
Liu et al. Journal of Cloud Computing            (2023) 12:3  
https://doi.org/10.1186/s13677-022-00384-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Lightweight similarity checking for English 
literatures in mobile edge computing
Xiaomei Liu1, Ailing Gao1, Chengxiang Chen2 and Mohammad Mahdi Moghimi3* 

Abstract 

With the advent of information age, mobile devices have become one of the major convenient equipment that aids 
people’s daily office activities such as academic research, one of whose major tasks is to check the repetition rate or 
similarity among different English literatures. Traditional literature similarity checking solutions in cloud paradigm 
often call for intensive computational cost and long waiting time. To tackle this issue, in this paper, we modify the tra-
ditional literature similarity checking solution in cloud paradigm to make it suitable for the light-weight mobile edge 
environment. Furthermore, we put forward a lightweight similarity checking approach SCMEC for English literatures in 
mobile edge computing environment. To validate the advantages of SCMEC , we have designed massive experiments 
on a dataset. The reported experimental results show that SCMEC can deliver a satisfactory similarity checking result of 
literatures compared to other existing approaches.
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Introduction
Benefiting from the continuous progress of mobile com-
puting technology, various mobile devices (e.g., smart 
phones, PDA, etc.) have engaged into the daily life of 
people and are more and more crucial in people’s enter-
tainment, job, shopping and so on [1–3]. Such a mobile 
life manner brings many conveniences to people since 
it minimizes the negative influences brought by physi-
cal space of different people [4–7]. Specifically, with the 
advent of COVID-19 pandemic, people’s activity ranges 
are further limited. In this situation, mobile devices have 
gradually become one of the major ways to aid people’s 
various activities including academic research [8–10]. 
Today, more and more people are apt to take mobile 
devices as their major academic research tools and hence 

generate a series of mobile devices-enabled academic 
research tools such as online academic meeting, multi-
party academic collaborations, etc. [11–13].

As one of the major tasks in academic activities, literature 
similarity checking is playing an increasingly important role 
in ensuring the success of scientific research. However, in 
the mobile computing environment, English literatures as 
well as their corresponding user-literature reading records 
should be sent to a remote cloud platform for uniform simi-
larity checking (e.g., through a collaborative filtering man-
ner) in a centralized manner, which raises a heavy burden 
on the response time of similarity checking in cloud plat-
form since there are so many literatures as well as histori-
cal user-literature records in various academic databases. In 
addition, in the traditional cloud-based literature similarity 
calculation process, each user’s literature reading records 
are a kind of sensitive information that calls for certain pri-
vacy protection. Therefore, it becomes particularly emer-
gent to seek for other privacy-preserving and lightweight 
literature similarity checking solutions to accommodate 
the personalized requirements of researchers in the mobile 
computing environment. Fortunately, edge computing has 
shown its unique advantages in processing various big data 
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mining and analysis tasks due to its inherent properties in 
low data transmission amount and quick response time [14–
17]; because in edge computing paradigm, most data are 
not necessary sent to a cloud center for integration, instead, 
most data are pre-processed beforehand in the nearby edge 
servers. This way, the data transmission and response time 
conditions are improved considerably [18–21].

However, mobile edge computing is still on the early 
stage after its birth. And therefore, there are still some criti-
cal issues that need to be solved well [22–25]. Especially, 
how to perform lightweight similarity checking of English 
literatures in the mobile computing environment for easy-
to-use mobile office services is a difficult task that needs to 
be further studied. In view of this challenge, a hash-based 
index mechanism is introduced in this paper (the time 
complexity of this hash technique has been proven to be 
close to O(1)), which is followed by a lightweight literature 
similarity checking approach based on literature indexes, 
i.e., SCMEC is proposed to alleviate the heavy computational 
costs and transmission costs in mobile academic activities.

Generally, our contributions are three-fold.
(1) An index mechanism is proposed in our paper to 

aid the literature similarity checking task in the mobile 
edge computing, in which most literature data from 
mobile devices are quickly processed by the closer edge 
servers, without being sent to the remote cloud platform 
for uniform but time-consuming processed.

(2) An index-based literature similarity checking 
approach SCMEC is proposed to support the academic 
activities on mobile devices. Since the index mechanism 
is proven to be of a low time complexity, our proposed 
index-based literature similarity checking approach 
SCMEC is very lightweight and time-efficient.

