
El‑Kassabi et al. Journal of Cloud Computing           (2023) 12:10  
https://doi.org/10.1186/s13677-022-00387-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Deep learning approach to security 
enforcement in cloud workflow orchestration
Hadeel T. El‑Kassabi1, Mohamed Adel Serhani2*, Mohammad M. Masud3, Khaled Shuaib3 and Khaled Khalil4 

Abstract 

Supporting security and data privacy in cloud workflows has attracted significant research attention. For example, 
private patients’ data managed by a workflow deployed on the cloud need to be protected, and communication of 
such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have 
been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and mali‑
cious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security 
of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving differ‑
ent stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this 
paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The 
proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict 
anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class 
classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect 
on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well 
as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus 
provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly 
detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of 
the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1 
scores. Other experimental results maintained a high execution performance of the cloud workflow after applying 
adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed archi‑
tecture prevents unnecessary wastage of resources due to anomaly detection and prediction.
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The processing power provided by the cloud covers a 
wide landscape of services, including storage, processing, 
and application services. This computational processing 
power has enabled researchers to use various computa-
tionally intensive and scientific workflows to perform 
vast experiments that were impossible to implement 
using local servers. This trend has significantly decreased 
the total cost incurred by related software systems [1] 
and is, in fact, a promising design paradigm for workflow 
deployment, processing, and orchestration. A typical 
large-scale scientific workflow comprises a set of inter-
related tasks that are inherently complex, fault tolerant, 
and dynamically executed and orchestrated to produce 
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Introduction
Cloud computing has emerged as a promising and pow-
erful paradigm for managing and delivering computa-
tions, applications, and services over the Internet [1]. 
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scientific results. However, a cloud workflow refers to 
a workflow that is deployed and executed on the cloud. 
Cloud workflow features are classified as transparent, 
scalable, multi-tenant, and monitored in real-time [2].

With virtually infinite computing resources, cloud 
computing meets the needs of complex scientific data-
intensive workflow tasks and releases cloud workflows 
from the burden of planning for resource provisioning. 
However, many research challenges need to be addressed 
before this potential can be fully realized. Such challenges 
include cloud security threats against integrity, authori-
zation, availability, reliability, and trust. These challenges 
also apply to workflow security and privacy enforcement 
in the cloud environment, which is characterized by 
complexity, dynamicity, and multi-dimensional aspects. 
Supporting secure access, deployment, execution, and 
management of workflows over cloud platforms is of 
prime importance to both cloud providers and consum-
ers. Providers must ensure that the resources they make 
available for workflow execution are not hacked, mis-
used, or damaged. Similarly, workflow customers must 
be assured that their workflows and associated data are 
secured and protected from any outsider attacks.

Several cloud computing security threats have been 
identified [3] and extensively studied [4–8]. Such threats, 
which include data breaches, data leaks, data loss, denial 
of service (DoS), and malicious insiders, are gener-
ated from issues such as multi-tenancy, loss of control 
over data, and breaches of trust. Supporting security in 
a dynamic environment, across different platforms, dif-
ferent stakeholders, and various processes requires the 
involvement of various entities besides the cloud provid-
ers. A comprehensive security solution that considers 
security enforcement, trust chain in clouds, and ensures 
policies and regulations to guarantee security and privacy 
across multi-participants and heterogeneous environ-
ments is of paramount importance.

Emerging security issues in a cloud workflow have 
motivated researchers to address various research prob-
lems related to the security enforcement in a dynamically 
executed and orchestrated cloud workflow. However, 
most existing research on workflow management pri-
marily tackled mainly aspects related to 1) anomaly and 
error detection [9], 2) workflow task scheduling [10], and 
3) autonomic workflow resource provisioning and man-
agement [11]. In these studies, the main purpose was to 
avoid failure or resource contention and ensure efficient 
deployment, execution, and performance guarantee 
of these workflows [12]. Such initiatives neglect cloud 
workflow security enforcement which may strengthen 
the aspects mentioned above and fill the gap in handling 
security and data integrity of dynamic cloud workflows. 
Very few studies have exclusively tackled the security of 

cloud workflow orchestration, management, and enforce-
ment [13]. Such studies typically focus on anomaly detec-
tion and prediction using various techniques such as 
HTM [14], statistical-clustering [8, 15, 16], regression 
[17, 18], and unsupervised machine learning (ML) [19]. 
They neither clearly define the security attributes nor 
specify the cloud workflow characteristics, which can 
be described as resource-aware, time-series, and highly 
dynamic. In addition, they focus on a specific security 
dimension, i.e., data, task, or resource of the workflow, 
and ignore other dimensions that will lead to better 
security enforcement when combined. Furthermore, the 
anomaly prediction and detection schemes proposed in 
most of these studies rely only on the dynamic features 
of the cloud workflow and neglect the static features that 
generally capture important workflow information and 
its hosting environment. Finally, most previous attempts 
primarily focused on security/anomaly detection and 
prediction and ignored the resources and workflow adap-
tation strategies that should be undertaken to mitigate 
security threats and possible attacks.

Therefore, to address some of the limitations of previ-
ous studies, we emphasize security anomaly/attack detec-
tion and prediction in a cloud workflow orchestration 
environment. We propose an adaptation scheme to cope 
with possible vulnerabilities and mitigate their effects on 
cloud workflow execution. In such an environment, the 
attack could target different entities and components 
such as workflow data, tasks, resources, monitoring, and 
adaptation. Our proposed model contributes to the state-
of-art literature on cloud workflow security by including 
the following:

A multidimensional security enforcement empha-
sizing cloud workflow security at various levels: the 
task, data, resources, and monitoring scheme.
A scheme combining static and dynamic features 
for anomaly/attacks prediction, which is a unique 
way to model features that provide better anomaly 
detection, i.e., features that capture all stakeholders’ 
needs and all aspects of the cloud workflow. This 
scheme also applies deep learning autoencoder-
based dimensionality reduction for the dynamic 
data, which will lead to better characterization of 
workflow tasks and will thus provide better attack 
prediction.
An unsupervised learning technique that does not 
require class labeling, no additional work, and no 
manual intervention from experts, thus making it 
convenient and more realistic to deal with unknown 
anomalies.
An adaptation model that accommodates the flex-
ible representation and planning of resource require-
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ments over time and over the various phases of the 
cloud workflow execution cycle.

The remainder of this paper is organized as follows: In 
Section  2 related work is discussed and compared and 
their limitations are identified. Section 3 presents a case 
study using a workflow based on a COVID-19 dataset. 
An architecture to enforce end-to-end security in a cloud 
workflow orchestration is proposed in Section 4. In sec-
tion  5, a detailed cloud workflow security enforcement 
model formulation and the associated learning pipeline 
algorithms are presented. Section  6 presents the imple-
mentation details, conducted scenarios, experiments, 
and a discussion of the obtained results. Finally, conclu-
sions and suggestions for future work are presented in 
Section 7.

Related work
Security in cloud computing ecosystem is a comprehen-
sive field that attracted significant attention as the cloud 
services hype grew exponentially, and cloud security 
threats and vulnerabilities also evolved over time. To help 
advance stat-of-the-art security solutions, first, related 
risks in emerging cloud services need to be identified. 
Such security risks are initiated by three types of attack 
vectors: external users, internal users, and cloud provid-
ers [20, 21]. Security threats in a cloud service environ-
ment are emerging over time. The most common threats 
include data breaches, data loss, DoS, malicious insiders, 
service traffic hijacking, shared technology vulnerabili-
ties, malware, cyber-attacks, network intrusion, VM-level 
threats and data transparency [22–25].

