presence 
of adversarial examples by utilizing denoising autoen-
coders. However, there is usually a trade-off between 
model accuracy and robustness [8], which makes it a 
challenge to improve model robustness and accuracy 
simultaneously. In addition, research on anomaly pre-
diction usually focuses on univariate data and one-step 
prediction. For example, Wu et  al. [9] provide a pre-
diction-driven anomaly detection method that relies 
on Long Short Term Memory (LSTM) with univariate 
time-series data.

In conclusion, machine learning methods, especially 
semi-supervised and unsupervised methods, can be 
considered for performance anomaly detection because 
fewer labels exist. While different methods usually focus 
on different data features, we can consider integrating 
existing methods, for example, LOF, KNN, OCSVM, and 
IForest, in Table  1. To improve detection accuracy and 
robustness simultaneously, ensemble learning instead of 
adversarial training to integrate existing detection meth-
ods can be considered. We will introduce related work to 

ensemble learning next. In addition, we provide a multi-
step prediction based on multi-variate metrics for perfor-
mance anomalies in this paper.

Ensemble learning
Ensemble learning is proposed to improve the accuracy 
and reduce the variance of an automated decision-making 
system [25]. The primary assumption of ensemble learn-
ing is that by combining several base models, the errors of 
a single model will likely be compensated by other mod-
els [26]. For anomaly detection, the ensemble of anomaly 
scores by taking the maximum, and average actions can 
be found in [27]. Research about ensemble learning can 
be reviewed based on supervised classification, semi-
supervised and unsupervised clustering ensemble.

Some research already focuses on ensemble learn-
ing with machine learning methods. As for supervised 
ensemble learning, Tyralis et al. [28] propose an ensem-
ble learning method by combining ten machine learning 
algorithms and estimating the weights through a k-fold 
cross-validation procedure. Tama et  al. [29] propose 
a stacked ensemble, which uses three classifiers (ran-
dom forest, gradient boosting machine, and XGBoost) 
and provides a generalized linear model (GLM) as a 
combiner. Adeyemo et  al. [30] focus on network intru-
sion detection and implement two ensemble methods 
and a deep learning method (LSTM). The two ensemble 
methods include a homogeneous method that uses an 
optimized bagged random forest algorithm and a hetero-
geneous method that is an averaged probability method 
of a voting ensemble for four standard classifiers. These 
studies of ensemble learning mainly focus on weight cal-
culations or linear combinations of different base models.

Semi-supervised ensemble learning mainly focuses 
on expanding the labeled training set and utilizing the 
expanded training set to do classification or regression 
[31]. For example, Jian et al. [32] present a sample infor-
mation-based synthetic minority oversampling technique 
to balance the labeled dataset and use variable weighted 
voting for integrating base models. This research focuses 
on the data label issue with semi-supervised learning, but 
the ensemble is linear. Unsupervised ensemble learning, 
also known as consensus clustering, is to find the optimal 
combination strategy of individual clustering. Ensemble 
clustering can be classified into three categories, pair-
wise co-occurrence based methods [33], graph parti-
tioning based methods [34] and median partition-based 
methods [35]. Unlu et al. [36] provide a weighting policy 
based on internal clustering quality measures, which 
gives different importance to individual clustering. This 
research provides a weighted policy to integrate individ-
ual models, but it works linearly.

Table 1  A classification of classic unsupervised performance 
anomaly detection methods

Type Method Description

Density-based LOF [6] Local Outlier Factor

COF [14] Connectivity-based Outlier Factor

LOCI [15] Local Correlation Integral

Distance-Based KNN [16] K-Nearest Neighbors

LDOF [17] Local Distance-based Outlier Factor

Kernel-based OCSVM [18] One-Class Support Vector Machines

RSVM [19] Robust Support Vector Machines

Tree-based IForest [20] Isolation Forest

Deep learning AutoEncoder [21] Fully connected AutoEncoder

VAE [22] Variational AutoEncoder
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For ensemble learning, we can see that combining differ-
ent methods is challenging, and many methods focus on 
linear combinations, which limits information extraction 
and detection performance improvement. Therefore, to get 
an effective model that improves detection accuracy and 
robustness and makes prediction of performance anom-
aly detection, the nonlinear combination of different base 
detection methods is further investigated in this paper.

Base performance anomaly detection methods
For performance anomaly detection of cloud applica-
tions, we provide feature extraction for original data and 
explore the performance of four base detection methods 
in this section.

Problem definition
Multivariate time-series data are timestamped data 
points sequences and can be represented as D. Then each 
data point will be Dt

i  ( i = [1, ..., n] is the index of resource 
metrics. n is the number of resource metrics. t ∈ N ∗ 
is the index of timestamps). Multivariate time-series 
data anomaly detection is to learn the characteristics of 
data D and determine whether an observation Dn+1 is 
anomalous or not. For multi-step anomaly prediction, 
we will use data D for training, and determine whether 
Dn+1,Dn+2, ...,Dn+p is anomalous.

In this paper, we first provide the performance of clas-
sic detection methods. Then we propose an ELBD frame-
work, which is developed based on ensemble learning 
and aims to improve detection accuracy and robustness 
by integrating information extracted by classic detection 
methods non-linearly. In addition, we implement multi-
step prediction ability in the deep ensemble method in 
ELBD framework.

