
El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10
https://doi.org/10.1186/s13677-022-00387-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Deep learning approach to security
enforcement in cloud workflow orchestration
Hadeel T. El‑Kassabi1, Mohamed Adel Serhani2*, Mohammad M. Masud3, Khaled Shuaib3 and Khaled Khalil4 

Abstract 

Supporting security and data privacy in cloud workflows has attracted significant research attention. For example,
private patients’ data managed by a workflow deployed on the cloud need to be protected, and communication of
such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have
been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and mali‑
cious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security
of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving differ‑
ent stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this
paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The
proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict
anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class
classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect
on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well
as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus
provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly
detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of
the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1
scores. Other experimental results maintained a high execution performance of the cloud workflow after applying
adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed archi‑
tecture prevents unnecessary wastage of resources due to anomaly detection and prediction.

Keywords  Cloud, Cloud workflow, Security enforcement, Deep learning, Anomaly detection, Prediction, Covid-19

The processing power provided by the cloud covers a
wide landscape of services, including storage, processing,
and application services. This computational processing
power has enabled researchers to use various computa-
tionally intensive and scientific workflows to perform
vast experiments that were impossible to implement
using local servers. This trend has significantly decreased
the total cost incurred by related software systems [1]
and is, in fact, a promising design paradigm for workflow
deployment, processing, and orchestration. A typical
large-scale scientific workflow comprises a set of inter-
related tasks that are inherently complex, fault tolerant,
and dynamically executed and orchestrated to produce

*Correspondence:
Mohamed Adel Serhani
mserhani@sharjah.ac.ae
1 Department of Computer Science and Software Engineering, Gina Cody
School of Engineering and Computer Science, Concordia University,
Montreal, Canada
2 College of Computing and Informatics, Sharjah University, Sharjah, UAE
3 College of Information Technology, UAEU, Al Ain, Abu Dhabi, UAE
4 Faculty of Applied Science & Engineering, University of Toronto, Toronto,
Ontario, Canada

Introduction
Cloud computing has emerged as a promising and pow-
erful paradigm for managing and delivering computa-
tions, applications, and services over the Internet [1].

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00387-2&domain=pdf

Page 2 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

scientific results. However, a cloud workflow refers to
a workflow that is deployed and executed on the cloud.
Cloud workflow features are classified as transparent,
scalable, multi-tenant, and monitored in real-time [2].

With virtually infinite computing resources, cloud
computing meets the needs of complex scientific data-
intensive workflow tasks and releases cloud workflows
from the burden of planning for resource provisioning.
However, many research challenges need to be addressed
before this potential can be fully realized. Such challenges
include cloud security threats against integrity, authori-
zation, availability, reliability, and trust. These challenges
also apply to workflow security and privacy enforcement
in the cloud environment, which is characterized by
complexity, dynamicity, and multi-dimensional aspects.
Supporting secure access, deployment, execution, and
management of workflows over cloud platforms is of
prime importance to both cloud providers and consum-
ers. Providers must ensure that the resources they make
available for workflow execution are not hacked, mis-
used, or damaged. Similarly, workflow customers must
be assured that their workflows and associated data are
secured and protected from any outsider attacks.

Several cloud computing security threats have been
identified [3] and extensively studied [4–8]. Such threats,
which include data breaches, data leaks, data loss, denial
of service (DoS), and malicious insiders, are gener-
ated from issues such as multi-tenancy, loss of control
over data, and breaches of trust. Supporting security in
a dynamic environment, across different platforms, dif-
ferent stakeholders, and various processes requires the
involvement of various entities besides the cloud provid-
ers. A comprehensive security solution that considers
security enforcement, trust chain in clouds, and ensures
policies and regulations to guarantee security and privacy
across multi-participants and heterogeneous environ-
ments is of paramount importance.

Emerging security issues in a cloud workflow have
motivated researchers to address various research prob-
lems related to the security enforcement in a dynamically
executed and orchestrated cloud workflow. However,
most existing research on workflow management pri-
marily tackled mainly aspects related to 1) anomaly and
error detection [9], 2) workflow task scheduling [10], and
3) autonomic workflow resource provisioning and man-
agement [11]. In these studies, the main purpose was to
avoid failure or resource contention and ensure efficient
deployment, execution, and performance guarantee
of these workflows [12]. Such initiatives neglect cloud
workflow security enforcement which may strengthen
the aspects mentioned above and fill the gap in handling
security and data integrity of dynamic cloud workflows.
Very few studies have exclusively tackled the security of

cloud workflow orchestration, management, and enforce-
ment [13]. Such studies typically focus on anomaly detec-
tion and prediction using various techniques such as
HTM [14], statistical-clustering [8, 15, 16], regression
[17, 18], and unsupervised machine learning (ML) [19].
They neither clearly define the security attributes nor
specify the cloud workflow characteristics, which can
be described as resource-aware, time-series, and highly
dynamic. In addition, they focus on a specific security
dimension, i.e., data, task, or resource of the workflow,
and ignore other dimensions that will lead to better
security enforcement when combined. Furthermore, the
anomaly prediction and detection schemes proposed in
most of these studies rely only on the dynamic features
of the cloud workflow and neglect the static features that
generally capture important workflow information and
its hosting environment. Finally, most previous attempts
primarily focused on security/anomaly detection and
prediction and ignored the resources and workflow adap-
tation strategies that should be undertaken to mitigate
security threats and possible attacks.

Therefore, to address some of the limitations of previ-
ous studies, we emphasize security anomaly/attack detec-
tion and prediction in a cloud workflow orchestration
environment. We propose an adaptation scheme to cope
with possible vulnerabilities and mitigate their effects on
cloud workflow execution. In such an environment, the
attack could target different entities and components
such as workflow data, tasks, resources, monitoring, and
adaptation. Our proposed model contributes to the state-
of-art literature on cloud workflow security by including
the following:

A multidimensional security enforcement empha-
sizing cloud workflow security at various levels: the
task, data, resources, and monitoring scheme.
A scheme combining static and dynamic features
for anomaly/attacks prediction, which is a unique
way to model features that provide better anomaly
detection, i.e., features that capture all stakeholders’
needs and all aspects of the cloud workflow. This
scheme also applies deep learning autoencoder-
based dimensionality reduction for the dynamic
data, which will lead to better characterization of
workflow tasks and will thus provide better attack
prediction.
An unsupervised learning technique that does not
require class labeling, no additional work, and no
manual intervention from experts, thus making it
convenient and more realistic to deal with unknown
anomalies.
An adaptation model that accommodates the flex-
ible representation and planning of resource require-

Page 3 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

ments over time and over the various phases of the
cloud workflow execution cycle.

The remainder of this paper is organized as follows: In
Section 2 related work is discussed and compared and
their limitations are identified. Section 3 presents a case
study using a workflow based on a COVID-19 dataset.
An architecture to enforce end-to-end security in a cloud
workflow orchestration is proposed in Section 4. In sec-
tion 5, a detailed cloud workflow security enforcement
model formulation and the associated learning pipeline
algorithms are presented. Section 6 presents the imple-
mentation details, conducted scenarios, experiments,
and a discussion of the obtained results. Finally, conclu-
sions and suggestions for future work are presented in
Section 7.

Related work
Security in cloud computing ecosystem is a comprehen-
sive field that attracted significant attention as the cloud
services hype grew exponentially, and cloud security
threats and vulnerabilities also evolved over time. To help
advance stat-of-the-art security solutions, first, related
risks in emerging cloud services need to be identified.
Such security risks are initiated by three types of attack
vectors: external users, internal users, and cloud provid-
ers [20, 21]. Security threats in a cloud service environ-
ment are emerging over time. The most common threats
include data breaches, data loss, DoS, malicious insiders,
service traffic hijacking, shared technology vulnerabili-
ties, malware, cyber-attacks, network intrusion, VM-level
threats and data transparency [22–25].

Recently, deep learning approaches for cloud security
threat detection have been proposed by several research-
ers. However, these approaches are unable to deliver a
comprehensive solution for all security threats. How-
ever, they only address and detect patterns for a particu-
lar threat only in single deployment. The authors in [26]
used a multi-layer neural network to detect and recog-
nize malicious behaviors exhibited by users. They con-
verted user behavior data into an understandable format
and classified the malicious behavior for detection and
recognition.

In [27], the authors proposed PredictDeep, a security
analytical framework for known and unknown anomaly
detection and prediction in Big Data systems. Predict-
Deep is proposed as a service to be offered to cloud users.
The framework comprises three main modules, namely: a
graph model designer, a feature extractor, and an anom-
aly predictor. PredictDeep is scalable and works well in a
dynamic environment to monitor anomalies in real-time
systems. However, with PredictDeep, anomaly detec-
tion assumes that all log files are accurate and no fake

data that could compromise the accuracy of the predic-
tion model has been injected. In addition, the proposed
approach assumes the integrity of the infrastructure used
for deployment.

