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Abstract 

During the last decades, tourism has been augmented worldwide through which the diversity of tourists’ interests is 
increased and is challenging to tackle with the traditional management system. Such challenges can be overcome by 
LBSNs (Location-Based Social Networks) such as Yelp, Foursquare, and Facebook which help to collect more personal-
ized information close to tourists’ preferences/interests like check-ins, comments, and reviews. In this regard, solutions 
have been proposed to exploit the POI (Point of Interest) recommendation, but they failed to overcome sparsity and 
cold-start problems. Existing methods are also not focusing on important aspects, including geographical context, 
dynamics preferences and social influence, which are essential factors in POI recommendation. Therefore, this work 
tried to incorporate these factors and present a unified model using bipartite networks to learn users and POI dynam-
ics. For this purpose, we have represented all the factors using eleven networks and combined them into a single 
latent space. In addition, Edge Computing processes data at the network’s edge, reducing latency and bandwidth 
usage and enabling real-time and personalized recommendations. Furthermore, cloud computing could be used 
to store and process the large amounts of data collected from LBSNs, to support the proposed model’s computa-
tional requirements and make it more accessible and scalable, allowing it to be easily used by tourism management 
systems worldwide. Experimental results show that our model outperforms state-of-the-art methods using real-world 
dataset in terms of accuracy and perform better against sparsity and cold-start problems.
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Introduction
“The United Nations World Tourism Organization 
(UNWTO)” reported that since 1950 the number of tour-
ist arrivals has been raised to 1.4 billion yearly. Also, the 
fast growth in tourism is expected to reach 1.8 billion 
worldwide by the year 2030. Tourism plays a vital role in 

extending economic freedom in developed countries and 
presents a paradox. To overcome this paradox, different 
companies related to the tourism sector can play a vital 
role in different sectors, such as business communities 
and industries. In the past decade, a significant improve-
ment has been witnessed by development experts, indus-
try leaders, and policymakers toward the tourism sectors 
in various countries in the world [1]. Consequently, tour-
ism has gained positive economic outcomes, especially 
by boosting the GDP (Gross Domestic Product) and 
providing employment opportunities [2]. Consider-
ing the growth of tourism and travellers’ necessities, it 
is pertinent to enhance the services provided to travel-
ers according to their needs and interests [3]. Therefore, 
exploiting the choices and preferences of users is a hot 
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topic in academia as it greatly impacts decision-making, 
decision rules, and choice factors [4]. On the contrary, 
acute developments in the web, social networks, big data 
[5], cloud computing, IoVs (Internet of Vehicles) [6, 7], 
and IoTs (Internet of Things) technologies provide abys-
mal information that acquaints information overload 
problems. The individuals are precarious in choosing 
relevant information and making decisions. Therefore, 
recommender systems in information technology come 
in, which cope with the information overload problem 
[8]. It suggests relevant information to the users, con-
sidering their explicit or implicit preferences. Therefore, 
computer scientists contributed to the tourism industry, 
and plenty of research has been conducted to facilitate 
tourists using recommender systems. Due to dynamic 
and temporal preferences, the existing approaches are 
limited to coping with the sparsity [9] and cold-start [10] 
problems. Extensive research [11–18] have been devoted 
to this area which focuses on users and location relation-
ship, but they exclude sparsity problem due to preference 
dynamics. In this regard, studies [19–22] have collected 
data about the relationship between users and tied it to 
user location but failed to resolve dynamic and temporal 
preferences. Besides, research dealing with users’ tem-
poral dynamics is still limited in alleviating the sparsity 
problem since these models do not exploit auxiliary con-
textual information which changes with user preferences 
over time [10]. For simplicity let’s say a tourist loves to 
visit mountains in summer and cities in winter, provid-
ing them with mountains in winter and cities in summer 
will be inappropriate or irrelevant. Therefore, the pro-
posed model temporal factor by splitting the dataset into 
seasons and categories of locations. Using this approach, 
user satisfaction with recommendations will be enhanced 
and can achieve higher accuracy respectively.

To prudently overcome aforesaid issues, there is a need 
for a unified model that exploits the behavior and pref-
erence dynamics of users for a more personalized rec-
ommendation. Therefore, the proposed model alleviates 
such problems and makes the following contributions.

•	 The proposed model uses an approach based on a 
probabilistic weighting strategy using eleven graphs 
to tackle the sparsity problem.

•	 Presents two algorithms to get users’ favorite 
season(s) with the most visited categories in a par-
ticular season using past check-ins history.