Feature extraction
Multivariate data usually contains noise, which can 
induce unnecessary variance in a model. Therefore, pre-
processing data through feature extraction to remove 
redundant information and reduce data dimension is 
needed. For feature extraction, Principal Components 
Analysis (PCA) [37] is a classic and most used method. 
PCA is an unsupervised method that uses eigenvalue 
decomposition to compress and denoise data, which is 
suitable as the feature extraction method considering 
there are no labels or fewer labels in reality.

PCA is a method to transform a dataset with lots of 
variables into a smaller one containing most of the origi-
nal information. The process steps of PCA are: 1) getting 
the covariance matrix of original features; 2) calculating 
eigenvectors and eigenvalues of the covariance matrix to 
identify principal components; 3) sorting eigenvalues and 
selecting eigenvectors with high eigenvalues as feature 

vectors; 4) recasting original data based on feature vec-
tors. In step 3, the number of selected eigenvectors deter-
mines the data dimensions after reduction. In practice, 
we set the reduction dimension based on a calculated 
percentage of variance [38]. According to these calcula-
tions, PCA achieves principal feature selection and data 
dimension reduction. Finally, we apply PCA to all moni-
toring data and use the data with low dimensions as the 
input of anomaly detection methods.

Base detection methods
Different anomaly detection methods usually focus on dif-
ferent features in data, such as density-based and distance-
based, and result in diverse performance on data. Therefore, 
to comprehensively understand the characteristics of moni-
toring data, we select four classic methods (IForest, KNN, 
LOF, OCSVM) in Table 1 as base detection methods.

IForest is based on the Decision Tree algorithm [39]. 
Many isolation trees make up an isolation forest to make 
anomaly detection results more credible. KNN is a dis-
tance-based algorithm [16]. It calculates each point’s 
distance (such as Euclidean, Manhattan) with k nearest 
neighbors and sets the distance as an anomaly score. LOF 
is a density-based algorithm [6]. By comparing a point’s 
local density to its neighbors’ local densities, nodes with 
lower densities than their neighbors will be considered 
anomalies. OCSVM is based on Support Vector Machine 
(SVM) [18]. SVM can project data through a non-linear 
function to a high-dimensional space, and points are 
separated into different classes. Because kernel function 
calculation is time-consuming, it usually works slowly for 
large-scale data.

For each base method, the input is preprocessed data. 
The processing of input data includes model initializa-
tion, fitting data, and output anomaly scores. Model ini-
tialization includes the setup of hyper-parameters, such 
as anomaly fractions, which can be set based on data 
characteristics. After fitting the data, an anomaly score 
vector will be output. We use the anomaly score vector of 
each detection method to identify anomalies and evalu-
ate the performance of each detection method.

Experiments and results
Dataset
In our experiments, we use a Decentralized Application 
(DApp) monitoring data and two public datasets.

DApps monitoring data. In business scenarios where 
real-time transactions are required, e.g., energy trad-
ing or crowd journalisms [40], the Quality of Service 
(QoS) metrics of a DApp, such as transaction through-
put, latency, and failure rates, are critical to the busi-
ness value. To deliver such a quality-critical DApp in 
cloud environments, one needs to select cloud services 



Page 5 of 16Xin et al. Journal of Cloud Computing            (2023) 12:7 	

carefully, customize their capacities, and monitor the 
run-time status of the application. Figure 1 shows a DApp 
example developed with Hyperledger Fabric1. For the 
DApp, different organizations, which contain many peer 
nodes, are deployed on different cloud infrastructure ser-
vices (VMs) and monitored by a tool Prometheus2. We 
use Prometheus to collect real-time data and use Caliper3 
to simulate workload generation.

For a running DApp, we mainly collect system resource 
metrics, which can be seen in Table 2. When the DApp 
receives transaction requests stably, we add system 
pressures with stress-ng4, such as disk pressure to inject 
anomalies manually. We increase disk pressure by 20 
minutes every hour. We monitor the DApp for twelve 
hours and collect data at 15-second intervals. Ultimately, 
the DApp monitoring data contains 3237 samples and 
229 resource-related metrics for our experiments. The 
general information can be seen in the Table 3.

Public dataset. SMD is divided into two subsets of 
equal size: the first half is the training set and the second 
half is the testing set. SMD (Server Machine Dataset) is 
a dataset collected and made publicly available by a large 
internet company [13]. It contains data collected from 
many different server machines and includes 38 metrics. 
In addition, domain experts have labeled anomalies in 
SMD based on incident reports.

Vichalana is a multivariate time-series dataset that can 
be used for performance anomaly detection in API Gate-
ways [41]. It has different anomalies, such as high CPU 
and memory usage. Performance metrics in this dataset 
are collected when the system operates in normal and 
anomalous mode. The information of SMD and Vicha-
lana data used in our experiments can be seen in Table 3.

Experimental settings
The DApp monitoring data is collected from a deployed 
DApp in a cloud environment. We use Microsoft Azure5 
as the cloud environment and deploy the monitor com-
ponent and DApp separately. The monitor component is 

Fig. 1  The monitor component and a DApp in cloud

Table 2  Description of system resource metrics

Resource Metrics Description

CPU related Per core and overall load, usage, idle time, I/O wait 
time, hard and soft interrupt counts, context switch 
count, etc.