Intrusion detection systems (IDS) are considered
important tools for monitoring networks, services, and
workflows for violations or malicious activities in cloud
services orchestration. Detecting novel attacks in such
scenarios is a challenging task. Deep learning-based
intrusion detection techniques have yielded encouraging
results relative to predicting unknown attacks and detec-
tion mechanisms. The authors in [28] presented an IDS
using deep reinforcement learning-based architecture
that can address and classify new and complex attacks.
They employed a reward vector such that a classifier giv-
ing an identical result is awarded a positive point other-
wise a negative point is obtained. In addition, the authors
in [29] addressed a multi-cloud cooperative intrusion
detection system and enhanced decision making in a
real-time environment using a deep neural network
(DNN) model. They employed historical feedback data
to predict suspicious intrusions. Furthermore, a deep
learning-based IDS has been proposed [25] to detect
suspicious attacks in a cloud computing environment by
monitoring network traffic. This system employs a self-
adaptive genetic algorithm (SAGA) that automatically
creates a DNN-based anomaly network IDS and demon-
strated high detection rates, high accuracy, and low false
alarm rates.

Other research initiatives have addressed cloud work-
flow security enforcement and several researchers and
industries have proposed possible solutions to enhance
the security of cloud services and cloud workflow
orchestration. For Example, in [30], the developers cur-
rently working on the European-funded ASCLEPIOS
(Advanced Secure Cloud Encrypted Platform for Inter-
nationally Orchestrated Solutions in Healthcare) project
have exploited various cryptographic and access control
techniques to protect user data privacy and provide pro-
tection against other security breaches as part of a cloud-
based eHealth framework. One objective of this project
is to enable various healthcare stakeholders to share data
securely while preserving participant privacy. The pro-
posed architecture consists of seven layers to provide
security and analytic features to support data privacy and
access control. However, the utilization of ML techniques
for the detection, evaluation, and mitigation of poten-
tial anomalies in data or attacks on certain components
of the overall system such as available resources was not
incorporated into the proposed architecture.

In the PICASO project [31], a framework was proposed
to enable cross-organization sharing of electronic health
records using a cloud-based solution. This project aims

Page 4 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

to provide the required security and privacy measures
in addition to service orchestration and data capture and
management. Here, security features were implemented
via separate subsystems to guarantee the privacy of
patient records, user authentication, transaction infor-
mation traceability, and enforcement of access control
policies. However, the project did not implement any
mechanisms for to detect of anomalies within the pro-
posed framework.

Authors in [32] provided a literature review on security
in FaaS orchestration systems [32]. They have classified
the existing works considering various criteria including
the protected asset, the cause of threats, and the protec-
tion approach. They concluded that most of the work
focused on data confidentiality, however, data integrity
is less considered. Function flows and platforms miscon-
figuration are also considered in most of the reviewed
works. Moreover, authors in [33] provided another
classification for existing works using Machine learn-
ing and Deep learning techniques for online malware
detection in cloud. They classified the malware detec-
tion approaches into static analysis that is offline with
no monitoring required, and dynamic analysis, where it
requires real-time monitoring and use neural networks
to predict when a virtual machine might be infected, this
is more appropriate for cloud environment. The experi-
mentation showed that Deep learning techniques provide
good accuracy while detecting malware. However, this
work did not analyze end-to-end security enforcement
for workflows over cloud environment.

Zarca et al. proposed a semantic-aware and policy-
driven security orchestration framework for autonomic
security orchestration in IoT systems to detect seman-
tic conflicts during the orchestration. The authors also
proposed an optimized Service Function Chaining
algorithm, which maximizes the QoS, security aspects
and resources usage during Virtual network Security

Functions allocation. However, they only detect anoma-
lies but no prediction of anomalies is proposed [34].

Behavior attacks detection were proposed in [35] where
different machine learning techniques for supervised
classification were analyzed and compared. The study
concluded that neural network models have the best per-
formance in terms of accuracy to detect the impact mal-
ware on the process level features of virtual machines in
the cloud. They collect different system features such as
memory, CPU, and input/output from all process that
are running on the VM at certain times. Similar work
was proposed in [36] concentrating on different Convo-
lutional Neural Networks (CNNs) for online detection of
malware in cloud IaaS in real-time. The work focused on
behavioral data using process level performance metrics
including CPU, memory, and disk usage. Although their
solution provide high accuracy, their proposed malware
detection system is limited to a single virtual machine
and does not support features such as auto-scaling [36].

Table 1 summarizes the state-of-the-art research with
respect to anomaly detection in cloud environment.
In this table we compare existing systems against the
anomaly type they detect, anomaly detection technique
adopted, data collected for anomaly detection, and other
supported features such as real-time and orchestration.
None of the surveyed systems provided anomaly detec-
tion from an end-to-end workflow orchestration per-
spective, rather a few systems detect anomalies in single
VMs or single processes within a workflow [30, 34].

With the rapid increase in the use of cloud computing
for electronic health records, issues related to security
and privacy are critical for establishing participant trust
in the deployed system. Thus, complex data-intensive
cloud workflows must provide trustworthy results that
enforce secure input and output data free of unauthor-
ized access and malicious manipulation. Challenges
related to handling security breaches in a cloud workflow

Table 1  Overview and classification of existing work on security in cloud

Anomaly Types Anomaly Detection Technique System Data
Collection

Real-time
Anomaly
Detection

Workflow
Orchestration

Papers Data Security Behavior Intrusion
Detection

ML Neural
Networks

Policy-based

[35, 36] ✓ ✓ ✓ ✓
[34] ✓ ✓ ✓ ✓ ✓
[37, 26] ✓ ✓
[28] ✓ ✓
[29, 25] ✓ ✓
[30] ✓ ✓ ✓
[31] ✓ ✓ ✓
Our System ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Page 5 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

orchestration system include the ability to identify the
properties of each specific task comprising the work-
flow and each physical resource allocated in this dynamic
infrastructure as well as integrate the collected informa-
tion to detect anomalies and malicious actions. Anomaly
detection must be timely, and an appropriate remedial
action must be selected and executed before damage
occurs. Moreover, the security process must have a mini-
mal effect on the computing environment to maintain
workflow execution performance. In other words, we
must guarantee smooth and efficient handling of all secu-
rity breaches including identification, prediction, and
remediation.

To support security enforcement of cloud workflows
and address some of the above abovementioned research
challenges, we approach this problem from different
dimensions including multi-level security enforcement,
pre-evaluation of various prediction models for security
threat detection and prediction, combining static and
dynamic features for anomaly detection, and adaptation
strategies to mitigate various security risks. Before we
detail the features of our proposed cloud workflow secu-
rity enforcement methodology, we illustrate the concept
with an example cloud workflow handling COVID-19
dataset and identify potential security threats the cloud
workflow may encounter that our proposed approach is
expected to help detect. In addition, we predict some of
these breaches and propose adaptation actions to protect
against them.

Case study: COVID‑19 cloud workflow
The effectiveness of healthcare systems worldwide has
been challenged recently owing to the outbreak of the
Novel Coronavirus (COVID-19) which was declared a
pandemic by the WHO in March 2020. The impact of
such new strains of viruses has been demonstrated to
defeat all expectations of any healthcare system. This
pandemic has strained involved entities, working to find

a cure or vaccine, including healthcare providers, gov-
ernment agencies, and research facilities. Such pressures
have led to proper protection of facilities, confidential
data, and workflows from possible vicious attacks that
could easily compromise the integrity of the overall pro-
cess [38]. During COVID-19 pandemic, the reliance on
online resources and cloud-based infrastructure systems
has increased drastically due to lockdowns, contact-
tracing applications, and increased use of remote work-
ing and distance-learning platforms. This has caused a
huge leap in cyber-attacks and data confidentiality and
integrity breaches [38]. To illustrate the applicability
and usefulness of the security enforcement architecture
and identify the main security threats in cloud workflow
orchestration, we describe a case study involving a cloud
workflow encompassing the composition of tasks han-
dling a COVID-19 dataset.

Cloud workflow and COVID‑19 dataset
Figure 1 shows the health monitoring cloud workflow
we developed using the epidemiological data from a
COVID-19 outbreak dataset that employs a deep learning
model to predict the length of hospital stay of COVID-
19 patients [39]. The dataset was collected and curated
from national, provincial, and municipal health reports,
as well as other online reports. The data are geocoded
and include symptoms, key dates (date of onset, admis-
sion, and confirmation), and travel histories of different
patients [40]. We used data collected up to the June 20,
2020, including 2,500,000 records, each of which repre-
sents an individual patient case. The dataset includes 33
columns including patient ID, age, gender, date_onset_
symptoms, date_admission_hospital, date_confirma-
tion, additional_information, chronic_disease_binary,
chronic_disease, symptoms, and outcome. The expla-
nation for each field is provided in [39]. We adopted
this cloud workflow example to identify and evaluate
different security breaches that could be encountered

Fig. 1  COVID-19 patient health monitoring workflow example

Page 6 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

and therefore mitigate their effects. The workflow was
deployed on a Docker Swarm Cluster and the data were
loaded automatically from database tables to satisfy the
service tasks outlined in the workflow. The workflow
comprises a set of both sequential and parallel tasks. The
sequential tasks include retrieving data from the database
and conducting data processing, while the parallel tasks
include training, prediction, and validation tasks.

