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Abstract 

A major challenge in Cloud-Fog settings is the scheduling of workflow applications with time constraints as the 
environment is highly volatile and dynamic. Furthermore, adding the complexities of handling IoT nodes, as the major 
owners of the workflow requests, renders the problem space even harder to address. This paper presents a hybrid 
scheduling-clustering method for addressing this challenge. The proposed lightweight, decentralized, and dynamic 
clustering algorithm is based on fuzzy inference with intrinsic support for mobility to form stable and well-sized clus-
ters of IoT nodes while avoiding global clustering and recurrent re-clustering. The proposed distributed method uses 
Cloud resources along with clusters of mobile and inert Fog nodes to schedule time-constrained workflow applica-
tions with considering a proper balance between contradicting criteria and promoting scalability and adaptability. 
The Velociraptor simulator (version 0.6.7) has been used to throughtly examine and compare the proposed method in 
real workloads with two contemporary and noteworthy methods. The evaluation results show the superiority of the 
proposed method as the resource utilization is about 20% better and the schedule success rate is almost 21% better 
compared with the two other methods. Also, other parameters such as throughput and energy consumption have 
been studied and reported.
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Introduction
Cloud computing is a promising model of the Internet of 
Things (IoT) in data processing and business applications 
[1, 2]. Using Cloud computing for IoT is not an easy task 

due to challenges such as synchronization, standardiza-
tion, balancing between services and IoT needs [2–6].

Fog computing can be used as a viable choice for IoT 
providers with features such as less delay, more scal-
ability, support for user and resource mobility, better 
performance for real-time interactive services, and data 
processing [7–9]. However, Fog computing needs to 
solve other issues such as the reliability and mobility of 
analytical data on edge devices. Another important chal-
lenge in Fog computing is resource allocation [10]. In Fog 
computing, nodes are differently based on input data and 
processing speed, which leads to problems on load bal-
ancing, when some Fog nodes are overloaded and some 
remain idle. These issues reduce the performance of the 

*Correspondence:
Sahar Adabi
sahar_adabi@iau-tnb.ac.ir
1 Department of Computer Engineering, Science and Research Branch, 
Islamic Azad University, Tehran, Iran
2 Department of Computer Engineering, North Tehran Branch, Islamic 
Azad University, Tehran, Iran
3 Health Management and Economics Research Center, Iran University 
of Medical Sciences, Tehran, Iran
4 Computer Science, University of Human Development, Sulaymaniyah, 
Iraq

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00428-4&domain=pdf


Page 2 of 35Hajvali et al. Journal of Cloud Computing           (2023) 12:66 

Fog environment [11–13]. Therefore, workflow schedul-
ing is an important issue in a Fog environment.

Workflow is commonly used in a distributed comput-
ing environment [7, 8, 13–15]. A workflow is graphi-
cally performed using a Directed Acyclic Graph (DAG) 
to show the interdependence between workflow tasks, 
where nodes represent computational tasks on available 
resources and guided edges represent data flow depend-
ency [8, 13–15]. In general, the runtime of a task in a par-
ticular resource is inversely proportional to the speed of 
that resource; therefore, optimal mapping of workflow 
tasks to computing resources available in Cloud/Fog is 
essential [16, 17].

In this paper, a distributed scheduling architecture for 
Cloud/Fog-based systems is presented. The proposed 
Cloud/Fog based scheduling management architecture 
has three hierarchical layers. The first layer is the IoT 
device layer. The second layer, has two sub-layers of Fog 
nodes and smart gateways, which are responsible for 
managing requests. This layer has a scheduling manage-
ment system that receives all user requests, manages 
resources, processing and communication costs, and 
ultimately creates the most appropriate scheduling avail-
able. The third layer, the Cloud layer, hosts some com-
puting nodes and provides external resources for the 
middle layer. In the proposed architecture, resources are 
mobile in the system, meaning that they can be in differ-
ent places at different times. Also, resources have limited 
energy consumption and bandwidth. Therefore, compu-
tational resources should be clustered [18, 19].

In this paper, a new multi-criteria clustering algorithm 
is presented to manage resources in the Fog layer. The 
use of clustering algorithms in Cloud/Fog has been con-
sidered due to advantages such as request management, 
increased data transfer speed and energy efficiency. 
According to studies [18–22] in the field of clustering, 
the mobility of fog nodes and their stability in creating 
optimal clusters is very important. So, a proposed clus-
tering algorithm is designed based on the rate of veloc-
ity, stability and mobility score that the fog layer nodes 
obtain using the fuzzy inference system. This makes the 
dynamic clustering algorithm more stable and efficient, 
and the requests are placed on closer and higher effi-
ciency clusters.

This paper proposed a new scheduling algorithm. This 
algorithm includes three phases. The first phase focuses 
on extracting the Critical Path (CP) from the DAG. The 
CP algorithm extracts important paths based on the pri-
ority value of each task (PRT). The second phase is the 
new workflow scheduling algorithm (SDMS algorithm) 
that selects the best schedule according to the work-
flow deadline and definition of a new utility function. 
The determined deadline is crucial to improve Quality 

of Service (QoS) performance in the system. The third 
phase is task reservation.

Workflows are usually faced with a large number of 
tasks that must be processed anywhere. This requires 
that the provided scheduling methods are scalable and 
able to schedule tasks within a certain deadline. In this 
regard, many studies have been conducted in recent years 
on these methods due to the many advantages that cloud/
fog environments have. However, there are shortcomings 
in this field, such as:

• Most of them are focused on unit workflow schedul-
ing in Cloud or Fog environment [7, 8]. If the Cloud/
Fog environment is considered at the same time, the 
benefits of these layers can be achieved.

• Since Fog nodes usually have mobility and the move-
ment characteristics of nodes may lead to continuous 
changes in the network topology, it is very important 
to consider mobility. Many of the previous works 
have not considered it [8–13].

• Also, mobile sources in the Fog layer have limited 
energy and bandwidth. Therefore, clustering is one of 
the most effective methods to optimize energy con-
sumption and resource management, a case that has 
not been addressed in many papers [23–26].

• The critical path is the longest path from the current 
task to an output task or an input task. Tasks on a 
critical path have priority over tasks on non-critical 
paths. Critical path helps to establish and control the 
schedule and minimize delays. This has been consid-
ered in few papers [25–29].

The above-mentioned challenges formed the main 
motivations of this research and consequently, the contri-
butions of this paper are as follows:

• Providing a three-tier hierarchical architecture for 
Cloud/Fog-based systems. The proposed architecture 
introduces a sub-layer in the Fog to provide a schedul-
ing management system with resource mobility.

• Extracting a Critical Path extraction method accord-
ing to the priority of workflow tasks, which helps to 
create more accurate schedules.

• Considering the mobility behavior of the Fog layer 
nodes and calculating the mobility score of the Fog 
nodes using a multi-criteria fuzzy method and intro-
ducing a new dynamic clustering algorithm.

• Proposing a new workflow scheduling algorithm, 
which achieves the best scheduling using a new util-
ity function.

The continuation of the paper is as follows: In the 
second section, related work is presented. In the third 
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section, the scheduling management system architec-
ture is presented and in the fourth section, the schedul-
ing model and related algorithms are presented. The fifth 
section deals with the evaluation and the sixth section 
with conclusions.

Related work
Workflow scheduling, which aims to meet different 
needs, has been extensively studied in recent decades. 
Many algorithms are proposed to find multi-purpose 
workflow scheduling scenarios [23]. In general, workflow 
scheduling algorithms are divided into three types: (1) 
meta-heuristic-based techniques, (2) heuristic, and (3) 
meta-heuristic hybrid techniques. Many studies of work-
flow scheduling are performed with multiple competing 
goals for integrated optimization or by combining multi-
ple goals into a single goal or limiting various other crite-
ria [24]. The main disadvantage of this type of approach 
is that only one computational solution may not be able 
to perform the user settings correctly. Recently, some 
practical multi-purpose solutions for computational 
scheduling have been developed and received a great deal 
of attention [23, 24].

A new problem is how to schedule workflows with 
data privacy restrictions while minimizing runtime and 
financial costs for large data applications in the Cloud 
[24]. In [7], such problems are modeled as a multi-
objective optimization issue, and a Privacy-Aware multi-
purpose scheduling workflow algorithm called MOPA 
is proposed. The results are compared with two other 
algorithms.