(3) Experiments are deployed for validation and the 
final experimental results with related approaches prove 
the effectiveness and efficiency of our SCMEC in this paper.

Our paper is structured as follows. Related literatures 
are investigated in Section  2. A three-layer framework is 
presented in Section 3 to support the literature similarity 
checking tasks in the mobile edge computing environment. 
An index-based literature similarity checking approach 
SCMEC is put forward in Section  4. Evaluations are pre-
sented in Section 5. At last, we summarize the paper in Sec-
tion 6 which also points out the future research directions.

Related literature
The literature similarity checking issue in cloud envi-
ronment has been investigated by researchers. Next, we 
summarize existing literatures as follows.

In [26], with the advent of cloud computing, data man-
agement jobs are outsourced to cloud to save money. How-
ever, there are privacy issues. This paper considers the use of 
cloud to encrypt data before data outsourcing, and conducts 

similarity search of multiple keywords on outsourced cloud 
data. The experiment proves that the search design imple-
mented in this paper can effectively resist internal threats and 
show high performance in cloud search time. In [27], to solve 
security problem of cloud, the authors bring forth a verifiable 
privacy-protected multi-keyword text search (MTS) solution 
based on similarity ranking. Meanwhile, to improve search 
efficiency of data, this paper also suggested a tree-based index 
structure as well as a variety of adaptive multidimensional 
(MD) algorithms, which make the actual search efficiency far 
better than the linear search efficiency. In [28], aiming at the 
protection of cloud data privacy, this paper proposed a new 
similarity based secure data deduplication scheme combining 
bloom filter and content definition chunking technology. The 
scheme only deduplicates similar files to significantly reduce 
computing overhead. In [29], deduplication is widely used 
in cloud computing to improve space complexity. While the 
secure mechanisms have some security drawbacks, such as 
the inability to provide flexible access control. In this paper, 
the authors propose an encrypted deduplication scheme 
EDedup based on similarity awareness, which supports flex-
ible revocable access control. EDedup divides the file into 
segments, which take advantage of similarity to reduce com-
putation overhead through a representative hash algorithm. 
EDedup also integrates source-based similarity detection 
and target-based duplicate block detection to protect against 
attacks and ensure efficient deduplication.

In [30], considering the limitations of classical ICP 
approaches, this paper proposes a improved iterative near-
est point (ICP) approach by the similarity of point cloud 
curvature features. Based on the classical ICP algorithm, the 
authors introduce the rough alignment method of principal 
component analysis, and use k-D tree to segment three-
dimensional point cloud to fasten the search process of near-
est neighbor points. Experiments show that the approach 
is more accurate. In [31], more recently, the emergence of 
new applications using advanced content representation has 
driven the rise of immersion technology. Among the alterna-
tives available, the point cloud is a promising solution. Here, 
an effective objective measure is introduced to capture the 
perceptual degradation of distorted point clouds. The quality 
assessment of point clouds is mainly based on angular simi-
larity. In [32], the QoS of cloud services will change gradually 
over time, but the existing service recommendation methods 
do not pay attention to this problem. Therefore, the authors 
bring forth a time-aware recommendation method to solve 
this problem. A new similarity enhanced collaborative filter-
ing method is developed to capture the temporal character-
istics of user similarity and solve the problem of data sparsity. 
Meanwhile, ARIMA model is used for service quality predic-
tion at future time points. In [33], in addition to cloud data 
storage services, data similarity retrieval is another basic ser-
vice provided by cloud, especially in image data. This paper 
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proposes a privacy-protecting similar image detection solu-
tion based on LSH for image hosted in cloud. This method 
can effectively secure the sensitive cloud data and obtain bet-
ter retrieval results.

With the above investigation, a simple conclusion could 
be drawn that existing literatures are more focusing on 
the delay, security and privacy of cloud-based literature 
similarity checking, without considering the migration of 
literature similarity checking task from cloud to mobile 
edge, which limits the success of mobile academic activi-
ties considerably. Considering this limitation, we put 
forward an index-based literature similarity checking 
solution SCMEC in the next sections.