•	 The proposed approach uses the work of RELINE 
(Recommendation with Multiple Network Embed-
dings) [10] and tries to learn the embeddings of 
graphs by using the concept of graphs to find the het-
erogeneous preferences of users.

The rest of the paper is organized as follows: Literature 
review section presents the contributions being devoted 
to POI recommendations. Participated networks in the 
recommendation model section emphasizes participated 
networks in the proposed model, Proposed next-POI rec-
ommender system section explains the proposed work, 
and Results and discussion section discusses obtained 
results. Finally, Conclusion and future work section con-
cludes the proposed work and presents future work.

Literature review
This section discusses the contribution being devoted 
to recommender systems facilitating POIs. In [21] the 
authors have proposed a system using Hadoop technol-
ogy which consists of four phases; scrapping, mapping, 
de-duplication, and recommendation. The shortcom-
ing of this method is a user-centric approach. Due to its 
complexity, it increases computation time. Likewise, [23] 
proposed a collaborative filtering approach that performs 
better due to WSN (Wireless Sensor Network) [24, 25] 
installations around tourist sites (IoT sensors on edge). It 
provides the convenience of uploading tourist informa-
tion and rating POI using smartphones. However, such a 
method fails to tackle the cold start problem because it is 
not feasible to implement WSN in all tourist spots, as a 
result, there may be some locations that remain unrated/
unvisited due to the unavailability of sensors/devices at 
various spots. In this regard, [14] and [25] come up with 
different approaches to resolving the cold start problem 
using the notion of CARS (Context-Aware Recommender 
System), they have tried to get contextual information 
for achieving better results but ignored the importance 
of preference dynamics. Sampling on graphs has been 
used in various flavors, but less attention has been paid 
to matching a large set of graph properties. To this end, 
various studies employed network embedding models to 
exploit semantic relations between the network objects 
and generate their low-dimensional representations. In 
[26] the authors proposed a graph-based POI recommen-
dation incorporating geographical and temporal influ-
ence to tackle the cold-start problem, but they ignored 
the importance of preference dynamics. Similarly, [27] 
have considered users’ preference dynamics but ignored 
social influence. Furthermore, [28] realized the need to 
provide POI recommendations at an appropriate time 
rather than only exploiting user, social, and geographical 
preferences. Finally, authors in [15] upgraded the work 
of LINE (Large-scale Information Network Embedding) 
[29] and used large bipartite graphs to cope with cold 
start problems achieving good accuracy using social-, 
geographical-, temporal-influence, along with users’ 
preference dynamics. To clarify, Table 1 summarizes the 
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incorporating factors of existing methods while exploit-
ing POI recommendations.

To exploit users’ or tourists’ behavioral patterns, we 
have highlighted the limitations of existing methods, many 
models [13, 28, 30–32] employed POIs as nodes and don’t 
consider the spatial dimension with distance informa-
tion. However, [13, 19, 28] have considered location influ-
ence but ignore the preference dynamics, which change 
over time. Methods [31–33] used to capture the temporal 
dynamics elegantly but do not incorporate spatial dimen-
sion. Furthermore, methods that tackle spatial and tempo-
ral behavior but fail to include preference evaluation, and 
finally, methods that capture all factors failed to maintain 
users’ satisfaction regarding recommendations.

Participated networks in the recommendation 
model
This section presents the proposed model’s workflow and 
discusses the participated networks and problem defini-
tion. Figure  1 depicts all incorporated networks in the 
proposed model, where Table. 2 describes mostly used 
symbols in the text.

As depicted in Fig.  1, eleven graphs (unipartite and 
bipartite) have been used in the proposed model. The 
proposed model consists of the social and location layers, 
which utilize all the incorporated graphs. The social layer 
represents the relationship between users (friendship) 
with each other. Similarly, the location layer describes 
the physical relationship between various locations like 
distance, height, and temperature. The embeddings have 
been generated for each graph and have fed to a collec-
tive space, where all the graphs are combined into a sin-
gle vector space. To further understand the proposed 
model, the subsequent sub-sections explain the role of 
each participated graph as follows.

Point‑of‑Interest
Point-of-Interest is the location where tourists can take 
interest and have most check-in. It can be represented 
as a set: (sid , lon, lat) , where sid specifies a location in 
the dataset, lon and lat refer to the longitude and lati-
tude of a particular location.

Check‑in
It is the presence of a user u in desired place l at a 
particular instance of time t, denoted as ci = (u, l, t) . 
A user u can check in only one place where they 
can record multiple check-ins in their profile 
cui = (li, ti), . . . , (lj , tj)  . For each user, a profile 
is maintained that stores the locations being vis-
ited by him/her; as the user profile grows, the prefer-
ences of a particular user will be more helpful in the 
recommendation.