Arabnejad V et. al [8] explains the issue of scheduling 
scientific workflow in commercial environments. In this 
study, workflow scheduling is used to achieve low cost 
with appropriate response time in Cloud environments. 
Workflow scheduling in Cloud environments is differ-
ent from network and cluster computing environments, 
which are mainly used in providing flexible resources 
and payment charging models for each user. Therefore, 
scheduling workflows in the Clouds requires a different 
approach to mapping tasks to resources while reducing 
costs.

In [12], a new algorithm for planning called the effi-
cient planning workflow is introduced by establishing 
a trade-off between time and cost, which includes four 
main steps: task selection, evaluation of the range of all 
types of implicitly requested samples (IRITR), evalua-
tion of the additional budget and selection of the virtual 
machine. IRITR evaluation is a new concept for schedul-
ing, which aims to determine the different types of VM 
samples that are more suitable for workflow execution 
to avoid excessive bidding and negative bidding, which 
leads to budget violations and deadlines respectively. 

Compared to previous works, the simulation results 
prove the effectiveness of their approach, especially 
when there are many different sample types.

ChoonLee Y et. al [23] deals with the issue of resource-
efficient workflow scheduling. For this purpose, the 
Significant Maximum Reduction (MER) algorithm pro-
vides a resource productivity solution that optimizes the 
resource utilization of a work schedule performed by 
each specific scheduling algorithm. The main innovation 
of MER depends on identifying its "near-optimal" point 
between increasing and decreasing resource use. Finding 
such a point is very important and can lead to improve-
ment in resource utilization, reduction of resource sup-
ply, and energy saving. Another significant contribution 
is the widespread use of MER.

The focus in [25] is on schedule flows in Cloud com-
puting. They present a new algorithm which comprises 
the Intelligent Water Drop (IWD) algorithm to optimize 
Cloud workflow scheduling. Their algorithm represents a 
significant improvement over classic timetable schedul-
ing algorithms.

In [26] a multi-objective optimization problem is pre-
sented with a focus on reducing the power consumption 
of the whole system and delaying the execution of tasks. 
Overcoming permutation convergence in the initial 
population and genetic operators are effective factors in 
this algorithm. The performance of the proposed algo-
rithm has been studied by extensive experiments and the 
obtained results show that this algorithm performs better 
than its counterparts in terms of various criteria. In this 
regard ch-PICEA-g algorithm is presented in [27] which 
is an innovative multi-objective developed algorithm. In 
their proposed method, first logistic maps and tents are 
used and then the improved bodily function is used to 
achieve the optimal solution.

Han P et. al [28] proposes an efficient exploratory 
method called CMSWC to solve the workflow scheduling 
problem by minimizing the cost and length of the work-
flow. CMSWC has two stages: ranking and mapping. 
In addition, CMSWC combines specifically for multi-
objective challenges: (1) The scheduling phase to prevent 
the exploration of useless resources for tasks, which sig-
nificantly limits the search space. (2) A new method for 
selecting non-dominant solutions, combining the non-
dominant fast sorting approach and change-based den-
sity estimation. Extensive experiments on real workflows 
show that their approach can generate better costs than 
several advanced approaches.

Wang B et. al [29] provides an optimization-based 
scheduling framework in the Cloud environment. They 
use the virtual machine multiple queue model and the 
relationships between them along with the automatic 
encoder to improve noise cancelation to extract service 
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quality characteristics. In the evaluation results, their 
method effectively reduces energy consumption com-
pared to others while guaranteeing the quality of ser-
vice. In [30], due to service quality limitations, the 
problem of workflow scheduling in multiple grid envi-
ronments has been considered. To achieve this goal, 
they have developed a two-tier scheduling strategy 
that includes general-level scheduling and local-level 
scheduling. Heterogeneity and all types of resources 
available in each grid cluster is an issue that signifi-
cantly affects the complexity of scheduled workflows. 
Their proposed system consists of a cluster monitoring 
unit. The program management unit, and the cluster 
coordination unit. the cluster coordination unit uses 
the method of determining the quality of resources to 
prioritize the candidate’s resources based on the multi-
criteria decision-making problem space. Software 
simulation is used to evaluate the performance of the 
proposed system with other works.

Zhou X et. al [31] has proposed the Priority and Rela-
tive Distance (EPRD) efficiency algorithm to minimize 
work scheduling length for priority-limited workflow 
programs without violating the end-to-end deadline. 
The algorithm consists of two processes, first creat-
ing a task priority queue and then drawing a VM cor-
responding to its relative distance for a task. The 
proposed method can effectively improve VM perfor-
mance and scheduling. Extensive detailed experiments 
based on workflow schedules are randomly generated 
and in the real world show that the amount of resource 
reduction and programming length of the EPRD algo-
rithm significantly exceeds the existing algorithms. In 
terms of scheduling, scientific flows are compact data 
during which a large volume of medium data is gener-
ated. In the Cloud, some valuable intermediate data is 
stored for reuse. This storage is done manually accord-
ing to the capacity of the system. Today, more mediocre 
data can be stored in the cloud due to the popularity of 
doing scientific workflow in the workplace.

In [32], they create a data dependency graph of the 
data resource in scientific flows. Meanwhile, this strat-
egy considers user access due to delay. The results show 
that this strategy can significantly reduce the general sci-
entific costs of academic operations. In [33], a four-layer 
architecture in a Fog environment is provided for delay 
and load balancing in scheduling. Minimum execu-
tion time, maximum completion time, arrival time and 
work size are considered as input criteria. In this study, 
the K-means +  + clustering algorithm is used to cluster 
nodes in the Fog layer, and an artificial neural network is 
used to determine the extent to which a Fog node is used. 
Finally, they used iFogSim for simulation and the param-
eters of energy consumption, load balance, response 

time, scheduling time and latency were used to calculate 
the performance of the scheduling algorithm.

Pham X-Q et. al [34] considers workflow scheduling 
based on a Cloud/Fog computing system. Fog layer nodes 
are used to run large applications in collaboration with 
Cloud layer nodes. This allows for a good deal of agree-
ment between implementation time and cost. In [35], 
task scheduling and data placement in systems embed-
ded in the Cloud/Fog environment are investigated. 
Resource management is always an important issue for 
system performance. To deal with the complexity of the 
above calculations, an effective computational solution 
based on equation has been proposed and validated by 
extensive simulation studies.

Maio M et. al [36] focuses on scheduling extreme data. 
Extreme data is a redefinition of big data that is distin-
guished by the vast amount of information that needs to 
be analyzed. They use Fog calculations to schedule heavy 
data workflows that require accurate response times. 
They propose a beam-based method for loading tasks in 
the Fog called multi-objective workflow loading. Their 
algorithm considers three goals: cost, response time, 
and reliability. The simulation results show examples of 
the usage of severe data with precise delay requirements. 
Energy saving is one of the main goals in network, Cloud, 
and Fog computing.

In [37], an energy-aware method based on the DVFS 
technique for energy saving in Fog computing is pro-
posed. Power savings are achieved using DVFS-enabled 
processors in the Fog, and compared to them, they can 
operate at lower voltages and frequencies at idle times. 
In addition, the IWO-CA hybrid evolution algorithm 
is used to arrange tasks without violating priority con-
straints. According to the results in the evaluation 
section, significant energy savings are achieved in the cal-
culations of programs that have a predetermined dead-
line. Allocating and providing resources in the Fog-Cloud 
environment is a challenging task, given the dynamic 
changes in user needs and the limited resources available 
in Fog computing.

In [38], they propose a deadline-based algorithm for 
resource allocation and provision using resource ranking 
and resource provisioning in a combined and hierarchical 
manner. In this study, dynamic changes in user behaviors 
are investigated. The performance of the proposed algo-
rithms in terms of total data processing time, sample cost, 
and network delay, with the increasing number of program 
submissions, are compared with available and better algo-
rithms. The simulation results of their algorithm in Cloud-
Sim show the better behavior of this algorithm.