Recently, deep learning approaches for cloud security 
threat detection have been proposed by several research-
ers. However, these approaches are unable to deliver a 
comprehensive solution for all security threats. How-
ever, they only address and detect patterns for a particu-
lar threat only in single deployment. The authors in [26] 
used a multi-layer neural network to detect and recog-
nize malicious behaviors exhibited by users. They con-
verted user behavior data into an understandable format 
and classified the malicious behavior for detection and 
recognition.

In [27], the authors proposed PredictDeep, a security 
analytical framework for known and unknown anomaly 
detection and prediction in Big Data systems. Predict-
Deep is proposed as a service to be offered to cloud users. 
The framework comprises three main modules, namely: a 
graph model designer, a feature extractor, and an anom-
aly predictor. PredictDeep is scalable and works well in a 
dynamic environment to monitor anomalies in real-time 
systems. However, with PredictDeep, anomaly detec-
tion assumes that all log files are accurate and no fake 

data that could compromise the accuracy of the predic-
tion model has been injected. In addition, the proposed 
approach assumes the integrity of the infrastructure used 
for deployment.

Intrusion detection systems (IDS) are considered 
important tools for monitoring networks, services, and 
workflows for violations or malicious activities in cloud 
services orchestration. Detecting novel attacks in such 
scenarios is a challenging task. Deep learning-based 
intrusion detection techniques have yielded encouraging 
results relative to predicting unknown attacks and detec-
tion mechanisms. The authors in [28] presented an IDS 
using deep reinforcement learning-based architecture 
that can address and classify new and complex attacks. 
They employed a reward vector such that a classifier giv-
ing an identical result is awarded a positive point other-
wise a negative point is obtained. In addition, the authors 
in [29] addressed a multi-cloud cooperative intrusion 
detection system and enhanced decision making in a 
real-time environment using a deep neural network 
(DNN) model. They employed historical feedback data 
to predict suspicious intrusions. Furthermore, a deep 
learning-based IDS has been proposed [25] to detect 
suspicious attacks in a cloud computing environment by 
monitoring network traffic. This system employs a self-
adaptive genetic algorithm (SAGA) that automatically 
creates a DNN-based anomaly network IDS and demon-
strated high detection rates, high accuracy, and low false 
alarm rates.

Other research initiatives have addressed cloud work-
flow security enforcement and several researchers and 
industries have proposed possible solutions to enhance 
the security of cloud services and cloud workflow 
orchestration. For Example, in [30], the developers cur-
rently working on the European-funded ASCLEPIOS 
(Advanced Secure Cloud Encrypted Platform for Inter-
nationally Orchestrated Solutions in Healthcare) project 
have exploited various cryptographic and access control 
techniques to protect user data privacy and provide pro-
tection against other security breaches as part of a cloud-
based eHealth framework. One objective of this project 
is to enable various healthcare stakeholders to share data 
securely while preserving participant privacy. The pro-
posed architecture consists of seven layers to provide 
security and analytic features to support data privacy and 
access control. However, the utilization of ML techniques 
for the detection, evaluation, and mitigation of poten-
tial anomalies in data or attacks on certain components 
of the overall system such as available resources was not 
incorporated into the proposed architecture.

In the PICASO project [31], a framework was proposed 
to enable cross-organization sharing of electronic health 
records using a cloud-based solution. This project aims 
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to provide the required security and privacy measures 
in addition to service orchestration and data capture and 
management. Here, security features were implemented 
via separate subsystems to guarantee the privacy of 
patient records, user authentication, transaction infor-
mation traceability, and enforcement of access control 
policies. However, the project did not implement any 
mechanisms for to detect of anomalies within the pro-
posed framework.

Authors in [32] provided a literature review on security 
in FaaS orchestration systems [32]. They have classified 
the existing works considering various criteria including 
the protected asset, the cause of threats, and the protec-
tion approach. They concluded that most of the work 
focused on data confidentiality, however, data integrity 
is less considered. Function flows and platforms miscon-
figuration are also considered in most of the reviewed 
works. Moreover, authors in [33] provided another 
classification for existing works using Machine learn-
ing and Deep learning techniques for online malware 
detection in cloud. They classified the malware detec-
tion approaches into static analysis that is offline with 
no monitoring required, and dynamic analysis, where it 
requires real-time monitoring and use neural networks 
to predict when a virtual machine might be infected, this 
is more appropriate for cloud environment. The experi-
mentation showed that Deep learning techniques provide 
good accuracy while detecting malware. However, this 
work did not analyze end-to-end security enforcement 
for workflows over cloud environment.

Zarca et  al. proposed a semantic-aware and policy-
driven security orchestration framework for autonomic 
security orchestration in IoT systems to detect seman-
tic conflicts during the orchestration. The authors also 
proposed an optimized Service Function Chaining 
algorithm, which maximizes the QoS, security aspects 
and resources usage during Virtual network Security 

Functions allocation. However, they only detect anoma-
lies but no prediction of anomalies is proposed [34].

Behavior attacks detection were proposed in [35] where 
different machine learning techniques for supervised 
classification were analyzed and compared. The study 
concluded that neural network models have the best per-
formance in terms of accuracy to detect the impact mal-
ware on the process level features of virtual machines in 
the cloud. They collect different system features such as 
memory, CPU, and input/output from all process that 
are running on the VM at certain times. Similar work 
was proposed in [36] concentrating on different Convo-
lutional Neural Networks (CNNs) for online detection of 
malware in cloud IaaS in real-time. The work focused on 
behavioral data using process level performance metrics 
including CPU, memory, and disk usage. Although their 
solution provide high accuracy, their proposed malware 
detection system is limited to a single virtual machine 
and does not support features such as auto-scaling [36].

Table  1 summarizes the state-of-the-art research with 
respect to anomaly detection in cloud environment. 
In this table we compare existing systems against the 
anomaly type they detect, anomaly detection technique 
adopted, data collected for anomaly detection, and other 
supported features such as real-time and orchestration. 
None of the surveyed systems provided anomaly detec-
tion from an end-to-end workflow orchestration per-
spective, rather a few systems detect anomalies in single 
VMs or single processes within a workflow [30, 34].

With the rapid increase in the use of cloud computing 
for electronic health records, issues related to security 
and privacy are critical for establishing participant trust 
in the deployed system. Thus, complex data-intensive 
cloud workflows must provide trustworthy results that 
enforce secure input and output data free of unauthor-
ized access and malicious manipulation. Challenges 
related to handling security breaches in a cloud workflow 

Table 1  Overview and classification of existing work on security in cloud

Anomaly Types Anomaly Detection Technique System Data 
Collection

Real-time 
Anomaly 
Detection

Workflow 
Orchestration

Papers Data Security Behavior Intrusion 
Detection

ML Neural 
Networks

Policy-based

[35, 36] ✓ ✓ ✓ ✓
[34] ✓ ✓ ✓ ✓ ✓
[37, 26] ✓ ✓
[28] ✓ ✓
[29, 25] ✓ ✓
[30] ✓ ✓ ✓
[31] ✓ ✓ ✓
Our System ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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orchestration system include the ability to identify the 
properties of each specific task comprising the work-
flow and each physical resource allocated in this dynamic 
infrastructure as well as integrate the collected informa-
tion to detect anomalies and malicious actions. Anomaly 
detection must be timely, and an appropriate remedial 
action must be selected and executed before damage 
occurs. Moreover, the security process must have a mini-
mal effect on the computing environment to maintain 
workflow execution performance. In other words, we 
must guarantee smooth and efficient handling of all secu-
rity breaches including identification, prediction, and 
remediation.