Memory related Free, cached, active, inactive, dirty memory, etc.

Disk related Disk space used, IOps, I/O usage, read/write rate, etc.

Network related Receive/transmit network traffic, etc.

Table 3  General information of three datasets

Dataset Number 
of 
samples

Number 
of 
features

Number of 
extracted 
features

Anomaly 
fraction 
(%)

DApp monitor-
ing data

3237 229 15 28.14

SMD data 28479 38 5 9.46

Vichalana data 45486 13 6 6.45

1  https://​www.​hyper​ledger.​org/​use/​fabric
2  https://​prome​theus.​io/
3  https://​www.​hyper​ledger.​org/​use/​calip​er
4  https://​kernel.​ubuntu.​com/​~cking/​tarba​lls/​stress-​ng/ 5  https://​azure.​micro​soft.​com/​en-​us/

https://www.hyperledger.org/use/fabric
https://prometheus.io/
https://www.hyperledger.org/use/caliper
https://kernel.ubuntu.com/%7ecking/tarballs/stress-ng/
https://azure.microsoft.com/en-us/
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deployed on a VM, with the following properties: Ubuntu 
18.04 as the operating system; 2CPU; 4G Memory; and 
32GB of Storage. The DApp is deployed on VMs with 
Ubuntu 18.04 as the operating system, 4CPU, 16G mem-
ory, and 32GB of storage.

For feature extraction in data pre-processing, PCA 
needs to retain as much variance information of the 
original data as possible, such as 95%. Therefore, we set 
reduction dimensions as 15 for DApp monitoring data, 5 
for SMD data, and 6 for Vichalana data based on a calcu-
lated percentage of variance [38].

As for each base detection method, their hyper-param-
eters are set as below. Anomaly fractions need to be 
determined first. For the DApp monitoring data, because 
we inject anomalies 20 minutes every hour, the anomaly 
fraction is set as 0.3. For SMD and Vichalana data, we 
use the default anomaly fraction, which is 0.1. Next, the 
hyper-parameters of each base method need to be deter-
mined. We set the tree number for IForest to 100. The 
neighbor number in KNN is 5. In LOF, we set the neigh-
bor number as 20. In OCSVM, we use the Radial Basis 
Function (RBF) kernel function.

Evaluation indicators
The performance of these detection methods is evaluated 
in three aspects: accuracy, robustness, and prediction 
ability. We use Precision, Recall, and F1 score to indi-
cate accuracy. Precision is about how much of the data 
detected as anomalies is true anomalies, while recall is 
about how much of the real anomaly data is detected as 
anomalies. The F1 score is a function of both Precision 
and Recall.

Therefore, we mainly focus on the F1 score for detec-
tion accuracy. Our experiment results also evaluate and 
present the time spent on each unsupervised detection 
method and test time for the deep ensemble method. 
For robustness, we test detection methods on three dif-
ferent datasets and rank detection accuracy to represent 

(1)F1 score = 2 ∗
Precision ∗ Recall

Precision+ Recall

performance consistency, which can clearly show the 
detection performance comparison [42]. We calculate 
robustness as the average ranking of detection methods 
on the three datasets. Finally, we normalize the rank and 
get the robustness score:

Here, Rankmax is the maximum of rank numbers, and 
Rankmin is the minimum of rank numbers. We evalu-
ate prediction ability with accuracy, which is also repre-
sented by the F1 score. We set the threshold of 0.8 and 
calculate the prediction score with

Here, pt is the furthest predicted time in minutes. The 
prediction score considers both the furthest prediction 
time and prediction accuracy because the longer time 
and more accurate prediction can make it easier to avoid 
anomalies for applications. Finally, we define the indica-
tor ARP_score for each method considering detection 
accuracy, robustness, and prediction as:

Here, d is the number of datasets. We take the total of 
these three scores as the detection performance of a 
detection method on a dataset. We take the average 
of each detection method on different datasets with 
multiple datasets as the final indicator of its detection 
performance.

Experimental results
We apply the four base methods (IForest, KNN, LOF, and 
OCSVM) to the DApp monitoring data, SMD, and Vicha-
lana data. The performance of their detection accuracy 
can be seen in Table 4.

(2)Robustness score =
Rank − Rankmax

Rankmin − Rankmax

(3)Prediction score =

pt

i=1

F1 scorei

(4)

ARP_score =
1

d

d∑

i=1

(F1 scorei + Robustness scorei

+ Prediction scorei)

Table 4  Performance of different detection methods on three datasets. For each dataset, the F1 score of the best detection method is 
shown in bold

Detection 
methods

DApp monitoring data SMD data Vichalana data

F1 score Time(s) F1 score Time(s) F1 score Time(s)