In [39] a workflow scheduling algorithm based on 
load balancing is proposed. Based on the cloud posi-
tion, the execution time of the tasks is checked and 
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according to a queue model in the Cloud, the response 
time of the whole system is reduced. Next, they pre-
sent their scheduling algorithm using the shortest 
path of the algorithm. The simulation results show the 
reduction of energy consumption and the increase of 
resource utilization. Konjaang KJ et. al [40] have pro-
posed a virtual machine mapping algorithm. Their 
method is to efficiently manage resources in the Cloud 
to reduce runtime and cost in order to improve the 
quality of services and user requirement. The evalu-
ation results show a reduction in execution time, cost 
and energy consumption.

Pham X-Q et. al [41] in a new distributed computing 
platform, task scheduling based on Cloud/Fog systems is 
presented. The main purpose of their algorithm is to bal-
ance the cost and performance of runtime, and the results 
show that the quality of system service is improved. Azizi 
S et. al [42] presents the scheduling method in a Fog 
environment in order to reduce total energy consump-
tion and achieve high service quality, while minimizing 
deadline violations. Through simulation experiments, 
the superiority of the proposed algorithm is shown in the 
number of tasks, reducing the deadline violations and 
optimizing energy consumption.

Rodriguez M-A et. al [43] analyzed various features of 
Cloud workflow scheduling algorithms. In particular, the 
planning model, application, and resources have been stud-
ied. Since extensive researches have been done on the field 
of planning in general, there are accepted and accurate clas-
sifications for these features. Some of these are planning 
decisions, planning goals, and optimization strategies. The 
software model is viewed from the point of view of work-
flow multiplicity, i.e. the number and type of workflows that 
algorithms can process. Zaman Khalid, et al. [44] presents a 
technique for efficient distribution of resources in all nodes 
in a centralized manner. Their model is established in terms 
of cost-effectiveness using threshold values. The proposed 
system reduces cloud copies and costs. Azure’s $6 static 
solution has three nodes. The adaptive data replication 
management system reduces the number of copies from 
three to two, saves memory, and lowers the price from $6 to 
$4. MATLAB and other programming languages are used 
for simulation. Azure is compared to Date Replication and 
Reproducer.

In cloud computing, services play a key role. Services 
are well-defined and independent components. Today, 
the demand for using fuzzy inference as a service in the 
field of complex and critical systems is increasing. In such 
systems, along with software development, the cost of 
diagnosing and fixing software defects increases. There-
fore, the use of formal methods, which provide a clear, 
concise and mathematical interpretation of the system, is 
very important for the design of these fuzzy systems. To 

achieve this goal, [45] introduces a fuzzy inference cloud 
service (FICS) and proposes a new discipline for its for-
mal modeling. FICS provides fuzzy inference services to 
consumers. Four new formal verification tests are also 
provided, which allow detailed analysis of certain behav-
ior discipline patterns in FICS. In [46], a new approach to 
combine partitioning, sequencing and scheduling algo-
rithms and multi-objective optimization is presented. 
Their approach integrates a distributed resolution with 
a multi-agent system and a fuzzy inference system to 
deal with the uncertainty problem. They compare their 
approach with the main related approaches and the anal-
ysis of the obtained results validates the performance of 
the approach as well as its effectiveness in scheduling 
workflows on fog-cloud computing considering resource 
utilization.

In IoT-based environments, workflows are usually 
faced with a number of tasks that need to be processed 
anywhere. This requires that the provided scheduling 
methods are scalable and able to schedule tasks within a 
certain time limit. In this regard, many studies have been 
investigated in recent years on these methods consider-
ing the advantages of Cloud/Fog environments. However, 
there are gaps in this regard. Most of the studies have 
focused on workflow scheduling in Cloud or Fog envi-
ronment [8–13]. This paper has examined both layers in 
order to achieve their benefits.

Also, the mobility of nodes in the Fog layer to opti-
mally allocate tasks to resources has become an impor-
tant challenge in scheduling methods. On the other 
hand, they have limited energy and bandwidth resources. 
Therefore, clustering is one of the most effective meth-
ods that simultaneously considers the mobility of nodes 
and their management. In this paper, a new clustering 
algorithm that takes these challenges into account is pre-
sented. The next gap is to consider the critical path for 
tasks in a workflow [30]. Scheduling tasks on the critical 
path is very important because the critical path helps to 
establish and control the schedule and minimize delays 
[47]. This paper calculates the priority of tasks by pre-
senting a critical path algorithm, which helps in better 
and faster scheduling.

Table  1 shows the comparison between the proposed 
work and related works.

Scheduling management system architecture
In this paper, a workflow scheduling management sys-
tem in a Cloud/Fog computing system is proposed. In 
these systems, due to the large volume and increasing 
demand for services, as well as the production of big 
data and their storage, the workload of Cloud serv-
ers increases [43]. Thus, it is desirable to consider the 
distribution management of services in the Fog layer. 
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On the other hand, the QoS (e.g. delay) of end-users 
is important [48]. This is because the delayed response 
can have catastrophic consequences. For this purpose, 
it is studied how to distribute the workload among the 
Fog layer nodes at different time intervals to provide 
service and achieve an optimal schedule in the system. 
The type of received tasks and the priority of their exe-
cution are also considered. As a result, higher priority 
tasks need to be scheduled sooner [47, 49].

The proposed Cloud/Fog computing system has 
three hierarchical layers, as shown in Fig.  1. The first 
layer is the device layer, which includes IoT devices. 
These devices act as an intermediary and send user 
requests to higher layers. The second layer, called the 
Fog layer, has a set of nodes that receives and processes 
part of the workload of user requests. The third layer 
is also responsible for providing external resources 
to execute the workload sent from the middle layer 
and hosts computing machines. Because the system 

computing resources are distributed to Cloud and Fog 
nodes, there is a smart gateway in the middle layer that 
receives all user requests, manages resources in Cloud 
and Fog nodes and processing and communication 
costs, along with data request results from nodes. It 
also creates the most appropriate schedule for an input 
workflow [50, 51].

Execution of workflows in the middle layer is done 
through a workflow management system [29–31]. 
When implementing workflow scheduling in a Cloud/
Fog environment, two issues need to be considered. 
The first one, known as resource provision, involves 
the selection and provision of computational resources 
that are used to perform tasks [36]. The second one 
is scheduling or task allocation, in which each task is 
scheduled on the appropriate resources. A runtime 
estimation component is performed using historical 
data, protocol data, or time series forecasting models, 
among other methods, to evaluate the performance 

Fig. 1 General architecture of the proposed Cloud/Fog-based scheduling management system
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of Cloud resources and the amount of time it takes 
to perform tasks in different resources [52–54]. This 
data is used by the resource supply component and 
the scheduling component to make accurate and effi-
cient decisions about task allocation. The data man-
agement component in the workflow management 
system manages the motion, placement, and storage 
of data as needed to perform task operations. Finally, 
the task distributor is responsible for interacting with 
Cloud APIs to send tasks ready to run on existing 
resources. Figure  1 shows the general architecture of 
the proposed Cloud/Fog-based scheduling manage-
ment system.

Proposed components for the Smart Gateway are 
explained as follows:

• Cloud/Fog information services

This component provides a variety of information for 
storage devices and resources in the Cloud/Fog, includ-
ing their features and characteristics, cost of use, loca-
tion, and other information needed to select resources 
and make decisions about optimal scheduling.

• Scheduling management system

 The core of the system is the scheduling manage-
ment system that is responsible for managing the 
actual execution of the workflow. It includes the 
following components:

• Resource provisioning

 The resource provisioning component is respon-
sible for selecting and supplying Cloud/Fog 
resources and is done according to the require-

ments of the scheduling system and service quality 
requirements.

• Runtime estimation
 When a task is entered into the system, preproc-

essing is performed and a deadline is assigned to 
each task, which is provided in the system by the 
runtime estimation component.

• Task dispatcher
 This component is responsible for interacting with 

Cloud APIs to send tasks ready to run.
• Data management
 The data management component in the sched-

uling management system manages the collec-
tion, motion, placement, storage, and depend-
ency between data when needed to perform task 
operations.

• Scheduler
 This component performs the task of scheduling 

according to the information and factors obtained 
from other components to make accurate and effi-
cient decisions, using scheduling algorithms.

• Monitoring
 The monitoring includes components that enable 

dynamic and continuous monitoring of work-
flow tasks and resource performance, as well as 
resource management.

