
Liu et al. Journal of Cloud Computing (2023) 12:3
https://doi.org/10.1186/s13677-022-00384-5

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Lightweight similarity checking for English
literatures in mobile edge computing
Xiaomei Liu1, Ailing Gao1, Chengxiang Chen2 and Mohammad Mahdi Moghimi3* 

Abstract 

With the advent of information age, mobile devices have become one of the major convenient equipment that aids
people’s daily office activities such as academic research, one of whose major tasks is to check the repetition rate or
similarity among different English literatures. Traditional literature similarity checking solutions in cloud paradigm
often call for intensive computational cost and long waiting time. To tackle this issue, in this paper, we modify the tra-
ditional literature similarity checking solution in cloud paradigm to make it suitable for the light-weight mobile edge
environment. Furthermore, we put forward a lightweight similarity checking approach SCMEC for English literatures in
mobile edge computing environment. To validate the advantages of SCMEC , we have designed massive experiments
on a dataset. The reported experimental results show that SCMEC can deliver a satisfactory similarity checking result of
literatures compared to other existing approaches.

Keywords  Mobile edge computing, Literature similarity checking, Hash index, Lightweight

Introduction
Benefiting from the continuous progress of mobile com-
puting technology, various mobile devices (e.g., smart
phones, PDA, etc.) have engaged into the daily life of
people and are more and more crucial in people’s enter-
tainment, job, shopping and so on [1–3]. Such a mobile
life manner brings many conveniences to people since
it minimizes the negative influences brought by physi-
cal space of different people [4–7]. Specifically, with the
advent of COVID-19 pandemic, people’s activity ranges
are further limited. In this situation, mobile devices have
gradually become one of the major ways to aid people’s
various activities including academic research [8–10].
Today, more and more people are apt to take mobile
devices as their major academic research tools and hence

generate a series of mobile devices-enabled academic
research tools such as online academic meeting, multi-
party academic collaborations, etc. [11–13].

As one of the major tasks in academic activities, literature
similarity checking is playing an increasingly important role
in ensuring the success of scientific research. However, in
the mobile computing environment, English literatures as
well as their corresponding user-literature reading records
should be sent to a remote cloud platform for uniform simi-
larity checking (e.g., through a collaborative filtering man-
ner) in a centralized manner, which raises a heavy burden
on the response time of similarity checking in cloud plat-
form since there are so many literatures as well as histori-
cal user-literature records in various academic databases. In
addition, in the traditional cloud-based literature similarity
calculation process, each user’s literature reading records
are a kind of sensitive information that calls for certain pri-
vacy protection. Therefore, it becomes particularly emer-
gent to seek for other privacy-preserving and lightweight
literature similarity checking solutions to accommodate
the personalized requirements of researchers in the mobile
computing environment. Fortunately, edge computing has
shown its unique advantages in processing various big data

*Correspondence:
Mohammad Mahdi Moghimi
ms.moghimi@iauyazd.ac.ir
1 Shandong Provincial University Laboratory for Protected Horticulture,
Weifang University of Science and Technology, Weifang, China
2 Fujian Polytechnic Normal University, Fuzhou, China
3 Department of Electrical Engineering, Yazd Branch, Islamic Azad
University, Tehran, Iran

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00384-5&domain=pdf

Page 2 of 10Liu et al. Journal of Cloud Computing (2023) 12:3

mining and analysis tasks due to its inherent properties in
low data transmission amount and quick response time [14–
17]; because in edge computing paradigm, most data are
not necessary sent to a cloud center for integration, instead,
most data are pre-processed beforehand in the nearby edge
servers. This way, the data transmission and response time
conditions are improved considerably [18–21].

However, mobile edge computing is still on the early
stage after its birth. And therefore, there are still some criti-
cal issues that need to be solved well [22–25]. Especially,
how to perform lightweight similarity checking of English
literatures in the mobile computing environment for easy-
to-use mobile office services is a difficult task that needs to
be further studied. In view of this challenge, a hash-based
index mechanism is introduced in this paper (the time
complexity of this hash technique has been proven to be
close to O(1)), which is followed by a lightweight literature
similarity checking approach based on literature indexes,
i.e., SCMEC is proposed to alleviate the heavy computational
costs and transmission costs in mobile academic activities.

Generally, our contributions are three-fold.
(1) An index mechanism is proposed in our paper to

aid the literature similarity checking task in the mobile
edge computing, in which most literature data from
mobile devices are quickly processed by the closer edge
servers, without being sent to the remote cloud platform
for uniform but time-consuming processed.

(2) An index-based literature similarity checking
approach SCMEC is proposed to support the academic
activities on mobile devices. Since the index mechanism
is proven to be of a low time complexity, our proposed
index-based literature similarity checking approach
SCMEC is very lightweight and time-efficient.

(3) Experiments are deployed for validation and the
final experimental results with related approaches prove
the effectiveness and efficiency of our SCMEC in this paper.

Our paper is structured as follows. Related literatures
are investigated in Section 2. A three-layer framework is
presented in Section 3 to support the literature similarity
checking tasks in the mobile edge computing environment.
An index-based literature similarity checking approach
SCMEC is put forward in Section 4. Evaluations are pre-
sented in Section 5. At last, we summarize the paper in Sec-
tion 6 which also points out the future research directions.

