
Yadav and Mishra ﻿
Journal of Cloud Computing (2023) 12:8
https://doi.org/10.1186/s13677-023-00392-z

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

An enhanced ordinal optimization
with lower scheduling overhead based
novel approach for task scheduling in cloud
computing environment
Monika Yadav* and Atul Mishra 

Abstract 

Efficient utilization of available computing resources in Cloud computing is one of the most challenging problems
for cloud providers. This requires the design of an efficient and optimal task-scheduling strategy that can play a vital
role in the functioning and overall performance of the cloud computing system. Optimal Schedules are specifically
needed for scheduling virtual machines in fluctuating & unpredictable dynamic cloud scenario. Although there exist
numerous approaches for enhancing task scheduling in the cloud environment, it is still an open issue. The paper
focuses on an improved & enhanced ordinal optimization technique to reduce the large search space for optimal
scheduling in the minimum time to achieve the goal of minimum makespan. To meet the current requirement of
optimal schedule for minimum makespan, ordinal optimization that uses horse race conditions for selection rules is
applied in an enhanced reiterative manner to achieve low overhead by smartly allocating the load to the most prom-
ising schedule. This proposed ordinal optimization technique and linear regression generate optimal schedules that
help achieve minimum makespan. Furthermore, the proposed mathematical equation, derived using linear regres-
sion, predicts any future dynamic workload for a minimum makespan period target.

Keywords  Cloud computing, Ordinal optimization, Makespan, CloudSim, Schedules

Introduction
Cloud computing has revolutionized the way comput-
ing resources and services are delivered dynamically in
a virtualized manner over the Internet. Computing is
delivered using a utility-based business model, wherein,
on-demand delivery of computing power on a pay-as-
you-go basis like traditional services such as electricity,
water, gas, or telephony takes place. Cloud service pro-
viders, also known as hyper scalers, make accessing cloud

services easier. Customers receive cloud services from
cloud service providers vice Level Agreements (SLA).

Cloud computing is characterized by distinct fea-
tures like multi-tenancy, scalability, elasticity, pooling of
resources, and virtualization. Based on these, the cloud
service provider deploys cloud services such as IaaS
(Infrastructure as a service), SaaS (Software as a service,)
and PaaS (Platform as a service). For the deployment of
these service models and efficient utilization of cloud
resources, the providers rely on the deployment of sched-
uling algorithms. These algorithms ensure that resources
are easily available on demand, resources are efficiently
utilized under high/low load conditions and the cost of
using resources is reduced.

The virtualization technology theoretically enables an
infinitude of resources for the cloud. But even if cloud

*Correspondence:
Monika Yadav
yadavmonika506@gmail.com
J.C. Bose University of Science and Technology, YMCA, Faridabad, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00392-z&domain=pdf

Page 2 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

service providers practically control an endless num-
ber of resources, consumers may experience issues
when trying to access resources and services. The pri-
mary cause of this is an improper mapping of physical
resources to virtual machines, which impedes the per-
formance of cloud users. The issue of the uneven map-
ping of virtual resources to the physical infrastructure
is solved through scheduling.

Task scheduling and allocating resources in the right
order and with the least delay to improve system per-
formance is difficult in a cloud environment. Due to the
complexity of the cloud and real-time mapping of tasks
with the virtual machines and then virtual machines
mapping with the host machine, scheduling of tasks
in cloud computing becomes an NP-Hard problem.
Therefore, this study offers a solution to task scheduling
problems with an advanced ordinal optimization tech-
nique. The ordinal optimization (OO) method extracts
the best schedules from all candidate schedules cur-
rently available in a cloud environment. Furthermore,
a mathematical equation is also suggested to sched-
ule any task on the cloud with the shortest makespan
period based on the regression technique designed for
these selected ideal schedules.

The major contributions of this paper are summa-
rized as follows:

1.	 A testbed for the candidate schedules was designed
using CloudSim Simulator for applying and testing
the proposed approach.

2.	 An enhanced Ordinal Optimization methodology
with lower Scheduling overhead has been proposed
which will give the optimal schedules from the cur-
rently available candidate schedules.

3.	 Linear regression technique is applied to predict the
future scheduling of the cloudlets for obtaining the
minimum possible makespan for a given set of avail-
able optimal schedules.

4.	 The proposed approach is experimentally investi-
gated using the CloudSim simulator.

The remainder of the paper is organized as follows.
The related studies that investigate task scheduling and
resource allocation and associated works are addressed
in the section “Related work”. Section “Problem state-
ment and formulation” discusses the problem statement
and formulation behind this work. Section “Proposed
approach” explains the proposed methodology along
with the proposed Algorithm. Result discussions and
comparison with the existing Blind Pick and Monte
Carlo algorithms are covered in the section “Cloud
simulation results and discussions”. Finally, concluding

remarks and future directions are presented in the sec-
tion “Conclusion”.

Related work
Several studies have set one’s sight on resolving the
task scheduling issue in the distributed environment
in the past decade. Scheduling of large-scale work-
loads on distributed cloud platforms has been already
explored by several researchers formerly [1–5]. In the
last few years, several other crucial characteristics
along with scheduling in the distributed cloud envi-
ronment are also explored by imminent researchers.
In some of the proposed research methods, features
such as authentication, security, and load balancing are
included besides scheduling [6–11]. To achieve a higher
throughput storage architecture, Donghyun et al. [12]
provide a storage data audit scheme for fog-assisted
cloud storage with no need to modify the existing end-
user IoT terminal devices. This section addresses the
recently proposed algorithms for scheduling workloads
in the cloud computing platform.

