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Abstract 

Efficient utilization of available computing resources in Cloud computing is one of the most challenging problems 
for cloud providers. This requires the design of an efficient and optimal task-scheduling strategy that can play a vital 
role in the functioning and overall performance of the cloud computing system. Optimal Schedules are specifically 
needed for scheduling virtual machines in fluctuating & unpredictable dynamic cloud scenario. Although there exist 
numerous approaches for enhancing task scheduling in the cloud environment, it is still an open issue. The paper 
focuses on an improved & enhanced ordinal optimization technique to reduce the large search space for optimal 
scheduling in the minimum time to achieve the goal of minimum makespan. To meet the current requirement of 
optimal schedule for minimum makespan, ordinal optimization that uses horse race conditions for selection rules is 
applied in an enhanced reiterative manner to achieve low overhead by smartly allocating the load to the most prom-
ising schedule. This proposed ordinal optimization technique and linear regression generate optimal schedules that 
help achieve minimum makespan. Furthermore, the proposed mathematical equation, derived using linear regres-
sion, predicts any future dynamic workload for a minimum makespan period target.
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Introduction
Cloud computing has revolutionized the way comput-
ing resources and services are delivered dynamically in 
a virtualized manner over the Internet. Computing is 
delivered using a utility-based business model, wherein, 
on-demand delivery of computing power on a pay-as-
you-go basis like traditional services such as electricity, 
water, gas, or telephony takes place. Cloud service pro-
viders, also known as hyper scalers, make accessing cloud 

services easier. Customers receive cloud services from 
cloud service providers vice Level Agreements (SLA).

Cloud computing is characterized by distinct fea-
tures like multi-tenancy, scalability, elasticity, pooling of 
resources, and virtualization. Based on these, the cloud 
service provider deploys cloud services such as IaaS 
(Infrastructure as a service), SaaS (Software as a service,) 
and PaaS (Platform as a service). For the deployment of 
these service models and efficient utilization of cloud 
resources, the providers rely on the deployment of sched-
uling algorithms. These algorithms ensure that resources 
are easily available on demand, resources are efficiently 
utilized under high/low load conditions and the cost of 
using resources is reduced.

The virtualization technology theoretically enables an 
infinitude of resources for the cloud. But even if cloud 
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service providers practically control an endless num-
ber of resources, consumers may experience issues 
when trying to access resources and services. The pri-
mary cause of this is an improper mapping of physical 
resources to virtual machines, which impedes the per-
formance of cloud users. The issue of the uneven map-
ping of virtual resources to the physical infrastructure 
is solved through scheduling.

Task scheduling and allocating resources in the right 
order and with the least delay to improve system per-
formance is difficult in a cloud environment. Due to the 
complexity of the cloud and real-time mapping of tasks 
with the virtual machines and then virtual machines 
mapping with the host machine, scheduling of tasks 
in cloud computing becomes an NP-Hard problem. 
Therefore, this study offers a solution to task scheduling 
problems with an advanced ordinal optimization tech-
nique. The ordinal optimization (OO) method extracts 
the best schedules from all candidate schedules cur-
rently available in a cloud environment. Furthermore, 
a mathematical equation is also suggested to sched-
ule any task on the cloud with the shortest makespan 
period based on the regression technique designed for 
these selected ideal schedules.

The major contributions of this paper are summa-
rized as follows:

1.	 A testbed for the candidate schedules was designed 
using CloudSim Simulator for applying and testing 
the proposed approach.

2.	 An enhanced Ordinal Optimization methodology 
with lower Scheduling overhead has been proposed 
which will give the optimal schedules from the cur-
rently available candidate schedules.

3.	 Linear regression technique is applied to predict the 
future scheduling of the cloudlets for obtaining the 
minimum possible makespan for a given set of avail-
able optimal schedules.