Related literature
The literature similarity checking issue in cloud envi-
ronment has been investigated by researchers. Next, we
summarize existing literatures as follows.

In [26], with the advent of cloud computing, data man-
agement jobs are outsourced to cloud to save money. How-
ever, there are privacy issues. This paper considers the use of
cloud to encrypt data before data outsourcing, and conducts

similarity search of multiple keywords on outsourced cloud
data. The experiment proves that the search design imple-
mented in this paper can effectively resist internal threats and
show high performance in cloud search time. In [27], to solve
security problem of cloud, the authors bring forth a verifiable
privacy-protected multi-keyword text search (MTS) solution
based on similarity ranking. Meanwhile, to improve search
efficiency of data, this paper also suggested a tree-based index
structure as well as a variety of adaptive multidimensional
(MD) algorithms, which make the actual search efficiency far
better than the linear search efficiency. In [28], aiming at the
protection of cloud data privacy, this paper proposed a new
similarity based secure data deduplication scheme combining
bloom filter and content definition chunking technology. The
scheme only deduplicates similar files to significantly reduce
computing overhead. In [29], deduplication is widely used
in cloud computing to improve space complexity. While the
secure mechanisms have some security drawbacks, such as
the inability to provide flexible access control. In this paper,
the authors propose an encrypted deduplication scheme
EDedup based on similarity awareness, which supports flex-
ible revocable access control. EDedup divides the file into
segments, which take advantage of similarity to reduce com-
putation overhead through a representative hash algorithm.
EDedup also integrates source-based similarity detection
and target-based duplicate block detection to protect against
attacks and ensure efficient deduplication.

In [30], considering the limitations of classical ICP
approaches, this paper proposes a improved iterative near-
est point (ICP) approach by the similarity of point cloud
curvature features. Based on the classical ICP algorithm, the
authors introduce the rough alignment method of principal
component analysis, and use k-D tree to segment three-
dimensional point cloud to fasten the search process of near-
est neighbor points. Experiments show that the approach
is more accurate. In [31], more recently, the emergence of
new applications using advanced content representation has
driven the rise of immersion technology. Among the alterna-
tives available, the point cloud is a promising solution. Here,
an effective objective measure is introduced to capture the
perceptual degradation of distorted point clouds. The quality
assessment of point clouds is mainly based on angular simi-
larity. In [32], the QoS of cloud services will change gradually
over time, but the existing service recommendation methods
do not pay attention to this problem. Therefore, the authors
bring forth a time-aware recommendation method to solve
this problem. A new similarity enhanced collaborative filter-
ing method is developed to capture the temporal character-
istics of user similarity and solve the problem of data sparsity.
Meanwhile, ARIMA model is used for service quality predic-
tion at future time points. In [33], in addition to cloud data
storage services, data similarity retrieval is another basic ser-
vice provided by cloud, especially in image data. This paper

Page 3 of 10Liu et al. Journal of Cloud Computing (2023) 12:3 	

proposes a privacy-protecting similar image detection solu-
tion based on LSH for image hosted in cloud. This method
can effectively secure the sensitive cloud data and obtain bet-
ter retrieval results.

With the above investigation, a simple conclusion could
be drawn that existing literatures are more focusing on
the delay, security and privacy of cloud-based literature
similarity checking, without considering the migration of
literature similarity checking task from cloud to mobile
edge, which limits the success of mobile academic activi-
ties considerably. Considering this limitation, we put
forward an index-based literature similarity checking
solution SCMEC in the next sections.

Framework
A three-layer framework is presented in Fig. 1 to support
the literature similarity checking tasks in the mobile edge
computing environment. As Fig. 1 shows, researchers use
various mobile devices (e.g., mobile phone, iPAD, PDA
and so on [34–36]) for different academic activities. Dur-
ing this process, the academic literatures on mobile devices
[37, 38] (e.g., PDFs) are not necessary to be transmitted
directly to the remote cloud platform. Instead, researchers
transmit their academic literatures to nearby edge servers
through close mobile devices via wireless communication
technology. Afterwards, each edge server is responsible

for converting the academic literatures hosted in the edge
server into a corresponding index (we call it literature index
here). The literature index here is a lightweight embedding
of the literature compared to the literature itself. Each edge
server records its converted literature indexes and trans-
mits them to a cloud platform that is responsible for pro-
cessing all the literature indexes transmitted from all edge
servers. Finally, the cloud platform checks the literature
similarity via comparing the literature indexes which are
very short and lightweight. This way, we can achieve the
literature similarity checking task through the three-layer
device-edge-cloud framework presented in Fig. 1.

Index‑based similarity checking in mobile edge
computing: SCMEC

According to the three-layer framework of literature
similarity checking task presented in Fig. 1, our proposed
literature similarity checking approach SCMEC can be
divided into two steps: first, we need to convert each lit-
erature from mobile devices into its corresponding index;
second, we need to send the literature indexes to the cen-
tral cloud platform for uniform similarity checking. Next,
we introduce the major two steps of SCMEC approach.