This paper aims to extend the scheduling component 
in this architecture, and for this purpose, the follow-
ing parameters in Table  2 which are described in detail 
in  Evaluation and Discussion  section, are considered to 
evaluate the proposed method.

Problem model
Task graph model
A task graph is represented by a Directed Acyclic Graph 
(DAG), G = (V, E, w, c), where V represents a set of tasks 

Table 2 Performance evaluation parameters for proposed method

Performance Evaluation parameters Description

Resource Utilization Resource utilization in the Fog and Cloud can be defined as the amount of resource time used to perform 
scheduled tasks on it

Success Rate Success rate is defined in terms of the number of successful requests in relation to the total number of 
tasks, and represents the fraction of tasks that have been successfully scheduled and completed before the 
deadline

Time related scheduling performance
 Parallelism Degree Parallelism Degree is the number of tasks running in parallel

 MakeSpan Makespan is the amount of time from providing a workflow to completing it

 Waiting Time Waiting time is the average time it takes for a task to complete the scheduling process

Energy Consumption Energy consumption report in each stage in the average and total mode

Packet Delivery Report Package delivery report in three modes: Wi-Fi, cellular and lost

Throughput Throughput rate during the scheduling process

Alive node Number of live nodes during the scheduling process
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and E represents a direct relationship between tasks. 
Each graph has a weight that specifies the workload of 
the task (number of instructions), and each edge indi-
cated by eij is the cost of communication between the 
two tasks i, j (ti, tj), which represents the amount of 
communication data transmitted from the ti task and 
is used as input data for the tj task. pred (ti) means 
tasks that are placed directly before ti, and succ (ti) 
refers to direct successors to ti. If ti has no precedent, 
pred (ti) = 0, and if a task without any substitutes, succ 
(ti) = 0, in which case the output task is called texit. It is 
assumed that a task cannot start until all its inputs are 
sufficiently collected [30].

Resource clustering algorithm
Clustering is one of the most effective algorithms that 
can be used to optimize energy consumption and man-
agement [18–21]. The basis of dynamic clustering is to 
create stable clusters. Considering the inherent mobil-
ity behavior of the nodes of the Fog layer and the speed 
and matching of the movement of these nodes, the 
purpose of clustering is to create more concentrated 
clusters with nodes close to each other in order to pro-
vide faster execution of the algorithm on the nodes of 
the Fog layer [22]. Creating centralized clusters with 
a proportional number of members makes the nodes 
have better local communication [23]. It also increases 
the throughput rate, the lifetime of the nodes, reduces 
the overhead of network computing, reduces the trans-
mission delay and, as a result, delivers more optimal 
packets.

The purpose of this section clustering, in addition 
to maximizing the nodes’ lifetime, is to put together 
nodes that are in the same condition in terms of 
mobility while minimizing the number of clusters. To 
achieve this goal, a score-based clustering algorithm 
is proposed. In this algorithm, each node calculates 
its score based on four parameters and distributes the 
score. The cluster head node selects the cluster mem-
ber nodes (Fog nodes) based on the score received 
from neighboring nodes. Therefore, the cluster head 
determines its members in a distributed manner with 
the minimum computational overhead required and 
based on the latest information on the current condi-
tion of neighboring nodes.

Here it is assumed that the cluster heads are fixed and 
are assigned to a cluster according to the points they 
gain. The other nodes then join the clusters according 
to their mobility score. Since the system is dynamic 
and architectural elements can be entered to or exited 
during the execution of the system, and also due to the 
mobility of the nodes, the clusters are constantly chang-
ing, and as a result, the proposed clustering algorithm 

is defined dynamic too. Three important parameters are 
considered for selecting cluster heads. These param-
eters are fully described below. Each cluster node as 
well as each cluster member node calculates a value for 
itself using the proposed fuzzy-based method to indi-
cate its suitability for a cluster. Table 3 shows the term 
descriptions and Table  4 shows messages used in the 
clustering algorithm.

The main structure of the proposed algorithm (Algo-
rithm 1) for selecting the cluster head and its members 
has the following steps:

• The first step (calculating the cluster head score).

Initially, the score of each cluster head is calculated 
using a multi-criteria method based on the fuzzy infer-
ence method (described in  Input and output variables 
of the fuzzy SoCH system section).

• Step 2 (calculating the mobility score for each node).

In this step, a multifunctional method based on fuzzy 
inference is proposed to calculate the mobility score 
of Fog layer nodes. In  Input and output variables of 
the fuzzy SoMob system  section this method is fully 
explained.

Table 3 Term description

Term Description

SoCH Scored cluster head node point

SoMob Cluster member node mobility score

BWCH Bandwidth of a cluster relative to the 
number of its members

RTCH Response time for messages for the 
cluster head node

PPCH Processing power of a cluster 
depends on the number of its 
members

VM Speed of each member node rela-
tive to a member of the cluster

STM Stability of the position of each 
node of the cluster relative to the 
cluster head

Table 4 Message format

Message name Message format

CHmsg {Id_M, SoMob score, Avl list}

JOINmsg {Id_M, SoMob score}

ACCEPTmsg {Id_CH, size of CH, SoCH score}



Page 10 of 35Hajvali et al. Journal of Cloud Computing           (2023) 12:66 

• Step 3 (creating a list of available cluster heads for 
each node).

At this point, each node creates a list of cluster heads in 
its location by sending a "CHmsg" message to its neighbor 
cluster heads.

• Step 4 (distributing the global message).

Each node sends the message "JOINmsg" announcing 
its request to connect to the clusters in its range (avail-
able list).

• Step 5 (selecting the cluster numbers).

At this stage, the cluster head checks the number of 
its members and if the number of members in that clus-
ter has not reached the maximum, by sending the mes-
sage "ACCPETmsg", it selects the node as a member of 
the cluster and connects the node to the cluster.

Fuzzy inference system for calculating scores of the cluster 
head
A fuzzy decision-making controller consists of the fol-
lowing [30]:

1) Input and output variables. These variables are 
usually determined based on the knowledge of 
experts.

2) Fuzzification interface. This interface converts input 
variables into fuzzy sets.

3) Fuzz rules. The fuzzy inference process uses these 
rules.

4) De-fuzzification interface. This interface translates 
fuzzy linguistic values into a clear real number that is 
the output of the fuzzy inference process.

Input and output variables of the fuzzy SoCH system In 
this section, a fuzzy-based method for calculating the 
score of the cluster head and members of each cluster is 
presented.
This paper uses three parameters BWCH, RTCH, and 
PPCH as input parameters in the fuzzy inference sys-
tem (Eqs. 1, 2 and 3). The output of the method is used 
as a qualitative criterion for each node of the cluster 
head. The output variable will also be called (SoCH), 
which shows the score of each node of the cluster and 
the score of each cluster in general. The input variables 
are as follows:

where BWCH is the average bandwidth of cluster mem-
bers, RTCH is the response time, and PPCH is the average 
processing power of cluster members.

Algorithm 1. Resource Clustering in Fog/Cloud RCFC Function()

Fuzzy inference, de‑fuzzy inference, and membership func‑
tions for the fuzzy SoCH system The concept of fuzzy 
inference is the use of fuzzy logic to adapt a given set of 
inputs to a given output. For this, fuzzy logic, fuzzy rules, 
linguistic variables and fuzzy sets are the main members. 
Fuzzy variables can take values, such as low, medium or 
high, etc., the degree of membership that the numerical 
between 0 to 1 can obtain with the membership function.
To express the membership function can be used a curve or 
linear shape. The membership functions designed for three 

(1)BWCH =

1
n

n
i=1 Bandwidth

Number of members

(2)RTCH = Delay of network(Response Time)

(3)PPCH =

∑n
i=1 Processing power

Number of members
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inputs as well as one output are summarized and shown 
in Table 5. A graphical representation of the fuzzy system 
membership functions is shown in Fig.  2 and the output 
surfaces of a fuzzy system with two inputs and one output 
are shown in Fig. 3 (a, b, c).

Input variables of the fuzzy method for selecting the clus-
ter head:

1. BWCH. Low(L), Medium(M) and High(H) are defined 
as a fuzzy set.

2. RTCH. Weak(W), Moderate(M), Strong(S) are defined 
as a fuzzy set.

3. PPCH. Low(L), Medium(M), High(H) are defined as a 
fuzzy set.

The fuzzy method output variable for selecting the clus-
ter head:

1. SoCH. This output variable has four fuzzy sets 
which are defined as Bad (B), Moderate (M), Good 
(G), and Excellent (E).