4.	 The proposed approach is experimentally investi-
gated using the CloudSim simulator.

The remainder of the paper is organized as follows. 
The related studies that investigate task scheduling and 
resource allocation and associated works are addressed 
in the section “Related work”. Section “Problem state-
ment and formulation” discusses the problem statement 
and formulation behind this work. Section “Proposed 
approach” explains the proposed methodology along 
with the proposed Algorithm. Result discussions and 
comparison with the existing Blind Pick and Monte 
Carlo algorithms are covered in the section “Cloud 
simulation results and discussions”. Finally, concluding 

remarks and future directions are presented in the sec-
tion “Conclusion”.

Related work
Several studies have set one’s sight on resolving the 
task scheduling issue in the distributed environment 
in the past decade. Scheduling of large-scale work-
loads on distributed cloud platforms has been already 
explored by several researchers formerly [1–5]. In the 
last few years, several other crucial characteristics 
along with scheduling in the distributed cloud envi-
ronment are also explored by imminent researchers. 
In some of the proposed research methods, features 
such as authentication, security, and load balancing are 
included besides scheduling [6–11]. To achieve a higher 
throughput storage architecture, Donghyun et  al. [12] 
provide a storage data audit scheme for fog-assisted 
cloud storage with no need to modify the existing end-
user IoT terminal devices. This section addresses the 
recently proposed algorithms for scheduling workloads 
in the cloud computing platform.

Dogan et  al. [13] algorithm for scheduling applica-
tions with the ultimate goal of merest execution time, 
least completion time, and opportunistic load bal-
ance. The author claims that the proposed algorithm 
also diminishes the failure probability. Smith et  al. 
[14] presented heuristic approaches including auction, 
min-min, and max-min. In this, the authors suggested 
two ways to implement a vigorous metric for heuris-
tics Infrastructure allocation. Samrat Nath et  al. [15] 
proposed a dynamic scheduling policy based on Deep 
Reinforcement Learning (DRL) with the Deep Deter-
ministic Policy Gradient (DDPG) method to solve the 
problem of Mobile User task offloading in a Mobile 
edge computing server.

Buyya et  al. [16] present a new model based on the 
budget, deadline, and Quality of Service with the ulti-
mate goal to find an optimized solution for task sched-
uling-based problems. This genetic-based algorithm 
aims to solve deadline and cost-limitation-based opti-
mization issues by addressing the heterogeneous and 
booking-based service-oriented distributed environ-
ment. Zhang et  al. [17] based on multiple factors pro-
posed a heuristic ant colony algorithm with a better VM 
fault-tolerant placement solution for scheduling ser-
vice-providing virtual machines and conventional heu-
ristic algorithms are used for scheduling the redundant 
virtual machines.

Benoit et  al. [18] came forward with an approach 
that distributes the workloads based on the knowl-
edge of resources available at any particular point in 
time. To schedule the cluster the traditional preemptive 
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scheduling mechanism is used to map the distinguished 
virtual machines on a single host machine resulting in 
adding new approximations and heuristics to the algo-
rithm. Gawali et al. [19] improve the performance of the 
system using a modified Cuckoo Optimization algorithm 
based on standard deviation. This two-phase Algorithm 
chooses the appropriate population sample in the first 
phase for optimal results and then applies the proposed 
algorithm to this sample population in the second phase.

Li and Buyya [20] designed a simulation-based model 
to schedule the workloads in a Grid computing environ-
ment. To calculate the accuracy of workload correlations 
the experiment is conducted in a model-driven simula-
tion. Simulation results at the local and grid level indi-
cate the decline in performance and indicate that the 
autocorrelation of loads in this model is not ideal. Lu and 
Zomaya [21] presented an integrated workload schedul-
ing mechanism for executing tasks in the heterogeneous 
environment for grids to reduce the average response 
time for the workloads. Suitable for a wide network of 
computational grids, this policy is a tradeoff between 
the advantages of distributed networks such as workload 
balancing, fault-tolerant, and the pros of the centralized 
environment such as inherent efficiency.

Linear programming is one of the most common tech-
niques used for optimization. This mechanism is used to 
obtain the most optimal solution for task scheduling with 
the given constraints on minimum makespan and maxi-
mum throughput. Bossche et al. [22] come up with a time 
and cost-limitation-based task scheduling algorithm for 
Infrastructure as a service platform.