To support security enforcement of cloud workflows 
and address some of the above abovementioned research 
challenges, we approach this problem from different 
dimensions including multi-level security enforcement, 
pre-evaluation of various prediction models for security 
threat detection and prediction, combining static and 
dynamic features for anomaly detection, and adaptation 
strategies to mitigate various security risks. Before we 
detail the features of our proposed cloud workflow secu-
rity enforcement methodology, we illustrate the concept 
with an example cloud workflow handling COVID-19 
dataset and identify potential security threats the cloud 
workflow may encounter that our proposed approach is 
expected to help detect. In addition, we predict some of 
these breaches and propose adaptation actions to protect 
against them.

Case study: COVID‑19 cloud workflow
The effectiveness of healthcare systems worldwide has 
been challenged recently owing to the outbreak of the 
Novel Coronavirus (COVID-19) which was declared a 
pandemic by the WHO in March 2020. The impact of 
such new strains of viruses has been demonstrated to 
defeat all expectations of any healthcare system. This 
pandemic has strained involved entities, working to find 

a cure or vaccine, including healthcare providers, gov-
ernment agencies, and research facilities. Such pressures 
have led to proper protection of facilities, confidential 
data, and workflows from possible vicious attacks that 
could easily compromise the integrity of the overall pro-
cess [38]. During COVID-19 pandemic, the reliance on 
online resources and cloud-based infrastructure systems 
has increased drastically due to lockdowns, contact-
tracing applications, and increased use of remote work-
ing and distance-learning platforms. This has caused a 
huge leap in cyber-attacks and data confidentiality and 
integrity breaches [38]. To illustrate the applicability 
and usefulness of the security enforcement architecture 
and identify the main security threats in cloud workflow 
orchestration, we describe a case study involving a cloud 
workflow encompassing the composition of tasks han-
dling a COVID-19 dataset.

Cloud workflow and COVID‑19 dataset
Figure  1 shows the health monitoring cloud workflow 
we developed using the epidemiological data from a 
COVID-19 outbreak dataset that employs a deep learning 
model to predict the length of hospital stay of COVID-
19 patients [39]. The dataset was collected and curated 
from national, provincial, and municipal health reports, 
as well as other online reports. The data are geocoded 
and include symptoms, key dates (date of onset, admis-
sion, and confirmation), and travel histories of different 
patients [40]. We used data collected up to the June 20, 
2020, including 2,500,000 records, each of which repre-
sents an individual patient case. The dataset includes 33 
columns including patient ID, age, gender, date_onset_
symptoms, date_admission_hospital, date_confirma-
tion, additional_information, chronic_disease_binary, 
chronic_disease, symptoms, and outcome. The expla-
nation for each field is provided in [39]. We adopted 
this cloud workflow example to identify and evaluate 
different security breaches that could be encountered 

Fig. 1  COVID-19 patient health monitoring workflow example
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and therefore mitigate their effects. The workflow was 
deployed on a Docker Swarm Cluster and the data were 
loaded automatically from database tables to satisfy the 
service tasks outlined in the workflow. The workflow 
comprises a set of both sequential and parallel tasks. The 
sequential tasks include retrieving data from the database 
and conducting data processing, while the parallel tasks 
include training, prediction, and validation tasks.

Security threats
Different security issues in a cloud-based infrastructure 
were addressed in the literature, examples of breaches 
include for instance insider attacks, data loss, and DoS 
attacks. In this section, we focus on anomaly detection in 
a cloud workflow orchestration setting. In such an envi-
ronment, an attack could target different entities and 
components including workflow data, tasks, resources, 
monitoring, and adaptation components. In what fol-
lows, we describe a few examples of security breaches in 
a cloud workflow.

Cloud workflow data attack
Some examples of data attacks involve data injection 
attacks that intend to corrupt the dataset or compromise 
it through, for example, suspicious sharing or downloads. 
Other anomalies include unauthorized data access and 
anomalous admin user activities. For example, in our 
cloud workflow, the attacker may inject redundant and 
fabricated data into the workflow to tamper with train-
ing and prediction processes which will affect the quality 
of the prediction model and may cause critical problems 
(e.g. patient death) or overburden the ML training pro-
cess, thereby falsely activating Quality of Service (QoS) 
degradation and triggering unnecessary workflow 
adaptation.

Cloud workflow task attack
Cloud workflow is composed of many different tasks that 
can run in parallel or sequentially with different depend-
ency levels. Workflow task attacks include a wide range 
of different anomalies including malware infection, query 
injection, and DoS. Furthermore, an attacker can maxi-
mize damage, by targeting sensitive processes or tasks 
(e.g., tasks on which many other tasks depend).

Resource attack
Resources such as cloud VMs, CPUs, memory, and net-
works can also be the target of different types of attacks, 
including unauthorized resource access, or overwhelm-
ing service requests. Such attacks could arise by falsely 
reporting resource overload/overutilization in moni-
toring logs, which will cause the compromised node 

to trigger unnecessary and costly workflow adaptation 
processes.

Monitoring and adaptation component attack
Monitoring and adaptation component attacks are very 
crucial in any cloud workflow orchestration environment 
because these components are crucial to resource man-
agement and performance optimization. In this work-
flow example, an attack against a monitoring system can 
force the compromised monitoring task to generate false 
resource underutilization logs, to avoid necessary adapta-
tion and thus, causing performance degradation leading 
to a DoS. Another example of such an attack is automatic 
system reconfiguration which can cause a compromised 
node to falsely identify a problem and trigger unneces-
sary adaptation actions.

The aforementioned attack types negatively impact the 
performance and integrity of a cloud workflow orches-
tration system. In this work, we focus on anomaly detec-
tion in cloud workflow data, cloud resources, tasks, and 
monitoring components. Hence, we propose to monitor 
resources, such as utilization of CPU, memory, I/O, and 
network, as well as task profile, and task performance. In 
the following section, we present our proposed security 
enforcement for cloud workflow orchestration.

End‑to‑end security enforcement in cloud 
workflow orchestration
In this section, we design and describe our end-to-end 
security enforcement architecture as depicted in Fig.  2. 
It consists of two main modules: a workflow deployment 
module and a security enforcement module. Both mod-
ules use the underlying processing and storage resources 
(e.g., VMs, GPUs, Storage) from the cloud infrastructure 
to dispatch various storage and processing tasks. Security 
enforcement events implemented within our architec-
ture are applied to four main entities: the user, resources, 
workflow tasks, and data.

In the following, we describe each component of the 
architecture in detail and highlight the security features 
that enhance security, data integrity, and authentication.

Entities
Entities interact with the two modules of the architecture 
to ensure various security boundaries including authen-
tication and identity management for users interacting 
with the architecture, access and connectivity manage-
ment of the employed resources, security enforcement 
of cloud workflow tasks, and workflow data access and 
integrity.
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Workflow deployment module
This module involves two sub-components, the work-
flow specification, and the workflow deployment com-
ponents. The workflow specification component builds 
the functional and non-functional (quality and secu-
rity) requirements of the workflow and creates pro-
files for entities, such as tasks, data, and resources. The 
workflow deployment component manages the work-
flow deployment and execution lifecycle over the cloud 
infrastructure. The output of this module is a running 
workflow monitored by the security enhancement 
module to detect and/or predict encountered security 

threats and adopt the necessary adaptation action to 
mitigate it.