Dogan et al. [13] algorithm for scheduling applica-
tions with the ultimate goal of merest execution time,
least completion time, and opportunistic load bal-
ance. The author claims that the proposed algorithm
also diminishes the failure probability. Smith et al.
[14] presented heuristic approaches including auction,
min-min, and max-min. In this, the authors suggested
two ways to implement a vigorous metric for heuris-
tics Infrastructure allocation. Samrat Nath et al. [15]
proposed a dynamic scheduling policy based on Deep
Reinforcement Learning (DRL) with the Deep Deter-
ministic Policy Gradient (DDPG) method to solve the
problem of Mobile User task offloading in a Mobile
edge computing server.

Buyya et al. [16] present a new model based on the
budget, deadline, and Quality of Service with the ulti-
mate goal to find an optimized solution for task sched-
uling-based problems. This genetic-based algorithm
aims to solve deadline and cost-limitation-based opti-
mization issues by addressing the heterogeneous and
booking-based service-oriented distributed environ-
ment. Zhang et al. [17] based on multiple factors pro-
posed a heuristic ant colony algorithm with a better VM
fault-tolerant placement solution for scheduling ser-
vice-providing virtual machines and conventional heu-
ristic algorithms are used for scheduling the redundant
virtual machines.

Benoit et al. [18] came forward with an approach
that distributes the workloads based on the knowl-
edge of resources available at any particular point in
time. To schedule the cluster the traditional preemptive

Page 3 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

scheduling mechanism is used to map the distinguished
virtual machines on a single host machine resulting in
adding new approximations and heuristics to the algo-
rithm. Gawali et al. [19] improve the performance of the
system using a modified Cuckoo Optimization algorithm
based on standard deviation. This two-phase Algorithm
chooses the appropriate population sample in the first
phase for optimal results and then applies the proposed
algorithm to this sample population in the second phase.

Li and Buyya [20] designed a simulation-based model
to schedule the workloads in a Grid computing environ-
ment. To calculate the accuracy of workload correlations
the experiment is conducted in a model-driven simula-
tion. Simulation results at the local and grid level indi-
cate the decline in performance and indicate that the
autocorrelation of loads in this model is not ideal. Lu and
Zomaya [21] presented an integrated workload schedul-
ing mechanism for executing tasks in the heterogeneous
environment for grids to reduce the average response
time for the workloads. Suitable for a wide network of
computational grids, this policy is a tradeoff between
the advantages of distributed networks such as workload
balancing, fault-tolerant, and the pros of the centralized
environment such as inherent efficiency.

Linear programming is one of the most common tech-
niques used for optimization. This mechanism is used to
obtain the most optimal solution for task scheduling with
the given constraints on minimum makespan and maxi-
mum throughput. Bossche et al. [22] come up with a time
and cost-limitation-based task scheduling algorithm for
Infrastructure as a service platform.

Bertot et al. [23] reviewed the Monte Carlo Method for
cloud simulation enhancement. Their work shows that by
generating random schedules one can obtain the optimal
schedules with high precision. For fluctuating scheduling
periods this method gives high system throughput and at
the same time shows a decline in memory demand. But
for the fluctuation in tasks with a large scheduling period
Monte Carlo result in a decline in the overall system
performance.

Blind-Pick can be applied to a diminished search space
that can evolve with the rapid fluctuation in workload
having mediocre overhead. This approach with moderate
precision and not-so-ideal set selection result in degrada-
tion in overall system performance [24, 25]. A preemp-
tion-based divide and conquer methodology is used by
Gawali et al. [26] for the virtual machine status which
allocates resources in the cloud with improved turna-
round time and response time.

In genetic-based approaches, the researcher usu-
ally aims to enhance the system throughput without
being concerned about the overall system performance.
As the focus is on the appropriate execution of the task

with proper usage of infrastructure in the defined mode
of execution. Genetic Algorithms follow an appropri-
ate procedure for candidate selection, fitness evaluation,
mutation, and variations. Gu et al. [27] described an
infrastructure scheduling strategy for a cloud computing
platform based on a genetic algorithm. Zhao et al. [28]
proposed a scheduler based on genetics with the main
goal to reduce makespan by using chromosome-based
coding schemes and implementing them on a numeri-
cally based simulator. Shaoxing Zhu et al. [29] came for-
ward with a more stability-based evolutionary scheduling
algorithm. Infrastructure as a Service model is benefited
from this multi-objective genetic algorithm.

Fast variation in workload gives rise to the need for
an algorithm that schedules tasks with high throughput
and degrades memory demand scheduling workloads in
a multitasking environment. That can adapt to variation
in the working environment with low overhead to obtain
the optimal schedules [30, 31].

Having presented various studies carried out related to
task scheduling in cloud computing environments, it is
observed that the Monte Carlo simulations may require
time in months to produce optimal schedules with the
burden of high fluctuations resulting in degrading the
overall performance. On the other hand, Blind Pick simu-
lations give better results with a small search space, but
on increasing the size of the search space, the perfor-
mance degrades. Reducing these scheduling overheads
is necessary for real-time cloud computing. A novel Task
scheduling method based on ordinal optimization (OO)
is presented in this paper. This new approach outper-
forms the Monte Carlo and Blind-Pick methods to yield
higher performance.

Problem statement and formulation
As stated earlier, efficient utilization of available com-
puting resources, in a highly dynamic cloud computing
environment, is one of the most challenging problems
for cloud service providers. Proper scheduling of tasks to
available computing resources and allocation of resources
in a manner that no node in the cloud is overloaded and
all the available resources in the cloud do not undergo any
kind of wastage is the key to it. This requires the design
of an efficient and optimal task-scheduling strategy that
can play a vital role in the functioning and overall per-
formance of the cloud computing system. The following
problem statement and its formulation, presented in this
paper, derive from this stated fact.