IForest 0.791 0.318±0.0121 0.7515 1.278±0.0195 0.658 1.9814±0.0704

KNN 0.8033 0.0246±0.0021 0.5713 0.311±0.0047 0.5519 0.7758±0.0693

LOF 0.5143 0.0439±0.0015 0.5468 0.5379±0.0108 0.5128 1.4684±0.1229

OCSVM 0.737 0.3054±0.0076 0.6047 23.9234±0.8924 0.6778 190.118±10.5769
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For the DApp monitoring data, we can see that the 
KNN has the highest F1 score, 0.8033, demonstrating 
that the data has clustering characteristics because KNN 
is good at identifying clusters in data. IForest takes into 
account different features in the data. IForest usually has 
good detection performance [43], as well as on the DApp 
monitoring data with an F1 score of 0.791. If the abnor-
mal features are concentrated in a few dimensions, it will 
be hard to detect anomalies for LOF. Therefore, LOF has 
the lowest F1 score, 0.5143, for the DApp monitoring 
data. The F1 score of OCSVM is 0.737, which is not high 
enough because the projection through a kernel function 
cannot be divided into normal and abnormal data very 
well. For time spent, we can see that IForest and OCSVM 
spend about 0.3s, which is higher than other base meth-
ods because the calculation of features takes some time, 
but the time spent is under 0.5s overall, which is not high 
actually. As a result, for the DApp monitoring data, the 
KNN is the best of the four base methods.

For SMD data, we can see that IForest has the high-
est F1 score, 0.7515, which shows the advantage of IFor-
est for anomaly classification through multiple features. 
However, F1 scores are not high for other base methods, 
showing too much noise in this dataset, and the over-
all distribution of normal and abnormal data is similar. 
Thus, we can say that anomalies may be mainly in a few 
features in the SMD data. In addition, the time spent 
on OCSVM is higher than on others because the kernel 
function calculation in OCSVM is time-consuming. On 
the other hand, IForest has the best detection accuracy 
and takes about 1.3 s, which is the best detection method.

For Vichalana data, we can see that OCSVM has the 
highest F1 score, 0.6778, showing that the non-linear 
projection can classify normal and abnormal data but is 
not very accurate. The F1 score of IForest is 0.658, slightly 
lower than OCSVM, which means that abnormal data 
distribution varies in different features, making it hard 
to detect. The F1 scores of KNN and LOF are pretty 
low, showing that the overall distribution of normal and 
abnormal data is also similar. It is worth noting that the 
time spent on OCSVM is relatively high because the 
dataset includes more than 40k samples, and it takes too 
much time for kernel function calculation in OCSVM. 
Here, IForest only takes about 2s, which is quite faster 
than OCSVM.

In conclusion, we can see that detection accuracy is 
not high enough for these base detection methods. In 
addition, the performance of these methods varies for 
the three datasets. For example, KNN performs the 
best on the DApp monitoring data but relatively poorly 
on the SMD and Vichalana data. Furthermore, these 
detection methods have no prediction ability. Thus, for 

the three challenges: high accuracy, good robustness, 
and multi-step prediction, it is critical to develop suit-
able performance anomaly detection methods for cloud 
applications.

Ensemble learning‑based detection framework
Base detection methods focus on different features in 
data and have diverse performances. Therefore, it is rea-
sonable to consider that the integration of base meth-
ods can extract more features from data and improve 
detection performance. Furthermore, ensemble learn-
ing is proposed with the assumption that by combining 
several base models, the errors of a single model will be 
compensated by others. Therefore, we consider integrat-
ing base methods with ensemble learning and propose an 
Ensemble Learning-Based Detection (ELBD) framework, 
including three classic linear ensemble methods (maxi-
mum, average, and weighted average) and a deep ensem-
ble method.

Basic idea
The ELBD framework can be seen in Fig. 2. First, input 
data is multivariate time-series monitoring data, includ-
ing system and service level data, which can be collected 
and used as input. In this paper, we mainly focus on sys-
tem resource data. We can represent input data as Dt

i  
( i = [1, ..., n] is the index of resource metrics. n is number 
of resource metrics. t ∈ N ∗ is the index of timestamps). 
Next, pre-processing needs to be done for the input data, 
including feature extraction and train/test split. Fea-
ture extraction has been introduced in  Feature extrac-
tion section. There is no need to do the train/test split 
for unsupervised learning. However, the train/test split 
is important to avoid over-fitting for weakly-supervised 
learning. Therefore, we do the train/test split for the deep 
ensemble method, as seen in the experimental settings. 
After pre-processing, data Dt

j  ( j = [1, ..., d] is the index 
of data dimensions. d is data dimensions after reduction) 
will be the input of anomaly detection methods.

The base method selection provides unsupervised 
detection methods. In this paper, we manually select 
four typical base methods, which have been introduced 
in detail in Base detection methods section. The output 
of base methods can be assembled as an anomaly score 
matrix. For the matrix, we provide three linear ensemble 
methods without training and a deep ensemble method, 
which needs to be trained with a neural network. The 
output of anomaly detection methods can be repre-
sented as Ct

m (m is the index of all detection methods). 
We mainly focus on accuracy, robustness, and multi-
step prediction ability to evaluate the multiple detection 
methods.
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Linear ensemble methods
The outputs of base methods have different meanings 
and scales. For example, the anomaly score of IForest 
is calculated based on path depth, and KNN is based 
on distance. Because all the features should be meas-
ured in the same units, we apply z-score normalization 
[44] to ensure that all outputs have the same scale. The 
z-score method uses the mean and standard deviation 
of the original data for normalization so that the pro-
cessed data follows the normal distribution. After nor-
malization, we can represent the anomaly score vector 
Ct
k (k represents base detection methods) of each base 

method as Ot
k . Here, k is the index of base detection 

methods and k ∈ [1, r] , r is the number of base meth-
ods. Therefore, by taking each anomaly score vector as 
a column, we can get the anomaly scores matrix M:

The left side of Table 5 can be seen as an example of the 
matrix. For matrix M, we provide linear ensemble meth-
ods first, including maximum ensemble, average ensem-
ble, and weighted average ensemble.