Security enforcement module
This module is composed of three sub-components: 
monitoring, Multi-Modal Deep Learning Autoencoder 
(MMDLA) based prediction and adaptation sub-mod-
ules. These sub-modules mutually interact to achieve a 
complete scenario of cloud workflow monitoring, anom-
aly detection, and prediction. Finally, these submodules 
apply an adaptation strategy to mitigate risks identified 
through various anomaly evaluations.

Fig. 2  An architecture for security enforcement in cloud workflow orchestration
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Monitoring sub‑module
This submodule is responsible for continuous data col-
lection and monitoring. Various runtime data/logs are 
collected from monitored entities including tasks, data, 
and resources. The collected data are used for the train-
ing, and prediction purposes and are stored in a histori-
cal database for further analysis.

MMDLA sub‑module
This module uses the data collected from the monitor-
ing submodule as an input to train a multi-modal deep 
learning autoencoder model for dimension reduc-
tion and trains a profile matching classification model 
using the dimensionally reduced data to predict anom-
alies. Training of the MMDLA model employs a com-
bination of the input data generated from the entities 
profiling module (static) and monitoring time-series 
real-time logs data (dynamic). The resultant MMDLA 
model reduces the data dimension to increase effi-
ciency and efficacy and provides reduced dimensional 
data as input to an anomaly detection ML algorithm 
to accomplish anomaly detection. If an anomaly is 
detected, then anomaly evaluation is performed to 
determine the type and threat level of the detected 
anomaly. Then, the anomaly evaluation information 
is passed as input to the risk estimation process and 
eventually stored in a database for expert validation 
(e.g., to identify suspicious user behavior). A detailed 
description and implementation of the key compo-
nent’s features of this module is given in subsequent 
sections.

Adaptation sub‑module
This submodule implements adaptation strategies to 
proactively react to security threats before they occur 
and propagate. This begins by estimating the risk of 
each anomaly detected/predicted by the previous mod-
ule to ultimately apply a mitigation strategy which may 
involve a redeployment of the cloud workflow to han-
dle the employed adaptations. Such an adaptation may 
involve securing access to cloud workflow resource 
execution, guaranteeing legitimate additional resource 
allocation or deallocation, and terminating compro-
mised tasks.

Cloud infrastructure
This serves the architecture requirements in terms of 
the various resources needed to process and store data. 
Processing tasks include MMDLA model training for 
dimension reduction, anomaly detection model train-
ing and classification, and data storage monitoring.

Cloud workflow security enforcement module
In this section, we detail the working principle of the 
MMDLA prediction-based security enforcement mod-
ule. First, we define essential terms in understanding 
the prediction model, and then we discuss problem 
formulation. Finally, we describe the learning pipelines 
algorithms used for the solution approach.

Definitions
Definition 1 (Task) A task T  is an operational unit con-
sisting of one or more instructions, and can be dependent 
on one or more other tasks. Each task Ti runs on a desig-
nated container Ci such as a virtual machine.

Definition 2( Workflow) A workflow W is a collec-
tion of tasks { T1, ..., Tn } performed according to a sched-
ule S toward achieving a specific work (e.g., patient 
classification).

Definition 3 (Task Profile) A Task profile Pi of a task 
Ti is the tuple (δi, Ri) where δi is the unique id of the task 
and Ri is the task runtime data, to be defined next.

Definition 4 (Task runtime data) Task runtime data 
Ri of task Ti consists of both static and dynamic runtime 
data, which can be represented as a tuple (D, λ, η, μ, Θ) i. 
The static runtime data are composed of first four items of 
the tuple, namely:

Di: The task duration in seconds.
λi: The task category (e.g. preprocessing, training, 

evaluation).
ηi: The input size in bytes.
μi: The output size in bytes.
The dynamic runtime data Θi is a multivariate time-

series data produced by a task monitoring system for task 
Ti which consists of periodical observation of six differ-
ent runtime parameters, namely, CPU utilization, mem-
ory consumption, network input, network output, disk 
read, and disk write. Therefore, Θi can be defined as the 
tuple (Π, M , A , B , D , E) i, as explained below.

Each observation of dynamic runtime data is per-
formed every τ seconds (a system parameter). Therefore, 
the total number of such observations for Ti is

where Di is the task duration as mentioned above. The 
six time-series variables are as follows:

1.	 Πi: The CPU utilization observations, which gener-
ate a time-series data such that, Πi={πi[1], ... πi[ki]}, 
where πi[j] is the j-th observation of CPU utilization 
for task 𝒯𝑖.

(1)ki =
Di

τ
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2.	 ℳ𝑖: The series of memory usage observations per-
formed every τ seconds, Mi = { mi[1],..., mi[ki]}.

3.	 𝒜𝑖: The series of (cumulative) network input volume 
(in KB) observations for Container Ci performed 
every τ seconds, Ai = {αi[1], . . . ,αi[ki]}  

4.	 Bi : The series of (cumulative) network output vol-
ume (in KB) observations for Container Ci performed 
every τ seconds, Bi =

{

βi[1], . . . ,βi[ki]
}

5.	 Di : The series of (cumulative) disk read volume (in 
KB) observations for Container Ci performed every τ 
seconds, Di = {di[1], . . . ,di[ki]}

6.	 Ei : The series of (cumulative) disk write volume (in 
KB) observations for Container Ci performed every τ 
seconds, Ei = {ei[1], . . . , ei[ki]}

Therefore, dynamic runtime data Θi can be expressed 
as the following two-dimensional matrix:

Problem formulation
Let R = {R1, . . .Ri, . . . ,Rn} be the set of all task runt-
ime information under a normal scenario, i.e., all runtime 
scenarios without any attacks. We assume that any attack 
would cause at least one running task T ′ to behave in a 
manner that would generate the corresponding task runt-
ime information R′ such that

Therefore, relation 3 is a necessary and sufficient condi-
tion for T ′ being affected by an attack. So, the problem 
is to learn a model H(R) that will predict whether any 
given task runtime information R has been generated by 
a task affected by an attack. Formally, the model H , given 
input R , outputs true or false such that:

In other words, H(R) will hold true if and only if R 
belongs to a task affected by an attack.

Solution approach
To learn model H according to condition (4) above, we 
must train H with the generalized description of  R, i.e., 
the set of all possible task runtime information generated 
by tasks not affected by any attack. Here, we employ an 
unsupervised technique for training, where we attempt 
to learn H from a subset of R, i.e., the set of all normal 

(2)�i = {�i,Mi,Ai,Bi,Di, Ei} =











πi[1] mi[1] αi[1] βi[1] di[1] ei[1]
πi[2] mi[1] αi[2] βi[2] di[2] ei[2]
. . . . . . . . . . . . . . . . . .

πi[ki] mi[1] αi[ki] βi[ki] di[ki] ei[ki]











(3)R
′ /∈ R

(4)H(R) =

{

true, if R /∈ R
false, otherwise

task runtime information. We collect the normal data 
from workflows running under normal scenarios, i.e., 
scenarios known to have no attacks. This data is then 
used to learn the desired model using one-class classifier 
learning techniques, including one-class SVM, isolation 
forest, elliptic envelope, and local outlier factor. We also 
use different clustering algorithms to learn clusters or 
normal data.

Learning pipeline algorithms and descriptions
The learning process requires several steps in the learn-
ing pipeline, namely, monitoring data collection from 
logs, feature extraction and feature vector generation, 
feature dimension reduction, training, and classification. 
The following subsections describe these processes in 
detail.