Fuzzy rule base for the fuzzy SoCH system Existing 
knowledge about the problem is stored in the "if" lan-
guage rules as shown in Table 6. These rules guide system 
behavior. An "if–then" rule can make the usual human 
decisions using language tags and membership functions. 
Each "if–then" rule, on the other hand, defines the behav-
ioral dynamics of the target system.

– Rule 10: if (BWCH is Moderate) and (RTCH is Weak) 
and (PPCH is Low) then (SoCH is Bad)

– Rule 18: if (BWCH is NOT Medium) and (RTCH is 
Strong) and (PPCH is High) then (SoCH is Good)

Input and output variables of the fuzzy SoMob system The 
proposed clustering algorithm for calculating the mobil-
ity score of cluster members considers Stability (STM) and 
Speed   (VM), and scores obtained from the nodes of the 
cluster head (calculated in Input and output variables of 
the fuzzy SoCH system section) where each node is given 
a score based on these parameters, which is the main basis 
for clustering by cluster heads. The input variables are as 
follows:

1. Speed of each node (VM). The average velocity for each 
node up to the current time T is calculated by Eq. 4:

where (Xt, Yt) and (Xt-1, Yt-1) are the coordinates of 
node v at time (t) and (t—1) respectively.

(4)

VM =
1

T

T
∑

t=1

√

(Xt − Xt−1)
2
+ (Yt − Yt−1)

2

Table 5 Membership functions and linguistic values of the fuzzy 
system

Variable Membership function Linguistic 
Value

Input variable BWCH

µ(x) =







1 x < 0.2
0.4−x

0.2
x ∈ [0.2.0.4]

0 x > 0.4   

L

µ(x) =



















0 x < 0.27
x−0.27

0.13
x ∈ [0.27.0.4]

1 x ∈ [0.4.0.6]
0.8−x

0.2
x ∈ [0.6.0.8]

0 x > 0.8   

M

µ(x) =







0 x < 0.62
0.9−x

0.28
x ∈ [0.62.0.9]

1 x > 0.9   

H

RTCH
µ(x) =

{

0.4−x

0.4
x ∈ [0.0.4]

0 x > 0.4   

W

µ(x) =















0 x < 0.1
x−0.1

0.4
x ∈ [0.1.0.5]

0.8−x

0.3
x ∈ [0.5.0.8]

0 x > 0.8   

M

µ(x) =

{

0 x < 0.6
x−0.6

0.4
x ∈ [0.6.1]  

S

PPCH
µ(x) =

{

0.35−x

0.35
x ∈ [0.0.35]

0 x > 0.35   

L

µ(x) =















0 x < 0.15
x−0.15

0.35
x ∈ [0.15.0.5]

0.72−x

0.22
x ∈ [0.5.0.72]

0 x > 0.72   

M

µ(x) =

{

0 x ∈ [0.0.6]
x−0.6

0.4
x > 0.6   

H

Output variable SoCH
µ(x) =







1 x < 0.15
0.22−x

0.07
x ∈ [0.15.0.22]

0 x > 0.22   

B

µ(x) =



















0 x < 0.18
x−0.18

0.18
x ∈ [0.18.0.27]

1 x ∈ [0.27.0.4]
0.5−x

0.1
x ∈ [0.4.0.5]

0 x > 0.5   

M

µ(x) =



















0 x < 0.35
x−0.35

0.15
x ∈ [0.35.0.5]

1 x ∈ [0.5.0.7]
0.78−x

0.08
x ∈ [0.7.0.78]

0 x > 0.78   

G

µ(x) =







0 x < 0.58
0.8−x

0.28
x ∈ [0.58.0.8]

1 x > 0.8   

E
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Fig. 2 Graphical presentation of the membership functions of the fuzzy SoCH System. a Membership function for the input variable: BW. b 
Membership function for the input variable: RTCH. c Membership function for the input variable: PPCH. d Membership function for the output 
variable: SoCH 

Fig. 3 Output surfaces of the fuzzy SoCH system with two inputs and one output. a inputs: PPCH and BWCH. b inputs: RTCH and BWCH. c inputs: PPCH 
and RTCH
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2. Stability (STM).  Stability refers to the stability of 
the cluster member node relative to the cluster head 
nodes in its range. A higher stability number indi-
cates that a node has been in the same range for a 
longer time, which means that the intended node is 
in a more stable state. Stability is calculated by Eq. 5.

where TRF is the time of the first packet received and 
TRL is the time of the last packet received, and n rep-
resents the number of neighbors of a node.
3. Cluster head node score (SoCH). It is calculated in 
Input and output variables of the fuzzy SoCH system 
section.

Fuzzy, de‑fuzzy, and membership functions for the fuzzy 
SoMob system In a fuzzy model, it is important to select 

(5)STM =

n
∑

i=1

TRF − TRL

Table 6 Fuzzy rules for the output variable to select the cluster 
head

Rule no BWCH RTCH PPCH SoCH

1 L W L B
2 L W M B
3 L W H B
4 L  ~ W L B
5 L M M M
6 L M H M
7 L S  ~ M M
8 L S M G
9  ~ L S H G
10 M W L B
11 M W M B
12 M W  ~ L B
13 M M L M
14 M M M M
15 M M H G
16 M S L G
17  ~ M S M M
18  ~ M S H G
19  ~ H W L B
20  ~ H W M M
21 H W H G
22 H M L M
23 H M M G
24 H M  ~ L G
25 H S  ~ H G
26 H S M E
27 H S H E
28 H  ~ S H G

Table 7 Fuzzy system membership functions and linguistic 
values

Variable Membership function Linguistic 
Value

Input variable VM
µ(x) =

{

0.35−x

0.35
x ∈ [0.0.35]

0 x > 0.35   

W

µ(x) =















0 x < 0
x−0.2

0.3
x ∈ [0.2.0.5]

0.8−x

0.3
x ∈ [0.5.0.8]

0 x > 0.8   

M

µ(x) =

{

x−0.6

0.4
x < 0.6

0 x ∈ [0.6.1]  

S

STM
µ(x) =

{

0.35−x

0.35
x ∈ [0.0.35]

0 x > 0.35   

L

µ(x) =















0x < 0
x−0.2

0.3
x ∈ [0.2.0.5]

0.8−x

0.3
x ∈ [0.5.0.8]

0 x > 0.8   

M

µ(x) =

{

0.35−x

0.35
x ∈ [0.0.35]

0 x > 0.35   

H

SoCHM

µ(x) =







0 x < 0.65
x−0.65

0.17
x ∈ [0.65.0.82]

1 x > 0.82   

B

µ(x) =



















0 x < 0.32
x−0.32

0.18
x ∈ [0.32.0.5]

1 x ∈ [0.5.0.7]
0.82−x

0.08
x ∈ [0.7.0.82]

0 x > 0.82   

M

µ(x) =



















0 x < 0.32
x−0.32

0.18
x ∈ [0.32.0.5]

1 x ∈ [0.5.0.7]
0.82−x

0.08
x ∈ [0.7.0.82]

0 x > 0.82   

G

µ(x) =







0 x < 0.65
x−0.65

0.17
x ∈ [0.65.0.82]

1 x > 0.82   

E

Output variable SoMobM

µ(x) =







1 x < 0.1
x−0.1

0.05
x ∈ [0.1.0.15]

0 x > 0.15   

VL

µ(x) =



















0 x < 0.08
x−0.08

0.07
x ∈ [0.08.0.15]

1 x ∈ [0.15.0.25]
0.32−x

0.07
x ∈ [025.0.32]

0 x > 0.32   

L

µ(x) =



















0 x < 0.2
x−0.2

0.15
x ∈ [0.2.0.35]

1 x ∈ [0.35.0.5]
0.65−x

0.15
x ∈ [0.5.0.65]

0 x > 0.65   

M

µ(x) =



















0 x < 0.45
x−0.45

0.15
x ∈ [0.45.0.6]

1 x ∈ [0.6.0.75]
0.9−x

0.15
x ∈ [0.75.0.9]

0 x > 0.9   

H

µ(x) =







0 x < 0.75
x−0.75

0.1
x ∈ [0.75.0.85]

1 x > 0.85   

VH
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the appropriate language values to provide input and 
output variables and to select membership functions to 
determine the scope of the program. As explained above, 
the next step is to convert the explicit values of the input 
variables to fuzzy sets. Table  7 shows the membership 

functions and linguistic values of the desired fuzzy system. 
A graphical representation of fuzzy system membership 
functions is shown in Fig. 4 and surface output plots of the 
fuzzy SoMob system with two inputs and one output are 
shown in Fig. 5 (a, b, c).