Bertot et al. [23] reviewed the Monte Carlo Method for 
cloud simulation enhancement. Their work shows that by 
generating random schedules one can obtain the optimal 
schedules with high precision. For fluctuating scheduling 
periods this method gives high system throughput and at 
the same time shows a decline in memory demand. But 
for the fluctuation in tasks with a large scheduling period 
Monte Carlo result in a decline in the overall system 
performance.

Blind-Pick can be applied to a diminished search space 
that can evolve with the rapid fluctuation in workload 
having mediocre overhead. This approach with moderate 
precision and not-so-ideal set selection result in degrada-
tion in overall system performance [24, 25]. A preemp-
tion-based divide and conquer methodology is used by 
Gawali et  al. [26] for the virtual machine status which 
allocates resources in the cloud with improved turna-
round time and response time.

In genetic-based approaches, the researcher usu-
ally aims to enhance the system throughput without 
being concerned about the overall system performance. 
As the focus is on the appropriate execution of the task 

with proper usage of infrastructure in the defined mode 
of execution. Genetic Algorithms follow an appropri-
ate procedure for candidate selection, fitness evaluation, 
mutation, and variations. Gu et  al. [27] described an 
infrastructure scheduling strategy for a cloud computing 
platform based on a genetic algorithm. Zhao et  al. [28] 
proposed a scheduler based on genetics with the main 
goal to reduce makespan by using chromosome-based 
coding schemes and implementing them on a numeri-
cally based simulator. Shaoxing Zhu et al. [29] came for-
ward with a more stability-based evolutionary scheduling 
algorithm. Infrastructure as a Service model is benefited 
from this multi-objective genetic algorithm.

Fast variation in workload gives rise to the need for 
an algorithm that schedules tasks with high throughput 
and degrades memory demand scheduling workloads in 
a multitasking environment. That can adapt to variation 
in the working environment with low overhead to obtain 
the optimal schedules [30, 31].

Having presented various studies carried out related to 
task scheduling in cloud computing environments, it is 
observed that the Monte Carlo simulations may require 
time in months to produce optimal schedules with the 
burden of high fluctuations resulting in degrading the 
overall performance. On the other hand, Blind Pick simu-
lations give better results with a small search space, but 
on increasing the size of the search space, the perfor-
mance degrades. Reducing these scheduling overheads 
is necessary for real-time cloud computing. A novel Task 
scheduling method based on ordinal optimization (OO) 
is presented in this paper. This new approach outper-
forms the Monte Carlo and Blind-Pick methods to yield 
higher performance.

Problem statement and formulation
As stated earlier, efficient utilization of available com-
puting resources, in a highly dynamic cloud computing 
environment, is one of the most challenging problems 
for cloud service providers. Proper scheduling of tasks to 
available computing resources and allocation of resources 
in a manner that no node in the cloud is overloaded and 
all the available resources in the cloud do not undergo any 
kind of wastage is the key to it. This requires the design 
of an efficient and optimal task-scheduling strategy that 
can play a vital role in the functioning and overall per-
formance of the cloud computing system. The following 
problem statement and its formulation, presented in this 
paper, derive from this stated fact.

Problem statement
To design a low overhead scheduling algorithm for 
mapping tasks to available computing resources in 
a cloud, by extracting the best schedules from all 
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candidate schedules in a given search space, in the 
minimum time, to achieve the overall goal of mini-
mum makespan. Furthermore, the solution may be 
able to predict the minimum makespan for a given load 
condition.