Step 1: Conversion from literatures to indexes.
Traditional literature similarity checking approaches

need to make comparisons between different literatures

Fig. 1  Three-layer framework of literature similarity checking in mobile edge computing

Page 4 of 10Liu et al. Journal of Cloud Computing (2023) 12:3

in a direct and straightforward way, e.g., word by word,
sentence by sentence, paragraph by paragraph, etc. Such
a direct and straightforward literature comparison way is
often time-consuming and tiresome [39, 40], which prob-
ably decreases the satisfaction degree of researchers who
often expect a quick and accurate literature similarity
checking result. Therefore, to speed up the above litera-
ture similarity checking process, we need to convert the
initial literatures which are often long into corresponding
shorter embeddings. Since the content of each literature is
often much, we convert each literature into a short index
or embedding. This way, we can evaluate whether two lit-
eratures are similar or not by comparing their index values
instead of their literature contents. The advantage of such
an operation is that we can minimize the time cost for
similar literature evaluation and discovery. Here, we adopt
the classic Simhash and LSH techniques (the time com-
plexity of the mentioned Simhash and LSH techniques
have been proven to be close to O(1)). In our proposal, we
use Simhash technique to convert each literature into a
corresponding Boolean vector, whose purpose is to con-
vert the text information of each literature into a corre-
sponding 0/1 string that is easy to process and calculate in
the subsequent similar literature evaluation process.

Next, we introduce the concrete step of conversion
from literatures to indexes. First, we use Simhash tech-
nique to convert each literature (here, the literature set
is denoted by LitSet = (lit1, . . . , litn) ) into a long signa-
ture (here, the signature set for the literatures in LitSet is
denoted by SigSet = (sig1, . . . , sign) ). The concrete conver-
sion process is introduced in detail at follows.

(1) Word segmentation for literatures.
Each literature often includes many words, which

makes it hard to calculate the similarity degree between
different literatures directly. To tackle this issue, we first
convert a long literature into a word vector through
various mature word segmentation tools in natural lan-
guage processing (NLP) domain, e.g., word2vec or fast-
Text. The concrete word segmentation process will not
be introduced in detail here. Interested readers can refer
to the related literatures in NLP. Here, we take a litera-
ture lit as an example for illustration. We assume that
the literature lit is converted into a word vector Vlit as
specified in (1) based on word2vec or fastText. Here,
m is not a fixed value since different literatures often
include different word number after word segmentation.

(2) Hash projection from a word vector to a 0/1 vector.
In the last substep, we have converted each literature lit

into a word vector Vlit . However, it is challenging to evalu-
ate the similarity between word vectors. To tackle this issue,
we further convert the word vector Vlit of literature lit into

(1)Vlit = (a1, . . . , am)

a numerical vector NumVlit . The concrete conversion pro-
cess is based on any hash projection table. Here, for simplic-
ity, we use the classic ASCII coding table adopted widely in
computer domain to achieve the goal of hash projection.
For example, if Vlit = (a1, a2) , a1 = 11110000 and a2 =
10101010, then NumVlit = (1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0).
Next, we replace the “0” entries in the vector by “-1” and then
derive a new vector constituted by “1” and “-1” entries only.
For example, NumVlit = (1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0) is
updated to be NumVlit = (1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1
-1).

(3) Vector weighting.
Weight significance is often inevitable in many applications

involving multiple dimensions or criteria [41–43]. Inspired
by the above analysis, in a literature, each word should be
assigned a concrete weight value indicating the importance
and significance of the word in depicting the whole litera-
ture. The weights of words in a literature could be generated
in many ways such as TF/IDF, which is not repeated here.
Here, we assume that weight vector corresponding to the m
words in vector Vlit in (1) is W as specified in (2)-(3).

(4) Vector union by addition.
For a literature lit, with its word vector Vlit = (a1, . . . , am)

in Eq. (1) (here, please note that the hash projection from
0 to -1 has been applied to the word vector) and its weight
vector Wlit = (w1, . . . ,wm) in Eq. (2), we can make a dot
production operation between vectors Vlit and Wlit , whose
result is denoted by DPlit in (4). For example, if Vlit =
(a1, a2) , a1 = 11110000, a2 = 10101010, w1 = 0.4, w2 = 0.6,
then DPlit = (1 1 1 1 -1 -1 -1 -1) * 0.4 + (1 -1 1 -1 1 -1 1 -1)
* 0.6 = (0.4 0.4 0.4 0.4 -0.4 -0.4 -0.4 -0.4) + (0.6 -0.6 0.6 -0.6
0.6 -0.6 0.6 -0.6) = (1 -0.2 1 -0.2 1 -0.2 1 -0.2).