Fig. 4 Graphical presentation of the membership functions of the Fuzzy SoMob System. a Membership function for the input variable:  VM. b 
Membership function for the input variable: SoCHM. c Membership function for the input variable: STM. d Membership function for the output 
variable: SoMobM

Fig. 5 Surface output plots of the Fuzzy SoMob System. (a) inputs: SoCHM and STM. b inputs: SoCHM and VM. c inputs: STM and VM
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Input variables of the fuzzy method for selecting a mem-
ber of a cluster:

1. VM. Three fuzzy sets are defined for this input vari-
able: Weak(W), Moderate(M), Strong(S)
2. STM. Three fuzzy sets are defined for this input 
variable: Low(L), Medium(M), High(H)
3. SoCH. Four fuzzy sets are defined for this input vari-
able: Bad(B), Moderate(M), Good(G), Excellent(E)

The output variable of the fuzzy method for selecting a 
cluster member:

1. SoMob. This output variable has five fuzzy sets which 
are defined as Very Low (VL), Low (L), Moderate 
(M), High (H), Very High (VH).

Fuzzy rule base for the fuzzy SoMob system In the next 
step, determine the behavior of the system using fuzzy 
rules is determined. The rules for calculating the output 
are given in Table 8.

Figure 6 shows the sequence diagram of resource cluster-
ing in the Cloud/Fog architecture.

Scheduling algorithm
The purpose of this paper is to present a distributed sched-
uling algorithm for scheduling the tasks of a workflow to 
a set of Cloud/Fog resources. Since the workflow consists 
of a set of dependent tasks to ensure that priority is lim-
ited between tasks, each task must begin when all previous 
tasks have been completed. Also, the runtime of a schedule 
should not exceed the set time for it, so the purpose of the 
scheduling algorithm is to select the appropriate resource 
for assigning tasks by observing the workflow deadline, the 
data dependency between tasks and also resource mobil-
ity. Figure 7 shows an overview of the workflow scheduling 
steps that will be described below. The goal in this paper is 
to provide an algorithm for allocating workflow to a set of 
resources in the Cloud/Fog environment. This algorithm 
tries to select the best resource with the priority of Fog 
resources while guaranteeing the deadline of the workflow.

The proposed workflow scheduling algorithm consists 
of three phases: The first phase is to obtain a critical path 
to find higher priority tasks. In the next phase, accord-
ing to the clustering done on the resources (described 
in  Fuzzy inference system for calculating scores of the 
cluster head  section), m clusters are selected from the 
available clusters for the workflow. Then, by using the 

exhaustive search method, all possible schedules are gen-
erated on the clusters and the best schedules are selected 
according to the utility function. The third phase is to 
reserve resources for tasks on each of the selected sched-
ules. In this phase, if a task fails to make a reservation on 
a resource, the entire scheduling process fails.

• Phase 1; Critical path extraction algorithm

In the DAG scheduling process, one of the most impor-
tant keys is identifying important tasks. This paper uses 
the Critical Path extraction algorithm (CP) to generate 
the critical path. This algorithm obtains the task priority 
(PRT) factor using the Multi-Criteria Decision-Making 
method (MCDM) according to the following parameters:

Table 8 Fuzzy rules for the output variable to select the cluster 
member

Rule no V ST SoCH SoMob

1 W L B VL
2 W M B VL
3 W H  ~ B M
4  ~ W L B VL
5 M  ~ M B L
6 M M B M
7  ~ M H B M
8 M H B M
9 S L M M
10 S M M M
11 W H M M
12 W  ~ L M VL
13 W  ~ M M L
14  ~ W M M L
15 M H M H
16 M M M M
17 M L M L
18  ~ M M  ~ M L
19 M  ~ H M M
20 W L G L
21 W M G M
22  ~ S H G H
23 M M  ~ G M
24  ~ M L G L
25  ~ S H G M
26 S M G M
27 W L G M
28  ~ W M G H
29 M H E H
30 M  ~ L E H
31  ~ S M E M
32 S H E VH
33 S M E VH
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• Communication Cost ( CCi
j)

The cost of communication between two tasks, ti and 
tj, is the amount of data that must be transferred between 
them. This value can be measured in bytes, kilobytes, etc. 
The higher the cost of communication between related 
tasks, the more important the tasks become, and there-
fore these highly dependent tasks can be set to the same 
cluster or near clusters (according to the mobility score) 
which are available with the fast connection link.

• Execution Cost of Task ( ECTRS
ti

)

This factor is the cost of performing the ti task on all 
available clusters for that task, which has the type of 
resource required for the task and based on the esti-
mated processor cycles required to perform the ti task, 
and the average resource computing power with the type 
required in all clusters are calculated. Calculating the 
execution cost according to the processor cycles instead 
of the runtime makes it more accurate in estimating 
the runtime of each task on each resource based on the 
resource computing power. ECTRS

ti
 is calculated by Eq. 6.

Fig. 6 Sequence diagram of the proposed clustering algorithm
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where CCPRS is the average cluster computing power for 
resources of the type required for each task and is calcu-
lated by Eq. 7.

where ClusterRS is the set of all the resources of the type 
required by each task in the cluster and M is the number 
of resources in the ClusterRS set. A task becomes more 
critical with increasing the execution cost.

• Time Pressure of Scheduler ( TPSti)
This factor indicates how much pressure the sched-

uler has to perform a task, and its value is between zero 
and one. Let EST (ti.RSn) be defined as the task start 
time estimation ti, which is estimated before the actual 
execution of the task on the resource. When the value 
of TPSti is closer to one, the program management unit 
is under more pressure to schedule the task ti. This fac-
tor is determined by Eq. 8.

(6)ECTRS
ti

=
ti · Length

CCPRS

(7)CCPRS =
1

M

∑

Rj∈ClusterRS

Rj · ComputationPower

where α is the current time of the system.
Since the Cloud and Fog environment are hetero-

geneous and the calculation time of tasks varies from 
one resource to another resource, accurate calculation 
EST (ti.RSn) is not possible.

In addition, factors such as bandwidth between 
clusters and the amount of data transfer between 
tasks affect the data transfer time. Therefore, for any 
unscheduled task, data transfer must be performed 
and the execution time of each task must be calculated 
approximately. If tentry is the input node in the DAG 
of the application, the EST (tentry.RSn) is calculated by 
Eq. 9.

where ε is the time when the scheduler needs ti to sched-
ule the task.
EST (ti.RSn) is calculated by Eq. 10.

(8)

TPSti = 1−
(EST (ti.RSn)− α)

Max(∪ti∈DAG·Tasks
(EST (ti.RSn)− α))

(9)EST
(

tentry . RSn
)

= α − ε

Fig. 7 An overview of the workflow scheduling steps
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Let EFT
(

tj .RSn
)

 be the estimated end time of tj without 
considering the actual resource of the task processing, 
and be calculated by Eq. 11.

after scheduling EST (ti.RSn) andEST (ti.RSn) , with the 
actual start time of AST

(

tj .RSn
)

 and the actual end time 
of AFT

(

tj .RSn
)

 being replaced respectively.
• Number of Task Successors ( Num · Sucti)
If a task has more successors, it indicates that the 

immediate successors of this task are waiting for their 
main tasks to be performed. As a result, this task usually 
depends on more resources for communication, and this 
makes it even more important.

• Source Request Rate ( SRRRS
ti

)
This factor is defined according to the type of resources 

requested for each task. SRRRS
ti

 specifies the average avail-
ability of the user’s requested resource type to the num-
ber of requests given to that resource. the more amount 
that is available compared to the number of requests in 
this type of source then the more critical path contain-
ing the tasks that requested this resource. This amount is 
calculated for all clusters containing this resource in the 
form of Eq. 12:

where P is the number of clusters that have the type of 
intended resource and SARRSRT

ti
 is the resource rate for 

the type of required resource ti that is calculated in the 
form of Eq. 13.