Security threats
Different security issues in a cloud-based infrastructure
were addressed in the literature, examples of breaches
include for instance insider attacks, data loss, and DoS
attacks. In this section, we focus on anomaly detection in
a cloud workflow orchestration setting. In such an envi-
ronment, an attack could target different entities and
components including workflow data, tasks, resources,
monitoring, and adaptation components. In what fol-
lows, we describe a few examples of security breaches in
a cloud workflow.

Cloud workflow data attack
Some examples of data attacks involve data injection
attacks that intend to corrupt the dataset or compromise
it through, for example, suspicious sharing or downloads.
Other anomalies include unauthorized data access and
anomalous admin user activities. For example, in our
cloud workflow, the attacker may inject redundant and
fabricated data into the workflow to tamper with train-
ing and prediction processes which will affect the quality
of the prediction model and may cause critical problems
(e.g. patient death) or overburden the ML training pro-
cess, thereby falsely activating Quality of Service (QoS)
degradation and triggering unnecessary workflow
adaptation.

Cloud workflow task attack
Cloud workflow is composed of many different tasks that
can run in parallel or sequentially with different depend-
ency levels. Workflow task attacks include a wide range
of different anomalies including malware infection, query
injection, and DoS. Furthermore, an attacker can maxi-
mize damage, by targeting sensitive processes or tasks
(e.g., tasks on which many other tasks depend).

Resource attack
Resources such as cloud VMs, CPUs, memory, and net-
works can also be the target of different types of attacks,
including unauthorized resource access, or overwhelm-
ing service requests. Such attacks could arise by falsely
reporting resource overload/overutilization in moni-
toring logs, which will cause the compromised node

to trigger unnecessary and costly workflow adaptation
processes.

Monitoring and adaptation component attack
Monitoring and adaptation component attacks are very
crucial in any cloud workflow orchestration environment
because these components are crucial to resource man-
agement and performance optimization. In this work-
flow example, an attack against a monitoring system can
force the compromised monitoring task to generate false
resource underutilization logs, to avoid necessary adapta-
tion and thus, causing performance degradation leading
to a DoS. Another example of such an attack is automatic
system reconfiguration which can cause a compromised
node to falsely identify a problem and trigger unneces-
sary adaptation actions.

The aforementioned attack types negatively impact the
performance and integrity of a cloud workflow orches-
tration system. In this work, we focus on anomaly detec-
tion in cloud workflow data, cloud resources, tasks, and
monitoring components. Hence, we propose to monitor
resources, such as utilization of CPU, memory, I/O, and
network, as well as task profile, and task performance. In
the following section, we present our proposed security
enforcement for cloud workflow orchestration.

End‑to‑end security enforcement in cloud
workflow orchestration
In this section, we design and describe our end-to-end
security enforcement architecture as depicted in Fig. 2.
It consists of two main modules: a workflow deployment
module and a security enforcement module. Both mod-
ules use the underlying processing and storage resources
(e.g., VMs, GPUs, Storage) from the cloud infrastructure
to dispatch various storage and processing tasks. Security
enforcement events implemented within our architec-
ture are applied to four main entities: the user, resources,
workflow tasks, and data.

In the following, we describe each component of the
architecture in detail and highlight the security features
that enhance security, data integrity, and authentication.

Entities
Entities interact with the two modules of the architecture
to ensure various security boundaries including authen-
tication and identity management for users interacting
with the architecture, access and connectivity manage-
ment of the employed resources, security enforcement
of cloud workflow tasks, and workflow data access and
integrity.

Page 7 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

Workflow deployment module
This module involves two sub-components, the work-
flow specification, and the workflow deployment com-
ponents. The workflow specification component builds
the functional and non-functional (quality and secu-
rity) requirements of the workflow and creates pro-
files for entities, such as tasks, data, and resources. The
workflow deployment component manages the work-
flow deployment and execution lifecycle over the cloud
infrastructure. The output of this module is a running
workflow monitored by the security enhancement
module to detect and/or predict encountered security

threats and adopt the necessary adaptation action to
mitigate it.

Security enforcement module
This module is composed of three sub-components:
monitoring, Multi-Modal Deep Learning Autoencoder
(MMDLA) based prediction and adaptation sub-mod-
ules. These sub-modules mutually interact to achieve a
complete scenario of cloud workflow monitoring, anom-
aly detection, and prediction. Finally, these submodules
apply an adaptation strategy to mitigate risks identified
through various anomaly evaluations.

Fig. 2  An architecture for security enforcement in cloud workflow orchestration

Page 8 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

Monitoring sub‑module
This submodule is responsible for continuous data col-
lection and monitoring. Various runtime data/logs are
collected from monitored entities including tasks, data,
and resources. The collected data are used for the train-
ing, and prediction purposes and are stored in a histori-
cal database for further analysis.

MMDLA sub‑module
This module uses the data collected from the monitor-
ing submodule as an input to train a multi-modal deep
learning autoencoder model for dimension reduc-
tion and trains a profile matching classification model
using the dimensionally reduced data to predict anom-
alies. Training of the MMDLA model employs a com-
bination of the input data generated from the entities
profiling module (static) and monitoring time-series
real-time logs data (dynamic). The resultant MMDLA
model reduces the data dimension to increase effi-
ciency and efficacy and provides reduced dimensional
data as input to an anomaly detection ML algorithm
to accomplish anomaly detection. If an anomaly is
detected, then anomaly evaluation is performed to
determine the type and threat level of the detected
anomaly. Then, the anomaly evaluation information
is passed as input to the risk estimation process and
eventually stored in a database for expert validation
(e.g., to identify suspicious user behavior). A detailed
description and implementation of the key compo-
nent’s features of this module is given in subsequent
sections.

Adaptation sub‑module
This submodule implements adaptation strategies to
proactively react to security threats before they occur
and propagate. This begins by estimating the risk of
each anomaly detected/predicted by the previous mod-
ule to ultimately apply a mitigation strategy which may
involve a redeployment of the cloud workflow to han-
dle the employed adaptations. Such an adaptation may
involve securing access to cloud workflow resource
execution, guaranteeing legitimate additional resource
allocation or deallocation, and terminating compro-
mised tasks.

Cloud infrastructure
This serves the architecture requirements in terms of
the various resources needed to process and store data.
Processing tasks include MMDLA model training for
dimension reduction, anomaly detection model train-
ing and classification, and data storage monitoring.

Cloud workflow security enforcement module
In this section, we detail the working principle of the
MMDLA prediction-based security enforcement mod-
ule. First, we define essential terms in understanding
the prediction model, and then we discuss problem
formulation. Finally, we describe the learning pipelines
algorithms used for the solution approach.

Definitions
Definition 1 (Task) A task T is an operational unit con-
sisting of one or more instructions, and can be dependent
on one or more other tasks. Each task Ti runs on a desig-
nated container Ci such as a virtual machine.

Definition 2(Workflow) A workflow W is a collec-
tion of tasks { T1, ..., Tn } performed according to a sched-
ule S toward achieving a specific work (e.g., patient
classification).

Definition 3 (Task Profile) A Task profile Pi of a task
Ti is the tuple (δi, Ri) where δi is the unique id of the task
and Ri is the task runtime data, to be defined next.

Definition 4 (Task runtime data) Task runtime data
Ri of task Ti consists of both static and dynamic runtime
data, which can be represented as a tuple (D, λ, η, μ, Θ) i.
The static runtime data are composed of first four items of
the tuple, namely:

Di: The task duration in seconds.
λi: The task category (e.g. preprocessing, training,

evaluation).
ηi: The input size in bytes.
μi: The output size in bytes.
The dynamic runtime data Θi is a multivariate time-

series data produced by a task monitoring system for task
Ti which consists of periodical observation of six differ-
ent runtime parameters, namely, CPU utilization, mem-
ory consumption, network input, network output, disk
read, and disk write. Therefore, Θi can be defined as the
tuple (Π, M , A , B , D , E) i, as explained below.

Each observation of dynamic runtime data is per-
formed every τ seconds (a system parameter). Therefore,
the total number of such observations for Ti is

where Di is the task duration as mentioned above. The
six time-series variables are as follows:

1.	 Πi: The CPU utilization observations, which gener-
ate a time-series data such that, Πi={πi[1], ... πi[ki]},
where πi[j] is the j-th observation of CPU utilization
for task 𝒯𝑖.

(1)ki =
Di

τ

Page 9 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

2.	 ℳ𝑖: The series of memory usage observations per-
formed every τ seconds, Mi = { mi[1],..., mi[ki]}.

3.	 𝒜𝑖: The series of (cumulative) network input volume
(in KB) observations for Container Ci performed
every τ seconds, Ai = {αi[1], . . . ,αi[ki]}

4.	 Bi : The series of (cumulative) network output vol-
ume (in KB) observations for Container Ci performed
every τ seconds, Bi =

{

βi[1], . . . ,βi[ki]
}

5.	 Di : The series of (cumulative) disk read volume (in
KB) observations for Container Ci performed every τ
seconds, Di = {di[1], . . . ,di[ki]}

6.	 Ei : The series of (cumulative) disk write volume (in
KB) observations for Container Ci performed every τ
seconds, Ei = {ei[1], . . . , ei[ki]}

Therefore, dynamic runtime data Θi can be expressed
as the following two-dimensional matrix:

Problem formulation
Let R = {R1, . . .Ri, . . . ,Rn} be the set of all task runt-
ime information under a normal scenario, i.e., all runtime
scenarios without any attacks. We assume that any attack
would cause at least one running task T ′ to behave in a
manner that would generate the corresponding task runt-
ime information R′ such that

Therefore, relation 3 is a necessary and sufficient condi-
tion for T ′ being affected by an attack. So, the problem
is to learn a model H(R) that will predict whether any
given task runtime information R has been generated by
a task affected by an attack. Formally, the model H , given
input R , outputs true or false such that:

In other words, H(R) will hold true if and only if R
belongs to a task affected by an attack.