Problem formulation
The resource allocation and task scheduling in a cloud 
computing environment is an NP-Hard problem, as it 
requires more than polynomial time to reach a solu-
tion. (i.e., harder than hardest problem). To elaborate, 
let us consider n the number of tasks to be assigned to 
r number of resources. The number of computations 
required for assigning the ‘n’ number of tasks to the 
r number of resources is calculated using the formula 
nCr. For example, if 20 tasks are assigned to 6 resources 
then the number of computations is 20C6 = 38,760. If 
we add only one additional task to this set, then the 
number of computations would grow many folds i.e., 
21C6 = 54,264. For a large number of tasks, it requires 
more than polynomial time to allocate resources to 
tasks. Task scheduling and resource allocation, in the 
cloud, takes place at two distinct layers. Tasks are 
mapped to Virtual machines based on their configu-
ration and availability and thereafter virtual machines 
are mapped to physical hosts. This two-layer mapping 
in a cloud environment increases the complexity and 
size of the possible search space for finding the opti-
mal schedules designed to achieve the overall goal of 
minimum makespan. Thus, more than polynomial 
time is required to allocate the available resources to 
the tasks in real-time resulting in making scheduling 
an NP-Hard problem in cloud computing. So instead 
of finding the time-consuming ideal solution, it’s bet-
ter to find the “good enough” optimal solution in the 
shortest possible time.

Several approaches have been proposed for solving 
this prominent issue of scheduling in the cloud but 
still, all the problems are not fully addressed. There are 
still a few challenges faced by the existing approaches. 
The main challenge is to reduce the scheduling over-
head. However, in a true cloud platform, resource pro-
filing and stage-based simulations are often run with 
thousands or millions of possible schedules when the 
best solution is needed. Generating an optimal sched-
ule in the cloud can take weeks. To create an optimal 
schedule using Monte Carlo simulations, too long a 
simulation time of weeks may be required. Reducing 
this scheduling overhead is essential in real-time cloud 
computing.

The work proposed in this paper tries to handle the 
above-discussed issues and provide a more promising 
result. This paper proposes a new workload planning 

method to schedule cloudlets in the cloud by reducing 
the search space significantly to lower the scheduling 
overhead.

Proposed approach
The real-world problem needs a real-world solution. 
One can say that the ideal solution is just a theoretical 
concept as it is unattainable and is not cost-effective 
also. Finding the accurate solution for a problem seems 
to be an unrealistic & time-consuming task. Lack of 
structure, a wide range of uncertainties, and the pres-
ence of a vast search space in a cloud environment give 
rise to the need to quickly narrow down the available 
good enough scheduling approach rather than stick-
ing to the time-consuming more accurate scheduling 
approach. This leads us to the concept of comparing 
orders first and then estimating their value second. In 
the other words, it’s the ordinal optimization before 
cardinal optimization.

Ordinal Optimizations focus on influencing the strate-
gic change of goals. Figure 1 illustrates the basic concept 
of Ordinal Optimization. The two basic principles of OO 
are:

1.	 Decisive Order is more elementary than value. In 
layman’s terms, one can say that it’s much easier to 
determine which stone that you are holding in both 
of your hands is heavy rather than telling the differ-
ence in their weight.

2.	 Goal Softening eliminates the computational burden 
of finding the optimal solution. Instead of asking for 
the “best for sure” one can settle for the “good enough 
with high probability”. A given problem is much eas-
ier to solve by softening the goal of optimization.

Fig. 1  The generalized concept for Optimization
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In this work Horse Race condition (HR) is used with 
Ordinal optimization to narrow down the search space 
for selecting the Optimal Schedule. The HR can be pic-
tured as having all Schedules in the search space com-
peting with each other at the same time, similar to N 
horses running a race [32]. During the analysis process, 
some of the schedules might be leading at a particular 
point in time and the same schedules might be lagging 
at another instant in time. The positions of the Sched-
ules are determined by the estimated time taken to 
complete the given task. Just like a race is stopped for 
all the horses concurrently. Similarly, for subset selec-
tion for Ordinal Optimization, all the schedules are 
stopped simultaneously and the performance of each 
schedule at the stopping time is analyzed.