Now the priority of each task can be calculated accord-
ing to Eq. 14.

(10)EST
�
ti .RSn

�
= Maxtj∈pred(ti)

⎧
⎪⎨⎪⎩

Min(DLtj . EFT
�
tj . RSm

�
+

CCi
j

BW
if tj is not scheduled

AFT
�
tj . RSn

�
+

CCi
j

BW
otherwise

(11)
EFT

(

tj . RSn
)

= EST
(

tj . RSn
)

+ AEC
(

tj . RSn
)

(12)SRR
RSRT
ti

=
1

P

∑

RT ∈ ClusterRS

SAR
RSRT
ti

(13)

(14)PRTti = w1 ×

⎛⎜⎜⎜⎝

∑
tk∈DAG⋅Succti

�
((CC)N + PRT

tk
DAG

�

Max
�
2 × Num ⋅ Sucti . 1

�
⎞⎟⎟⎟⎠
+ w2 × TPSti + w3 × Num ⋅ Sucti + w4 × ECT

�
tj . RSn

�
+ w5 × SRR

RSRT
ti

where wi (i = 1,2,3,4,5) is the weighting factor that deter-
mines the effect of the value i-th on the priority of the 
task.

Algorithm 2 shows how to extract the critical path.
This algorithm first uses Depth First Search (DFS) to 

find all possible paths in the DAG (line 2). The prior-
ity of each task is then calculated if it is not scheduled. 
The PRT value is calculated according to Eq. 14 (lines 4 
to 7). The algorithm then obtains the critical path from 
the sum of the PRT values of the tasks. Thus the sum of 
the PRT values of each path is calculated and CP selects 
the path with the highest PRT sum as the critical path. 
The scheduling algorithm is then called (line 18) and 
the result determines whether the scheduling is suc-
cessful or not.

Algorithm 2. CP Function()
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  The second phase; the Soft Deadline Mobility 
Scheduling (SDMS) algorithm

The proposed scheduling algorithm is implemented 
hierarchically. In the first step, a list of available clusters 
is selected for the workflow, and then the best clusters 
are selected as candidate clusters ( CL · CandidatesWF ) 
to perform the workflow. These clusters are examined 
according to the factors of distance of the workflow to 
the desired cluster and the velocity vector matching of 
each cluster. Then, using the Multi-Criteria Decision-
Making method (MCDM), the factor CL · CandidatesWF 
is calculated according to the following parameters.

• Workflow Distance to Cluster ( DistanceCLiWF)

The shorter the distance from the workflow to a cluster, 
the better the choice. To obtain this distance, Eq. 15 can be 
used, which considers the relative velocity of two nodes:

so that the velocity vector of a cluster is equal to the vec-
tor sum of all resources within a cluster, which is calcu-
lated by Eq. 16.

where K is the number of resources within a cluster. The 
distance parameter is calculated according to Eq. 17.

where ( XCLi
T .Y

CLi
T  ( and (XWF

T .YWF
T ) are the coordinates of 

the cluster CLi and WF  at time T respectively.
• Cluster Velocity Vector Matching with the Workflow 

( SVMCLi
WF)

This parameter shows the matching of the velocity vector 
of a cluster with the workflow. Since the layer nodes of the 
device are fixed, their velocity is also considered zero.there-
fore, if the result of Eq. 18 is a positive number, it indicates 
that the cluster will be in the direction of the workflow, oth-
erwise, there will be a mismatch. In this regard, the match-
ing of the velocity vector of a cluster with the workflow will 
be equal to the size of the velocity vector of the cluster.

According to the defined parameters, the equation 
for selecting the best cluster ( CL · Candidatesti ) is then 
defined as Eq. 19.

(15)−−→
VWF −

−−→
VCLi

(16)
−−→
VCLi =

n
∑

k=1

−→
VRS

RS ∈Clusteri

(17)Distance
CLi

WF
=

√(
X

CLi

T
− X

WF

T

)2

+

(
Y

CLi

T
− Y

WF

T

)2

(18)

SVM
CLi

WF
=

{ |||VCLi

||| if cluster matches to the workflow

(−1) ×
|||VCLi

||| if cluster does not match to the workflow

}

that wi (i = 1,2) is the weighting factor that determines 
the effect of the value i-th on the candidate clusters.

Then the cluster with the highest score is selected 
as the BestCluster for the workflow. In the second 
phase of the scheduling algorithm, using the exhaus-
tive search method, all possible scheduling for the 
workflow is created. At this stage, the best schedules 
are selected using the utility function (ScheduleScore). 
The desired workflow deadline is also selected and it 
will be sent to the next stage for reservation. To obtain 
the utility function, this paper uses the following fac-
tors to score the execution time of a workflow in par-
allel and serial mode.

1. The execution time of a workflow in parallel mode 
depends on the extent to which the tasks of a work-
flow can be performed in parallel mode which is 
defined as follows:

Job Execution Time on Most Powerful Resource with 
Max Parallel(ETMPCLx)

2. If No.1 fails to be scheduled, all tasks must be per-
formed consecutively which is defined as follows:

Job Execution Time on Most Powerful Resource with 
Serial(ETMSCLx)

3. This parameter considers the state in which the 
workflow is executed on the best cluster that can do 
its work in parallel, which is defined as follows:

Job Execution Time on with Max Parallel ( ETMPCLmp)

4. The last parameter is related to when the workflow is 
executed on the best cluster that can do its work in 
serial, which is defined as follows:

Job Execution Time on with Serial ( ETMSCLms)
The utility function is calculated by Eq. 20.

The SDMS algorithm is presented in Algorithm 3.
In this algorithm, the scheduler first selects the m 

cluster of available resource clusters for each task of all 
the workflow tasks (lines 1 to 7) and lists them. Next, 
the best clusters are selected for the workflow (lines 
11 to 14), and the EST and EFT factors are calculated 
for each task (lines 15 to 18). In the following step, all 

(19)CL ⋅ CandidatesWF = w1 × Distance
CLi

WF
+ w2 × SVM

CLi

WF

(20)Utility Function =
ETMPCLx

ETMPCLmp
+

ETMSCLx

ETMSCLms
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possible schedules are created for the workflow, which 
also takes into account the considered deadline for the 
workflow. Next, using a utility function (ScheduleS‑
core), the schedules with the highest score (minimum 
utility function) are included in the list of the best 
scheduling (lines 20 to 26). Then on line 28, the Task 
Reservation function is called and the reservation result 
is returned. If a task can successfully reserve a resource, 
the EST and EFT values will be replaced by the AST and 
AFT values respectively (line 35).

Algorithm 3. SDMS Function()

• Phase 3; Task reservation

Once the scheduling is done and the best ones have 
been selected, the time has come to reserve resources 
for the tasks. First, a schedule is selected from the list 
of best schedules, and a resource is reserved for a task. 
At any stage of the reserving process, if a task cannot 
be mapped to a resource, the entire schedule will fail 
and the algorithm consider the next schedule. Finally, if 
no scheduling is set, the RSA value that determines the 
scheduling result will change to False.

For this purpose, this paper uses the resource reserva-
tion algorithm in [30]. This algorithm receives the work-
flow as a set of tasks and a list of the best schedules and 
examines the reservation of resources on the tasks. For 
each best schedule, tasks are sorted in descending order, 
and for each task, a reservation is made. In each repeti‑
tion, an unplanned task with the highest PRT is selected. 
If at any stage the resource reservation fails, the whole 
process for that schedule is canceled and the function will 
move on to the next schedule in the list of best schedules. 
If all tasks in the STL array are successfully scheduled, 
this function returns the True value and indicates that 
the entire workflow has been successfully scheduled.