(5) Dimension reduction.
In the above substep, we have converted each literature lit

into a corresponding DPlit = (b1, . . . , bm) by Eq. (4). How-
ever, from the dimension perspective, each entry in vector
DPlit can take any real value and therefore, its value range is
often very large and not suitable for subsequent similarity cal-
culation and evaluation. To overcome this shortcoming, we
reduce each dimension’s value range as follows, since binary
embedding is widely applied to various big data scenarios to
reduce the search and processing time [44–46]. In concrete,
we make the following conversions in Eq. (5). Afterwards,

(2)Wlit = (w1, . . . ,wm)

(3)
m

j=1

wj = 1

(4)DPlit = (b1, . . . , bm) = Vlit ∗Wlit =

m
∑

j=1

aj ∗ wj

Page 5 of 10Liu et al. Journal of Cloud Computing (2023) 12:3 	

each entry bj in vector DPlit is equal to either 1 or 0, which
narrows the value range of vector DPlit significantly. This
way, we successfully achieve the goal of dimension reduction.

(6) Deep dimension reduction by LSH.
To further reduce the dimensions of DPlit for each lit-

erature lit, we use LSH technique to build a deep index for
each lit. Concretely, we generate an m-dimensional vector
X = (x1, . . . , xm) randomly by Eq. (6), where each entry xj
of vector X belongs to range [-1, 1]. Next, we convert the
m-dimensional vector DPlit into a smaller r-dimensional
vectorZ(r ≪ m) by Eqs. (7)-(9). Here, the purpose of Eq. (7)
is to calculate the projection from the original vector DPlit to
the vector X; the purpose of Eq. (8) is to reduce the dimen-
sions involved; afterwards, we repeat the operations in Eqs.
(7) and (8) r times to obtain z1, . . . , zr . Then we can get a
new vector Z = (z1, . . . , zr) which is much shorter than the
original vector DPlit . This way, we successfully achieve the
goal of dimension reduction. In addition, the LSH technique
has been proven a lightweight nearest neighbor discovery
approach whose time complexity is approximately O(1).
Therefore, the proposed LSH-based similar literature discov-
ery approach is very suitable for the big data context.

Step 2: Similarity checking of literatures based on
indexes.

In Step 1, for each literature in LitSet = (lit1, . . . , litn) ,
we have obtained a corresponding hash index
Zj(j = 1, 2, . . . , n) . Next, we compare any two litera-
tures liti and litj (1 ≤ i ≤ n, 1 ≤ j ≤ n) through compar-
ing their respective hash indexes Zi and Zj . In concrete,
if Zi = Zj holds, we can simply conclude that literatures
liti and litj are similar with high probability. However,
the above literature similarity evaluation solution is not
always correct since LSH is a probability-based neighbor
search technique. To minimize the negative influences
incurred by probability, for each literature litj in LitSet ,
we do not generate only one hash index Zj ; instead, we
generate h indexes Z1

j , . . . ,Z
h
j  . Afterwards, the similarity

(5)bj =

{

1 if bj > 0,
0 if bj ≤ 0.

(j = 1, 2, . . . ,m)

(6)xj = random(−1, 1)

(7)z = DPlit ∗ X =

m
∑

j=1

bj ∗ xj

(8)z =

{

1 if z > 0,
0 if z ≤ 0.

(9)Z = (z1, . . . , zr)

between literatures liti and litj is evaluated by Eq. (10).
This way, we can evaluate whether two literatures are
similar or same based on their respective hash indexes,
to improve the literature similarity evaluation efficiency.

The details of our proposed SCMEC algorithm can be
described clearly by the following pseudo code.

Algorithm 1 SCMEC

Evaluation
Next, we prove the feasibility of SCMEC algorithm in
handling literature similarity checking in mobile edge
computing environment. Concretely, the experiments

(10)liti and litj are similar iff ∃ k satisfying Zk
i
= Zk

j
(1 ≤ k ≤ h)

Page 6 of 10Liu et al. Journal of Cloud Computing (2023) 12:3

are deployed on WS-DREAM dataset1 which records a
group of services as well as their quality performances.
Here, we use the records in the dataset to simulate the
literatures as well as their digital signatures. Two classic
similar neighbor searching methods are used for com-
parison purpose, i.e., UCF and ICF. Experiment hardware
includes a 2.50 GHz processor and 16.0 GB memory;
experiments are executed under WIN-7 operation sys-
tem and Python-3. We run each experiment 100 times
and record their average performance for result display.
Please note that the parameter settings in this paper are
determined in an experienced way, i.e., by experiment
tests.

Test 1: Computational time comparison.
In the big data context, data processing speed is very

important since response time is an influencing fac-
tor associated with user experience [47, 48]. Inspired by
this observation, we test the speed of SCMEC with base-
line methods: UCF and ICF. Test results are presented in
Figs. 2 and 3, respectively. In concrete, in Fig. 2, time cost
of three methods is compared with the size of signature
dimensions, i.e., m. Here, m varies from 100 to 300; n is
equal to 5000; number of functions in SCMEC , i.e., r = 10;
number of tables in SCMEC , i.e., k = 18. In Fig. 2, the time
costs of three methods approximate rise with the rising
of m since more calculation operations are necessary in
all three methods when there are more signature dimen-
sions of literatures. Moreover, compared to UCF and ICF
methods, our proposed SCMEC algorithm consumes less
time. This is due to the fact that UCF and ICF need to cal-
culate literature similarity based on collaborative filtering
idea whose time complexity is relatively high; while the
SCMEC algorithm first generates literature indexes offline

and then uses existing literature indexes to discover simi-
lar literatures. Therefore, SCMEC often performs better
than UCF and ICF in terms of consumed time. Similar
comparison results could be observed in Fig. 3 where the
computational time of three methods is compared with
the number of literatures, i.e., n. Here, n varies from 1000
to 5000, m is equal to 300, r = 10, k = 18. The reason is
not repeated again.