Problem statement
To design a low overhead scheduling algorithm for
mapping tasks to available computing resources in
a cloud, by extracting the best schedules from all

Page 4 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

candidate schedules in a given search space, in the
minimum time, to achieve the overall goal of mini-
mum makespan. Furthermore, the solution may be
able to predict the minimum makespan for a given load
condition.

Problem formulation
The resource allocation and task scheduling in a cloud
computing environment is an NP-Hard problem, as it
requires more than polynomial time to reach a solu-
tion. (i.e., harder than hardest problem). To elaborate,
let us consider n the number of tasks to be assigned to
r number of resources. The number of computations
required for assigning the ‘n’ number of tasks to the
r number of resources is calculated using the formula
nCr. For example, if 20 tasks are assigned to 6 resources
then the number of computations is 20C6 = 38,760. If
we add only one additional task to this set, then the
number of computations would grow many folds i.e.,
21C6 = 54,264. For a large number of tasks, it requires
more than polynomial time to allocate resources to
tasks. Task scheduling and resource allocation, in the
cloud, takes place at two distinct layers. Tasks are
mapped to Virtual machines based on their configu-
ration and availability and thereafter virtual machines
are mapped to physical hosts. This two-layer mapping
in a cloud environment increases the complexity and
size of the possible search space for finding the opti-
mal schedules designed to achieve the overall goal of
minimum makespan. Thus, more than polynomial
time is required to allocate the available resources to
the tasks in real-time resulting in making scheduling
an NP-Hard problem in cloud computing. So instead
of finding the time-consuming ideal solution, it’s bet-
ter to find the “good enough” optimal solution in the
shortest possible time.

Several approaches have been proposed for solving
this prominent issue of scheduling in the cloud but
still, all the problems are not fully addressed. There are
still a few challenges faced by the existing approaches.
The main challenge is to reduce the scheduling over-
head. However, in a true cloud platform, resource pro-
filing and stage-based simulations are often run with
thousands or millions of possible schedules when the
best solution is needed. Generating an optimal sched-
ule in the cloud can take weeks. To create an optimal
schedule using Monte Carlo simulations, too long a
simulation time of weeks may be required. Reducing
this scheduling overhead is essential in real-time cloud
computing.

The work proposed in this paper tries to handle the
above-discussed issues and provide a more promising
result. This paper proposes a new workload planning

method to schedule cloudlets in the cloud by reducing
the search space significantly to lower the scheduling
overhead.

Proposed approach
The real-world problem needs a real-world solution.
One can say that the ideal solution is just a theoretical
concept as it is unattainable and is not cost-effective
also. Finding the accurate solution for a problem seems
to be an unrealistic & time-consuming task. Lack of
structure, a wide range of uncertainties, and the pres-
ence of a vast search space in a cloud environment give
rise to the need to quickly narrow down the available
good enough scheduling approach rather than stick-
ing to the time-consuming more accurate scheduling
approach. This leads us to the concept of comparing
orders first and then estimating their value second. In
the other words, it’s the ordinal optimization before
cardinal optimization.

Ordinal Optimizations focus on influencing the strate-
gic change of goals. Figure 1 illustrates the basic concept
of Ordinal Optimization. The two basic principles of OO
are:

1.	 Decisive Order is more elementary than value. In
layman’s terms, one can say that it’s much easier to
determine which stone that you are holding in both
of your hands is heavy rather than telling the differ-
ence in their weight.

2.	 Goal Softening eliminates the computational burden
of finding the optimal solution. Instead of asking for
the “best for sure” one can settle for the “good enough
with high probability”. A given problem is much eas-
ier to solve by softening the goal of optimization.

Fig. 1  The generalized concept for Optimization

Page 5 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

In this work Horse Race condition (HR) is used with
Ordinal optimization to narrow down the search space
for selecting the Optimal Schedule. The HR can be pic-
tured as having all Schedules in the search space com-
peting with each other at the same time, similar to N
horses running a race [32]. During the analysis process,
some of the schedules might be leading at a particular
point in time and the same schedules might be lagging
at another instant in time. The positions of the Sched-
ules are determined by the estimated time taken to
complete the given task. Just like a race is stopped for
all the horses concurrently. Similarly, for subset selec-
tion for Ordinal Optimization, all the schedules are
stopped simultaneously and the performance of each
schedule at the stopping time is analyzed.

Let’s mathematically formalize the proposed
approach. Table 1 depicts the basic notations used in
the proposed work. Suppose we are having the search
space as a set of candidate schedules (U), where θ is an
individual schedule such that (θ∈ U). The top-g Sched-
ules selected using HR_ne out of the available candi-
date schedules (U) are termed as the “good enough”
schedules of subset G using the preemption methodol-
ogy. g denotes the Size of the subset G. With approx.
Similar cardinality and HR_e pick another subset S

called as “selected subset”. i.e., |S| ≅ |G|. The selec-
tion criteria of subset S directly affect the probability
of finding the optimal schedule. Truly good schedules
inside S are termed as k(≤g) such that u> > g> > s> > k.
In other words, k is the number of schedules of subset
S that are also the member of subset G. Probability of
finding the schedules with a variation in noise as i given
by P(| G∩| ≥k : σ2, N). This alignment probability can be
made more accurate by increasing the size of G and S.

The conceptual flow chart for the proposed work is
depicted in Fig. 2. It searches for good enough sched-
ules and insists on aiming for the best schedules. Ordi-
nal Optimization is a tradeoff between accurate and
good enough with high probability. This enhanced
Ordinal Optimization approach is applied to the real-
time cloud environment to obtain the optimal sched-
ules in a minimum Makespan. The complete approach
can be explained with the help of pseudocode as in
Algorithms 1 and 2.

Algorithm 1. Enhanced Ordinal Optimization Algorithm

Table 1  Basic notations

Notation Definition

OO Ordinal Optimization

U A set of all possible schedules in
search space is termed a Candidate
Set.