Framework
A three-layer framework is presented in Fig. 1 to support 
the literature similarity checking tasks in the mobile edge 
computing environment. As Fig. 1 shows, researchers use 
various mobile devices (e.g., mobile phone, iPAD, PDA 
and so on [34–36]) for different academic activities. Dur-
ing this process, the academic literatures on mobile devices 
[37, 38] (e.g., PDFs) are not necessary to be transmitted 
directly to the remote cloud platform. Instead, researchers 
transmit their academic literatures to nearby edge servers 
through close mobile devices via wireless communication 
technology. Afterwards, each edge server is responsible 

for converting the academic literatures hosted in the edge 
server into a corresponding index (we call it literature index 
here). The literature index here is a lightweight embedding 
of the literature compared to the literature itself. Each edge 
server records its converted literature indexes and trans-
mits them to a cloud platform that is responsible for pro-
cessing all the literature indexes transmitted from all edge 
servers. Finally, the cloud platform checks the literature 
similarity via comparing the literature indexes which are 
very short and lightweight. This way, we can achieve the 
literature similarity checking task through the three-layer 
device-edge-cloud framework presented in Fig. 1.

Index‑based similarity checking in mobile edge 
computing: SCMEC

According to the three-layer framework of literature 
similarity checking task presented in Fig. 1, our proposed 
literature similarity checking approach SCMEC can be 
divided into two steps: first, we need to convert each lit-
erature from mobile devices into its corresponding index; 
second, we need to send the literature indexes to the cen-
tral cloud platform for uniform similarity checking. Next, 
we introduce the major two steps of SCMEC approach.

Step 1: Conversion from literatures to indexes.
Traditional literature similarity checking approaches 

need to make comparisons between different literatures 

Fig. 1  Three-layer framework of literature similarity checking in mobile edge computing
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in a direct and straightforward way, e.g., word by word, 
sentence by sentence, paragraph by paragraph, etc. Such 
a direct and straightforward literature comparison way is 
often time-consuming and tiresome [39, 40], which prob-
ably decreases the satisfaction degree of researchers who 
often expect a quick and accurate literature similarity 
checking result. Therefore, to speed up the above litera-
ture similarity checking process, we need to convert the 
initial literatures which are often long into corresponding 
shorter embeddings. Since the content of each literature is 
often much, we convert each literature into a short index 
or embedding. This way, we can evaluate whether two lit-
eratures are similar or not by comparing their index values 
instead of their literature contents. The advantage of such 
an operation is that we can minimize the time cost for 
similar literature evaluation and discovery. Here, we adopt 
the classic Simhash and LSH techniques (the time com-
plexity of the mentioned Simhash and LSH techniques 
have been proven to be close to O(1)). In our proposal, we 
use Simhash technique to convert each literature into a 
corresponding Boolean vector, whose purpose is to con-
vert the text information of each literature into a corre-
sponding 0/1 string that is easy to process and calculate in 
the subsequent similar literature evaluation process.

Next, we introduce the concrete step of conversion 
from literatures to indexes. First, we use Simhash tech-
nique to convert each literature (here, the literature set 
is denoted by LitSet = (lit1, . . . , litn) ) into a long signa-
ture (here, the signature set for the literatures in LitSet is 
denoted by SigSet = (sig1, . . . , sign) ). The concrete conver-
sion process is introduced in detail at follows.

(1) Word segmentation for literatures.
Each literature often includes many words, which 

makes it hard to calculate the similarity degree between 
different literatures directly. To tackle this issue, we first 
convert a long literature into a word vector through 
various mature word segmentation tools in natural lan-
guage processing (NLP) domain, e.g., word2vec or fast-
Text. The concrete word segmentation process will not 
be introduced in detail here. Interested readers can refer 
to the related literatures in NLP. Here, we take a litera-
ture lit as an example for illustration. We assume that 
the literature lit is converted into a word vector Vlit as 
specified in (1) based on word2vec or fastText. Here, 
m is not a fixed value since different literatures often 
include different word number after word segmentation.