Test 2: Accuracy comparison. Here, we measure the
literature similarity checking accuracy (in the form of
MAE, smaller is better) of three methods, whose results
are presented in Figs. 4 and 5, respectively. In concrete, in
Fig. 4, m = {100, . . . , 300} , n = 5000, r = 10, k = 18. The
results reported in Fig. 4 shows that the accuracy of three
methods all varies with the growth of m and SCMEC algo-
rithm outperforms UCF and ICF methods in accuracy.
The reason is that in SCMEC , the adopted hash indexes
of literatures can guarantee to discover all the most
similar literatures. As a result, the accuracy of SCMEC is
the highest and the MAE of SCMEC is the lowest. Such a
comparison result indicates a good literature similarity
checking performance of the proposed SCMEC method.
Similar results could also be observed in Fig. 5 where
n = {1000, . . . , 5000} , m = 300, r = 10, k = 18. Figure 5
shows that the accuracy of three methods approximately
rises when n (i.e., MAE of three methods declines when
n rises) grows. The reason can be analyzed as follows:
when n becomes larger, there are more literatures as
well as their associated signatures; in this situation, more
valuable information taking part in literature similarity
checking is available and hence, the accuracy is enhanced
accordingly. Furthermore, the MAE of SCMEC is generally
lower than UCF and ICF, which indicates a better perfor-
mance of SCMEC in literature similarity checking.

Test 3: Performances of SCMEC.

Fig. 2  Computational time comparison (w.r.t. m)

1  https://wsdream.github.io/

Page 7 of 10Liu et al. Journal of Cloud Computing (2023) 12:3 	

As introduced in Section 4, there are several key influ-
encing factors that can determine the performances of
SCMEC , such as parameters r and k. To observe the rela-
tionships between the influencing factors and the algo-
rithm performances, several experiments are designed
where n and m are equal to 5000 and 300, respectively;
r varies from 2 to 10 and k varies from 10 to 18. Con-
crete data are reported in Figs. 6 and 7. In concrete,
Fig. 6 shows the computational time of SCMEC when the
parameters r and k fluctuate, where the computational
time approximately drops with the increment of r and the
consumed time approximately drops with the increment
of parameter k. Next, we discuss the reason behind such
a conclusion. First, if we use more hash functions (i.e.,
larger r) used to calculate literature similarity, the more

probable that the top-similar literatures be discovered; in
this situation, the finally returned similar literatures are
usually fewer and hence, less time is consumed accord-
ingly. Second, if we use more hash tables (i.e., larger k)
used to calculate literature similarity, more similar litera-
tures are probably discovered; in this situation, the finally
returned similar literatures are usually more and hence,
more time is consumed accordingly.

Figure 7 shows the accuracy of SCMEC when the param-
eters r and k fluctuate, where the accuracy value approxi-
mately drops with the increment of parameter r and the
accuracy varies with the increment of parameter k. Next,
like in Fig. 6, we discuss the reason behind such an obser-
vation from Fig. 7. If we use more hash functions (i.e.,
larger r) to calculate literature similarity, the returned

Fig. 3  Computational time comparison (w.r.t. n)

Fig. 4  Accuracy comparison (w.r.t. m)

Page 8 of 10Liu et al. Journal of Cloud Computing (2023) 12:3

similar literatures are “more similar”; accordingly, litera-
ture similarity checking accuracy is higher (i.e., MAE is
lower).

Conslusions
With the advent of information age, mobile devices
have become one of the major convenient equipment
that aids people’s daily office activities such as aca-
demic research, one of whose major tasks is to check
the repetition rate or similarity among different Eng-
lish literatures. Traditional literature similarity check-
ing solutions in cloud paradigm often call for intensive
computational cost and long waiting time. To tackle

this issue, in this paper, we modify the traditional litera-
ture similarity checking solution in cloud paradigm to
make it more suitable for the light-weight mobile edge
environment. Furthermore, we put forward a light-
weight similarity checking approach SCMEC for English
literatures in mobile edge computing environment. To
validate the advantages of SCMEC , we have designed
massive experiments on a dataset. The reported experi-
mental results show that SCMEC can deliver a satisfac-
tory similarity checking result of literatures compared
to other existing approaches.

Literature similarity checking in mobile edge comput-
ing environment often involves certain sensitive user

Fig. 5  Accuracy comparison (w.r.t. n)

Fig. 6  Computational time of our algorithm (w.r.t. r and k)

Page 9 of 10Liu et al. Journal of Cloud Computing (2023) 12:3 	

privacy [49]. Therefore, in future study, we will further
consider the privacy disclosure issue in our proposed
algorithm by introducing more effective privacy protec-
tion techniques including blockchain, federated learning,
DP, encryption, etc. [50–52]. In addition, energy saving
and cost optimization are also key challenges in typical
big data applications [53, 54]. Hence, we will introduce
more classic performance optimization and computa-
tional offloading technologies.