N Total number of available Schedules

θ A Schedule that is an element of the
Candidate Set U.

u The cardinality of Set U, i.e., |U| = u.

G A Subset of U that has good enough
schedules, is termed an Acceptance
Set.

g The cardinality of Set G, i.e., |G| = g.

S A Subset of U has the most promis-
ing Schedule termed a Selection Set.

s The cardinality of Set G, i.e., |S| = s.

M Time taken to execute all the tasks,
termed as Makespan

k The cardinality of Set G ∩ S, i.e., | G
∩ S | = k.

HR Horse Race condition

HR_ne Horse Race condition with no
elimination

HR_e Horse Race condition with elimina-
tion

OPC Ordered Performance Curve

σ variation in noise

Page 6 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

The proposed approach is simulated on a cloud com-
puting environment that provides a real-time cloud
computing scenario. The configuration details of the
data centers, Virtual Machines, and cloudlets used in the
customized simulation setup are given in Table 2 and
consist of general information on the data centers, such
as the number of data centers, the number of Virtual
Machines, the number of cloudlets, etc. Algorithm 1,

gives a detailed description regarding the creation of a
testbed for applying the proposed approach. Initially, 5
different data centers are created then 25 random Vir-
tual machines with different configurations are created.
Two hundred fifty varying cloudlets are then created.
Virtual machines are scheduled to data centers using
time shared scheduler and cloudlets are scheduled to
the virtual machine using space shared scheduler for the
designing of 30 candidate schedules. Horse Race condi-
tion (HR) is used with Ordinal optimization to narrow
down the search space for selecting the Optimal Sched-
ule. The positions of the Schedules are determined by
the estimated time taken to complete the given task.
The top-g Schedules selected using Horse race without
elimination out of the available candidate schedules (U)
are termed as the “good enough” schedules of subset G

Fig. 2  Flow Chart for enhanced Ordinal Optimization

Table 2  Specifications for designing all the candidate schedules

No. of Datacentres created 5

No. of cloudlets 250

No. of VMs 25

Cloudlet Scheduler Space Share

VM Scheduler Time Share

M/C configuration (MIPS) random (250–1000)

Page 7 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

using the preemption methodology. Horse Race with
elimination picks another subset S called as “selected
subset. Then using ordinal optimization most promising
schedules are selected.

Algorithm 2. Mathematical Equation to schedule cloudlets with
minimum possible Makespan

Algorithm 2, derives a mathematical equation, that can
be used to predict the possible minimum makespan for
cloudlets that are coming in the future and scheduled
on the optimal schedule obtained from Algorithm 1.
Through Ordinal Optimization 10 optimal schedules
are selected. Each schedule has a different configuration.
Four different types of loads are applied on each optimal
schedule. Four different workloads of 250, 300, 350, and
400 cloudlets are applied. Makespan corresponding to
them is recorded. Graph corresponding to these cloud-
lets and makespan is plotted and linear regression is then
applied. The slope and intercept of this graph are calcu-
lated and finally, Eq. 3 gives the mathematical equation
for scheduling future cloudlets on these optimal sched-
ules in the minimum possible makespan.

Designing of candidate schedules (U) for applying ordinal
optimization
CloudSim is a simulation tool that provides a platform
for developing a cloud architecture model that sup-
ports services and infrastructure provided by the cloud.
Researchers can experiment with their work on this
tool as it looks and feels like a cloud platform with all
the variation and fluctuation required to implement the
work [33]. In our earlier work, CloudSim version 3.0 is
used to design the search space of candidate schedules
[34]. The same Candidate set (U) is used in this work.
Each schedule is denoted by θ.

The candidate schedules set consists of 30 sched-
ules’ = {θ1, θ2, θ3……. θ30}.

A set of 30 schedules were designed using the follow-
ing parameters on CloudSim 3.0.

a)	 Number of Datacenters
b)	 The varying number of virtual machines in a Data-

center
c)	 Machine configuration of each virtual machine in the

data center
d)	 Number of cloudlets executing in a particular data-

center
e)	 Type of scheduling policy.

Figure 3 shows that cloudlets are assigned to Vir-
tual Machines by space-shared scheduling and virtual
machines are assigned to hosts in the data center by
Time Shared Scheduling. These 30 schedules will act as
a testbed for applying the proposed enhanced ordinal
optimization.

In Fig. 4, the values of the makespan are the actual Per-
formance distributed cloud environment of applying the
Candidate Schedule schedules. The graph depicts the
performance of each schedule based on makespan.

Ordered performance curve
Based on the Makespan, Schedules are plotted from the
smallest to the largest to form a nondecreasing curve,
which is named an ordered performance curve (OPC) in
OO [35]. In Fig. 5 OPC is the plot of performance value
against the designs i.e., Makespan vs. Candidate Sched-
ules. By using OPC Average Makespan is coming as
948.853 which depicts the average performance of the
schedules.

Subset selection rules for OO
Ordinal optimization uses selection rules for selecting
the Subset G & S. But before choosing the appropriate
selection rules it must go through the below questions:

1.	 Set S is selected by ordering all top designs using car-
dinal value assessment and comparing them either
pair-wise or globally.

2.	 Initial Computing budget is assigned to the design
either by iterating the initial design with elimination
or without elimination.

After reviewing the above two questions, appropri-
ate approaches are used in ordinal optimization. The
horse Race condition is used when the initial estimate
is made for the performance of each schedule using
the crude model to select the top s schedules. HR with

Page 8 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

no elimination (HR_ne) is used when the proposed
model compares the mean values of all the candidate
schedules.