Monitoring data collection
For each workflow, logs are generated by the task moni-
tor of each container Ci of task Ti ; these logs are collected 
and processed for training. The logs are primarily rep-
resented in an unstructured text format, which must be 
processed and converted into a structured format.

Feature extraction and feature vector generation
The processed logs are then used to extract the task pro-
file, which includes the task id, static runtime data and 
dynamic runtime data, as explained above. The extracted 
task profiles are then used to generate two types of fea-
ture vectors for each task.

The static feature vector Si = (D, λ, η, μ) i consists of the 
static runtime data of task Ti , and the dynamic feature 
vector, (i.e., the feature matrix) is essentially the dynamic 
runtime data of Ti , i.e., Θi. Therefore, the combined fea-
ture vector for task Ti is essentially the task runtime 
data Ri, as defined previously.

A training dataset Xtrain is built by collecting task 
runtime information from n tasks. In other words, 
Xtrain = ∪n

j=1 Tj  . Therefore, the feature extraction pro-
cess generates the training feature vector Rtrain, consisting 
of the feature vectors of all tasks in Xtrain, i.e.,

Where Ri is the feature vector of Ti . Recall that Ri con-
sists of two types of feature vectors, namely static feature 

(5)Rtrain = {R1, . . . ,Rn}
T
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vector (one-dimensional) Si which is duplicated to be 
concatenated with each row in the dynamic feature vec-
tor (2D matrix) Θi. Thus, we can represent Rtrain as a con-
catenation of two matrices:

Feature reduction using deep autoencoder
As discussed previously, the feature vector for each 
task consists of four static features and six time-series 
features. To train a model that learns from two-dimen-
sional feature vectors, we need to flatten the time-series 
feature matrix to a one-dimensional feature vector and 
combine it with the static features. However, this can 
cause the formation of a very high-dimensional fea-
ture vector. In particular, the total features in the fea-
ture vector would be 4 + 6 ki, where ki is the number 
of observations of the dynamic features. For example, 
if ki = 100, the total number of flattened features would 
be 604. Therefore, we must adopt a feature reduction 

(6)Rtrain = (Strain)(�train) = {S1, . . . , Sn}
T {�1, . . . ,�n}

T =







S1 �1

. . . . . .

Sn �n







technique. Here, we reduce the number of features 
using an unsupervised deep learning technique called 
AutoEncoder [41]. Although there are many alterna-
tive feature reduction or feature selection techniques, 

we employ the AutoEncoder technique for two main 
reasons:

•	 First, AutoEncoder can perform unsupervised fea-
ture reduction, which is an important aspect of our 
proposed model.

•	 Second, we propose multi-modal deep learning 
(MMDLA) based AutoEncoder model by combining 
long short term memory (LSTM) (a specific type of 
recurrent neural network (RNN)) [42] with a Deep 
Feed Forward network (DFN). This MMDLA model 
facilitates the feature reduction process to learn from 
the temporal relationships among time-series fea-

Fig. 3  High level diagram of the proposed approach
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tures and combine it with static features, rather than 
implementing a feature reduction process that flat-
tens all the time-series features and loses the tempo-
ral information contained in the feature set.

Figure  3 shows the high-level architecture of this fea-
ture reduction, training, and prediction technique.

Here, we describe the proposed AutoEncoder-based 
model which will be referred to as MMDLA. It consists 
of two main components, namely, the Encoder, and the 
Decoder in detail. The Encoder consists of two LSTM 
layers, a concatenation layer, and three fully connected 
layers as shown in Fig.  3. The purpose of the Encoder 
is to take feature vector Rtrain as input, then output a 
reduced dimensional feature vector (also known as 
embedding) Rϵ.

The Decoder has a network concept similar to that 
of the Encoder. The purpose of the Decoder is to take 
the embedding Rϵ as input and reconstruct the origi-
nal feature vector. Thus, the output of the decoder 
is  R′train = (S′train)(Θ′train), such that the matrix dimen-
sions of (S′train) and (Θ′train) are the same as those of 
(Strain) and (Θtrain), respectively. Essentially, (S′train) and 
(Θ′train) are approximations of (Strain) and (Θtrain), respec-
tively. Therefore, the learning objective of the AutoEn-
coder is to minimize the loss, i.e., the difference between 
the input and reconstructed output. Therefore, the 
AutoEncoder loss L can be represented as the sum of the 
loss of the static runtime data ( Lstat ) and dynamic runt-
ime data ( Ldyn):

After training the AutoEncoder model, we take the 
reduced dimensional feature vector, i.e., embedding Rϵ as 
the new feature vector and train an unsupervised anom-
aly detection model (e.g., one class classifier).

Classification and prediction
The embedded feature vector Rϵ is used to train an anom-
aly detection model H as expressed in equation  4. The 
learning algorithm is assumed to be one-class classifier 
training or unsupervised clustering that only requires 
normal data for training. Once the clustering or one-class 
classifier model is trained, it is deployed in the system to 
detect (i.e., predict) anomalous task runtime data, sup-
posedly generated from tasks affected by an attack.

Algorithms
In this section, we present the algorithms for the learn-
ing and prediction processes of the security enforcement 
model. Algorithm 1 describes the training pipeline of the 
anomaly detection model. The input to this algorithm 

(7)
L = Lstat + Ldyn = Σ

n
i=1

(

Si − S�i
)2

+ Σ
n
i=1

(

Θi − Θ�i

)2

is the training data. First, lines 1–4 retrieve monitoring 
log data, extract features, and generate the feature vec-
tor. Then we train the AutoEncoder (lines 6–7). In line 
8, we obtain the embedding of the training data from the 
AutoEncoder, and in line 9, an anomaly detection model 
is trained with this reduced feature vector.

Algorithm 1 Security Enforcement Model Training (Xtrain)

Algorithm  2 requires three inputs, namely, the task 
to examine, prediction model H , and the AutoEncoder 
model AE. First, we extract features and generate a fea-
ture vector from the logs. Line 3 applies the embedding 
on the task runtime data to obtain a reduced feature vec-
tor. Finally, anomaly detection model H predicts whether 
the runtime data is generated by a task affected by an 
attack.

Algorithm 2 Attack prediction (𝒯𝑖,𝓗,AE) 

Adaptation scheme
The monitoring process is performed continuously for all 
running cloud workflows. The monitoring logs are col-
lected periodically, and the status of all cloud workflows 
is checked for anomalies or other quality performance 
issues such as performance degradation and resource 
over/under utilization. For each running cloud work-
flow, we inspect its tasks monitoring logs by running the 
attack prediction algorithm depicted in Section 5.5. Once 
an attack is detected, we apply the appropriate mitiga-
tion strategy including task restart, workflow restart, and 
reverting to former logs depending on the outcome of the 
risk estimation process. The risk estimation process eval-
uates the status of the workflow and cause of the anomaly 
and recommends mitigation action to prevent or override 
the attack. First, it checks the anomaly type and the task 
status, then recommends a set of actions according to the 
following rules. If the anomaly type is resource over-uti-
lization, additional resources is allocated to the workflow. 
Otherwise, if the anomaly type is under-utilization, then 
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a resource can be released. Different anomaly types are 
handled by the risk estimation process according to the 
predefined rules. The set of recommended actions can 
also be applied to the tasks in the task dependency list. 
For example, if a task was attacked, the task dependencies 
list is checked to decide whether other dependent tasks 
should be also restarted along with the task under attack. 
Otherwise, if no attack is detected, the performance 
recorded values of attributes are checked and if they do 
not satisfy the required quality thresholds, adaptation 
actions are applied (e.g., adding a new node if CPUs are 
over-utilized). Algorithm  3 presents the cloud work-
flow adaptation after an anomaly is detected. This algo-
rithm takes as input the list of currently running cloud 
workflows, the anomaly detection model, the trained 
AutoEncoder, the collected monitoring logs, the desired/
acceptable ranges for each performance quality feature, 
and the list of possible adaptation actions that will main-
tain the required workflow QoS levels. First, the algo-
rithm applies an anomaly prediction model to each task 
in the workflow. When an anomaly is detected, a mitiga-
tion strategy is applied as explained in Section  4. Oth-
erwise, if monitoring logs show out-of-range values, the 
regular adaptation mechanisms are applied.