Abbreviations
MTS	� Multi-keyword text search
ICP	� Iterative nearest point
MD	� Adaptive multidimensionaL
LSH	� Locality-Sensitive Hashing
NLP	� Natural language processing
MEC	� Mobile edge computing

Acknowledgements
None.

Authors’ contributions
Xiaomei Liu: idea, algorithm design; Ailing Gao: background and motivation;
Chengxiang Chen: model design; Mohammad Mahdi Moghimi: English writ-
ing, experiments. The author(s) read and approved the final manuscript.

Funding
None.

Availability of data and materials
http://​wsdre​am.​github.​io/

Declarations

Ethics approval and consent to participate
None.

Consent for publication
Not applicable.

Competing interests
The authors declare that there is no competing interests.

Received: 28 October 2022 Accepted: 23 December 2022

References
	1.	 Li Y, Liu J, Cao B, Wang C (2018) Joint optimization of radio and virtual

machine resources with uncertain user demands in mobile cloud com-
puting. IEEE Trans Multimed 20(9):2427–2438

	2.	 Xie Y, Gui FX, Wang WJ, Chien CF (2021) A two-stage multi-population
genetic algorithm with heuristics for workflow scheduling in heteroge-
neous distributed computing environments. IEEE Trans Cloud Comput.
https://​doi.​org/​10.​1109/​TCC20​21313​7881

	3.	 Zhou D, Xue X, Zhou Z (2022) SLE2: the improved social learning evolu-
tion model of cloud manufacturing service ecosystem. IEEE Trans Ind
Inform. https://​doi.​org/​10.​1109/​TII.​2022.​31730​53

	4.	 Liu Y, Song Z, Xu X, Rafique W, Zhang X, Shen J, Khosravi MR, Qi L (2022)
Bidirectional gru networks-based next poi category prediction for health-
care. Int J Intell Syst 37(7):4020–4040

	5.	 Xu Y, Liu Z, Zhang C, Ren J, Zhang Y, Shen X (2021) Blockchain-based
trustworthy energy dispatching approach for high renewable energy
penetrated power systems. IEEE Internet Things J. https://​doi.​org/​10.​
1109/​JIOT.​2021.​31179​24

	6.	 Chen Y, Xing H, Ma Z, et al (2022) Cost-efficient edge caching for noma-
enabled IoT services. China Commun

	7.	 Zhou J, Cao K, Zhou X, Chen M, Wei T, Hu S (2021) Throughput-conscious
energy allocation and reliability-aware task assignment for renewable
powered in-situ server systems. IEEE Trans Comput Aided Des Integr Circ
Syst 41(3):516–529

	8.	 Zhou X, Liang W, Li W, Yan K, Shimizu S, Wang K (2021) Hierarchical adver-
sarial attacks against graph neural network based IoT network intrusion
detection system. IEEE Internet Things J. https://​doi.​org/​10.​1109/​JIOT.​
2021.​31304​34

	9.	 Chen Y, Zhao J, Wu Y et al (2022) Qoe-aware decentralized task offloading
and resource allocation for end-edge-cloud systems: A game-theoretical
approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2022.​
32231​19

	10.	 Yang W, Li X, Wang P, Hou J, Li Q, Zhang N (2022) Defect knowledge
graph construction and application in multi-cloud IoT. J Cloud Comput
11(1):1–12

Fig. 7  Accuracy of our algorithm (w.r.t. r and k)

http://wsdream.github.io/
https://doi.org/10.1109/TCC20213137881
https://doi.org/10.1109/TII.2022.3173053
https://doi.org/10.1109/JIOT.2021.3117924
https://doi.org/10.1109/JIOT.2021.3117924
https://doi.org/10.1109/JIOT.2021.3130434
https://doi.org/10.1109/JIOT.2021.3130434
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119

Page 10 of 10Liu et al. Journal of Cloud Computing (2023) 12:3

	11.	 Dai H, Wang X, Lin X, Gu R, Shi S, Liu Y et al (2021) Placing wireless charg-
ers with limited mobility. IEEE Trans Mob Comput. https://​doi.​org/​10.​
1109/​TMC.​2021.​31369​67

	12.	 Qi L, Lin W, Zhang X, Dou W, Xu X, Chen J (2022) A correlation graph
based approach for personalized and compatible web apis recommen-
dation in mobile app development. IEEE Trans Knowl Data Eng. https://​
doi.​org/​10.​1109/​TKDE2​02231​68611

	13.	 Tsai S-B (2021) Organization and user computing and risk control under
social network preface. IGI GLOBAL, Hershey

	14.	 Dai H, Yu J, Li M, Wang W, Liu AX, Ma J, Qi L, Chen G (2022) Bloom filter
with noisy coding framework for multi-set membership testing. IEEE
Trans Knowl Data Eng. https://​doi.​org/​10.​1109/​TKDE2​02231​99646