Season
It can be defined as the season of the dataset and is 
divided into four seasons (Winter, Summer, Spring, and 
Autumn). Each season has the check-ins of all tourists 
during season ∆S. Every tourist prefers to visit or go for 
a tour in a particular season, while some tend to go for 
a visit in a few seasons or even all seasons, respectively. 
The importance of this season must be realized in the 
POI recommendation. Therefore, we have used time as 
a season.

User‑user graph
The social interaction between users can be represented 
by and User-user graph as it is a unipartite graph. It can 
be represented byGuu = (U ∪ V ,Wuv) , where U  and V  

Table 1  Incorporating factors in existing approaches

Abbreviations: Soc Social, Tem Temporal, Spa Spatial, PD Preference Dynamic, LC Locations Categorization, Sea Seasons

# Approaches Factors

Soc Tem Spa PD LC Sea

1 K. A. Achmad et al. [9]

2 G. Christoforidis et al. [10] ✓ ✓ ✓ ✓
3 M. Xie et al. [26] ✓ ✓
4 M. Xie et al. [27] ✓ ✓ ✓
5 Y. Liu et al. [28] ✓ ✓
6 N. Joorablo et al. [30] ✓ ✓ ✓
7 F. Ding et al. [31] ✓ ✓ ✓
8 NPR-LBN ✓ ✓ ✓ ✓ ✓ ✓
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represent the sets of users ,whileWuv describes the set 
of weights among users in the network, which can be 
computed by Eq. (1) as follows

(1)Wuv =
1

∑n
i=1|vi|

User‑category graph
A bipartite graph shows the user’s and category’s connec-
tion, considering an entire check-in history. Specifically, 
it shows the significance of a specific category against all 
categories for a candidate user. Symbolically, this graph is 
represented by Guk = (U ∪ K ,Wuk) , in which U and K are 
set of users and categories. Wuk is a set of weighted edges 
between U and K which can be computed using Eq. (2) and 
indicates the number of check-ins made in desired category 
ki against overall check-ins made by user ui.

User‑season graph
A bipartite graph represents the relationship between user 
ui and season si. Algorithm 1 has been used to compute 

(2)Wuk =

∑

∀cui∈ki
cui ,k

∑

∀cui∈K
cui ,K

Fig. 1  All participating networks in the proposed model

Table 2  Commonly used symbols in the text

Symbol Description

cu,i User’s check-ins

�S Season

L Location

K Location Category

W List of weights wi,j 
on each graph
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the significance of season si for each user ui. Can be 
denoted as Gus = (U ∪ S,Wus) , in which S and  U  denote 
the set of seasons set users. Wus ia s set of weighted links 
as computed by Eq. (3), the number of user’s check-ins in 
overall season check-ins made by the user ui.

Algorithm 1. Extracting favorite season(s) of each user

Algorithm 1 tries to extract a list of seasons that the user 
visits most. Checkin history, users, and seasons (winter, 
summer, spring, autumn) are provided as inputs. In step 1 
the check-ins have been sorted on timestamp/date, whereas 
in step 2 create a list L for the most visited season(s). Step 3 
runs for each season, and step 4 checks whether the user ui 
checked-in in Si. If it is true, step 5 increment the season by 
one and assign it to user ui in list L. Finally, step 6 returns the 
obtained L that consists of users and their favorite season(s).

User‑location graph
A bipartite graph represents the degree of a specific loca-
tion for a given user in a desired category. This relation 
is represented by Gul = (U ∪ L,Wul) U and L denote the 
sets of users and locations respectively. This relation is rep-
resented as Gul = (U ∪ L,Wul) . Equation  (4) computes 
the number of times one user visited a particular location 
in a category while the denominator calculates the user’s 
overall visits to distinct categories during all seasons:

(3)Wus =

∑

∀cui∈si
cui ,s

∑

∀cui∈S
cui ,S

(4)Wul =

∑

∀lui,k ∈li
cui ,l

∑

∀lui,k ∈L
Rui ,L

Category
Five categories are being selected for POIs: Mountains, 
Rivers, Lakes, Restaurants, and Cities. Every location l 
must belong to one of the above categories. That is, we 
have divided the entire dataset into different categories 
and then extracted the desired category corresponding 
to the interest of each user.