Algorithm 3 Cloud Workflow adaptation with anomaly detection 

Implementation and experiment
Environment setup
In this section, we describe the experimental environ-
ment. We created a Docker Swarm Cluster comprising 
one master node and four worker nodes. We deployed 
the cloud workflow described in Section 3 over a work-
station running Linux Ubuntu 18.04 with 24 CPU cores 
and two NVIDIA GeForce GTX 1080 Ti GPUs with 
11 GB GDDR5X memory each, a 1-TB HDD, and 64-GB 
RAM. Each task in the cloud workflow was created 
as a Docker container executed using different data 
input sizes. The Docker swarm cluster had a master 

node, that performed the orchestration to conserve the 
required cluster state. The worker nodes received and 
ran tasks dispatched from the master node. Deploying a 
workflow to a swarm requires providing service defini-
tion to the master node, which accordingly dispatches 
units of work, called tasks, to the worker nodes. Dur-
ing workflow execution, we collected a live data stream 
to run task containers to monitor various performance 
metrics, which are discussed in detail in the following 
section. Additionally, we ran other mock containers to 
overload nodes in the cluster to simulate a real envi-
ronment. The experimental environment is depicted in 
Fig. 4.

We implemented the proposed algorithms in Jupyter 
Notebook running Python 3.6. The AutoEncoder and 
SVM algorithms were developed using Pytorch and 
Scikit-learn, which are open-source Python implemen-
tations of machine learning and deep learning neural 
networks. The experiments were executed on a Mac 
computer with OS X Catalina 10.15.4 operating system 
with a 2.8-GHz Quad-Core Intel Core i7 and 16-GB 
1600-MHz DDR3 RAM.

Dataset
Dataset description
In the experiments, we combined two types of data for 
each running task. We initially defined a static task pro-
file to include various types of information such as task 
duration, data input size, data output size, and task cat-
egory (pre-processing, training, or evaluation). The 
dynamic data comprised live stream data of performance 
monitoring metrics for each running task. This data con-
sists of time-series records which include the CPU and 
memory usage by the container, total memory used by 
the container, size of data sent and received by the con-
tainer over the underlying network, and the size of read/
write data by the container from block devices on the 
host.

Data preparation and preprocessing
The preprocessing activities primarily focused on con-
verting Docker’s generated monitoring statistics. First, 
the Docker stats were given a format flag to output the 
exact required container statistics. The output file was 
then parsed and cleaned using regex to split the column 
headers appropriately. The data was then converted to a 
Pandas DataFrame and proper datatypes were assigned 
to each column (e.g., timestamp column used the date-
time datatype). Additionally, the units of the memory uti-
lization columns were all standardized to Bytes.



Page 13 of 22El‑Kassabi et al. Journal of Cloud Computing           (2023) 12:10 	

Deep learning approach for training and anomaly detection
To detect anomalies, we first trained our dataset using 
a reconstruction AutoEncoder model to reduce the data 
dimension into a 30-D of embeddings. Afterwards, we 
input the AutoEncoder model generated output into an 
anomaly detection model. The following sequence of 
steps details our implementation: First, we split the data-
set into two sets; static profile data and dynamic time-
series performance monitoring information. Figure  3 
shows the architecture of the encoder-decoder neural 
network developed for feature learning. The dynamic 
part of the data is fed into two-layers of a time-series 
RNN model encoder. This model takes batch size, num-
ber of records, and number of features as inputs and 
returns outputs in the form of a (1, 30) vector which is 
the final hidden state. The output is concatenated with 
the static data portion which is fed into three fully con-
nected layers to produce the output shape of a (1, 30) 
vector. The decoder, on the other hand, uses the (1, 30) 
vector and passes it to two separate layer sequences, i.e., 
three fully connected layers and two RNN layers. The 
fully connected layers decode the static part of the input, 
while the RNN layers produce the dynamic time-series 
part. Here, a key aspect is that the encoder always pro-
vides the data input length such that the decoder knows 
how many time-series data points to produce.

The output of the encoder was trained over an anomaly 
detection model such as a one-class classification or clus-
tering. The one-class classification algorithms are unsu-
pervised learning algorithms that we trained using only 
non-anomaly data, i.e., the reduced feature set resulted 
from the aforementioned AutoEncoder algorithm, which 
can classify anomaly and non-anomaly data. These 
include one-class SVM, Isolation Forest, Elliptic Enve-
lope, and Local Outlier Factor. In addition, we used dif-
ferent clustering algorithms, i.e., unsupervised learning 

algorithms trained using both anomaly and normal data. 
Among which we use k-means, Mini Batch k-means, 
Mean Shift, and Birch. All models predicted two classes 
or clusters, i.e., normal or anomaly. However, the perfor-
mance of each model varied in terms of accuracy, pre-
cision, recall, and F1 score. We then selected the best 
performing model based on the calculated performance 
metrics for our real-time security enforcement.

Experimental scenarios, evaluation criteria, and fault 
injection scheme
We conducted several experiments to evaluate our pro-
posed security enforcement and anomaly detection 
framework. In these experiments, we intended to evalu-
ate the anomaly detection scheme by investigating the 
performance of different anomaly detection algorithms 
and models. In addition, we conducted different experi-
ments to evaluate the performance of the cloud work-
flow within the adopted proposed security enforcement 
model. We benchmarked the cloud workflow perfor-
mance based on the previously proposed adaptation 
strategies [43]. In these experiments, we ran our designed 
hospital length of stay prediction workflow several times 
with different patient dataset sizes. The performance 
of the cloud workflow was continuously monitored, 
and adaptation strategies were executed when neces-
sary, depending on the decision taken by the adaptation 
module.

Scenarios
We designed two scenarios for testing the proposed secu-
rity enforcement model. The first scenario focused on 
testing the performance and accuracy of our anomaly 
detection and prediction model, and the second scenario 
evaluated the overall performance of the cloud workflow. 
The first scenario was implemented in two stages: First, 

Fig. 4  Experimentation environment
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we used the Deep Learning AutoEncoder (Section 0) to 
reduce dimension of the dataset containing encodings, 
which were then fed to the anomaly detection module. 
The latter implements different ML algorithms, including 
one-class classification and clustering algorithms. Each 
algorithm was evaluated and compared in terms of four 
different performance measures including accuracy, pre-
cision, recall, and F1 scores after applying cross fold with 
k-fold values of 3, 5, and 10.

In the second scenario where we evaluated the overall 
cloud workflow performance, we considered the CPU 
utilization, memory usage, network I/O bound, and disk 
space usage features. The cloud workflow was executed 
over the implemented Docker swarm environment with 
different resource load capacities. We compared how the 

adaptation module behaved in response to the detected 
anomalies and the performance of the cloud workflow 
after applying automatic adaptation strategies to respond 
to anomaly detection with the performance of the cloud 
workflow without anomaly detection application.