The maximum ensemble is to select the max value 
of each row in matrix M and form a new anomaly score 
vector.

M =





O1
1 O1

2 O1
3 O1

4

O2
1 O2

2 O2
3 O2

4
...

...
...

...
Ot
1 Ot

2 Ot
3 Ot

4
...

...
...

...





(5)Vmax = max
k

Ot
k , t ∈ N ∗

Fig. 2  ELBD framework, including three classic ensemble methods without training (blue line) and a deep ensemble method which need to train a 
neural network (red line)
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The average ensemble is to calculate the average of each 
row and form a new anomaly score vector.

A limitation of the average ensemble is that each base 
detection method contributes equally to the final anom-
aly scores. However, some methods perform better or 
worse than others. Therefore, we can consider assign-
ing different weights for these methods. For example, 
we assign more weights to better methods and fewer to 
worse ones. Weighted average ensemble is a method 
developed based on this idea.

Based on the assumption that if a mixed model can 
maximize the information provided by each model, 
the mixed model has the best weight distribution 
strategy. Mutual Information (MI) can measure the 
difference between models, which can be used to cal-
culate the weight of each base method [45]. To calcu-
late the mutual information of two models, we first 
need to transfer anomaly scores into anomaly classes 
(0 or 1). We assume n samples in the two models, a 
and b. Next, we use Na

0  and Na
1  to represent the num-

ber of normal and abnormal data in model a, and Nb
0  

and Nb
1  to represent the number of normal and abnor-

mal data in model b. In addition, Nab
0  and Nab

1  repre-
sent the data that is detected as normal and abnormal 
by both models. Then we can calculate the MI of mod-
els a and b:

To normalize it, we can calculate:

(6)Vavg =
1

r

r∑

k=1

Ot
k , t ∈ N ∗

(7)

I(A,B) =Nab

0
log

n ∗ N
ab

0

N
a

0
∗ N

b

0

+ (Na

0
− N

ab

0
) log

n ∗ (Na

0
− N

ab

0
)

N
a

0
∗ N

b

1

+ (Nb

0
− N

ab

0
) log

n ∗ (Nb

0
− N

ab

0
)

N
a

1
∗ N

b

0

+ N
ab

1
log

n ∗ N
ab

1

N
a

1
∗ N

b

1

Therefore, the average mutual information of base 
method is:

Here, each base method is �(k) . σk is the standard value 
of the difference between models and σk ∈ [0, 1] . The 
smaller the value, the greater the difference between the 
two models. Based on the difference value of each model, 
we calculate the weights with wk = σk ∗ Z , Z is the nor-
malization factor. The new anomaly score vector can be 
calculated as:

In Table 5, we provide five samples as an example to show 
how maximum, average, and weighted average ensem-
ble methods work. In the left part of the table, we show 
the anomaly scores of four detection methods. In the 
right part, we can easily get the maximum and average 
anomaly scores. As for the weighted average ensemble, 
we assign the weights as (0.39, 0.28, 0.04, 0.29) for base 
methods based on the calculation. These new anomaly 
score vectors will be used to identify anomalies and eval-
uate the performance of these ensemble methods.

The deep ensemble method
The ensemble methods above try to combine different anom-
aly scores linearly. However, the linear combination may 
not represent the information extracted by each model well. 
Therefore, we provide a deep ensemble method in Fig.  3, 

(8)

φ(A,B) =
I(A,B)√(∑1

i=0 N
a
i
log

N
a
i

n

)(∑1
i=0 N

b
i
log

N
b
i

n

)

(9)σk =
1

r − 1

r∑

l=1,l �=k

φ

(
�
(k), �(l)

)
, k ∈ [1, r]

(10)Vw_avg =
1

r

r∑

k=1

σk ∗ O
t
k , t ∈ N ∗

Table 5  Linear ensemble methods example: on the left side is anomaly scores obtained by each base method; on the right side is 
anomaly scores obtained through ensemble methods

Index IForest KNN LOF OCSVM Max Avg Weighted Avg

1 -0.41 -0.23 0.14 -0.88 0.14 -0.35 -0.49

2 -0.18 -0.03 0.63 -0.86 0.63 -0.11 -0.33

3 2.29 5.14 1.07 0.62 5.14 2.28 2.76

4 2.36 4.56 0.86 0.11 4.56 1.97 2.42

5 1.99 1.5 -0.3 -0.19 1.99 0.75 1.14
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and it combines base methods in a nonlinear way by using an 
Multi-Layer Perceptron (MLP). An MLP is a supplement to 
a feed-forward neural network. It consists of three layers: the 
input layer, the output layer, and the hidden layer. An MLP 
is suitable for classification or regression problems where 
inputs are assigned a class or real-value label. Therefore, the 
deep ensemble method is weakly-supervised and needs to 
be trained with some labels. Considering that there are fewer 
labels in reality, we design to train the deep ensemble with 
fewer labels and then test the trained model.