Category‑location graph
To represent the relationship between a location and 
category, the proposed model uses a directed bipartite 
graph which is different from the previous one based 
on the weighting mechanism adopted. It is represented 
by Gkl = (K ∪ L,Wkl) , in which L and K denote the sets 
of locations and categories, respectively. Wkl represents 
weighted edges and can be computed using Eq.  (5). It 
can be computed as the number of times a place l  is 
visited in a specific category k against all check-ins in 
the concerned category:

Category‑user graph
This graph emphasizes the importance of a category 
that corresponds to each user. The proposed model 
extracts categories for each POIs using Algorithm  2, 
which is a modified version of an algorithm proposed 
in [15]. It correlates each user from U  with a category 
k ∈ K . The graph is denoted by Guk = (U ∪ K ,Wuk) , 
where Wuk denotes a set of weights between users and 
categories as computed in Eq. (6), the number of times 
a user visited the desired category to the total number 
of visits to all categories made by the same user:

Category‑category graph
It is a bidirectional bipartite graph representing the 
relationship between pair of categories. For example, 
if we take two categories viz, k and k ′ which are linked 
using a link if a certain user u check-in both in the same 
season s. Using this intuition, we construct the graph as 
Gkk

′ =

(

K ∪ K ,Wkk
′

)

 , in which K  denotes the set of cat-
egories, and Wkk

′ is the weighted edges between pair of 
categories. The weight between categories is calculated 

(5)Wkl =

∑

∀cl∈ki
cl

∑

∀cL∈ki
cL

(6)Wku =

∑

∀lui,k ∈ti
cui ,t

∑

∀lui,k ∈T
cui ,T
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using Eq. (7) as it represents the number of times a user 
u has visited the corresponding categories simultane-
ously in season s.

Algorithm 2. Extracting most visited categories in each season for all 
users

Algorithm 2 helps to extract the most visited categories 
of locations in each season. Such an algorithm aims to get 
the categories users mostly prefer in the desired season(s). 
For example, a user ui may love to visit historical places 
in summer, whereas in spring, she/he prefers to hike the 
mountains. Considering this approach to provide the 
most preferable recommendation in various periods can 
be helpful. Algorithm 2 accepts check-in history and sea-
sons, respectively. Step 1 is sorting the check-ins based on 
date, whereas steps 2 and 3 create lists for time (dividing 
the dataset into seasons) and categories (categories like 
mountains, rivers, lakes, meadows, cities, and parks). Step 
4 goes through for each season, and n is declared in step 5 
to keep track of each check-in of users. Step 6 is whether 
check-ins are fall or not in the desired seasons. Step 7 
runs and adds the check-in to the season list if true. Step 
8 increment the n, whereas step 9 initializes q to track the 
desired category in a season. Step 10 runs to make the 
check-in in the desired category by checking it in step 11. 
If it is true, the desired check-in is added to the category 
list in step 12. For false, it increments the q in step 14 and 
reruns for the next season. Finally, step 15 returns list K.

(7)W
kk

′ =

∑

∀uli,k
∈si

cui ,s
∑

∀uli,k
∈S Cui ,S

Category‑season graph
A directed bipartite graph represents relations between 
a season and a category. The category-season graph is 
denoted by Gks = (K ∪ S,Wks) , in which K and S show 
the categories and seasons, respectively. Wks is a set 
of weights established between category and season. 
Weighted edges between season and category are com-
puted using Eq. (8), where the numerator computes the 
number of check-ins performed in the category k by all 
users in seasons si , while the denominator represents 
the whole check-ins performed in all seasons for the 
same category.

Location‑location graph
This bipartite graph is employed to show the spatial dis-
tance between locations if a user u visits two locations l 
and l′ at the same time and distance in a range Rg , then 
a link is established between them. The graph is denoted 
as Gll

′ =

(

L ∪ L,Wll
′

)

 , in which L is a set of locations 
and Wll

′ is a set of weights among them as computed by 
Eq. (9) using geographical proximity.

Location‑user graph
It represents the relationship between locations and 
users, also known as a directed bipartite graph. Also, 
users’ interests correspond to a specific location that 
changes over time. More specifically, this relation is rep-
resented as Glu = (L ∪ U ,Wlu) . The weight Wlu is calcu-
lated using Eq. (10) as the number of times a user u visit 
a place l to the total number of check-ins made by all the 
users to that location:

Location‑season graph
To show the significance of a certain location for a user u 
in a season si, the proposed model uses a location-season 
graph, which can be represented by Gls = (L ∪ S,Wls) , L 
and S show a set of locations and seasons. Wls represents 
the weighted edges as calculated using Eq. (11).