(2) Hash projection from a word vector to a 0/1 vector.
In the last substep, we have converted each literature lit 

into a word vector Vlit . However, it is challenging to evalu-
ate the similarity between word vectors. To tackle this issue, 
we further convert the word vector Vlit of literature lit into 

(1)Vlit = (a1, . . . , am)

a numerical vector NumVlit . The concrete conversion pro-
cess is based on any hash projection table. Here, for simplic-
ity, we use the classic ASCII coding table adopted widely in 
computer domain to achieve the goal of hash projection. 
For example, if Vlit = (a1, a2) , a1 = 11110000 and a2 = 
10101010, then NumVlit = (1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0). 
Next, we replace the “0” entries in the vector by “-1” and then 
derive a new vector constituted by “1” and “-1” entries only. 
For example, NumVlit = (1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0) is 
updated to be NumVlit = (1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 
-1).

(3) Vector weighting.
Weight significance is often inevitable in many applications 

involving multiple dimensions or criteria [41–43]. Inspired 
by the above analysis, in a literature, each word should be 
assigned a concrete weight value indicating the importance 
and significance of the word in depicting the whole litera-
ture. The weights of words in a literature could be generated 
in many ways such as TF/IDF, which is not repeated here. 
Here, we assume that weight vector corresponding to the m 
words in vector Vlit in (1) is W as specified in (2)-(3).

(4) Vector union by addition.
For a literature lit, with its word vector Vlit = (a1, . . . , am) 

in Eq. (1) (here, please note that the hash projection from 
0 to -1 has been applied to the word vector) and its weight 
vector Wlit = (w1, . . . ,wm) in Eq. (2), we can make a dot 
production operation between vectors Vlit and Wlit , whose 
result is denoted by DPlit in (4). For example, if Vlit = 
(a1, a2) , a1 = 11110000, a2 = 10101010, w1 = 0.4, w2 = 0.6, 
then DPlit = (1 1 1 1 -1 -1 -1 -1) * 0.4 + (1 -1 1 -1 1 -1 1 -1) 
* 0.6 = (0.4 0.4 0.4 0.4 -0.4 -0.4 -0.4 -0.4) + (0.6 -0.6 0.6 -0.6 
0.6 -0.6 0.6 -0.6) = (1 -0.2 1 -0.2 1 -0.2 1 -0.2).

(5) Dimension reduction.
In the above substep, we have converted each literature lit 

into a corresponding DPlit = (b1, . . . , bm) by Eq. (4). How-
ever, from the dimension perspective, each entry in vector 
DPlit can take any real value and therefore, its value range is 
often very large and not suitable for subsequent similarity cal-
culation and evaluation. To overcome this shortcoming, we 
reduce each dimension’s value range as follows, since binary 
embedding is widely applied to various big data scenarios to 
reduce the search and processing time [44–46]. In concrete, 
we make the following conversions in Eq. (5). Afterwards, 

(2)Wlit = (w1, . . . ,wm)

(3)
m

j=1

wj = 1

(4)DPlit = (b1, . . . , bm) = Vlit ∗Wlit =

m
∑

j=1

aj ∗ wj
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each entry bj in vector DPlit is equal to either 1 or 0, which 
narrows the value range of vector DPlit significantly. This 
way, we successfully achieve the goal of dimension reduction.

(6) Deep dimension reduction by LSH.
To further reduce the dimensions of DPlit for each lit-

erature lit, we use LSH technique to build a deep index for 
each lit. Concretely, we generate an m-dimensional vector 
X = (x1, . . . , xm) randomly by Eq. (6), where each entry xj 
of vector X belongs to range [-1, 1]. Next, we convert the 
m-dimensional vector DPlit into a smaller r-dimensional 
vectorZ(r ≪ m) by Eqs. (7)-(9). Here, the purpose of Eq. (7) 
is to calculate the projection from the original vector DPlit to 
the vector X; the purpose of Eq. (8) is to reduce the dimen-
sions involved; afterwards, we repeat the operations in Eqs. 
(7) and (8) r times to obtain z1, . . . , zr . Then we can get a 
new vector Z = (z1, . . . , zr) which is much shorter than the 
original vector DPlit . This way, we successfully achieve the 
goal of dimension reduction. In addition, the LSH technique 
has been proven a lightweight nearest neighbor discovery 
approach whose time complexity is approximately O(1). 
Therefore, the proposed LSH-based similar literature discov-
ery approach is very suitable for the big data context.

Step 2: Similarity checking of literatures based on 
indexes.