Selection of subset G (good enough schedules)

❖ Ordered performance curve
❖ HR(horse race) with no elimination (HR_ne)

HR with no elimination (HR_ne) is used for the selec-
tion of Subset G, this approach compares the mean val-
ues of all the candidate schedules using preemption
methodology. The Schedules having a Makespan less
than the Average value of OPC are selected and termed
as the top best schedules. From Fig. 5 these top schedules
form the set G of good enough schedules.

Selection of subset S (acceptance schedule)
Acceptance schedule is selected by Horse Race method-
ology with global comparison i.e., HR_e. In this mech-
anism, the best schedule of each comparison round
receives one makespan value, and then that champion
schedule is compared with other schedules based on
the makespan value. The winner of each round is kept
in every successive round of comparison whereas the
other schedules are simply eliminated by dumping

G =
{

θ3, θ16, θ19, θ25, θ11, θ30, θ18, θ6, θ26, θ24 , θ23, θ7, θ9, θ17, θ13, θ2, θ10

}

them. In the end, a list of Sorted schedules is obtained
in descending order.

This technique compares two schedules and eliminates
the one which has a larger Makespan. The whole candidate
set U is reduced to 15 schedules. From U = {θ1, θ2, θ3……..
θ30} below schedules are selected, and set S is formed.

Finding GПS
In the Ordinal Optimization approach, the set (G∩S)
results in k optimal schedules which are good enough
schedules obtained from Set S & G.

Number of Candidate schedules, U = 30
Number of Good enough subset, G = 17
Number of accepted schedules, S = 15
GПS = 10

Cloud simulation results and discussions
Hereafter, it presents how these optimum schedules work
with different loads in the cloud computing environment.

Experiment conditions
Through Ordinal Optimization 10 optimum schedules
are selected.

S =
{

θ1, θ2, θ3, θ4, θ5, θ8, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ29, θ30

}

G = {θ3, θ16, θ19, θ25, θ11, θ30, θ18, θ6, θ26, θ24, θ23, θ7, θ9, θ17, θ13, θ2, θ10}
S = {θ1, θ2, θ3, θ4, θ5, θ8, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ29, θ30}
G�S = {θ2, θ3, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ30}

So G�S = {θ2, θ3, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ30}.

Fig. 3  Scheduling architecture diagram

Page 9 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

Each schedule has a different configuration. Four different
types of loads are applied on each schedule. Four different
workloads of 250, 300, 350, and 400 cloudlets are applied.

Table 3 shows the Makespan corresponding to each
schedule and load. A graph plotted as Makespan vs.
Load for analyzing these optimal schedules. Now differ-
ent types of loads are applied to these GПS schedules

and plot a graph between Load and Makespan for GПSis
shown in Fig. 6.

Numerical analysis of the proposed approach
Forecasting the outcome of one parameter based on the
result of another parameter is termed linear regression.
The criterion variable (Y) is the variable for which the

Fig. 4  Makespan vs. Schedule graph

Fig. 5  Ordered performance curve

Page 10 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

value is being predicted. The predictor variable (X) is
the variable based on which forecasting of the Criterion
variable is done. Criterion variable X and Y for the vary-
ing workload is depicted in Table 4. In the case of sim-
ple regression, there is only one Predictor Variable (X).
A straight line as a slope is obtained when the Criterion
variable (Y) is plotted as a function of the Predictor Vari-
able (X).

Linear regression aims at uncovering the best-fitting
undeviating line through all the values of the graph. The
tailor-made line is referred to as a regression line.

Computing the regression line

➢ The mean of X is denoted by Mx.
➢ The Mean of Y is denoted by My.

Table 3  Makespan of schedule vs. load

Schedules➔
Load

θ2 θ3 θ11 θ13 θ16 θ18 θ19 θ24 θ26 θ30

250(L1) 468 410 483 445 483 555 439 449 459 432

300(L2) 537 492 580 534 531 666 483 584 550 476

350(L3) 702 533 628 579 580 777 527 674 642 519

400(L4) 837 574 677 624 628 832 571 808 734 562

Fig. 6  Makespan vs. Load

Page 11 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

➢ The standard deviation of X is denoted by Sx.
➢ The standard deviation of Y is denoted by Sy.
➢ correlation between X and Y is coined by r.s

Table 5 depicts the calculus for computing the regression
line and the undeviating line of Fig. 7 depicts the slope i.e.,
the band it is derived as follows:

A is the intercept and the given below formula can be
used to calculate it

The regression line is calculated by the below formula:

To calculate the minimum Makespan of the optimum
schedule for a given load on the cloud by using the above
Eq. 4.

The fallacy in forecasting cannot be eliminated. For any
schedule the fallacy of forecasting is the value of schedule
(Y) subtracted predicted value (Y′) i.e., the value on the
best-fitted line. Table 6 shows the predicted values (Y′) and
the errors of prediction (Y-Y′). Column (Y-Y′) 2 depicts the
squared error of forecasting. The Sum of squared errors of

(1)
b =

rSy
Sx

b = 1.4799
b = 1.48

(2)A = My − bMx

A = 95.6

(3)Y′ = bX + A

(4)Y
′ = (1.48) X + 95.6 (best − fitted line)

Table 4  Input table for linear regression

X Y

250 462.3

300 543.3

350 616.1

400 684.7

Table 5  Calculus for computing the regression line

Mx My Sx Sy r

325 576.6 64.54972 95.60202 0.999284(high correlation)

Fig. 7  Best Fitted Line For optimum Schedule

Page 12 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

forecasting is the benchmark for obtaining the best-fitted
line. A regression line is given by the below Eq. 5:

The predicted value (Y′) is the sum of the intercept of
Yi.e.A and the bX where b is the slope of the regression
line. Table 7 depicts the minimum Makespan correspond-
ing to the workload as per the best-fitted Line.