Solution approach
To learn model H according to condition (4) above, we
must train H with the generalized description of R, i.e.,
the set of all possible task runtime information generated
by tasks not affected by any attack. Here, we employ an
unsupervised technique for training, where we attempt
to learn H from a subset of R, i.e., the set of all normal

(2)�i = {�i,Mi,Ai,Bi,Di, Ei} =











πi[1] mi[1] αi[1] βi[1] di[1] ei[1]
πi[2] mi[1] αi[2] βi[2] di[2] ei[2]
.

πi[ki] mi[1] αi[ki] βi[ki] di[ki] ei[ki]











(3)R
′ /∈ R

(4)H(R) =

{

true, if R /∈ R
false, otherwise

task runtime information. We collect the normal data
from workflows running under normal scenarios, i.e.,
scenarios known to have no attacks. This data is then
used to learn the desired model using one-class classifier
learning techniques, including one-class SVM, isolation
forest, elliptic envelope, and local outlier factor. We also
use different clustering algorithms to learn clusters or
normal data.

Learning pipeline algorithms and descriptions
The learning process requires several steps in the learn-
ing pipeline, namely, monitoring data collection from
logs, feature extraction and feature vector generation,
feature dimension reduction, training, and classification.
The following subsections describe these processes in
detail.

Monitoring data collection
For each workflow, logs are generated by the task moni-
tor of each container Ci of task Ti ; these logs are collected
and processed for training. The logs are primarily rep-
resented in an unstructured text format, which must be
processed and converted into a structured format.

Feature extraction and feature vector generation
The processed logs are then used to extract the task pro-
file, which includes the task id, static runtime data and
dynamic runtime data, as explained above. The extracted
task profiles are then used to generate two types of fea-
ture vectors for each task.

The static feature vector Si = (D, λ, η, μ) i consists of the
static runtime data of task Ti , and the dynamic feature
vector, (i.e., the feature matrix) is essentially the dynamic
runtime data of Ti , i.e., Θi. Therefore, the combined fea-
ture vector for task Ti is essentially the task runtime
data Ri, as defined previously.

A training dataset Xtrain is built by collecting task
runtime information from n tasks. In other words,
Xtrain = ∪n

j=1 Tj  . Therefore, the feature extraction pro-
cess generates the training feature vector Rtrain, consisting
of the feature vectors of all tasks in Xtrain, i.e.,

Where Ri is the feature vector of Ti . Recall that Ri con-
sists of two types of feature vectors, namely static feature

(5)Rtrain = {R1, . . . ,Rn}
T

Page 10 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

vector (one-dimensional) Si which is duplicated to be
concatenated with each row in the dynamic feature vec-
tor (2D matrix) Θi. Thus, we can represent Rtrain as a con-
catenation of two matrices:

Feature reduction using deep autoencoder
As discussed previously, the feature vector for each
task consists of four static features and six time-series
features. To train a model that learns from two-dimen-
sional feature vectors, we need to flatten the time-series
feature matrix to a one-dimensional feature vector and
combine it with the static features. However, this can
cause the formation of a very high-dimensional fea-
ture vector. In particular, the total features in the fea-
ture vector would be 4 + 6 ki, where ki is the number
of observations of the dynamic features. For example,
if ki = 100, the total number of flattened features would
be 604. Therefore, we must adopt a feature reduction

(6)Rtrain = (Strain)(�train) = {S1, . . . , Sn}
T {�1, . . . ,�n}

T =







S1 �1

.

Sn �n







technique. Here, we reduce the number of features
using an unsupervised deep learning technique called
AutoEncoder [41]. Although there are many alterna-
tive feature reduction or feature selection techniques,

we employ the AutoEncoder technique for two main
reasons:

•	 First, AutoEncoder can perform unsupervised fea-
ture reduction, which is an important aspect of our
proposed model.

•	 Second, we propose multi-modal deep learning
(MMDLA) based AutoEncoder model by combining
long short term memory (LSTM) (a specific type of
recurrent neural network (RNN)) [42] with a Deep
Feed Forward network (DFN). This MMDLA model
facilitates the feature reduction process to learn from
the temporal relationships among time-series fea-

Fig. 3  High level diagram of the proposed approach

Page 11 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

tures and combine it with static features, rather than
implementing a feature reduction process that flat-
tens all the time-series features and loses the tempo-
ral information contained in the feature set.

Figure 3 shows the high-level architecture of this fea-
ture reduction, training, and prediction technique.

Here, we describe the proposed AutoEncoder-based
model which will be referred to as MMDLA. It consists
of two main components, namely, the Encoder, and the
Decoder in detail. The Encoder consists of two LSTM
layers, a concatenation layer, and three fully connected
layers as shown in Fig. 3. The purpose of the Encoder
is to take feature vector Rtrain as input, then output a
reduced dimensional feature vector (also known as
embedding) Rϵ.

The Decoder has a network concept similar to that
of the Encoder. The purpose of the Decoder is to take
the embedding Rϵ as input and reconstruct the origi-
nal feature vector. Thus, the output of the decoder
is R′train = (S′train)(Θ′train), such that the matrix dimen-
sions of (S′train) and (Θ′train) are the same as those of
(Strain) and (Θtrain), respectively. Essentially, (S′train) and
(Θ′train) are approximations of (Strain) and (Θtrain), respec-
tively. Therefore, the learning objective of the AutoEn-
coder is to minimize the loss, i.e., the difference between
the input and reconstructed output. Therefore, the
AutoEncoder loss L can be represented as the sum of the
loss of the static runtime data ( Lstat ) and dynamic runt-
ime data ( Ldyn):

After training the AutoEncoder model, we take the
reduced dimensional feature vector, i.e., embedding Rϵ as
the new feature vector and train an unsupervised anom-
aly detection model (e.g., one class classifier).

Classification and prediction
The embedded feature vector Rϵ is used to train an anom-
aly detection model H as expressed in equation 4. The
learning algorithm is assumed to be one-class classifier
training or unsupervised clustering that only requires
normal data for training. Once the clustering or one-class
classifier model is trained, it is deployed in the system to
detect (i.e., predict) anomalous task runtime data, sup-
posedly generated from tasks affected by an attack.

Algorithms
In this section, we present the algorithms for the learn-
ing and prediction processes of the security enforcement
model. Algorithm 1 describes the training pipeline of the
anomaly detection model. The input to this algorithm

(7)
L = Lstat + Ldyn = Σ

n
i=1

(

Si − S�i
)2

+ Σ
n
i=1

(

Θi − Θ�i

)2

is the training data. First, lines 1–4 retrieve monitoring
log data, extract features, and generate the feature vec-
tor. Then we train the AutoEncoder (lines 6–7). In line
8, we obtain the embedding of the training data from the
AutoEncoder, and in line 9, an anomaly detection model
is trained with this reduced feature vector.

Algorithm 1 Security Enforcement Model Training (Xtrain)

Algorithm 2 requires three inputs, namely, the task
to examine, prediction model H , and the AutoEncoder
model AE. First, we extract features and generate a fea-
ture vector from the logs. Line 3 applies the embedding
on the task runtime data to obtain a reduced feature vec-
tor. Finally, anomaly detection model H predicts whether
the runtime data is generated by a task affected by an
attack.

Algorithm 2 Attack prediction (𝒯𝑖,𝓗,AE)

Adaptation scheme
The monitoring process is performed continuously for all
running cloud workflows. The monitoring logs are col-
lected periodically, and the status of all cloud workflows
is checked for anomalies or other quality performance
issues such as performance degradation and resource
over/under utilization. For each running cloud work-
flow, we inspect its tasks monitoring logs by running the
attack prediction algorithm depicted in Section 5.5. Once
an attack is detected, we apply the appropriate mitiga-
tion strategy including task restart, workflow restart, and
reverting to former logs depending on the outcome of the
risk estimation process. The risk estimation process eval-
uates the status of the workflow and cause of the anomaly
and recommends mitigation action to prevent or override
the attack. First, it checks the anomaly type and the task
status, then recommends a set of actions according to the
following rules. If the anomaly type is resource over-uti-
lization, additional resources is allocated to the workflow.
Otherwise, if the anomaly type is under-utilization, then

Page 12 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

a resource can be released. Different anomaly types are
handled by the risk estimation process according to the
predefined rules. The set of recommended actions can
also be applied to the tasks in the task dependency list.
For example, if a task was attacked, the task dependencies
list is checked to decide whether other dependent tasks
should be also restarted along with the task under attack.
Otherwise, if no attack is detected, the performance
recorded values of attributes are checked and if they do
not satisfy the required quality thresholds, adaptation
actions are applied (e.g., adding a new node if CPUs are
over-utilized). Algorithm 3 presents the cloud work-
flow adaptation after an anomaly is detected. This algo-
rithm takes as input the list of currently running cloud
workflows, the anomaly detection model, the trained
AutoEncoder, the collected monitoring logs, the desired/
acceptable ranges for each performance quality feature,
and the list of possible adaptation actions that will main-
tain the required workflow QoS levels. First, the algo-
rithm applies an anomaly prediction model to each task
in the workflow. When an anomaly is detected, a mitiga-
tion strategy is applied as explained in Section 4. Oth-
erwise, if monitoring logs show out-of-range values, the
regular adaptation mechanisms are applied.