In Step 1, for each literature in LitSet = (lit1, . . . , litn) , 
we have obtained a corresponding hash index 
Zj(j = 1, 2, . . . , n) . Next, we compare any two litera-
tures liti and litj (1 ≤ i ≤ n, 1 ≤ j ≤ n) through compar-
ing their respective hash indexes Zi and Zj . In concrete, 
if Zi = Zj holds, we can simply conclude that literatures 
liti and litj are similar with high probability. However, 
the above literature similarity evaluation solution is not 
always correct since LSH is a probability-based neighbor 
search technique. To minimize the negative influences 
incurred by probability, for each literature litj in LitSet , 
we do not generate only one hash index Zj ; instead, we 
generate h indexes Z1

j , . . . ,Z
h
j  . Afterwards, the similarity 

(5)bj =

{

1 if bj > 0,
0 if bj ≤ 0.

(j = 1, 2, . . . ,m)

(6)xj = random(−1, 1)

(7)z = DPlit ∗ X =

m
∑

j=1

bj ∗ xj

(8)z =

{

1 if z > 0,
0 if z ≤ 0.

(9)Z = (z1, . . . , zr)

between literatures liti and litj is evaluated by Eq. (10). 
This way, we can evaluate whether two literatures are 
similar or same based on their respective hash indexes, 
to improve the literature similarity evaluation efficiency.

The details of our proposed SCMEC algorithm can be 
described clearly by the following pseudo code.

Algorithm 1 SCMEC

Evaluation
Next, we prove the feasibility of SCMEC algorithm in 
handling literature similarity checking in mobile edge 
computing environment. Concretely, the experiments 

(10)liti and litj are similar iff ∃ k satisfying Zk
i
= Zk

j
(1 ≤ k ≤ h)
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are deployed on WS-DREAM dataset1 which records a 
group of services as well as their quality performances. 
Here, we use the records in the dataset to simulate the 
literatures as well as their digital signatures. Two classic 
similar neighbor searching methods are used for com-
parison purpose, i.e., UCF and ICF. Experiment hardware 
includes a 2.50 GHz processor and 16.0 GB memory; 
experiments are executed under WIN-7 operation sys-
tem and Python-3. We run each experiment 100 times 
and record their average performance for result display. 
Please note that the parameter settings in this paper are 
determined in an experienced way, i.e., by experiment 
tests.

Test 1: Computational time comparison.
In the big data context, data processing speed is very 

important since response time is an influencing fac-
tor associated with user experience [47, 48]. Inspired by 
this observation, we test the speed of SCMEC with base-
line methods: UCF and ICF. Test results are presented in 
Figs. 2 and 3, respectively. In concrete, in Fig. 2, time cost 
of three methods is compared with the size of signature 
dimensions, i.e., m. Here, m varies from 100 to 300; n is 
equal to 5000; number of functions in SCMEC , i.e., r = 10; 
number of tables in SCMEC , i.e., k = 18. In Fig. 2, the time 
costs of three methods approximate rise with the rising 
of m since more calculation operations are necessary in 
all three methods when there are more signature dimen-
sions of literatures. Moreover, compared to UCF and ICF 
methods, our proposed SCMEC algorithm consumes less 
time. This is due to the fact that UCF and ICF need to cal-
culate literature similarity based on collaborative filtering 
idea whose time complexity is relatively high; while the 
SCMEC algorithm first generates literature indexes offline 

and then uses existing literature indexes to discover simi-
lar literatures. Therefore, SCMEC often performs better 
than UCF and ICF in terms of consumed time. Similar 
comparison results could be observed in Fig. 3 where the 
computational time of three methods is compared with 
the number of literatures, i.e., n. Here, n varies from 1000 
to 5000, m is equal to 300, r = 10, k = 18. The reason is 
not repeated again.