(8)Wks =

∑

∀cU∈si
|nks|

∑

∀cU∈S |nks|

(9)Wll
′ = 1−

geodistll′

Rg

(10)Wlu =

∑

∀cu∈li
cu

∑

∀cU∈li
cU

(11)Wls =

∑

∀cU∈li
|nls|

∑

∀cU∈S |nls|
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Problem definition
Some tourists visit a set of locations in a particular season, 
while some tend to visit each season. Furthermore, users’ 
preferences change by location category K, i.e., ui may love 
to visit li in winter whereas uj in summer. To consider this 
problem, we must provide a list of locations L to user u in a 
season s belong to category ki given that Q(u, l, s).

Proposed next‑POI recommender system
This section presents the proposed POI recom-
mendation model that jointly learns multiple graph 
embeddings and encodes them into a low-dimen-
sional embedding space exploiting semantic relations 
between the nodes of the networks.

Learning embeddings for large information networks
Two nodes m and n are directly connected by an edge, 
known as first-order proximity. In contrast, the relation 
between vertices that share multiple neighbor nodes but 
are not directly associated with each other is referred to 
as second-order proximity. The LINE model [23] tries to 
learn the relationships of large graphs to extract this kind 
of proximity. With this concept, we expand our model to 
learn the embeddings of large information networks.

Consider two disjoint sets = (QA ∪ QB,W ) , where the 
vertices in QA that collaborate many common neigh-
bors with QB but they are not linked, then there is a high 
probability that their distributions are the same. To com-
pute the conditional probability of vertex nj ∈ QB given 
nodemi ∈ QA , the model employs the following equation:

The vectors of mi and nj can be represented as −→mi and 
−→n j . Hence, for each vertex mi ∈ QA , Eq. (12) presents con-
ditional distribution p(•|mi) to all related vertices in the 
set QB . Then, the model uses the conditional distribution 
to approximate the empirical distribution ̂p(·|mi) =

wi,j
∑

wi,m
 

employing the following objective function:

where d(•|•) indicates the Fullback–Leibler divergence 
between conditional and empirical distributions. To tune 
the significance of mi , we have used  �i as a hyper-param-
eter. This parameter is set to the outdegree of each node. 
Thus, Eq.  (13) tries to optimize the following objective 
function:

(12)p
(

nj|mi

)

=

exp(−→n
T
j ×mi)

∑

un∈QB
exp(−→n

T
n ×

−→mn)

(13)O =

∑

ui∈QA

�id(̂p(•|mi), p(·|mi))

The 
{

−→mi

}

i=1...QA
 and 

{

−→n j

}

j=1...QB
 that minimizes 

Eq.  (14) are the low-dimensional nodes representa-
tions in Rd [15].

Optimization of the model
It requires the summation of the complete set to find con-
ditional probability as a result, it enhances computational 
complexity. To address this problem, we use negative 
sampling used in [27], which simply samples N negative 
edges according to the noise distribution for every edge 
(i, j) as defined in the following equation.

where σ(x) = 1/1+ exp(−x) is the sigmoid function, and 
Pn =

(

n ∝ d
3/4
h

)

 same as proposed in [29], dh is the out-
degree of node n. Furthermore, we come up with an 
asynchronous stochastic gradient algorithm [33] to opti-
mize Eq. (15). If an edge (i, j) has been sampled, the gra-
dient concerning to the embedding of −→mi of node i can 
be computed as:

It is also considered that the gradient is multiplied by 
the weight of a link in Eq. (16). It may be problematic if we 
ignore the balancing of the learning rate. We should have 
to carefully keep the learning rate because, when selecting 
the learning rate according to the links with low weights, 
the gradients on links with high weights will be disas-
trous. Similarly, when selecting the learning rate with high 
weight, the gradient will be too small. The model employs 
the sampling approach adopted in [31] to sample a ran-
dom edge. Finally, the model draws a sampled edge using 
alias table according to [29], which minimizes computa-
tional complexity to O(1) . Table 3 illustrates the complex-
ity of edge sampling optimization process.