Algorithm 3 Cloud Workflow adaptation with anomaly detection

Implementation and experiment
Environment setup
In this section, we describe the experimental environ-
ment. We created a Docker Swarm Cluster comprising
one master node and four worker nodes. We deployed
the cloud workflow described in Section 3 over a work-
station running Linux Ubuntu 18.04 with 24 CPU cores
and two NVIDIA GeForce GTX 1080 Ti GPUs with
11 GB GDDR5X memory each, a 1-TB HDD, and 64-GB
RAM. Each task in the cloud workflow was created
as a Docker container executed using different data
input sizes. The Docker swarm cluster had a master

node, that performed the orchestration to conserve the
required cluster state. The worker nodes received and
ran tasks dispatched from the master node. Deploying a
workflow to a swarm requires providing service defini-
tion to the master node, which accordingly dispatches
units of work, called tasks, to the worker nodes. Dur-
ing workflow execution, we collected a live data stream
to run task containers to monitor various performance
metrics, which are discussed in detail in the following
section. Additionally, we ran other mock containers to
overload nodes in the cluster to simulate a real envi-
ronment. The experimental environment is depicted in
Fig. 4.

We implemented the proposed algorithms in Jupyter
Notebook running Python 3.6. The AutoEncoder and
SVM algorithms were developed using Pytorch and
Scikit-learn, which are open-source Python implemen-
tations of machine learning and deep learning neural
networks. The experiments were executed on a Mac
computer with OS X Catalina 10.15.4 operating system
with a 2.8-GHz Quad-Core Intel Core i7 and 16-GB
1600-MHz DDR3 RAM.

Dataset
Dataset description
In the experiments, we combined two types of data for
each running task. We initially defined a static task pro-
file to include various types of information such as task
duration, data input size, data output size, and task cat-
egory (pre-processing, training, or evaluation). The
dynamic data comprised live stream data of performance
monitoring metrics for each running task. This data con-
sists of time-series records which include the CPU and
memory usage by the container, total memory used by
the container, size of data sent and received by the con-
tainer over the underlying network, and the size of read/
write data by the container from block devices on the
host.

Data preparation and preprocessing
The preprocessing activities primarily focused on con-
verting Docker’s generated monitoring statistics. First,
the Docker stats were given a format flag to output the
exact required container statistics. The output file was
then parsed and cleaned using regex to split the column
headers appropriately. The data was then converted to a
Pandas DataFrame and proper datatypes were assigned
to each column (e.g., timestamp column used the date-
time datatype). Additionally, the units of the memory uti-
lization columns were all standardized to Bytes.

Page 13 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

Deep learning approach for training and anomaly detection
To detect anomalies, we first trained our dataset using
a reconstruction AutoEncoder model to reduce the data
dimension into a 30-D of embeddings. Afterwards, we
input the AutoEncoder model generated output into an
anomaly detection model. The following sequence of
steps details our implementation: First, we split the data-
set into two sets; static profile data and dynamic time-
series performance monitoring information. Figure 3
shows the architecture of the encoder-decoder neural
network developed for feature learning. The dynamic
part of the data is fed into two-layers of a time-series
RNN model encoder. This model takes batch size, num-
ber of records, and number of features as inputs and
returns outputs in the form of a (1, 30) vector which is
the final hidden state. The output is concatenated with
the static data portion which is fed into three fully con-
nected layers to produce the output shape of a (1, 30)
vector. The decoder, on the other hand, uses the (1, 30)
vector and passes it to two separate layer sequences, i.e.,
three fully connected layers and two RNN layers. The
fully connected layers decode the static part of the input,
while the RNN layers produce the dynamic time-series
part. Here, a key aspect is that the encoder always pro-
vides the data input length such that the decoder knows
how many time-series data points to produce.

The output of the encoder was trained over an anomaly
detection model such as a one-class classification or clus-
tering. The one-class classification algorithms are unsu-
pervised learning algorithms that we trained using only
non-anomaly data, i.e., the reduced feature set resulted
from the aforementioned AutoEncoder algorithm, which
can classify anomaly and non-anomaly data. These
include one-class SVM, Isolation Forest, Elliptic Enve-
lope, and Local Outlier Factor. In addition, we used dif-
ferent clustering algorithms, i.e., unsupervised learning

algorithms trained using both anomaly and normal data.
Among which we use k-means, Mini Batch k-means,
Mean Shift, and Birch. All models predicted two classes
or clusters, i.e., normal or anomaly. However, the perfor-
mance of each model varied in terms of accuracy, pre-
cision, recall, and F1 score. We then selected the best
performing model based on the calculated performance
metrics for our real-time security enforcement.

Experimental scenarios, evaluation criteria, and fault
injection scheme
We conducted several experiments to evaluate our pro-
posed security enforcement and anomaly detection
framework. In these experiments, we intended to evalu-
ate the anomaly detection scheme by investigating the
performance of different anomaly detection algorithms
and models. In addition, we conducted different experi-
ments to evaluate the performance of the cloud work-
flow within the adopted proposed security enforcement
model. We benchmarked the cloud workflow perfor-
mance based on the previously proposed adaptation
strategies [43]. In these experiments, we ran our designed
hospital length of stay prediction workflow several times
with different patient dataset sizes. The performance
of the cloud workflow was continuously monitored,
and adaptation strategies were executed when neces-
sary, depending on the decision taken by the adaptation
module.

Scenarios
We designed two scenarios for testing the proposed secu-
rity enforcement model. The first scenario focused on
testing the performance and accuracy of our anomaly
detection and prediction model, and the second scenario
evaluated the overall performance of the cloud workflow.
The first scenario was implemented in two stages: First,

Fig. 4  Experimentation environment

Page 14 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

we used the Deep Learning AutoEncoder (Section 0) to
reduce dimension of the dataset containing encodings,
which were then fed to the anomaly detection module.
The latter implements different ML algorithms, including
one-class classification and clustering algorithms. Each
algorithm was evaluated and compared in terms of four
different performance measures including accuracy, pre-
cision, recall, and F1 scores after applying cross fold with
k-fold values of 3, 5, and 10.

In the second scenario where we evaluated the overall
cloud workflow performance, we considered the CPU
utilization, memory usage, network I/O bound, and disk
space usage features. The cloud workflow was executed
over the implemented Docker swarm environment with
different resource load capacities. We compared how the

adaptation module behaved in response to the detected
anomalies and the performance of the cloud workflow
after applying automatic adaptation strategies to respond
to anomaly detection with the performance of the cloud
workflow without anomaly detection application.

Evaluation criteria
For our AutoEncoder, we employed one of the commonly
used time-series prediction models evaluation metrics,
which is the Mean Square Error (MSE) defined by the fol-
lowing formula:

where ypt is the predicted value at time t, yt is the actual
value at time t, and n is the number of observations [44].

To further evaluate and compare our anomaly predic-
tion models including one-class classification and clus-
tering, we adopted different evaluation criteria including
accuracy as the most intuitive measure. However, in
some cases, accuracy is not always the best measure for
assessing the model performance. Henceforth, we used
precision, recall, and F1 score to compare and select the
best prediction performance model. Precision is also
known as the positive predictive value, which is the
ratio of correctly predicted values to the total number
of predicted values. Additionally, recall is referred to as
the sensitivity measure and it is defined as the ratio of

(8)MSE =

∑n
t=1

(

ypt − yt
)2

n

correctly predicted values to the number of correctly pre-
dicted values. Moreover, we have used F1 score, which is
defined as the weighted average of precision and recall
[45]. These common measures well represent the overall
performance of our prediction models.

Furthermore, in our experimentations, we define pre-
cision as the ratio of the number of correctly predicted
anomalies to the total number of correctly predicted
anomalies and the normal incorrectly identified as anom-
alies. We also express recall as the number of anomalies
correctly identified over the total number of correctly
predicted anomalies and anomalies incorrectly pre-
dicted as normal. In addition, F1 score is defined as the
weighted average of precision and recall. This is given by
the following formulas:

We adopted these measurements for the obtained
results to further validate our model.