The proposed method mainly focuses on the Makes-
pan parameter. In the Future Other Factors like Secu-
rity, efficiency, task priority, and energy consumption
must be taken as well to enhance the overall perfor-
mance in the cloud environment. This approach works

(5)Y′ = bX + A

within a min-max range of virtual machine configura-
tions, cloudlets, and data centers. Any deviation from
this range and workload above the threshold need to be
explored in the future. Table 8 discussed the Compari-
son of the proposed approach with the other existing
scheduling methods.

Conclusion
A cloud service provider’s Platform has heterogeneous
infrastructure from a variety of cloud users and through
virtualization, a large number of cloudlets are scheduled
on these limited number of resources in such a manner
that each cloud user gets the minimum delay. A low-
overhead-based scheduling scheme, based on the Ordi-
nal Optimization modeling technique, is being proposed
in this work.

A testbed for the candidate schedules was designed
for applying and testing the proposed approach. This
includes creating various data centers, cloudlets, and
virtual machines along with the scheduling policies
for the cloudlets and virtual machines so that a realis-
tic cloud environment could be set up to schedule the
tasks and analyze the results. The varying workloads
are then mapped onto the optimal schedules, which
were obtained after applying the Ordinal optimization
modeling technique, to generate the desired makes-
pan. Subsequently, the Linear regression technique is
applied to these schedules to predict the future sched-
uling of the cloudlets for obtaining the minimum pos-
sible makespan for a given set of available optimal
schedules. In the future, the proposed technique can
be further implemented with other parameters like
Security, efficiency, task priority, and energy con-
sumption as well to enhance the overall performance
in the cloud environment.

Table 6  Linear regression table

Linear regression table

X Y Y′ Y-Y′ (Y-Y′)2

250 462.3 465.6 −3.3 10.89

300 543.3 539.6 3.7 13.69

350 616.1 613.6 2.5 6.25

400 684.7 687.6 −2.9 8.41

Table 7  Load vs. minimum Makespan table

Makespan According
to the best-fitted line

250(L1) 465.6

300(L2) 539.6

350(L3) 613.6

400(L4) 687.6

Table 8  Comparison of task scheduling methods

Scheduling
Method

Strength and Advantages Disadvantages or Limitations

Monte Carlo Simu-
lation Method

High precision to get the best schedule. The
Monte Carlo method reduces the memory
requirements of the fixed short scheduling period,
resulting in high system throughput.

High simulation work with exhaustive searches for optimization. This
method does not make the adapt to sudden changes in workload. Longer
planning horizons degrade performance.

Blind Pick Sched-
uling Method

With moderate overhead, this method applies a
reduced search space and can somewhat adapt to
rapid workload fluctuations.

It has moderate accuracy because it has less overhead. With a bad selection
set, the performance drops in Monte Carlo.

Ordinal Optimiza-
tion (Proposed)
Method

With very little overhead, OO can adapt to fast
workload fluctuations and run suboptimal
schedules with high multitasking throughput and
reduced memory footprint.

The suboptimal schedule generated at each period may not be as optimal
as the schedule generated by the Monte Carlo method. A high noise level
can degrade the schedule generated by OO.

Page 13 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8 	

Acknowledgments
The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions on improving this paper.

Authors’ contributions
Monika Yadav reviewed the state of the art in the field, proposed the method,
implemented algorithms, and analyzed the results. Atul Mishra supervised this
research, lead and approved its scientific contribution, provided general input,
reviewed the article, and issued his approval for the final version. The author(s)
read and approved the final manuscript.

Funding
The authors declare that they have no funder.

Availability of data and materials
The data used during the current study are available from the corresponding
author upon reasonable request.

Declarations

Ethics approval and consent to participate
The work is a novel work and has not been published elsewhere nor is it cur-
rently under review for publication elsewhere.

Consent for publication
Informed consent was obtained from all individual participants included in
the study.

Competing interests
The authors declare that they have no competing interests.

Received: 19 April 2022 Accepted: 8 January 2023

References
	1.	 Delias P, Doulamis AD, Doulamis ND, Matsatsinis N (2011) Optimizing

resource conflicts in workflow management systems. IEEE Trans Knowl
Data Eng 23(3):417–432. https://​doi.​org/​10.​1109/​TKDE.​2010.​113

	2.	 Hanani A, Rahmani AM, Sahafi A (2017) A multi-parameter schedul-
ing method of dynamic workloads for big data calculation in cloud
computing. J Supercomput 73(11):4796–4822. https://​doi.​org/​10.​1007/​
s11227-​017-​2050-6

	3.	 Tziritas N, Xu CZ, Loukopoulos T, Khan SU, Yu Z (2013) Application-aware
workload consolidation to minimize both energy consumption and
network load in cloud environments. In: Proceedings of the international
conference on parallel processing, pp 449–457. https://​doi.​org/​10.​1109/​
ICPP.​2013.​54

	4.	 Yadav M, Poongodi T (2020) 5. Federated cloud service management and
IoT. In: Internet of things, 1st edn. De Gruyter, p 101. https://​doi.​org/​10.​
1515/​97831​10628​517-​005

	5.	 Sandhu AK (2022) Big data with cloud computing: discussions and
challenges. Big Data Min Anal 5(1). https://​doi.​org/​10.​26599/​BDMA.​2021.​
90200​16

	6.	 Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The cost of doing
science on the cloud: the montage example. In: 2008 SC - international
conference for high performance computing, networking, storage and
analysis, SC 2008. https://​doi.​org/​10.​1109/​SC.​2008.​52179​32

	7.	 Hoffa C et al (2008) On the use of cloud computing for scientific work-
flows. In: Proceedings - 4th IEEE international conference on eScience,
eScience 2008, pp 640–645. https://​doi.​org/​10.​1109/​eScie​nce.​2008.​167