Let’s mathematically formalize the proposed 
approach. Table  1 depicts the basic notations used in 
the proposed work. Suppose we are having the search 
space as a set of candidate schedules (U), where θ is an 
individual schedule such that (θ∈ U). The top-g Sched-
ules selected using HR_ne out of the available candi-
date schedules (U) are termed as the “good enough” 
schedules of subset G using the preemption methodol-
ogy. g denotes the Size of the subset G. With approx. 
Similar cardinality and HR_e pick another subset S 

called as “selected subset”. i.e., |S| ≅ |G|. The selec-
tion criteria of subset S directly affect the probability 
of finding the optimal schedule. Truly good schedules 
inside S are termed as k(≤g) such that u> > g> > s> > k. 
In other words, k is the number of schedules of subset 
S that are also the member of subset G. Probability of 
finding the schedules with a variation in noise as i given 
by P(| G∩| ≥k : σ2, N). This alignment probability can be 
made more accurate by increasing the size of G and S.

The conceptual flow chart for the proposed work is 
depicted in Fig.  2. It searches for good enough sched-
ules and insists on aiming for the best schedules. Ordi-
nal Optimization is a tradeoff between accurate and 
good enough with high probability. This enhanced 
Ordinal Optimization approach is applied to the real-
time cloud environment to obtain the optimal sched-
ules in a minimum Makespan. The complete approach 
can be explained with the help of pseudocode as in 
Algorithms 1 and 2.

Algorithm 1. Enhanced Ordinal Optimization Algorithm

Table 1  Basic notations

Notation Definition

OO Ordinal Optimization

U A set of all possible schedules in 
search space is termed a Candidate 
Set.

N Total number of available Schedules

θ A Schedule that is an element of the 
Candidate Set U.

u The cardinality of Set U, i.e., |U| = u.

G A Subset of U that has good enough 
schedules, is termed an Acceptance 
Set.

g The cardinality of Set G, i.e., |G| = g.

S A Subset of U has the most promis-
ing Schedule termed a Selection Set.

s The cardinality of Set G, i.e., |S| = s.

M Time taken to execute all the tasks, 
termed as Makespan

k The cardinality of Set G ∩ S, i.e., | G 
∩ S | = k.

HR Horse Race condition

HR_ne Horse Race condition with no 
elimination

HR_e Horse Race condition with elimina-
tion

OPC Ordered Performance Curve

σ variation in noise
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The proposed approach is simulated on a cloud com-
puting environment that provides a real-time cloud 
computing scenario. The configuration details of the 
data centers, Virtual Machines, and cloudlets used in the 
customized simulation setup are given in Table  2 and 
consist of general information on the data centers, such 
as the number of data centers, the number of Virtual 
Machines, the number of cloudlets, etc. Algorithm  1, 

gives a detailed description regarding the creation of a 
testbed for applying the proposed approach. Initially, 5 
different data centers are created then 25 random Vir-
tual machines with different configurations are created. 
Two hundred fifty varying cloudlets are then created. 
Virtual machines are scheduled to data centers using 
time shared scheduler and cloudlets are scheduled to 
the virtual machine using space shared scheduler for the 
designing of 30 candidate schedules. Horse Race condi-
tion (HR) is used with Ordinal optimization to narrow 
down the search space for selecting the Optimal Sched-
ule. The positions of the Schedules are determined by 
the estimated time taken to complete the given task. 
The top-g Schedules selected using Horse race without 
elimination out of the available candidate schedules (U) 
are termed as the “good enough” schedules of subset G 

Fig. 2  Flow Chart for enhanced Ordinal Optimization

Table 2  Specifications for designing all the candidate schedules

No. of Datacentres created 5

No. of cloudlets 250

No. of VMs 25

Cloudlet Scheduler Space Share

VM Scheduler Time Share

M/C configuration (MIPS) random (250–1000)
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using the preemption methodology. Horse Race with 
elimination picks another subset S called as “selected 
subset. Then using ordinal optimization most promising 
schedules are selected.

Algorithm 2. Mathematical Equation to schedule cloudlets with 
minimum possible Makespan

Algorithm 2, derives a mathematical equation, that can 
be used to predict the possible minimum makespan for 
cloudlets that are coming in the future and scheduled 
on the optimal schedule obtained from Algorithm  1. 
Through Ordinal Optimization 10 optimal schedules 
are selected. Each schedule has a different configuration. 
Four different types of loads are applied on each optimal 
schedule. Four different workloads of 250, 300, 350, and 
400 cloudlets are applied. Makespan corresponding to 
them is recorded. Graph corresponding to these cloud-
lets and makespan is plotted and linear regression is then 
applied. The slope and intercept of this graph are calcu-
lated and finally, Eq. 3 gives the mathematical equation 
for scheduling future cloudlets on these optimal sched-
ules in the minimum possible makespan.