Anomaly injection techniques
To facilitate the testing and evaluation of our anomaly
detection model in consideration of various anomalies,
we employed simulation-based fault injection to inject
anomalous behaviors in the cloud workflow task as well
as injecting false values into the monitoring log files.
Existing techniques in software fault injection include
runtime injections and compile-time injection [46].
Here, we adopted runtime fault injection techniques
such as code insertion to simulate system stress. In this
approach, we synthesized and injected different types of
anomalies such as code-modification which implements
fault injection during runtime and adds instructions to
increase the task execution time (e.g., adding infinite
loops or time delays). Faults were randomly injected in
different task instances to trigger higher CPU consump-
tion and memory usage. The objective of these anomalies
was to simulate cloud workflow task attacks and cloud
resources attacks. Furthermore, we simulated monitoring
component attacks by injecting anomalies into the moni-
toring logs. These faults included heavy or light CPU
utilization, memory usage, disk I/O access, and network
latency which were randomly generated to synthesize

(9)Recall =
true positives

true positives + false negatives
=

correctly predicted anomalies

correctly predicted anomalies + anomalies incorrectly predicted as normal

(10)Precision =
true positives

true positives + false positive
=

correctly predicted anomalies

correctly predicted anomalies + normal data incorrectly predicted as anomalies

(11)F1 Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision

Page 15 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

log anomalies [47]. Then the behavior of the adaptation
model under stress was tested to ensure the reliability
and overall performance of our proposed model.

Results and discussion
Deep learning AutoEncoder model evaluation
In the first stage of anomaly detection, we applied
deep learning with AutoEncoder to generate a reduced

dimension embedding which served as an input to the
anomaly detection algorithm in the second stage. We
trained the AutoEncoder with normal data generated by
monitoring the execution of the target case study cloud
workflow. Subsequently, we selected the model that mini-
mized the reconstruction error in the original AutoEn-
coder. Here, to determine embedding size, we measured
the average loss while using different embedding vector

Fig. 5  Average loss versus embedding dimensions

Fig. 6  AutoEncoder reconstruction loss

Page 16 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

dimensions during the AutoEncoder training phase.
The experimental results depicted in Fig. 5 demon-
strate that the average AutoEncoder reconstruction loss
was reduced with higher embedding dimensions. Thus,
we set the dimension of the output embedding to 30
because this provided the smallest loss value. Although
higher dimension values provide slightly better loss, we
set the encoder generated embedding vector size to 30
embeddings because the main objective was to reduce
the dimensionality of the original dataset, which gener-
ally leads to improved accuracy. Figure 6 illustrates the
AutoEncoder reconstruction loss values based on MSE
while generating (1X30) vector embeddings.

Anomaly detection model evaluation
The main objective of this experiment was to evaluate
the performance of each ML anomaly detection algo-
rithm and select the model best suited for our dataset.
We detected and predicted the anomalies in our dataset
which comprised the collected cloud workflow monitor-
ing time-series log files and the static task profile dataset.
We executed the cloud workflow with normal environ-
ment settings to produce a regular dataset under the true
positive conditions. Moreover, we synthesized the dataset
to reflect different types of anomalies and attacks, such
as task, log, or resource anomalies. For example, a task
anomaly could alter a task’s behavior by increasing or
reducing processing time. Whereas a log anomaly could
be instantiated by injecting the monitoring logs with con-
tradicting statistics. Furthermore, the resource anomaly
included simulation of heavy load exertion on the CPU
and memory resources allocated to service the cloud
workflow. Here, the total number of records in both the
regular and anomaly dataset was 1200 records.

We selected two main ML techniques for anomaly
detection: one-class classification and clustering. For
one-class classification, we compared the performance
of the SVM, Isolation Forest, Elliptic Envelope, and Local
Outlier Factor, each of which was subject to substan-
tial hyperparameter tuning. For example, we ran over
800 different combinations of hyperparameter values to
automatically tune the SVM model, which is discussed in
the following section. All one-class classification models
were trained using all regular dataset and tested with a
dataset including 50% regular and 50% anomaly. On the
other hand, for clustering, we evaluated k-means, Mini
Batch k-means, Mean Shift, and Birch algorithms on
our dataset. We trained and tested the clustering mod-
els using a dataset with a 50% regular and 50% anomaly
data. Here, we adopted k-fold cross-validation to evalu-
ate the models including classification and clustering. We
applied 3-fold, 5-fold, and 10-fold cross-validation. In the
following, we present our testing results.

(a)	One-class SVM model tuning

In this experiment, we investigated the effect of hyper-
parameter tuning on the performance of the one-class
SVM model. We automated the hyperparameter tuning
process to quickly select the best parameter combina-
tion that gave the best accuracy. The main hyperparam-
eters that provide the best accuracy include nu = 0.01,
gamma = 0.1, tolerance = 0.001, coefficient = 0, ker-
nel cache size = 200, and degree (for poly) = 3. In addi-
tion, kernel selection has the greatest effect on accuracy
improvement. Figure 7 depicts the effect of different
kernel parameter adoption on the accuracy using 3-fold,
5-fold, and 10-fold cross-validation. As can be seen, the

Fig. 7  One-class SVM tuning and accuracy

Page 17 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

Fig. 8  One-class classification performance evaluation

Fig. 9  Clustering performance evaluation

Page 18 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

RBF kernel provided the best accuracy value over sig-
moid, linear, and polynomial kernels.

(b)	One-class classification models evaluation

In these experiments, we compared the performance of
four one-class anomaly detection classification methods
including SVM, Isolation Forest, Elliptic Envelope, and
Local Outlier Factor. Figure 8 depicts the performance
of each algorithm in terms of accuracy, precision, recall,
and F1 score. As shown, the Isolation Forest technique
obtained the highest accuracy of 96.14, precision of 0.93,
recall of 0.99, and F1 score of 0.96 using 10-Fold cross
validation. Similar results were obtained when using
3-fold, and 5-fold cross-validation indicating that the Iso-
lation Forest algorithm outperformed the other one-class
classification algorithms.

	(iii)	 Clustering model evaluation

Additionally, we measured the performance of dif-
ferent clustering algorithms namely k-means, Mini
Batch k-means, Mean Shift, and Birch. Here, we
trained all clustering algorithms to generate two
clusters, i.e., one for regular data and another one
for anomaly data. Likewise, we evaluated these algo-
rithms with respect to accuracy, precision, recall, and
F1 score while performing 3-fold, 5-fold, and 10-fold
clustering as shown in Fig. 9. Generally, the k-means
algorithm obtained the best results, demonstrating an
accuracy of 96.43, precision of 0.94, Recall of 0.99, and
F1 score of 0.96 using 10-fold cross-validation, and
similar results were obtained with 3-fold and 5-fold
cross-validation.

	(iv)	 Overall discussion

We adopted two approaches for anomaly detection
and prediction for security enforcement during cloud
workflow execution: one-class classification and cluster-
ing. Experimental results demonstrate that clustering
provided slightly better performance in terms of accu-
racy, precision, recall, and F1 scores over one-class clas-
sification. The k-means technique outperformed all other
clustering algorithms. However, the isolation forest pro-
vided the best prediction performance among one-class
classification algorithms and gave results that were very
close to those of clustering. Considering that one-class
classification training is performed using only regular
data which is more likely to be the real case scenario for
our cloud workflows execution rather than training with
50%:50% regular to anomaly data ratio, therefore, we rec-
ommend one-class classification specifically the Isolation
Forest. Table 2 gives the anomaly detection performance
results.

Overall cloud workflow performance evaluation
In this section, we evaluate the overall performance of
the system when using an anomaly detection approach
for security enforcement over the normal adaptation
strategies with no anomaly detection.

We monitored CPU utilization and memory usage of
cloud workflow tasks executed over multiple nodes in the
cluster. Different tasks present different utilization levels
according to the nature of the task as defined by its pro-
file. For example, a preprocessing task unitizes more CPU
and memory resources than an evaluation task because
preprocessing requires iterating through the entire data-
set to clean and prepare the data used for training the ML
model. In what follows, two experimental scenarios are
discussed to demonstrate the performance evaluation of
the cloud workflow.

In the first scenario, we executed our cloud workflow
while adopting regular quality enforcement adaptation
strategies [48]. As illustrated in Fig. 10, the memory
and CPU resources required to process the workflow
increased over time which involved an adaptation
action to add a new node after detecting that the sud-
den increase in resource usage was caused by an anom-
aly attack. In this experiment, we synthesized the log

Table 2  Performance evaluation results of anomaly detection
using various Machine Learning Algorithms

K-Fold Algorithm name Precision Recall Accuracy F1 Score

3-Fold SVM 0.63 0.99 80.94 0.77

Isolation forest 0.94 0.99 96.23 0.96

Elliptic Envelope 0.94 0.94 93.83 0.94

Local Outlier Factor 0.82 0.99 90.63 0.90

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.94 0.99 96.43 0.96

Mean Shift 0.61 0.64 63.30 0.63

Birch 0.33 0.99 66.19 0.49

5-Fold SVM 0.75 0.99 86.98 0.85

Isolation forest 0.94 0.99 96.14 0.96

Elliptic Envelope 0.94 0.90 91.81 0.92

Local Outlier Factor 0.81 0.99 90.06 0.89

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.94 0.99 96.43 0.96

Mean Shift 0.61 0.64 63.47 0.63

Birch 0.20 1.00 60.07 0.34

10-Fold SVM 0.65 0.99 82.06 0.78

Isolation forest 0.93 0.99 96.14 0.96

Elliptic Envelope 0.94 0.86 89.54 0.90

Local Outlier Factor 0.82 0.99 90.38 0.90

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.95 0.72 79.44 0.82

Mean Shift 0.61 0.64 63.64 0.63

Birch 0.11 1.00 55.31 0.20

Page 19 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

anomaly described in Section 3.2, which deceived the
adaptation system, thereby resulting in unnecessary addi-
tion of resources to maintain the quality of the cloud
workflow performance.