Learning graph dynamics
Initially, by providing bipartite input graphs, the subse-
quent step combines them into the model. Our input 

(14)O = −

∑

ei,j∈W

wi,j logp
(

nj|mi

)

(15)log𝜎
(

�⃗n
T

j
× ��⃗mi

)

+

N
∑

h=1

Wun
∼ Pn(n)

[

log𝜎 −

(

�⃗n
T

j
× ��⃗mi

)]

(16)
∂O

∂
−→mi

= wi,j ×
∂logp

(

nj|mi

)

∂
−→mi

Table 3  Net Complexity of sampling

Sample edge O(1)

Optimization of negative sampling O(N + 1)

Total complexity O(N × E)
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graphs have been divided into three parts, one considering 
user networks (User-Location, User-Season, User-Cate-
gory, User-User). At the same time, the second is related to 
location (Location-Location, Location-User, Location-Sea-
son), and the third one corresponds to a category of places 
(Category-User, Category-Category, Category-Location). 
The model collectively integrates the embedding of par-
ticipating graphs as defined in Eq. (18–28) related to users 
and POIs relations, optimizing the objective function 
defined in Eq. (17) as follows:

The model computes these objective functions as 
follows.

(17)
O = Oul + Ous + Ouk + Ouu + Oll + Olu

+ Ols + Oku + Okk + Okl + Oks

(18)Oul = −

∑

ei,j∈Wul

wi,j logp
(

ui|lj
)

(19)Ous = −

∑

ei,j∈Wus

wi,j logp
(

ui|sj
)

(20)Ouk = −

∑

ei,j∈Wuk

wi,j logp
(

ui|kj
)

(21)Ouu = −

∑

ei,j∈Wuu

wi,j logp
(

ui|uj
)

(22)Oll = −

∑

ei,j∈Wll

wi,j logp
(

li|lj
)

(23)Olu = −

∑

ei,j∈Wlu

wi,j logp
(

li|uj
)

(24)Ols = −

∑

ei,j∈Wls

wi,j logp
(

li|sj
)

(25)Oku = −

∑

ei,j∈Wku

wi,j logp
(

ki|uj
)

(26)Okk = −

∑

ei,j∈Wkk

wi,j logp(ki|k)

(27)Okl = −

∑

ei,j∈Wkl

wi,j logp
(

ki|lj
)

For optimization of object functions, as defined in 
Eq.  (17), it requires merging the links of all networks, 
and at every step, the model updates a new sample edge. 
The probability of the desired link is computed based on 
its associated weight. The training of our model is done 
jointly using the algorithm in [15] dynamically.

Personalized next‑POI recommendation
After exploiting semantic relations between the nodes 
of the participating graphs and learning their embed-
dings, the next step is to make recommendations for a 
user. Given a query Q(u, l, s) , which specifies a user u in a 
location l and season s we can correspond these values to 
desire season s . Claiming that a user is willing to attend 
locations in specific seasons corresponding to category 
ki. Finally, we rank a list with top@n unvisited location for 
a user ui related to category ki. The proposed model uses 
Eq. (29) to recommend unvisited locations:

where −→u  and −→l  is the vector representations of user u , 
and location l . Similarly,

−→
k  represents the vector repre-

sentation of the category k such check-in. The proposed 
model uses cloud computing to store and process the 
data, and to jointly learn the vector representations from 
various information graphs in the same embedding space. 
This allows for more efficient handling of large amounts 
of data and the ability to perform complex computa-
tions. The cloud-based solution also allows for the incor-
poration of more information networks, which in turn 
reduces sparsity by incorporating more information net-
works, and jointly learns the dynamics of the social influ-
ence (−→u T

×
−→
l ) , the geographical influence ( 

−→
k

T
×

−→
l  ), 

and the temporal influence ( −→s T
×

−→
l  ), simultaneously to 

provide more accurate and personalized POI recommen-
dations to users.

Employment of cloud and edge computing
Edge computing is a distributed computing paradigm 
that focuses on processing data near the source of data 
generation, thereby reducing latency and bandwidth 
usage. The proposed work leverages edge computing to 
process data generated by tourists using LBSNs to share 
their preferences and interests. LBSNs enable the collec-
tion of tourists’ location and interest data, which can be 
processed at the network’s edge, facilitating real-time and 
personalized recommendations. In addition to edge com-
puting, cloud computing can be employed to store and 

(28)Oks = −

∑

ei,j∈Wks

wi,j logp
(

ki|sj
)

(29)Q(u, l, s) = 𝛼 ×

(

�⃗u
T
× l⃗

)

+ 𝛽 ×

(

�⃗k
T

× l⃗

)

+ 𝛾 ×

(

s
T × l⃗

)
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process the large amounts of data collected from LBSNs 
as shown in Fig. 2 consists of two main components. The 
first component shows tourists using LBSNs to share 
their preferences and interests, generating data collected 
and processed at the network’s edge through edge com-
puting. The second component displays the cloud com-
puting infrastructure used to store and process the large 
amounts of data collected from LBSNs. This approach 
enhances the computational capabilities of the proposed 
model and enables tourism management systems world-
wide to access and use it easily.