Designing of candidate schedules (U) for applying ordinal 
optimization
CloudSim is a simulation tool that provides a platform 
for developing a cloud architecture model that sup-
ports services and infrastructure provided by the cloud. 
Researchers can experiment with their work on this 
tool as it looks and feels like a cloud platform with all 
the variation and fluctuation required to implement the 
work [33]. In our earlier work, CloudSim version 3.0 is 
used to design the search space of candidate schedules 
[34]. The same Candidate set (U) is used in this work. 
Each schedule is denoted by θ.

The candidate schedules set consists of 30 sched-
ules’ = {θ1, θ2, θ3……. θ30}.

A set of 30 schedules were designed using the follow-
ing parameters on CloudSim 3.0.

a)	 Number of Datacenters
b)	 The varying number of virtual machines in a Data-

center
c)	 Machine configuration of each virtual machine in the 

data center
d)	 Number of cloudlets executing in a particular data-

center
e)	 Type of scheduling policy.

Figure  3 shows that cloudlets are assigned to Vir-
tual Machines by space-shared scheduling and virtual 
machines are assigned to hosts in the data center by 
Time Shared Scheduling. These 30 schedules will act as 
a testbed for applying the proposed enhanced ordinal 
optimization.

In Fig. 4, the values of the makespan are the actual Per-
formance distributed cloud environment of applying the 
Candidate Schedule schedules. The graph depicts the 
performance of each schedule based on makespan.

Ordered performance curve
Based on the Makespan, Schedules are plotted from the 
smallest to the largest to form a nondecreasing curve, 
which is named an ordered performance curve (OPC) in 
OO [35]. In Fig. 5 OPC is the plot of performance value 
against the designs i.e., Makespan vs. Candidate Sched-
ules. By using OPC Average Makespan is coming as 
948.853 which depicts the average performance of the 
schedules.

Subset selection rules for OO
Ordinal optimization uses selection rules for selecting 
the Subset G & S. But before choosing the appropriate 
selection rules it must go through the below questions:

1.	 Set S is selected by ordering all top designs using car-
dinal value assessment and comparing them either 
pair-wise or globally.

2.	 Initial Computing budget is assigned to the design 
either by iterating the initial design with elimination 
or without elimination.

After reviewing the above two questions, appropri-
ate approaches are used in ordinal optimization. The 
horse Race condition is used when the initial estimate 
is made for the performance of each schedule using 
the crude model to select the top s schedules. HR with 
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no elimination (HR_ne) is used when the proposed 
model compares the mean values of all the candidate 
schedules.

Selection of subset G (good enough schedules)

❖ Ordered performance curve
❖ HR(horse race) with no elimination (HR_ne)

HR with no elimination (HR_ne) is used for the selec-
tion of Subset G, this approach compares the mean val-
ues of all the candidate schedules using preemption 
methodology. The Schedules having a Makespan less 
than the Average value of OPC are selected and termed 
as the top best schedules. From Fig. 5 these top schedules 
form the set G of good enough schedules.

Selection of subset S (acceptance schedule)
Acceptance schedule is selected by Horse Race method-
ology with global comparison i.e., HR_e. In this mech-
anism, the best schedule of each comparison round 
receives one makespan value, and then that champion 
schedule is compared with other schedules based on 
the makespan value. The winner of each round is kept 
in every successive round of comparison whereas the 
other schedules are simply eliminated by dumping 

G =
{

θ3, θ16, θ19, θ25, θ11, θ30, θ18, θ6, θ26, θ24 , θ23, θ7, θ9, θ17, θ13, θ2, θ10

}

them. In the end, a list of Sorted schedules is obtained 
in descending order.