We provide the MLP architecture in Fig. 3. The input 
layer receives the anomaly score matrix M at first. We 
have two hidden layers consisting of an arbitrary num-
ber of neurons and use ReLU as an activation function. 
The output layer has one neuron and outputs the prob-
ability using the softmax activation function. We define 
x = [Ot

1,O
t
2,O

t
3,O

t
4] . W

(1) and b(1) are weights and biases 
of the first layer. W (2) , b(2) and W (3) , b(3) are weights and 
bias of the two hidden layers. The output can be calcu-
lated based on the below functions.

For the output h(3) , we can calculate the difference 
between the predicted and actual results y with the 

(11)

z(1) =W (1)x + b(1),

h(1) =ReLu(z(1)),

z(2) =W (2)h(1) + b(2),

h(2) =ReLu(z(2)),

z(3) =W (3)h(2) + b(3),

h(3) =softmax
(
z(3)

)

cross-entropy error function below. Here, y is the label 
at time t. The optimization goal is to minimize this 
equation by constantly adjusting parameters.

The deep ensemble method needs to be trained with 
fewer labels, and then the trained model can be applied 
to other data to detect anomalies. If we let y be the label 
of time t + s (s is steps), we can train a model with pre-
diction ability. We provide an ELBD framework for 
improving detection accuracy, robustness, and predicting 
anomalies. Experimental results can be seen next.

Experiments and results
Experimental settings
We design two experiments to evaluate the performance 
of the ELBD framework and compare them with results 
in Base performance anomaly detection methods section.

•	 Performance of methods in the ELBD framework. 
To evaluate the improvement in detection accuracy 
and algorithm robustness, we compare the perfor-
mance of methods in the ELBD framework with the 
best-performing base detection method. Experi-
ment results can be seen in E1.

•	 Multi-step prediction of the deep ensemble method. 
As for the deep ensemble method, we evaluate its 
multi-step prediction ability, which can be seen in E2.

No hyper-parameter exists for maximum, average, and 
weighted average ensemble methods. We first do the 

(12)l = −yT log h(3)

Fig. 3  The architecture of deep ensemble method includes four steps: (a)pre-processing data is sent to four (b)base methods; then after 
normalization, the (c)ensemble of their outputs forms a score matrix; we finally input the score matrix into an (d)MLP for training
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train/test split for the deep ensemble method. Because 
there are fewer labels in real scenarios, we use only 10% 
of data with labels to train the model. Next, hyper-param-
eters in the MLP for the three datasets are the same. The 
input layer has 4 neurons because we have 4 base meth-
ods. In addition, we set 20 neurons in the two hidden lay-
ers and the output layer as 1. We train 100 epochs and 
set the batch size to 20. We use the Adam optimizer for 
stochastic gradient descent with an initial learning rate of 
10−3 during model training. We train the deep ensemble 
method 10 times. We show the error bar in figures and 
take the average of evaluation metrics in tables, such as 
F1 score and time, as the final result.

Experimental results
E1: Performance of methods in ELBD framework. We 
provide different methods in the ELBD framework to 
improve detection performance. We apply these methods 
to the DApp monitoring, SMD, and Vichalana datasets 
to evaluate them. We compare these methods with the 
best-performing base method and evaluate the detection 
accuracy and robustness.

For the DApp monitoring data in Fig. 4, we can see that 
the F1 score of the weighted average ensemble is higher 
than KNN, maximum, and average ensemble, which 
shows that ensemble methods can improve the detection 
accuracy by integrating extracted information of base 
methods. In addition, the weighted average ensemble 
assigns weights to base methods to highlight their differ-
ent contributions. The most noteworthy thing in Fig 4 is 
that the deep ensemble method has the highest F1 score, 
0.8381. We train the deep ensemble method with only 
10% labels, but the improvement is significant. The result 
shows that the nonlinear combination of base methods 
can extract more information and help improve detection 
accuracy. As for time spent, in Fig. 5, we can see that the 
deep ensemble method spends about 0.9s for data test-
ing, and other ensemble methods spend about 0.8s. Time 
spent on each method for the DApp monitoring data is 
under 1s, which is not high overall.

For SMD data in Fig.  4, we can see that the F1 score 
of the IForest is 0.7515, which is higher than the maxi-
mum, average, and weighted average ensemble methods. 
Ensemble methods rely heavily on base methods, and 
other base methods (KNN, LOF, and OCSVM) perform 

Fig. 4  Detection accuracy of methods in ELBD framework for three datasets



Page 12 of 16Xin et al. Journal of Cloud Computing            (2023) 12:7 

poorly. The most important thing is that the deep ensem-
ble has the best F1 score, 0.8152, which is much higher 
than other methods, showing its superior detection abil-
ity by integrating information non-linearly. Figure 5 pre-
sents the time spent of these methods. We can see that 
the maximum, average, and weighted average ensemble 
spend about 26.2s, and the deep ensemble spends about 
27.8s. Still, ensemble methods rely on base methods, so 
their time spent is mainly because of the kernel function 
calculation in OCSVM and the computational cost of the 
neural network.