Evaluation criteria
For our AutoEncoder, we employed one of the commonly 
used time-series prediction models evaluation metrics, 
which is the Mean Square Error (MSE) defined by the fol-
lowing formula:

where ypt is the predicted value at time t, yt is the actual 
value at time t, and n is the number of observations [44].

To further evaluate and compare our anomaly predic-
tion models including one-class classification and clus-
tering, we adopted different evaluation criteria including 
accuracy as the most intuitive measure. However, in 
some cases, accuracy is not always the best measure for 
assessing the model performance. Henceforth, we used 
precision, recall, and F1 score to compare and select the 
best prediction performance model. Precision is also 
known as the positive predictive value, which is the 
ratio of correctly predicted values to the total number 
of predicted values. Additionally, recall is referred to as 
the sensitivity measure and it is defined as the ratio of 

(8)MSE =

∑n
t=1

(

ypt − yt
)2

n

correctly predicted values to the number of correctly pre-
dicted values. Moreover, we have used F1 score, which is 
defined as the weighted average of precision and recall 
[45]. These common measures well represent the overall 
performance of our prediction models.

Furthermore, in our experimentations, we define pre-
cision as the ratio of the number of correctly predicted 
anomalies to the total number of correctly predicted 
anomalies and the normal incorrectly identified as anom-
alies. We also express recall as the number of anomalies 
correctly identified over the total number of correctly 
predicted anomalies and anomalies incorrectly pre-
dicted as normal. In addition, F1 score is defined as the 
weighted average of precision and recall. This is given by 
the following formulas:

We adopted these measurements for the obtained 
results to further validate our model.

Anomaly injection techniques
To facilitate the testing and evaluation of our anomaly 
detection model in consideration of various anomalies, 
we employed simulation-based fault injection to inject 
anomalous behaviors in the cloud workflow task as well 
as injecting false values into the monitoring log files. 
Existing techniques in software fault injection include 
runtime injections and compile-time injection [46]. 
Here, we adopted runtime fault injection techniques 
such as code insertion to simulate system stress. In this 
approach, we synthesized and injected different types of 
anomalies such as code-modification which implements 
fault injection during runtime and adds instructions to 
increase the task execution time (e.g., adding infinite 
loops or time delays). Faults were randomly injected in 
different task instances to trigger higher CPU consump-
tion and memory usage. The objective of these anomalies 
was to simulate cloud workflow task attacks and cloud 
resources attacks. Furthermore, we simulated monitoring 
component attacks by injecting anomalies into the moni-
toring logs. These faults included heavy or light CPU 
utilization, memory usage, disk I/O access, and network 
latency which were randomly generated to synthesize 

(9)Recall =
true positives

true positives + false negatives
=

correctly predicted anomalies

correctly predicted anomalies + anomalies incorrectly predicted as normal

(10)Precision =
true positives

true positives + false positive
=

correctly predicted anomalies

correctly predicted anomalies + normal data incorrectly predicted as anomalies

(11)F1 Score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
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log anomalies [47]. Then the behavior of the adaptation 
model under stress was tested to ensure the reliability 
and overall performance of our proposed model.

Results and discussion
Deep learning AutoEncoder model evaluation
In the first stage of anomaly detection, we applied 
deep learning with AutoEncoder to generate a reduced 

dimension embedding which served as an input to the 
anomaly detection algorithm in the second stage. We 
trained the AutoEncoder with normal data generated by 
monitoring the execution of the target case study cloud 
workflow. Subsequently, we selected the model that mini-
mized the reconstruction error in the original AutoEn-
coder. Here, to determine embedding size, we measured 
the average loss while using different embedding vector 

Fig. 5  Average loss versus embedding dimensions

Fig. 6  AutoEncoder reconstruction loss
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dimensions during the AutoEncoder training phase. 
The experimental results depicted in Fig.  5 demon-
strate that the average AutoEncoder reconstruction loss 
was reduced with higher embedding dimensions. Thus, 
we set the dimension of the output embedding to 30 
because this provided the smallest loss value. Although 
higher dimension values provide slightly better loss, we 
set the encoder generated embedding vector size to 30 
embeddings because the main objective was to reduce 
the dimensionality of the original dataset, which gener-
ally leads to improved accuracy. Figure  6 illustrates the 
AutoEncoder reconstruction loss values based on MSE 
while generating (1X30) vector embeddings.

Anomaly detection model evaluation
The main objective of this experiment was to evaluate 
the performance of each ML anomaly detection algo-
rithm and select the model best suited for our dataset. 
We detected and predicted the anomalies in our dataset 
which comprised the collected cloud workflow monitor-
ing time-series log files and the static task profile dataset. 
We executed the cloud workflow with normal environ-
ment settings to produce a regular dataset under the true 
positive conditions. Moreover, we synthesized the dataset 
to reflect different types of anomalies and attacks, such 
as task, log, or resource anomalies. For example, a task 
anomaly could alter a task’s behavior by increasing or 
reducing processing time. Whereas a log anomaly could 
be instantiated by injecting the monitoring logs with con-
tradicting statistics. Furthermore, the resource anomaly 
included simulation of heavy load exertion on the CPU 
and memory resources allocated to service the cloud 
workflow. Here, the total number of records in both the 
regular and anomaly dataset was 1200 records.

We selected two main ML techniques for anomaly 
detection: one-class classification and clustering. For 
one-class classification, we compared the performance 
of the SVM, Isolation Forest, Elliptic Envelope, and Local 
Outlier Factor, each of which was subject to substan-
tial hyperparameter tuning. For example, we ran over 
800 different combinations of hyperparameter values to 
automatically tune the SVM model, which is discussed in 
the following section. All one-class classification models 
were trained using all regular dataset and tested with a 
dataset including 50% regular and 50% anomaly. On the 
other hand, for clustering, we evaluated k-means, Mini 
Batch k-means, Mean Shift, and Birch algorithms on 
our dataset. We trained and tested the clustering mod-
els using a dataset with a 50% regular and 50% anomaly 
data. Here, we adopted k-fold cross-validation to evalu-
ate the models including classification and clustering. We 
applied 3-fold, 5-fold, and 10-fold cross-validation. In the 
following, we present our testing results.

(a)	One-class SVM model tuning

In this experiment, we investigated the effect of hyper-
parameter tuning on the performance of the one-class 
SVM model. We automated the hyperparameter tuning 
process to quickly select the best parameter combina-
tion that gave the best accuracy. The main hyperparam-
eters that provide the best accuracy include nu = 0.01, 
gamma  = 0.1, tolerance  = 0.001, coefficient  = 0, ker-
nel cache size = 200, and degree (for poly) = 3. In addi-
tion, kernel selection has the greatest effect on accuracy 
improvement. Figure  7 depicts the effect of different 
kernel parameter adoption on the accuracy using 3-fold, 
5-fold, and 10-fold cross-validation. As can be seen, the 

Fig. 7  One-class SVM tuning and accuracy
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Fig. 8  One-class classification performance evaluation

Fig. 9  Clustering performance evaluation
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RBF kernel provided the best accuracy value over sig-
moid, linear, and polynomial kernels.