This technique compares two schedules and eliminates 
the one which has a larger Makespan. The whole candidate 
set U is reduced to 15 schedules. From U = {θ1, θ2, θ3…….. 
θ30} below schedules are selected, and set S is formed.

Finding GПS
In the Ordinal Optimization approach, the set (G∩S) 
results in k optimal schedules which are good enough 
schedules obtained from Set S & G.

Number of Candidate schedules, U = 30
Number of Good enough subset, G = 17
Number of accepted schedules, S = 15
GПS = 10

Cloud simulation results and discussions
Hereafter, it presents how these optimum schedules work 
with different loads in the cloud computing environment.

Experiment conditions
Through Ordinal Optimization 10 optimum schedules 
are selected.

S =
{

θ1, θ2, θ3, θ4, θ5, θ8, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ29, θ30

}

G = {θ3, θ16, θ19, θ25, θ11, θ30, θ18, θ6, θ26, θ24, θ23, θ7, θ9, θ17, θ13, θ2, θ10}
S = {θ1, θ2, θ3, θ4, θ5, θ8, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ29, θ30}
G�S = {θ2, θ3, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ30}

So G�S = {θ2, θ3, θ11, θ13, θ16, θ18, θ19, θ24, θ26, θ30}.

Fig. 3  Scheduling architecture diagram
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Each schedule has a different configuration. Four different 
types of loads are applied on each schedule. Four different 
workloads of 250, 300, 350, and 400 cloudlets are applied.

Table  3 shows the Makespan corresponding to each 
schedule and load. A graph plotted as Makespan vs. 
Load for analyzing these optimal schedules. Now differ-
ent types of loads are applied to these GПS schedules 

and plot a graph between Load and Makespan for GПSis 
shown in Fig. 6.

Numerical analysis of the proposed approach
Forecasting the outcome of one parameter based on the 
result of another parameter is termed linear regression. 
The criterion variable (Y) is the variable for which the 

Fig. 4  Makespan vs. Schedule graph

Fig. 5  Ordered performance curve
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value is being predicted. The predictor variable (X) is 
the variable based on which forecasting of the Criterion 
variable is done. Criterion variable X and Y for the vary-
ing workload is depicted in Table 4. In the case of sim-
ple regression, there is only one Predictor Variable (X). 
A straight line as a slope is obtained when the Criterion 
variable (Y) is plotted as a function of the Predictor Vari-
able (X).

Linear regression aims at uncovering the best-fitting 
undeviating line through all the values of the graph. The 
tailor-made line is referred to as a regression line.

Computing the regression line

➢ The mean of X is denoted by Mx.
➢ The Mean of Y is denoted by My.

Table 3  Makespan of schedule vs. load

Schedules➔ 
Load

θ2 θ3 θ11 θ13 θ16 θ18 θ19 θ24 θ26 θ30

250(L1) 468 410 483 445 483 555 439 449 459 432

300(L2) 537 492 580 534 531 666 483 584 550 476

350(L3) 702 533 628 579 580 777 527 674 642 519

400(L4) 837 574 677 624 628 832 571 808 734 562

Fig. 6  Makespan vs. Load
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➢ The standard deviation of X is denoted by Sx.
➢ The standard deviation of Y is denoted by Sy.
➢ correlation between X and Y is coined by r.s

Table 5 depicts the calculus for computing the regression 
line and the undeviating line of Fig. 7 depicts the slope i.e., 
the band it is derived as follows:

A is the intercept and the given below formula can be 
used to calculate it

The regression line is calculated by the below formula:

To calculate the minimum Makespan of the optimum 
schedule for a given load on the cloud by using the above 
Eq. 4.