Results and discussion
This section focuses on the performance evaluation of 
the proposed model based on the Foursquare dataset. 
That is, we compare the results of the proposed model 
with existing POI models.

Dataset
To analyze the results of the proposed model, we have 
used a publicly available dataset known as Foursquare.1 
The dataset consists of POIs, users’ check-ins, and friend-
ships, which have been collected from the year 2012 
to 2014. The distribution of the dataset is depicted in 
Table 4. The seasons are extracted using the period given 
in the dataset. Similarly, each POI is associated with its 
category like restaurant, river, lake, city, and so on.

Baseline models
In this set of experiments, we have comparatively viewed 
the results with the following models.

•	 RELINE [10]: They have used a graph-based approach 
to learn users’ and POI relationships from 8 weighted 

networks in a hidden space and provide location rec-
ommendations under a strategy having a probability 
that examines the influence of social, geographical, 
temporal, and preference dynamics.

•	 GE [28]: is another graph-based embedding model 
that exploits geographical influence, sequential effect, 
temporal cyclic effect, and semantic effect in a unified 
way and embeds four information graphs into a shared 
embedding space. Also, a novel time-decay method 
is proposed that dynamically computes the user’s lat-
est preferences based on the embedding of his/her 
checked-in POIs learned in the embedding space.

•	 WWO [31]: is a unified POI recommender system 
with temporal interval assessment that considers 
temporal interval distributions and developed the 
low-rank network model, identifying a set of bi-
weighted network bases to learn the static prefer-
ences and dynamic preferences coherently.

•	 PGB [33]: This probabilistic model employs the 
graph-based Markov chain method to improve rec-
ommendation accuracy. The choice of suggesting an 
item is conditioned by considering recommendations 
generated in previous steps.

Fig. 2  Use of edge and cloud computing in the proposed model

Table 4  Distribution of dataset

POIs 1048000

Check-ins 2145800

Friendships 607300

1  https://​sites.​google.​com/​site/​yangd​ingqi/​home/​fours​quare-​datas​et?​pli=1

https://sites.google.com/site/yangdingqi/home/foursquare-dataset?pli=1
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Experiments evaluation
To conduct experiments, we have divided the check-ins 
into three partitions for each target user that include: (i) 
the training set εTC  is the known information, which com-
prises 80% of the entire check-ins, (ii) the probe set εPC , 
used to test the model, and it contains 10% of the data, 
and (iii) the validation set εVC  is the rest 10% for validation 
of the proposed model. Mathematically we can represent 
it as εc = εTC ∪ εPC ∪ εVC   and εTC ∩ εPC ∩ εVC = ∅ . To make 
recommendations for a target user, the model uses the 
POIs in set εTC .

For the evaluation, we measure the Accuracy@n as pro-
posed in [15]. For each l ∈ εPC  given as a query Q(u, l, s) , 
the prediction score for that specific location l along with 
all unvisited proximate POIs of the target user is computed 
based on Eq.  (30). The model ranks the predicted scores 
into a list, and then chooses the top POIs. If the ground 
truth l ∈ εPC exists in the top recommendations, then the 
model has accurately recommended that location (i.e., 
True Positive), otherwise it has suggested a wrong location. 
To calculate the net accuracy of ten recommendations, the 
model averages all predictions test cases as follows:

Impact of information graphs
Particularly, we examine how the integration of an infor-
mation graph influences the top-n predictions. Thus, 
we compare NPR-LBN with the four models PGB, GE, 
WWO, and RELINE which are described in Baseline 
models section. The results shown in Table 5 reveal that 
as the model integrates the latest information network, 
its accuracy increases. This way, the proposed model 
lessens the sparsity issue by exploiting rich information 
about the users or the POIs. Also, it is noticeable that 
the accuracy of all models increases with n, which exhib-
its that the models fit well to users’ behavior.

Comparative analysis
This section evaluates the results of the proposed 
work with baselines using accuracy to produce top@n 

(30)Accuracy@n =
#TruePositive@n

εPC

recommendations [n = 1, 5, 10, 15, 20] employing a real-
world dataset (Foursquare). Specifically, judging the 
performance of all models that provide POI recommen-
dations against cold-start users and locations.

Cold start user
We have studied the efficacy of the proposed work consid-
ering the cold-start user problem. Producing recommen-
dations for such kinds of users is incredibly challenging 
due to the unavailability of the required information. In 
this context, we conducted experiments to provide rec-
ommendations only to cold-start users and used an accu-
racy metric to analyze the results of these models, as 
shown in Fig.  3. Since all models mentioned above sup-
port the cold-start recommendation, in this regards we 
compare our model with all these baselines. We employ 
side information related to users and locations from 
eleven information graphs, yielding improved results.