(b)	One-class classification models evaluation

In these experiments, we compared the performance of 
four one-class anomaly detection classification methods 
including SVM, Isolation Forest, Elliptic Envelope, and 
Local Outlier Factor. Figure  8 depicts the performance 
of each algorithm in terms of accuracy, precision, recall, 
and F1 score. As shown, the Isolation Forest technique 
obtained the highest accuracy of 96.14, precision of 0.93, 
recall of 0.99, and F1 score of 0.96 using 10-Fold cross 
validation. Similar results were obtained when using 
3-fold, and 5-fold cross-validation indicating that the Iso-
lation Forest algorithm outperformed the other one-class 
classification algorithms.

	(iii)	 Clustering model evaluation

Additionally, we measured the performance of dif-
ferent clustering algorithms namely k-means, Mini 
Batch k-means, Mean Shift, and Birch. Here, we 
trained all clustering algorithms to generate two 
clusters, i.e., one for regular data and another one 
for anomaly data. Likewise, we evaluated these algo-
rithms with respect to accuracy, precision, recall, and 
F1 score while performing 3-fold, 5-fold, and 10-fold 
clustering as shown in Fig.  9. Generally, the k-means 
algorithm obtained the best results, demonstrating an 
accuracy of 96.43, precision of 0.94, Recall of 0.99, and 
F1 score of 0.96 using 10-fold cross-validation, and 
similar results were obtained with 3-fold and 5-fold 
cross-validation.

	(iv)	 Overall discussion

We adopted two approaches for anomaly detection 
and prediction for security enforcement during cloud 
workflow execution: one-class classification and cluster-
ing. Experimental results demonstrate that clustering 
provided slightly better performance in terms of accu-
racy, precision, recall, and F1 scores over one-class clas-
sification. The k-means technique outperformed all other 
clustering algorithms. However, the isolation forest pro-
vided the best prediction performance among one-class 
classification algorithms and gave results that were very 
close to those of clustering. Considering that one-class 
classification training is performed using only regular 
data which is more likely to be the real case scenario for 
our cloud workflows execution rather than training with 
50%:50% regular to anomaly data ratio, therefore, we rec-
ommend one-class classification specifically the Isolation 
Forest. Table 2 gives the anomaly detection performance 
results.

Overall cloud workflow performance evaluation
In this section, we evaluate the overall performance of 
the system when using an anomaly detection approach 
for security enforcement over the normal adaptation 
strategies with no anomaly detection.

We monitored CPU utilization and memory usage of 
cloud workflow tasks executed over multiple nodes in the 
cluster. Different tasks present different utilization levels 
according to the nature of the task as defined by its pro-
file. For example, a preprocessing task unitizes more CPU 
and memory resources than an evaluation task because 
preprocessing requires iterating through the entire data-
set to clean and prepare the data used for training the ML 
model. In what follows, two experimental scenarios are 
discussed to demonstrate the performance evaluation of 
the cloud workflow.

In the first scenario, we executed our cloud workflow 
while adopting regular quality enforcement adaptation 
strategies [48]. As illustrated in Fig.  10, the memory 
and CPU resources required to process the workflow 
increased over time which involved an adaptation 
action to add a new node after detecting that the sud-
den increase in resource usage was caused by an anom-
aly attack. In this experiment, we synthesized the log 

Table 2  Performance evaluation results of anomaly detection 
using various Machine Learning Algorithms

K-Fold Algorithm name Precision Recall Accuracy F1 Score

3-Fold SVM 0.63 0.99 80.94 0.77

Isolation forest 0.94 0.99 96.23 0.96

Elliptic Envelope 0.94 0.94 93.83 0.94

Local Outlier Factor 0.82 0.99 90.63 0.90

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.94 0.99 96.43 0.96

Mean Shift 0.61 0.64 63.30 0.63

Birch 0.33 0.99 66.19 0.49

5-Fold SVM 0.75 0.99 86.98 0.85

Isolation forest 0.94 0.99 96.14 0.96

Elliptic Envelope 0.94 0.90 91.81 0.92

Local Outlier Factor 0.81 0.99 90.06 0.89

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.94 0.99 96.43 0.96

Mean Shift 0.61 0.64 63.47 0.63

Birch 0.20 1.00 60.07 0.34

10-Fold SVM 0.65 0.99 82.06 0.78

Isolation forest 0.93 0.99 96.14 0.96

Elliptic Envelope 0.94 0.86 89.54 0.90

Local Outlier Factor 0.82 0.99 90.38 0.90

k-means 0.94 0.99 96.43 0.96

Mini Batch k-Means 0.95 0.72 79.44 0.82

Mean Shift 0.61 0.64 63.64 0.63

Birch 0.11 1.00 55.31 0.20
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anomaly described in Section  3.2, which deceived the 
adaptation system, thereby resulting in unnecessary addi-
tion of resources to maintain the quality of the cloud 
workflow performance.

In the second scenario, we executed the cloud workflow 
while embracing our new proposed security enforcement 
extension. Figure 11, shows that the security enforcement 
module detected the anomaly in task 1, thereby causing 
it to discard the corrupted logs and issue an action to use 
an older version of the logs. This action prevented the 
adaptation module from adding unnecessary resources.

Conclusion
Security enforcement in cloud workflow orchestration 
is considered a complex research problem because of 
its dynamicity and changing cloud workflow execution 

environments. In this paper, we have proposed an archi-
tecture for cloud workflow security enforcement. The 
proposed architecture is applied to four main entities: 
the user, resources, workflow tasks, and data. A multi-
modal approach incorporating deep learning, one-class 
classification, and clustering applied to training, anom-
aly detection, and prediction has also been proposed. 
The proposed model considers both unsupervised static 
and dynamic features which is a unique way of mode-
ling features that results in better anomaly detection. It 
also reduces the data dimensionality which leads to bet-
ter characterization of workflow tasks and thus provides 
a better attack prediction. Once anomalies are detected 
and/or predicted, adaptation measures are implemented 
to secure the cloud workflow execution and ensure per-
formance. The adaptation scheme accommodates a 

Fig. 10  CPU utilization and memory usage during an anomaly attack
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flexible representation and planning of resource require-
ments over time and over the various phases of the cloud 
workflow execution cycle.

We conducted a set of experiments to evaluate the vari-
ous features of our solutions including the application of 
Multi-Modal training and anomaly detection using a real 
COVID-19 dataset of patient health records. The pro-
posed Multi-modal approach was formulated and tested 
in an experimental setup where two main scenarios were 
used for verification. The first scenario focused on test-
ing the performance and accuracy of our AutoEncoder 
and anomaly detection model, while the second scenario 
was used to evaluate the overall cloud workflow perfor-
mance by assessing adaptation actions taken to respond 
to injected anomaly detection and their impact on the 

performance of cloud workflow execution. Two main 
approaches were adopted for anomaly detection and pre-
diction of security enforcement during the execution of 
the proposed workflow, i.e., LSTM-based AutoEncoder 
and an ML model including one-class classification and 
clustering. The experimental results demonstrate that 
clustering provides slightly better performance in terms 
of accuracy, precision, recall, and F1 scores over the one-
class classification with k-means outperforming other 
clustering algorithms. Other experimental results of the 
adaptation strategy implemented to respond to detected 
anomalies revealed a high execution performance of the 
workflow. The experimental results demonstrate that the 
proposed architecture prevents unnecessary wastage of 
resources due to anomaly detection and prediction.

Fig. 11  CPU utilization and memory usage with anomaly attack detection
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We plan to explore other ML algorithms to detect 
and predict other categories of anomalies and attacks as 
future work. We also plan to explore ensemble ML and 
natural language processing algorithms to explore new 
levels of cloud workflow automation, robustness, and 
fault tolerance.
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