For Vichalana data in Fig.  4, we can see that the F1 
scores of the maximum and average ensembles are higher 
than OCSVM, which shows the detection performance 
improvement of ensemble-based methods. In contrast, 
the weighted average ensemble does not assign weights 
well. In addition, the deep ensemble has the best F1 score, 
0.8438, which greatly improves detection accuracy com-
pared with other methods, and it shows the advantages 

of the non-linear combination of base methods. Fig-
ure  5 presents the time spent of these methods. We 
can see that the maximum, average, and weighted aver-
age ensemble spend about 190s, and the deep ensemble 
spends about 194s. The time spent is still mainly because 
the large-scale data makes the kernel function calculation 
in OCSVM time-consuming. In addition, the neural net-
work’s computational cost takes a little time.

As for algorithm robustness, we provide rank results in 
the Table 6. We rank the detection accuracy of all meth-
ods, including base methods and methods in the ELBD 
framework, and calculate their average rank and robust-
ness score, respectively. In the Table  6, we can see that 
the deep ensemble method has the best detection accu-
racy on the three different datasets, the DApp monitor-
ing data, SMD, and Vichalana data, which shows that it 
has not only superior detection accuracy but outstanding 
robustness for different data distributions. Other ensem-
ble methods have good robustness compared with base 

Fig. 5  Time spent of methods in ELBD framework for three datasets

Table 6  Rank results of algorithm robustness

Method IForest KNN LOF OCSVM Emsemble_max Ensemble_avg Ensemble_w_avg Deep_
ensemble

DApp monitoring data 4 3 8 7 6 5 2 1
SMD 2 7 8 6 3 5 4 1
Vichalana data 5 7 8 4 2 3 6 1
Average rank 3.7 5.7 8 5.7 3.7 4.3 4 1
Robustness score 0.6143 0.3286 0 0.3286 0.6143 0.5286 0.5714 1
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detection methods. In contrast, base methods show per-
formance inconsistency, except for IForest. IForest has 
quite good robustness compared with other base detec-
tion methods. In conclusion, we can say that methods in 
the ELBD framework improve detection performance in 
terms of detection accuracy and robustness, especially 
the deep ensemble method.

E2: Multi-step prediction of the deep ensemble 
method. With the deep ensemble method, we can pre-
dict multi-step performance anomalies. We mainly test 
its prediction ability on the DApp monitoring data. The 

time interval in the DApp monitoring data is 15s. Thus, 
we can use every 4 steps, which is 1 minute, as the pre-
diction step. Then, we predict whether the anomaly will 
happen or not after one or two or three minutes. To 
evaluate the prediction ability, we present the prediction 
accuracy with the F1 score in Fig. 6.

In Fig. 6, we can see that the longer the prediction time, 
the lower the detection accuracy, which means that it is 
difficult to predict long-term anomalies because depend-
ency between data diminishes over time. In addition, we 
can see that all F1 scores are higher within four minutes 

Fig. 6  Prediction accuracy and time spent for different time steps of the deep ensemble method on the DApp monitoring data

Table 7  Comparison results of all detection methods

Challenge Indicator IForest KNN LOF OCSVM Emsemble_max Ensemble_avg Ensemble_w_
avg

Deep_ensemble

Detection accu-
racy

F1 score 0.7335 0.6422 0.5246 0.6732 0.7453 0.7188 0.7169 0.8324

Algorithm robust-
ness

Robustness score 0.6143 0.3286 0 0.3286 0.6143 0.5286 0.5714 1

Multi-step predic-
tion

Prediction score - - - - - - - 3.3497

ARP_score 1.3478 0.9708 0.5246 1.0018 1.3596 1.2474 1.2883 5.1821
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than 0.8, which is good detection accuracy. Therefore, we 
can say that it is available for the deep ensemble to pre-
dict anomalies in the next four minutes with high accu-
racy. We also show the time spent testing the prediction 
ability in Fig. 6. We can see that the testing time is around 
1.1s, meaning that the deep ensemble method can pre-
dict anomalies quickly.

For all the detection methods, we provide a Table 7 to 
compare their performance in terms of detection accu-
racy, algorithm robustness, and multi-step prediction. 
In the table, we can see that neither base detection nor 
linear ensemble methods have prediction ability. In addi-
tion, we can notice that IForest and weighted average 
ensemble methods have good detection accuracy and 
robustness. The most important thing is that the deep 
ensemble method perfectly addresses three challenges 
and has the highest ARP_score 5.1821, which is much 
better than other methods.

In conclusion, we provide the performance evalua-
tion of ensemble methods in the ELBD framework. Our 
experiments show that these methods improve detec-
tion accuracy and robustness by integrating extracted 
information from base methods. Among those, the deep 
ensemble method has superior detection performance in 
terms of accuracy, robustness, and multi-step prediction. 
In addition, results show that the deep ensemble method 
can predict anomalies in the next four minutes with high 
accuracy.

Discussion
This paper provides an ELBD framework for perfor-
mance anomaly detection and prediction of cloud appli-
cations. They are developed based on four base methods 
to improve detection performance. Our experiments 
evaluate the performance of methods in the ELBD frame-
work and show an improvement in detection accuracy, 
robustness, and multi-step prediction ability. However, 
some aspects of these methods and experiments in this 
paper can still be improved.