Cold start locations
Similarly, we examine a problem that is known as cold-
start locations. The aim is to suggest locations that were 
not visited for at least one or few check-ins at a location 
with less than 25 check-ins. Thus, to cope with this, we 
have investigated how models behave on unpracticed 
users or new location is introduced into the system. In 
addition, we have analyzed whether the new location is 
listed in the top@n recommendations. Again, the pro-
posed model outperforms in terms of producing quality 
recommendations, as shown in Fig. 4.

Significance of seasons
Here, we have analyzed the influence of the time inter-
val per season ∆S against the accuracy for different val-
ues of the ten recommendations made by the model. 
∆S significantly impacts the model’s results since it is 
employed to build multiple information graphs. Table 6 
shows the results of the model using the dataset. We 
can notice that the accuracy score reaches a maximum 
value at a certain point and then decreases gradually. 
The reason behind the low accuracy score is the value 
of ∆S. If its value is exceedingly small, then it means we 
have less data, and diffidently the accuracy score will be 
less. On the contrary, for large values of ∆S, a substan-
tial number of nodes related to the target user exists, 
which causes an overfitting problem. Considering these 
factors, we choose the size value for the dataset to be 15.

Conclusion and future work
Due to the exponential growth of information on the 
internet, recommender systems have become prevalent 
technological assistants to humans. Likewise, LBS have 

Table 5  Impact of additional information networks to the model

Model 1 5 10 15 20

PGB 0.21 0.24 0.32 0.33 0.43

GE 0.25 0.32 0.37 0.40 0.42

WWO 0.22 0.28 0.34 0.34 0.44

RELINE 0.28 0.32 0.37 0.44 0.46

NPR-LBN 0.29 0.31 0.38 0.45 0.49
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become ubiquitous in different sectors and therefore 
gained the attention of numerous scientific disciplines. 
The emergence and usage of communication technolo-
gies such as mobile devices allow researchers to come 
up with more elegant solutions against sparsity and 
cold-start problems. Geographical information shared 
on such networks enables researchers to tackle both 
problems. Various POI approaches that have been pro-
posed using social influences, geographical proximity, 
and preference dynamics using their social influences. 
In this work, we have considered cold-start and spar-
sity problems while providing POI recommendations 
in the tourism sector. Particularly, our proposed model 
has been upgraded and comes with additional features 
such as users’ satisfiability on the system and employs 
a weighted probabilistic approach over eleven informa-
tion graphs based on relations established among users, 
seasons, and categories. The model personalizes loca-

tions by jointly learning the embeddings of users and 
POIs into the same embedding space. The incorporation 
of edge and cloud computing in our proposed model has 
improved the system’s accuracy and scalability, allowing 

it to be easily used by tourism management systems 
worldwide. The influence of social, geographical, and 
temporal factors in terms of accuracy has been scruti-
nized. Our model has been evaluated and outperformed 
against the cold-start users and the cold-start locations. 
Our future work is to ensure users’ social information 
security, which is crucial to users, and a state-of-the-art 
problem in POI recommendation.

Acknowledgement
The authors would like to acknowledge Prince Sultan University and EIAS Lab 
for their valuable support. Further, the authors would like to acknowledge 
Prince Sultan University for paying the Article Processing Charges (APC) of this 
publication.

Conflicts of interest
All the authors have no conflicts of interest.

Authors’ contributions
I.K and A.S are the main writers of the manuscript. They put forward the main 
ideas of architectural modeling and analysis, and wrote the main part of this 
manuscript. G.A and M.A supervised the work and provided the funding for 
the said research. T.S have designed the Algorithms and R.K and validated the 
results. All the authors reviewed and approved this manuscript.

Availability of data and materials
The materials that support this study are available upon request from the 
second author.

Declarations

Ethics approval and consent to participate
The study did not require ethical approval.

Competing interests
The authors declare no competing interests.

Received: 25 November 2022   Accepted: 18 March 2023

Fig. 3  Accuracy for cold-start users

Table 6  Impact of time period/seasons �S over accuracy for 
top@n recommendations

�S Acc@n

5 0.27 0.35 0.24 0.25 0.32

10 0.23 0.32 0.42 0.31 0.32

15 0.32 0.38 0.39 0.42 0.45
20 0.33 0.42 0.23 0.98 0.32
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