	15.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595. https://​doi.​org/​10.​1109/​TVT.​2021.​31335​86

	16.	 Kong L, Wang L, Gong W, Yan C, Duan Y, Qi L (2022) Lsh-aware multitype
health data prediction with privacy preservation in edge environment.
World Wide Web 25(5):1793–1808

	17.	 Zhang C, Xu Y, Hu Y, Wu J, Ren J, Zhang Y (2021) A blockchain-based
multi-cloud storage data auditing scheme to locate faults. IEEE Trans
Cloud Comput. https://​doi.​org/​10.​1109/​TCC.​2021.​30577​71

	18.	 Gu R, Chen Y, Liu S, Dai H, Chen G, Zhang K, Che Y, Huang Y (2021) Liquid:
Intelligent resource estimation and network-efficient scheduling for deep
learning jobs on distributed gpu clusters. IEEE Trans Parallel Distrib Syst
33(11):2808–2820

	19.	 Zhou X, Xu X, Liang W, Zeng Z, Yan Z (2021) Deep-learning-enhanced
multitarget detection for end–edge–cloud surveillance in smart IoT. IEEE
Internet Things J 8(16):12588–12596

	20.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for IoT in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron 222. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	21.	 Chen Y, Zhao F, Lu Y, Chen X (2023) Dynamic task offloading for mobile
edge computing with hybrid energy supply. Tsinghua Sci Technol.
https://​doi.​org/​10.​26599/​TST.​2021.​90100​50

	22.	 Gu R, Zhang K, Xu Z, Che Y, Fan B, Hou H, Dai H, Yi L, Ding Y, Chen G, et al
(2022) Fluid: Dataset abstraction and elastic acceleration for cloud-native
deep learning training jobs. In: 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, pp 2182–2195

	23.	 Li Y, Xia S, Zheng M, Cao B, Liu Q (2022) Lyapunov optimization based
trade-off policy for mobile cloud offloading in heterogeneous wireless
networks. IEEE Trans Cloud Comput 10(1):491–505

	24.	 Qi L, Yang Y, Zhou X, Rafique W, Ma J (2022) Fast anomaly identification
based on multi-aspect data streams for intelligent intrusion detection
toward secure industry 4.0. IEEE Trans Ind Inform 18(9):6503–6511

	25.	 Wang F, Li G, Wang Y, Rafique W, Khosravi MR, Liu G, Liu Y, Qi L (2022)
Privacy-aware traffic flow prediction based on multi-party sensor data
with zero trust in smart city. ACM Trans Internet Technol. https://​doi.​org/​
10.​1145/​35119​04

	26.	 Yu CM, Chen CY, Chao HC (2015) Privacy-preserving multikeyword simi-
larity search over outsourced cloud data. IEEE Syst J 11(2):385–394

	27.	 Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, Li H (2013) Verifiable privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking. IEEE Trans Parallel Distrib Syst 25(11):3025–3035

	28.	 Liu J, Wang J, Tao X, Shen J (2017) Secure similarity-based cloud data
deduplication in ubiquitous city. Pervasive Mob Comput 41:231–242

	29.	 Zhou Y, Feng D, Hua Y, Xia W, Fu M, Huang F, Zhang Y (2018) A similarity-
aware encrypted deduplication scheme with flexible access control in
the cloud. Futur Gener Comput Syst 84:177–189

	30.	 Yao Z, Zhao Q, Li X, Bi Q (2021) Point cloud registration algorithm based
on curvature feature similarity. Measurement 177(109):274

	31.	 Alexiou E, Ebrahimi T (2018) Point cloud quality assessment metric based
on angular similarity. In: 2018 IEEE International Conference on Multime-
dia and Expo (ICME). IEEE, pp 1–6

	32.	 Ding S, Li Y, Wu D, Zhang Y, Yang S (2018) Time-aware cloud service rec-
ommendation using similarity-enhanced collaborative filtering and arima
model. Decis Support Syst 107:103–115

	33.	 Wu Y, Wang X, Jiang ZL, Li X, Li J, Yiu SM, Liu Z, Zhao H, Zhang C (2018)
Towards secure cloud data similarity retrieval: Privacy preserving near-
duplicate image data detection. In: International Conference on Algo-
rithms and Architectures for Parallel Processing. Springer, pp 374–388

	34.	 Wang F, Zhu H, Srivastava G, Li S, Khosravi MR, Qi L (2022) Robust collabo-
rative filtering recommendation with user-item-trust records. IEEE Trans
Comput Soc Syst 9(4):986–996

	35.	 Zhou X, Li Y, Liang W (2020) Cnn-rnn based intelligent recommendation
for online medical pre-diagnosis support. IEEE/ACM Trans Comput Biol
Bioinforma 18(3):912–921

	36.	 Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading
and resource allocation for noma-enabled IoT in smart buildings and
environment. Build Environ. https://​doi.​org/​10.​1016/j.​build​env.​2022.​
109513

	37.	 Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

	38.	 Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital twin-
empowered mobile edge computing via deep reinforcement learning.
China Commun