	8.	 Yadav M, Breja M (2021) Genre-based recommendation on community
cloud using Apriori algorithm. In: Prateek M, Singh TP, Choudhury T,
Pandey HM, Gia Nhu N (eds) Proceedings of international conference
on machine intelligence and data science applications: MIDAS 2020.
Springer Singapore, Singapore, pp 139–151. https://​doi.​org/​10.​1007/​
978-​981-​33-​4087-9

	9.	 Malik SUR, Khan SU, Srinivasan SK (2013) Modeling and analysis of state-
of-the-art VM-based cloud management platforms. IEEE Trans Cloud
Comput 1(1):50–63. https://​doi.​org/​10.​1109/​TCC.​2013.3

	10.	 Somasundaram TS, Govindarajan K (2014) CLOUDRB: a framework for
scheduling and managing High-Performance Computing (HPC) applica-
tions in science cloud. Futur Gener Comput Syst 34:47–65. https://​doi.​
org/​10.​1016/j.​future.​2013.​12.​024

	11.	 Yadav M, Breja M (2020) Secure DNA and Morse code based profile
access control models for cloud computing environment. Procedia Com-
put Sci 167(2019):2590–2598. https://​doi.​org/​10.​1016/j.​procs.​2020.​03.​317

	12.	 Kim D, Son J, Seo D, Kim Y, Kim H, Seo JT (2020) A novel transparent and
auditable fog-assisted cloud storage with compensation mechanism.
Tsinghua Sci Technol 25(1):28–43. https://​doi.​org/​10.​26599/​TST.​2019.​
90100​25

	13.	 Doǧan A, Özgüner F (2005) Biobjective scheduling algorithms for execu-
tion time-reliability trade-off in heterogeneous computing systems.
Comput J 48(3):300–314. https://​doi.​org/​10.​1093/​comjnl/​bxh086

	14.	 Smith J, Siegel HJ, Maciejewski AA (2008) A stochastic model for robust
resource allocation in heterogeneous parallel and distributed computing
systems. In: IPDPS Miami 2008 - proceedings of the 22nd IEEE interna-
tional parallel and distributed processing symposium, program and
CD-ROM. https://​doi.​org/​10.​1109/​IPDPS.​2008.​45364​31

	15.	 Nath S, Wu J (2020) Deep reinforcement learning for dynamic computa-
tion offloading and resource allocation in cache-assisted mobile edge
computing systems. Intell Converged Netw 1(2):181–198. https://​doi.​org/​
10.​23919/​icn.​2020.​0014

	16.	 Yu J, Buyya R (2006) A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms. In: 2006 workshop
on workflows in support of large-scale science, WORKS’06, vol 14, pp
217–230. https://​doi.​org/​10.​1109/​WORKS.​2006.​52823​30

	17.	 Zhang W, Chen X, Jiang J (2021) A multi-objective optimization method
of initial virtual machine fault-tolerant placement for star topological data
centers of cloud systems. Tsinghua Sci Technol 26(1):95–111. https://​doi.​
org/​10.​26599/​TST.​2019.​90100​44

	18.	 Benoit A, Marchal L, Pineau JF, Robert Y, Vivien F (2009) Resource-aware
allocation strategies for divisible loads on large-scale systems. In: IPDPS
2009 - proceedings of the 2009 IEEE international parallel and distributed
processing symposium, pp 2–5. https://​doi.​org/​10.​1109/​IPDPS.​2009.​
51609​12

	19.	 Gawali MB, Shinde SK (2017) Standard deviation based modified cuckoo
optimization algorithm for task scheduling to efficient resource allocation
in cloud computing. J Adv Inf Technol 8(4):210–218. https://​doi.​org/​10.​
12720/​jait.8.​4.​210-​218

	20.	 Buyya R, Ranjan R, Calheiros RN (2010) InterCloud: utility-oriented
federation of cloud computing environments for scaling of application
services. In: Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformat-
ics), vol 6081 LNCS, no. PART 1, pp 13–31. https://​doi.​org/​10.​1007/​
978-3-​642-​13119-6_2

	21.	 Lu K, Zomaya AY (2007) A hybrid policy for job scheduling and load
balancing in heterogeneous computational grids. In: Sixth international
symposium on parallel and distributed computing, ISPDC 2007. https://​
doi.​org/​10.​1109/​ISPDC.​2007.4

	22.	 Van Den Bossche R, Vanmechelen K, Broeckhove J (2010) Cost-optimal
scheduling in hybrid IaaS clouds for deadline constrained workloads. In:
Proceedings - 2010 IEEE 3rd international conference on cloud comput-
ing, CLOUD 2010, pp 228–235. https://​doi.​org/​10.​1109/​CLOUD.​2010.​58

	23.	 Bertot L, Genaud S, Gossa J (2018) An overview of cloud simulation
enhancement using the Monte-Carlo method. In: Proceedings - 18th
IEEE/ACM international symposium on cluster, cloud and grid comput-
ing, CCGRID 2018, pp 386–387. https://​doi.​org/​10.​1109/​CCGRID.​2018.​
00064

	24.	 Zhang F, Cao J, Hwang K, Li K, Khan SU (2015) Adaptive workflow sched-
uling on cloud computing platforms with iterativeordinal optimization.
IEEE Trans Cloud Comput 3(2):156–168. https://​doi.​org/​10.​1109/​TCC.​2014.​
23504​90