In the second scenario, we executed the cloud workflow
while embracing our new proposed security enforcement
extension. Figure 11, shows that the security enforcement
module detected the anomaly in task 1, thereby causing
it to discard the corrupted logs and issue an action to use
an older version of the logs. This action prevented the
adaptation module from adding unnecessary resources.

Conclusion
Security enforcement in cloud workflow orchestration
is considered a complex research problem because of
its dynamicity and changing cloud workflow execution

environments. In this paper, we have proposed an archi-
tecture for cloud workflow security enforcement. The
proposed architecture is applied to four main entities:
the user, resources, workflow tasks, and data. A multi-
modal approach incorporating deep learning, one-class
classification, and clustering applied to training, anom-
aly detection, and prediction has also been proposed.
The proposed model considers both unsupervised static
and dynamic features which is a unique way of mode-
ling features that results in better anomaly detection. It
also reduces the data dimensionality which leads to bet-
ter characterization of workflow tasks and thus provides
a better attack prediction. Once anomalies are detected
and/or predicted, adaptation measures are implemented
to secure the cloud workflow execution and ensure per-
formance. The adaptation scheme accommodates a

Fig. 10  CPU utilization and memory usage during an anomaly attack

Page 20 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

flexible representation and planning of resource require-
ments over time and over the various phases of the cloud
workflow execution cycle.

We conducted a set of experiments to evaluate the vari-
ous features of our solutions including the application of
Multi-Modal training and anomaly detection using a real
COVID-19 dataset of patient health records. The pro-
posed Multi-modal approach was formulated and tested
in an experimental setup where two main scenarios were
used for verification. The first scenario focused on test-
ing the performance and accuracy of our AutoEncoder
and anomaly detection model, while the second scenario
was used to evaluate the overall cloud workflow perfor-
mance by assessing adaptation actions taken to respond
to injected anomaly detection and their impact on the

performance of cloud workflow execution. Two main
approaches were adopted for anomaly detection and pre-
diction of security enforcement during the execution of
the proposed workflow, i.e., LSTM-based AutoEncoder
and an ML model including one-class classification and
clustering. The experimental results demonstrate that
clustering provides slightly better performance in terms
of accuracy, precision, recall, and F1 scores over the one-
class classification with k-means outperforming other
clustering algorithms. Other experimental results of the
adaptation strategy implemented to respond to detected
anomalies revealed a high execution performance of the
workflow. The experimental results demonstrate that the
proposed architecture prevents unnecessary wastage of
resources due to anomaly detection and prediction.

Fig. 11  CPU utilization and memory usage with anomaly attack detection

Page 21 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10 	

We plan to explore other ML algorithms to detect
and predict other categories of anomalies and attacks as
future work. We also plan to explore ensemble ML and
natural language processing algorithms to explore new
levels of cloud workflow automation, robustness, and
fault tolerance.

Authors’ contributions
Hadeel, conceived the main conceptual ideas related to security enforce‑
ment in cloud workflow orchestration architecture, literature, and overall
implementation/execution of experimentation. Mohamed Adel contributed
to the overall architecture of the proposed model, supervised the study, and
oversaw overall direction and planning. Mohammad Masud developed the
formal model and contributed to the design of the anomaly detection mod‑
ule. Khaled Shuaib contributed to the literature surveys, he provided inputs on
overall design and implementation. Khaled Khalil pre-processed the dataset,
and was involved in the deployment, and evaluation of the Cloud Workflow
orchestration model. All authors contributed to the writing of the manuscript,
and revision and proofreading of the final version of the manuscript. The
author(s) read and approved the final manuscript.

Funding
This work is supported by both research Grant no: 31R227 and research Grant
no: 31R180 from Zayed Center for Health Sciences.

Availability of data and materials
The dataset used in this study is not publicly available, however it can be
provided up on request.

Declarations

Ethics approval and consent to participate
Not applicable

Competing interests
All authors declare they have no competing interests, or other interests that
might be perceived to influence the results and/or discussion reported in this
paper.

Received: 24 June 2022 Accepted: 28 December 2022

References
	1.	 Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The

rise of ‘big data’ on cloud computing: review and open research issues. Inf
Syst 47:98–115

	2.	 Huang H, Zhang YL, Zhang M (2013) A survey of cloud workflow. Adv
Mater Res 765:1343–1348

	3.	 Puthal D, Sahoo BPS, Mishra S, Swain S (2015) Cloud computing features,
issues, and challenges: a big picture. In: 2015 International conference on
computational intelligence and networks, pp 116–123

	4.	 Halabi T, Bellaiche M, Abusitta A (2018) Online allocation of cloud
resources based on security satisfaction. Proc. - 17th IEEE Int. Conf. Trust.
Secur. Priv. Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust.
pp 379–384. https://​doi.​org/​10.​1109/​Trust​Com/​BigDa​taSE.​2018.​00063

	5.	 Halabi AAT, Bellaiche M (2018) Cloud security up for auction: a DSIC
online mechanism for secure iaas resource allocation. 2nd Cyber Security
in Networking Conference, CSNet, vol 2018. pp 1–8

	6.	 Halabi T, Bellaiche M, Abusitta A (2019) Toward secure resource
allocation in mobile cloud computing: a matching game. In: Int. Conf.
Comput. Netw. Commun. ICNC 2019, pp 370–374. https://​doi.​org/​10.​
1109/​ICCNC.​2019.​86855​09

	7.	 Abusitta A, Bellaiche M, Dagenais M (2018) An SVM-based frame‑
work for detecting DoS attacks in virtualized clouds under changing

environment. J Cloud Comput 7(1):1–18. https://​doi.​org/​10.​1186/​
s13677-​018-​0109-4

	8.	 Gander M, Felderer M, Katt B, Tolbaru A, Breu R, Moschitti A (2013)
Anomaly detection in the cloud: detecting security incidents via machine
learning. Commun Comput Inf Sci 379:103–116. https://​doi.​org/​10.​1007/​
978-3-​642-​45260-4_8

	9.	 Gaikwad P, Mandal A, Ruth P, Juve G, Król D, Deelman E (2016) Anomaly
detection for scientific workflow applications on networked clouds. In:
Int. Conf. High Perform. Comput. Simulation, HPCS 2016, pp 645–652.
https://​doi.​org/​10.​1109/​HPCSim.​2016.​75683​96

	10.	 Shahul Hammed S, Arunkumar B (2019) Efficient workflow scheduling in
cloud computing for security maintenance of sensitive data. Int J Com‑
mun Syst:1–11. https://​doi.​org/​10.​1002/​dac.​4240

	11.	 Buyya R, Calheiros RN, Li X (2012) Autonomic cloud computing: Open
challenges and architectural elements. 2012 third international confer‑
ence on emerging applications of information technology. pp 3–10

	12.	 Zhao Y, Li Y, Raicu I, Lu S, Tian W, Liu H (2015) Enabling scalable scientific
workflow management in the cloud. Futur Gener Comput Syst 46:3–16.
https://​doi.​org/​10.​1016/j.​future.​2014.​10.​023

	13.	 Wen Z, Cala J, Watson P, Romanovsky A (2015) Cost effective, reliable, and
secure workflow deployment over federated clouds. Proc. - 2015 IEEE 8th
Int. Conf. Cloud Comput. CLOUD 2015. pp 604–612. https://​doi.​org/​10.​
1109/​CLOUD.​2015.​86

	14.	 Rodriguez MA, Kotagiri R, Buyya R (2018) Detecting performance
anomalies in scientific workflows using hierarchical temporal memory.
Futur Gener Comput Syst 88:624–635. https://​doi.​org/​10.​1016/j.​future.​
2018.​05.​014

	15.	 Farshchi M, Schneider JG, Weber I, Grundy J (2018) Metric selection and
anomaly detection for cloud operations using log and metric correla‑
tion analysis. J Syst Softw 137:531–549. https://​doi.​org/​10.​1016/j.​jss.​
2017.​03.​012

	16.	 Vahi K et al (2013) A case study into using common real-time work‑
flow monitoring infrastructure for scientific workflows. J Grid Comput
11(3):381–406. https://​doi.​org/​10.​1007/​s10723-​013-​9265-4

	17.	 Mandal A et al (2016) Toward an end-to-end framework for modeling,
monitoring and anomaly detection for scientific workflows. Proc. - 2016
IEEE 30th Int. Parallel Distrib. Process. Symp. IPDPS 2016. pp 1370–1379.
https://​doi.​org/​10.​1109/​IPDPSW.​2016.​202

	18.	 Dinal Herath J, Bai C, Yan G, Yang P, Lu S (2019) RAMP: Real-Time Anomaly
Detection in Scientific Workflows. Proc. - 2019 IEEE Int. Conf. Big Data, Big
Data 2019. pp 1367–1374. https://​doi.​org/​10.​1109/​BigDa​ta470​90.​2019.​
90056​53

	19.	 Gulenko A, Wallschläger M, Schmidt F, Kao O, Liu F (2016) A system
architecture for real-time anomaly detection in large-scale NFV systems.
Procedia Comput Sci 94:491–496. https://​doi.​org/​10.​1016/j.​procs.​2016.​
08.​076