The fallacy in forecasting cannot be eliminated. For any 
schedule the fallacy of forecasting is the value of schedule 
(Y) subtracted predicted value (Y′) i.e., the value on the 
best-fitted line. Table 6 shows the predicted values (Y′) and 
the errors of prediction (Y-Y′). Column (Y-Y′) 2 depicts the 
squared error of forecasting. The Sum of squared errors of 

(1)
b =

rSy
Sx

b = 1.4799
b = 1.48

(2)A = My − bMx

A = 95.6

(3)Y′ = bX + A

(4)Y
′ = (1.48) X + 95.6 (best − fitted line)

Table 4  Input table for linear regression

X Y

250 462.3

300 543.3

350 616.1

400 684.7

Table 5  Calculus for computing the regression line

Mx My Sx Sy r

325 576.6 64.54972 95.60202 0.999284(high correlation)

Fig. 7  Best Fitted Line For optimum Schedule
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forecasting is the benchmark for obtaining the best-fitted 
line. A regression line is given by the below Eq. 5:

The predicted value (Y′) is the sum of the intercept of 
Yi.e.A and the bX where b is the slope of the regression 
line. Table 7 depicts the minimum Makespan correspond-
ing to the workload as per the best-fitted Line.

The proposed method mainly focuses on the Makes-
pan parameter. In the Future Other Factors like Secu-
rity, efficiency, task priority, and energy consumption 
must be taken as well to enhance the overall perfor-
mance in the cloud environment. This approach works 

(5)Y′ = bX + A

within a min-max range of virtual machine configura-
tions, cloudlets, and data centers. Any deviation from 
this range and workload above the threshold need to be 
explored in the future. Table 8 discussed the Compari-
son of the proposed approach with the other existing 
scheduling methods.

Conclusion
A cloud service provider’s Platform has heterogeneous 
infrastructure from a variety of cloud users and through 
virtualization, a large number of cloudlets are scheduled 
on these limited number of resources in such a manner 
that each cloud user gets the minimum delay. A low-
overhead-based scheduling scheme, based on the Ordi-
nal Optimization modeling technique, is being proposed 
in this work.

A testbed for the candidate schedules was designed 
for applying and testing the proposed approach. This 
includes creating various data centers, cloudlets, and 
virtual machines along with the scheduling policies 
for the cloudlets and virtual machines so that a realis-
tic cloud environment could be set up to schedule the 
tasks and analyze the results. The varying workloads 
are then mapped onto the optimal schedules, which 
were obtained after applying the Ordinal optimization 
modeling technique, to generate the desired makes-
pan. Subsequently, the Linear regression technique is 
applied to these schedules to predict the future sched-
uling of the cloudlets for obtaining the minimum pos-
sible makespan for a given set of available optimal 
schedules. In the future, the proposed technique can 
be further implemented with other parameters like 
Security, efficiency, task priority, and energy con-
sumption as well to enhance the overall performance 
in the cloud environment.

Table 6  Linear regression table

Linear regression table

X Y Y′ Y-Y′ (Y-Y′)2

250 462.3 465.6 −3.3 10.89

300 543.3 539.6 3.7 13.69

350 616.1 613.6 2.5 6.25

400 684.7 687.6 −2.9 8.41

Table 7  Load vs. minimum Makespan table

Makespan According 
to the best-fitted line

250(L1) 465.6

300(L2) 539.6

350(L3) 613.6

400(L4) 687.6

Table 8  Comparison of task scheduling methods

Scheduling 
Method

Strength and Advantages Disadvantages or Limitations

Monte Carlo Simu-
lation Method

High precision to get the best schedule. The 
Monte Carlo method reduces the memory 
requirements of the fixed short scheduling period, 
resulting in high system throughput.

High simulation work with exhaustive searches for optimization. This 
method does not make the adapt to sudden changes in workload. Longer 
planning horizons degrade performance.

Blind Pick Sched-
uling Method

With moderate overhead, this method applies a 
reduced search space and can somewhat adapt to 
rapid workload fluctuations.

It has moderate accuracy because it has less overhead. With a bad selection 
set, the performance drops in Monte Carlo.

Ordinal Optimiza-
tion (Proposed) 
Method

With very little overhead, OO can adapt to fast 
workload fluctuations and run suboptimal 
schedules with high multitasking throughput and 
reduced memory footprint.

The suboptimal schedule generated at each period may not be as optimal 
as the schedule generated by the Monte Carlo method. A high noise level 
can degrade the schedule generated by OO.
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