	25.	 Zhang F, Cao J, Tan W, Khan SU, Li K, Zomaya AY (2014) Evolutionary
scheduling of dynamic multitasking workloads for big-data analytics in
elastic cloud. IEEE Trans Emerg Top Comput 2(3):338–351. https://​doi.​org/​
10.​1109/​TETC.​2014.​23481​96

https://doi.org/10.1109/TKDE.2010.113
https://doi.org/10.1007/s11227-017-2050-6
https://doi.org/10.1007/s11227-017-2050-6
https://doi.org/10.1109/ICPP.2013.54
https://doi.org/10.1109/ICPP.2013.54
https://doi.org/10.1515/9783110628517-005
https://doi.org/10.1515/9783110628517-005
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.1109/SC.2008.5217932
https://doi.org/10.1109/eScience.2008.167
https://doi.org/10.1007/978-981-33-4087-9
https://doi.org/10.1007/978-981-33-4087-9
https://doi.org/10.1109/TCC.2013.3
https://doi.org/10.1016/j.future.2013.12.024
https://doi.org/10.1016/j.future.2013.12.024
https://doi.org/10.1016/j.procs.2020.03.317
https://doi.org/10.26599/TST.2019.9010025
https://doi.org/10.26599/TST.2019.9010025
https://doi.org/10.1093/comjnl/bxh086
https://doi.org/10.1109/IPDPS.2008.4536431
https://doi.org/10.23919/icn.2020.0014
https://doi.org/10.23919/icn.2020.0014
https://doi.org/10.1109/WORKS.2006.5282330
https://doi.org/10.26599/TST.2019.9010044
https://doi.org/10.26599/TST.2019.9010044
https://doi.org/10.1109/IPDPS.2009.5160912
https://doi.org/10.1109/IPDPS.2009.5160912
https://doi.org/10.12720/jait.8.4.210-218
https://doi.org/10.12720/jait.8.4.210-218
https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/10.1109/ISPDC.2007.4
https://doi.org/10.1109/ISPDC.2007.4
https://doi.org/10.1109/CLOUD.2010.58
https://doi.org/10.1109/CCGRID.2018.00064
https://doi.org/10.1109/CCGRID.2018.00064
https://doi.org/10.1109/TCC.2014.2350490
https://doi.org/10.1109/TCC.2014.2350490
https://doi.org/10.1109/TETC.2014.2348196
https://doi.org/10.1109/TETC.2014.2348196

Page 14 of 14Yadav and Mishra ﻿Journal of Cloud Computing (2023) 12:8

	26.	 Gawali MB, Shinde SK (2018) Task scheduling and resource allocation
in cloud computing using a heuristic approach. J Cloud Comput 7(1).
https://​doi.​org/​10.​1186/​s13677-​018-​0105-8

	27.	 Gu J, Hu J, Zhao T, Sun G (2012) A new resource scheduling strategy
based on genetic algorithm in cloud computing environment. J Comput
7(1):42–52. https://​doi.​org/​10.​4304/​jcp.7.​1.​42-​52

	28.	 Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans
Parallel Distrib Syst 13(3):260–274. https://​doi.​org/​10.​1109/​71.​993206

	29.	 Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objective workflow
scheduling in cloud. IEEE Trans Parallel Distrib Syst 27(5):1344–1357.
https://​doi.​org/​10.​1109/​TPDS.​2015.​24464​59

	30.	 Ho YC (1999) An explanation of ordinal optimization: soft computing for
hard problems. Inf Sci 113(3–4):169–192. https://​doi.​org/​10.​1016/​S0020-​
0255(98)​10056-7

	31.	 Malawski M, Figiela K, Bubak M, Deelman E, Nabrzyski J (2015) Scheduling
multilevel deadline-constrained scientific workflows on clouds based
on cost optimization. Sci Program 2015. https://​doi.​org/​10.​1155/​2015/​
680271

	32.	 Edward Lau TW, Ho YC (1997) Universal alignment probabilities and sub-
set selection for ordinal optimization. J Optim Theory Appl 93(3):455–489.
https://​doi.​org/​10.​1023/a:​10226​14327​007

	33.	 Goyal T, Singh A, Agrawa A (2012) Cloudsim: simulator for cloud comput-
ing infrastructure and modeling. Procedia Eng 38:3566–3572. https://​doi.​
org/​10.​1016/j.​proeng.​2012.​06.​412

	34.	 Yadav M, Mishra A, Balusamy B (2020) Design of candidate schedules for
applying iterative ordinal optimisation for scheduling technique on cloud
computing platform. Int J Internet Manuf Serv 7(1–2):5–19. https://​doi.​
org/​10.​1504/​IJIMS.​2020.​105027

	35.	 Hu Y et al (2000) Screening of optimal structure among large-scale multi-
state weighted k-out-of-n systems considering reliability evaluation. Ann
Oper Res 206(1–4):107268. https://​doi.​org/​10.​1016/j.​ress.​2020.​107268

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13677-018-0105-8
https://doi.org/10.4304/jcp.7.1.42-52
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/TPDS.2015.2446459
https://doi.org/10.1016/S0020-0255(98)10056-7
https://doi.org/10.1016/S0020-0255(98)10056-7
https://doi.org/10.1155/2015/680271
https://doi.org/10.1155/2015/680271
https://doi.org/10.1023/a:1022614327007
https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1504/IJIMS.2020.105027
https://doi.org/10.1504/IJIMS.2020.105027
https://doi.org/10.1016/j.ress.2020.107268

	An enhanced ordinal optimization with lower scheduling overhead based novel approach for task scheduling in cloud computing environment
	Abstract
	Introduction
	Related work
	Problem statement and formulation
	Problem statement
	Problem formulation

	Proposed approach
	Designing of candidate schedules (U) for applying ordinal optimization
	Ordered performance curve
	Subset selection rules for OO
	Selection of subset G (good enough schedules)
	Selection of subset S (acceptance schedule)
	Finding GПS

	Cloud simulation results and discussions
	Experiment conditions
	Numerical analysis of the proposed approach
	Computing the regression line

	Conclusion
	Acknowledgments
	References