	39.	 Xu Y, Zhang C, Wang G, Qin Z, Zeng Q (2021) A blockchain-enabled
deduplicatable data auditing mechanism for network storage services.
IEEE Trans Emerg Top Comput 9(3):1421–1432. https://​doi.​org/​10.​1109/​
TETC.​2020.​30056​10

	40.	 Qi L, Liu Y, Zhang Y, Xu X, Bilal M, Song H (2022) Privacy-aware point-of-
interest category recommendation in internet of things. IEEE Internet
Things J 9(21):21398–21408

	41.	 Li J, Peng H, Cao Y, Dou Y, Zhang H, Yu P, He L (2021) Higher-order
attribute-enhancing heterogeneous graph neural networks. IEEE Trans
Knowl Data Eng. https://​doi.​org/​10.​1109/​TKDE2​02130​74654

	42.	 Zhou J, Li L, Vajdi A, Zhou X, Wu Z (2021) Temperature-constrained reli-
ability optimization of industrial cyber-physical systems using machine
learning and feedback control. IEEE Trans Autom Sci Eng. https://​doi.​org/​
10.​1109/​TASE.​2021.​30624​08

	43.	 Zhou X, Liang W, Kevin I, Wang K, Yang LT (2020) Deep correlation min-
ing based on hierarchical hybrid networks for heterogeneous big data
recommendations. IEEE Trans Comput Soc Syst 8(1):171–178

	44.	 Xie Y, Sheng Y, Qiu M, Gui F (2022) An adaptive decoding biased random key
genetic algorithm for cloud workflow scheduling. Eng Appl Artif Intell 112:104879

	45.	 Liu Y, Li D, Wan S, Wang F, Dou W, Xu X, Li S, Ma R, Qi L (2022) A long
short-term memory-based model for greenhouse climate prediction. Int
J Intell Syst 37(1):135–151

	46.	 Zhou X, Yang X, Ma J, Kevin I, Wang K (2021) Energy efficient smart rout-
ing based on link correlation mining for wireless edge computing in IoT.
IEEE Internet Things J. https://​doi.​org/​10.​1109/​JIOT.​2021.​30779​37

	47.	 Zhou J, Zhang M, Sun J, Wang T, Zhou X, Hu S (2022) DRHEFT: Deadline-
Constrained Reliability-Aware HEFT algorithm for real-time heterogene-
ous MPSoC systems. IEEE Trans Reliab 71(1):178–189

	48.	 Yang Y, Yang X, Heidari M, Khan MA, Srivastava G, Khosravi M, Qi L (2022)
Astream: Data-stream-driven scalable anomaly detection with accuracy
guarantee in IIoT environment. IEEE Trans Netw Sci Eng. https://​doi.​org/​
10.​1109/​TNSE2​02231​57730

	49.	 Xu Y, Ren J, Zhang Y, Zhang C, Shen B, Zhang Y (2019) Blockchain empow-
ered arbitrable data auditing scheme for network storage as a service.
IEEE Trans Serv Comput 13(2):289–300

	50.	 Dai H, Xu Y, Chen G, Dou W, Tian C, Wu X, He T (2022) Rose: Robustly
safe charging for wireless power transfer. IEEE Trans Mob Comput
21(6):2180–2197

	51.	 Huang J, Tong Z, Feng Z (????) Geographical poi recommendation for
internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	52.	 Priyadarshini R, Quadir MdA, Rajendran N, Neelanarayanan V, Sabireen
H (2022) An enhanced encryption-based security framework in the cps
cloud. J Cloud Comput 11(1):1–13

	53.	 Li Y, Liao C, Wang Y, Wang C (2015) Energy-efficient optimal relay selec-
tion in cooperative cellular networks based on double auction. IEEE Trans
Wirel Commun 14(8):4093–4104

	54.	 Xue X, Wang S, Zhang L, Feng Z, Guo Y (2018) Social learning evolution
(sle): computational experiment-based modeling framework of social
manufacturing. IEEE Trans Ind Inform 15(6):3343–3355

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TMC.2021.3136967
https://doi.org/10.1109/TMC.2021.3136967
https://doi.org/10.1109/TKDE20223168611
https://doi.org/10.1109/TKDE20223168611
https://doi.org/10.1109/TKDE20223199646
https://doi.org/10.1109/TVT.2021.3133586
https://doi.org/10.1109/TCC.2021.3057771
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1145/3511904
https://doi.org/10.1145/3511904
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1109/TETC.2020.3005610
https://doi.org/10.1109/TETC.2020.3005610
https://doi.org/10.1109/TKDE20213074654
https://doi.org/10.1109/TASE.2021.3062408
https://doi.org/10.1109/TASE.2021.3062408
https://doi.org/10.1109/JIOT.2021.3077937
https://doi.org/10.1109/TNSE20223157730
https://doi.org/10.1109/TNSE20223157730
https://doi.org/10.1002/dac.5161

	Lightweight similarity checking for English literatures in mobile edge computing
	Abstract
	Introduction
	Related literature
	Framework
	Index-based similarity checking in mobile edge computing:
	Evaluation
	Conslusions
	Acknowledgements
	References