	20.	 Coppolino L, D’Antonio S, Mazzeo G, Romano L (2017) Cloud security:
emerging threats and current solutions. Comput Electr Eng 59:126–140

	21.	 Sen J (2015) Security and privacy issues in cloud computing. Cloud
technology: concepts, methodologies, tools, and applications, IGI Global.
pp 1585–1630

	22.	 Kalaiprasath R, Elankavi R, Udayakumar DR (2017) Cloud. Security and
compliance-a semantic approach in end to end security. Int J Mech Eng
Technol 8(5):987–994

	23.	 Abdelsalam M, Krishnan R, Huang Y, Sandhu R (2018) Malware detection in
cloud infrastructures using convolutional neural networks. 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). pp 162–169

	24.	 Nguyen KK, Hoang DT, Niyato D, Wang P, Nguyen D, Dutkiewicz E (2018)
Cyberattack detection in mobile cloud computing: A deep learning
approach. In: 2018 IEEE Wireless Communications and Networking Con‑
ference (WCNC), pp 1–6

	25.	 Chiba Z, Abghour N, Moussaid K, El Omri A, Rida M (2019) A clever
approach to develop an efficient deep neural network based IDS for
cloud environments using a self-adaptive genetic algorithm. In: Inter‑
national Conference on Advanced Communication Technologies and
Networking (CommNet), pp 1–9

	26.	 Rabbani M, Wang YL, Khoshkangini R, Jelodar H, Zhao R, Hu P (2020) A
hybrid machine learning approach for malicious behaviour detection and
recognition in cloud computing. J Netw Comput Appl 151:102507

	27.	 Elsayed MA, Zulkernine M (2020) PredictDeep: security analytics as a Ser‑
vice for Anomaly Detection and Prediction. IEEE Access 8:45184–45197

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00063
https://doi.org/10.1109/ICCNC.2019.8685509
https://doi.org/10.1109/ICCNC.2019.8685509
https://doi.org/10.1186/s13677-018-0109-4
https://doi.org/10.1186/s13677-018-0109-4
https://doi.org/10.1007/978-3-642-45260-4_8
https://doi.org/10.1007/978-3-642-45260-4_8
https://doi.org/10.1109/HPCSim.2016.7568396
https://doi.org/10.1002/dac.4240
https://doi.org/10.1016/j.future.2014.10.023
https://doi.org/10.1109/CLOUD.2015.86
https://doi.org/10.1109/CLOUD.2015.86
https://doi.org/10.1016/j.future.2018.05.014
https://doi.org/10.1016/j.future.2018.05.014
https://doi.org/10.1016/j.jss.2017.03.012
https://doi.org/10.1016/j.jss.2017.03.012
https://doi.org/10.1007/s10723-013-9265-4
https://doi.org/10.1109/IPDPSW.2016.202
https://doi.org/10.1109/BigData47090.2019.9005653
https://doi.org/10.1109/BigData47090.2019.9005653
https://doi.org/10.1016/j.procs.2016.08.076
https://doi.org/10.1016/j.procs.2016.08.076

Page 22 of 22El‑Kassabi et al. Journal of Cloud Computing (2023) 12:10

	28.	 Sethi K, Kumar R, Prajapati N, Bera P (2020) Deep Reinforcement Learn‑
ing based Intrusion Detection System for Cloud Infrastructure. In: 2020
International Conference on COMmunication Systems & NETworkS
(COMSNETS), pp 1–6

	29.	 Abusitta A, Bellaiche M, Dagenais M, Halabi T (2019) A deep learning
approach for proactive multi-cloud cooperative intrusion detection
system. Futur Gener Comput Syst 98:308–318

	30.	 “ASCLEPIOS: Advanced Secure Cloud Encrypted Platform for Internation‑
ally Orchestrated Solutions in Healthcare,” 2020. https://​www.​ascle​pios-​
proje​ct.​eu/. Accessed 10 Oct 2020

	31.	 Povilionis A et al (2018) Identity management, access control and privacy
in integrated care platforms: the PICASO project. In: 2018 International
Carnahan Conference on Security Technology (ICCST), pp 1–5

	32.	 Bocci A, Forti S, Ferrari G-L, Brogi A (2021) Secure FaaS orchestration in the
fog: how far are we? Computing 103(5):1025–1056

	33.	 McDole A, Gupta M, Abdelsalam M, Mittal S, Alazab M (2021) Deep learning
techniques for behavioral malware analysis in cloud iaas. In: Malware analy‑
sis using artificial intelligence and deep learning. Springer, pp 269–285

	34.	 Zarca AM, Bagaa M, Bernabe JB, Taleb T, Skarmeta AF (2020) Semantic-
aware security orchestration in SDN/NFV-enabled IoT systems. Sensors
20(13):3622

	35.	 Kimmell JC, Abdelsalam M, Gupta M (2021) Analyzing machine learning
approaches for online malware detection in cloud. In: Proceedings - 2021
IEEE International Conference on Smart Computing, SMARTCOMP 2021,
pp 189–196. https://​doi.​org/​10.​1109/​SMART​COMP5​2413.​2021.​00046

	36.	 McDole A, Abdelsalam M, Gupta M, Mittal S (2020) Analyzing cnn based
behavioural malware detection techniques on cloud iaas. International
conference on cloud computing. pp 64–79

	37.	 Xu S, Lai S, Li Y (2018) A deep learning based framework for cloud
masquerade attack detection. 2018 IEEE 37th International Performance
Computing and Communications Conference (IPCCC). pp 1–2

	38.	 Khan NA, Brohi SN, Zaman N (2020) Ten deadly cyber security threats
amid COVID-19 pandemic

	39.	 Open COVID-19 Data Working Group, “Detailed epidemiological data
from the COVID-19 outbreak.” 2020

	40.	 Xu B et al (2020) Epidemiological data from the COVID-19 outbreak,
real-time case information. Sci Data 7(1):1–6. https://​doi.​org/​10.​1038/​
s41597-​020-​0448-0

	41.	 An J, Cho S (2015) Variational autoencoder based anomaly detection
using reconstruction probability. Spec Lect IE 2(1):1–18

	42.	 Hochreiter S, Schmidhuber J (1997) LSTM can solve hard long time lag
problems. Advances in neural information processing systems. pp 473–479

	43.	 Serhani MA, El-Kassabi HT, Shuaib K, Navaz AN, Benatallah B, Beheshti A
(2020) Self-adapting cloud services orchestration for fulfilling inten‑
sive sensory data-driven IoT workflows. Futur Gener Comput Syst
108:583–597

	44.	 Pishro-Nik H (2016) Introduction to probability, statistics, and random
processes. Kappa Research LLC

	45.	 D. M. Powers, (2020) “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” arXiv Prepr.
arXiv2010.16061.

	46.	 Hsueh M-C, Tsai TK, Iyer RK (1997) Fault injection techniques and tools.
Computer (Long Beach Calif) 30(4):75–82

	47.	 Sauvanaud C, Lazri K, Kaâniche M, Kanoun K (2016) Anomaly detection and
root cause localization in virtual network functions. 2016 IEEE 27th Interna‑
tional Symposium on Software Reliability Engineering (ISSRE). pp 196–206

	48.	 El-Kassabi HT, Adel Serhani M, Dssouli R, Navaz AN (2019) Trust enforce‑
ment through self-adapting cloud workflow orchestration. Futur Gener
Comput Syst 97:462–481. https://​doi.​org/​10.​1016/j.​future.​2019.​03.​004

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.asclepios-project.eu/
https://www.asclepios-project.eu/
https://doi.org/10.1109/SMARTCOMP52413.2021.00046
https://doi.org/10.1038/s41597-020-0448-0
https://doi.org/10.1038/s41597-020-0448-0
https://doi.org/10.1016/j.future.2019.03.004

	Deep learning approach to security enforcement in cloud workflow orchestration
	Abstract
	Introduction
	Related work
	Case study: COVID-19 cloud workflow
	Cloud workflow and COVID-19 dataset
	Security threats
	Cloud workflow data attack
	Cloud workflow task attack
	Resource attack
	Monitoring and adaptation component attack

	End-to-end security enforcement in cloud workflow orchestration
	Entities
	Workflow deployment module
	Security enforcement module
	Monitoring sub-module
	MMDLA sub-module
	Adaptation sub-module
	Cloud infrastructure

	Cloud workflow security enforcement module
	Definitions
	Problem formulation
	Solution approach
	Learning pipeline algorithms and descriptions
	Monitoring data collection
	Feature extraction and feature vector generation
	Feature reduction using deep autoencoder
	Classification and prediction

	Algorithms
	Adaptation scheme

	Implementation and experiment
	Environment setup
	Dataset
	Dataset description
	Data preparation and preprocessing
	Deep learning approach for training and anomaly detection

	Experimental scenarios, evaluation criteria, and fault injection scheme
	Scenarios
	Evaluation criteria
	Anomaly injection techniques

	Results and discussion
	Deep learning AutoEncoder model evaluation
	Anomaly detection model evaluation
	Overall cloud workflow performance evaluation

	Conclusion
	References