Test 2: Accuracy comparison. Here, we measure the 
literature similarity checking accuracy (in the form of 
MAE, smaller is better) of three methods, whose results 
are presented in Figs. 4 and 5, respectively. In concrete, in 
Fig. 4, m = {100, . . . , 300} , n = 5000, r = 10, k = 18. The 
results reported in Fig. 4 shows that the accuracy of three 
methods all varies with the growth of m and SCMEC algo-
rithm outperforms UCF and ICF methods in accuracy. 
The reason is that in SCMEC , the adopted hash indexes 
of literatures can guarantee to discover all the most 
similar literatures. As a result, the accuracy of SCMEC is 
the highest and the MAE of SCMEC is the lowest. Such a 
comparison result indicates a good literature similarity 
checking performance of the proposed SCMEC method. 
Similar results could also be observed in Fig.  5 where 
n = {1000, . . . , 5000} , m = 300, r = 10, k = 18. Figure 5 
shows that the accuracy of three methods approximately 
rises when n (i.e., MAE of three methods declines when 
n rises) grows. The reason can be analyzed as follows: 
when n becomes larger, there are more literatures as 
well as their associated signatures; in this situation, more 
valuable information taking part in literature similarity 
checking is available and hence, the accuracy is enhanced 
accordingly. Furthermore, the MAE of SCMEC is generally 
lower than UCF and ICF, which indicates a better perfor-
mance of SCMEC in literature similarity checking.

Test 3: Performances of SCMEC.

Fig. 2  Computational time comparison (w.r.t. m)

1  https://wsdream.github.io/
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As introduced in Section 4, there are several key influ-
encing factors that can determine the performances of 
SCMEC , such as parameters r and k. To observe the rela-
tionships between the influencing factors and the algo-
rithm performances, several experiments are designed 
where n and m are equal to 5000 and 300, respectively; 
r varies from 2 to 10 and k varies from 10 to 18. Con-
crete data are reported in Figs.  6 and 7. In concrete, 
Fig. 6 shows the computational time of SCMEC when the 
parameters r and k fluctuate, where the computational 
time approximately drops with the increment of r and the 
consumed time approximately drops with the increment 
of parameter k. Next, we discuss the reason behind such 
a conclusion. First, if we use more hash functions (i.e., 
larger r) used to calculate literature similarity, the more 

probable that the top-similar literatures be discovered; in 
this situation, the finally returned similar literatures are 
usually fewer and hence, less time is consumed accord-
ingly. Second, if we use more hash tables (i.e., larger k) 
used to calculate literature similarity, more similar litera-
tures are probably discovered; in this situation, the finally 
returned similar literatures are usually more and hence, 
more time is consumed accordingly.

Figure 7 shows the accuracy of SCMEC when the param-
eters r and k fluctuate, where the accuracy value approxi-
mately drops with the increment of parameter r and the 
accuracy varies with the increment of parameter k. Next, 
like in Fig. 6, we discuss the reason behind such an obser-
vation from Fig.  7. If we use more hash functions (i.e., 
larger r) to calculate literature similarity, the returned 

Fig. 3  Computational time comparison (w.r.t. n)

Fig. 4  Accuracy comparison (w.r.t. m)
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similar literatures are “more similar”; accordingly, litera-
ture similarity checking accuracy is higher (i.e., MAE is 
lower).

Conslusions
With the advent of information age, mobile devices 
have become one of the major convenient equipment 
that aids people’s daily office activities such as aca-
demic research, one of whose major tasks is to check 
the repetition rate or similarity among different Eng-
lish literatures. Traditional literature similarity check-
ing solutions in cloud paradigm often call for intensive 
computational cost and long waiting time. To tackle 

this issue, in this paper, we modify the traditional litera-
ture similarity checking solution in cloud paradigm to 
make it more suitable for the light-weight mobile edge 
environment. Furthermore, we put forward a light-
weight similarity checking approach SCMEC for English 
literatures in mobile edge computing environment. To 
validate the advantages of SCMEC , we have designed 
massive experiments on a dataset. The reported experi-
mental results show that SCMEC can deliver a satisfac-
tory similarity checking result of literatures compared 
to other existing approaches.

Literature similarity checking in mobile edge comput-
ing environment often involves certain sensitive user 

Fig. 5  Accuracy comparison (w.r.t. n)

Fig. 6  Computational time of our algorithm (w.r.t. r and k)
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privacy [49]. Therefore, in future study, we will further 
consider the privacy disclosure issue in our proposed 
algorithm by introducing more effective privacy protec-
tion techniques including blockchain, federated learning, 
DP, encryption, etc. [50–52]. In addition, energy saving 
and cost optimization are also key challenges in typical 
big data applications [53, 54]. Hence, we will introduce 
more classic performance optimization and computa-
tional offloading technologies.
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