For noise in monitoring data, we first provide feature 
extraction for pre-processing data. We use PCA to filter 
features and reduce data dimensions. The PCA is a gen-
eral feature extraction method that can easily be used on 
many datasets and improve detection efficiency. How-
ever, PCA has some limitations, like assuming features 
in data are linearly dependent. Therefore, other feature 
extraction methods like AutoEncoder [46] can be consid-
ered in the future.

Our experiments show that the four base detection 
methods’ performances vary on three datasets. The per-
formance inconsistency is because each method extracts 
different features from the data. Moreover, the outputs 
of these base methods are assembled as the following 

methods’ inputs, which will severely affect detection per-
formance. In this paper, we manually select the four base 
detection methods based on their differences. However, 
a method to automatically select suitable base detec-
tion methods while considering data distribution can be 
researched in the future.

The capacity of the deep ensemble can be tested fur-
ther. In our experiments, the deep ensemble is trained 
with fewer labels and has outstanding performance 
compared with other detection methods. Next, we can 
test the effects of different numbers of labels. Also, we 
can consider replacing the MLP with other deep neural 
networks like LSTM [47] to improve detection accuracy.

Performance anomaly detection methods can be 
applied to other monitoring data, such as blockchain-
level data in DApps. Furthermore, based on performance 
anomaly detection, root cause analysis can be researched 
in the future to localize root causes of performance 
anomalies. For example, when application response time 
is high, we need to determine the root causes of cloud 
resource problems or service-level delays.

Conclusions and future work
This paper focuses on performance anomaly detection 
and prediction of cloud applications, which need to sat-
isfy three challenging requirements: high detection accu-
racy, robustness, and multi-step prediction. Based on our 
survey, many machine learning-based methods have been 
developed for performance anomaly detection. However, 
these detection methods have inconsistent performance 
for different datasets and rarely simultaneously solve the 
three requirements. Therefore, based on existing perfor-
mance anomaly detection methods, we provide an ELBD 
framework that integrates existing detection methods to 
address the three requirements.

We first apply four base detection methods (IForest, 
KNN, LOF, OCSVM) to study the monitoring data char-
acteristics. The results show that these base methods per-
form differently on datasets with different data patterns. 
Then, based on these methods, we develop an ELBD 
framework (maximum, average, weighted average, and 
deep ensemble) that integrates existing detection methods 
for improving detection performance. Our experiments 
show that methods in the ELBD framework significantly 
improve detection accuracy and robustness, especially 
the deep ensemble method. In addition, the deep ensem-
ble method has the multi-step prediction ability, which 
can predict anomalies in the next four minutes with high 
accuracy. We also evaluate detection performance with 
our indicator, and the results show that the deep ensemble 
method has the highest ARP_score 5.1821, which is much 
better than other methods.
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This paper provides an ensemble-based framework 
for performance anomaly detection of cloud applica-
tions, and the results show that the AI-based deep 
ensemble method has superior performance in terms 
of detection accuracy, robustness, and prediction abil-
ity. However, some aspects of this research can still be 
improved. For example, we can perform feature selec-
tion for multivariate monitoring data, and more experi-
ments and extensions for deep ensemble methods can 
be researched in the future. In addition, for applying 
AI methods to help operators and developers better 
implement performance management of cloud appli-
cations, several future research directions can be dis-
cussed based on [48].

Data security. For a running cloud application, large-
scale monitoring data is collected, which makes it neces-
sary to consider implementing secure data governance 
for collected data. Collected performance data is mostly 
stored in centralized or distributed environments, with 
a high risk of being attacked or stolen [49]. Blockchain-
based data storage has been developed recently in IoT 
[50]. However, blockchain-based storage technologies 
still have challenges such as durability, availability, and 
cost, which need to be explored more in the future.

Data labeling. High-quality labeled data can be very 
helpful in improving detection accuracy. However, there are 
fewer labels in real scenarios, and labeling data manually is 
onerous and time-consuming. Nowadays, active learning 
[51] has been developed to solve label issues by combin-
ing both machine and human labor. Therefore, we consider 
that automated data annotation methods based on active 
learning can be explored more in the future, for example, by 
reducing human labor and improving the quality of labels.

Detection efficiency. Except for model robustness and 
accuracy, efficiency is important for detection methods to 
meet users’ requirements considering a large number of 
performance data exists. Machine learning methods, espe-
cially deep learning methods, usually have high detection 
accuracy but time-consuming model training [52]. Only a 
few statistical-based methods for improving detection effi-
ciency have been developed [53]. Therefore, improving the 
model efficiency and achieving accurate real-time online 
detection is worth exploring in the future.

Model explainability. For detected anomalies, it is 
natural to explore why these anomalies happen. Explaina-
ble AI [54] has been researched for deep learning models, 
which are typically viewed as black boxes. Self-explaina-
ble methods like IForest have been explored in this paper. 
However, the explanation of the deep ensemble method 
can be explored more in the future. In addition, root 
cause localization to identify metrics that cause anoma-
lies should be investigated more in the future despite 
complex dependencies between metrics.
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