Evaluation and discussion
In this section, the scheduling algorithm presented in 
the previous section is evaluated. Velociraptor simulator 
[55], which is a domain-specific simulator software for 
Cloud/Fog environments is used to evaluate the perfor-
mance of the proposed method. The performance of the 
proposed method in comparison with GRP-HEFT [56] 
and MOODS [57] is shown and the MATLAB tool is also 
used to implement the proposed fuzzy inference system. 
The duration of each simulation was 300 time steps and 
the simulation process was repeated 10 times for each 
method. Finally, this paper reported the average of all 
experiments. To correctly compare the proposed method 
with MOODS and GRP-HEFT, the following modifica-
tions should be considered:

• In the proposed method, budget constraint is not 
considered. Since these two methods MOODS and 
GRP-HEFT have this constraint, it is not considered.

• GRP-HEFT and MOODS do not support Fog 
resources for scheduling, but it has been added to 
both.

• GRP-HEFT uses a greedy scheme.
• In the proposed algorithm and MOODS, the first fit 

scheme is used.
• The implementation of GRP-HEFT and MOODS in 

the performed experiments has some minor differ-
ences compared with the original work as it was nec-
essary to make the implementation feasible.

• Configuration of environment

This paper used the information published by Facebook 
in the OpenCompute proje ct https:// www. openc ompute. 
org/  to configure the cloud environment. The number of 
hosts in the clusters in this project is divided into 20 and 
the parameter “Cloud provider count” has been added to 
mimic a multi-cloud environment. Table 9 shows the Fog 
environment configuration and Table 10 the Cloud envi-
ronment configuration. Processor capacity is estimated 

https://www.opencompute.org/
https://www.opencompute.org/
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by Cisco  https:// www. cisco. com/c/ dam/ global/ da_ dk/ 
assets/ docs/ prese ntati ons/ vBoo. amp_ Perfo rmance_ 
Bench mark. pdf  in a million instructions per second 
(MIPS) and a trillion instructions per second (TIPS).

• Data-sets

The DS Lab. Workflow Jobs Dataset [58] has been 
used, which contains 100,000 DAGs created in a hybrid 
form based on Epigenomics and Montage scientific 

workflows structures with different job sizes and com-
munication costs in the experimental studies.

An overview of the data-set configuration is given in 
Table 11. This paper used this data-set for input work-
loads to compare the performance of the proposed 
method and the two works GRP-HEFT and MOODS. 
Details of Montage and Epigenomics workflows are dis-
cussed in [59]. Figure  8 shows the Montage and Epig-
enomics workflows.

Notice: In each simulation round, the simulator soft-
ware randomly selected 70 DAGs from the dataset and 
used these DAGs as the input workload.

• Consumption of energy

In this section, consumption of energy is used based on 
a simplified model in [60] for Cloud and Fog hosts. For 
this purpose, Eq.  21 and assumptions in [60, 61] have 
been used.

where I indicate idle power consumption. According to 
[60], each subsystem produces linear power consump-
tion according to its individual utilization. In Eq. 21, the 
power consumption of a core is obtained by multiplying 
the factors (ρC), (ρD), (ρN) by a constant coefficient (αC, 
αD, αN) which are the core usage, disk usage and network 
usage, respectively. These factors do not depend on the 
workload of the program. In this equation, there is no 
separate subsystem for memory and the power consumed 

(21)P = I +

N−1∑
i=0

�N�N (i) +

C−1∑
J=0

�C�C

(
j
)
+

D−1∑
K=0

�D�D(k) + �m

(
C−1∑
j=0

�C

(
j
))

+ �M

(
C−1∑
j=0

�C

(
j
))

Table 9 Configuration of Fog layer for simulation experiments

Network Physical hosts
Communication 
Locality

Fog-point to WAN 
Bandwidth

Inter-Fog point Band-
width

RAM(GB) Processing Capacity 
(TIPS)

Processor type

70%—75% 80–200 Mbps unlimited 16–64 221—412 • Intel i64_Corei9
• Intel i64_Corei7

Environment Structure

Total count of Fog hosts No. of Hosts in Fog-
points

No. of Fog-Points of each Fog Provider No. of Fog Providers

120–299 5–9 6–8 4

Table 10 Configuration of Cloud environment for simulation experiments

Network Physical hosts
Communication 
Locality

Datacenter to WAN 
Bandwidth

Inter-DS Band-
width

RAM(GB) Capacity (TIPS) Processor type

80%-90% 1 Tbps unlimited 144–192 749—2,356 • Xeon 5500
• Xeon 6500
• AMD Ryzen9
• AMD Magny-Cours
• AMD Threadripper

Environment Structure
Total count of Cloud hosts Count of nodes 

in each cluster
No. of Clusters in 
each Data-center

No. of Data-cent-
ers owns by Cloud 
Providers

Count of Cloud 
Providers

48– 288 4–8 2–3 2–4 3

https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBoo.amp_Performance_Benchmark.pdf
https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBoo.amp_Performance_Benchmark.pdf
https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBoo.amp_Performance_Benchmark.pdf
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by access to memory is included in the calculations of 
power consumed by other subsystems. CPU instruction 
execution tends to highly correlate to memory accesses 
in most applications.

• Fault model

To run the simulation, a simplified fault model is con-
sidered during its execution to the environment. Infor-
mation about the main probability values of the error 

activation model is given in Table 12, which is based on 
[62] and some intuitions.

Some random deletion errors are indicated by P 
(NodeHasOmissionFault) which are activated dur-
ing runtime. If an error is triggered that is irreparable, 
the node will no longer be available and all tasks in its 
advanced backup list will be removed without notice. 
This makes it highly likely that all tasks will be sched-
uled or rescheduled. P (taskFailedAndDeadlinePassed 
| fullFailurePermanent) fail on other resources within 

Table 11 Job dataset configuration

Nodes Edges Count of DAGs Task size (Billion 
Instructions)

Data dependency weight 
(Mega Bytes)

RAM 
requirement 
(Mega Bytes)

6–30 8–46 100,000 9,000—4,500 3–80 20–3100

Fig. 8 a an Epigenomics workflow, b a Montage workflow [59]
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their timeframe because the cluster head loses effective 
window control and scheduling of failed node tasks.

• Location and movement model of nodes

The dimensions of the environment and the motion 
model of IoT nodes are given in Table  12. Random 

Way-Point (RWP) [63] is used as the motion model. In 
this section, it is assumed that if a node starts a path, 
according to Table 13, it immediately reaches a random 
speed between 8 m/s to 18 m/s and moves at this con-
stant speed to reach the target. After a node has reach its 
target, it selects a new destination and a new speed.

In the first step of the simulation with a uniform dis-
tribution of a fixed position in the environment for each 
data centre of Cloud and Fog-point is selected, which is 
shown in Fig.  9 the movements of a single node in the 
environment. The dimensions of the environment in all 
experiments are considered to be 20 km × 20 km.

Figure 10 illustrates the location of datacenters in one 
of the simulation settings in the environment. Accord-
ing to Table  9, there are three cloud providers Alaba‑
macom, TravoSystems and Comtroniz. For instance, if 
the ID of a data center in Fig. 10 is Datacenter_0_Ala‑
bamacom, that data center belongs to the Alabamacom 
Cloud provider (sequence number = 0). These names do 
not belong to any real commercial or non-commercial 
organization. Figure  11 shown the location of Fog-
points in the environment. According to Table 8, there 
are four Fog providers Ney, Tabib, Aseman, and Pey‑
maneh. For instance, if the ID of a Fog-point in Fig. 11 
is F_9_Ney, that Fog-point belongs to the Ney Fog pro-
vider company (sequence number = 7). These names do 

Table 12 Failure model settings

P(CloudDatacenterHostNodeHasOmissionFault) 0.01

P(fullFailureRecoverable | NodeHasOmissionFault) 0.3

P(fullFailurePermanent | NodeHasOmissionFault) 0.1

P(noFailure | NodeHasOmissionFault) 0.6

P(taskFailedAndDeadlinePassed | fullFailureRecoverable) 0.3

P(taskFailedAndDeadlinePassed | fullFailurePermanent) 0.7

P(taskFailedAndDeadlinePassed | NodeHasOmissionFault) 0

P(FogNodeHasOmissionFault) 0.05

Table 13 Physical environment specifications

Movement 
Model

Minimum 
Speed

Maximum 
Speed

Environment 
Dimension

Random Way 
Point

8 m/s 18 m/s 20km× 20km  

Fig. 9 An example of a node path in a 20km× 20km environment that has no predetermined path or obstacles and is implemented with the RWP 
algorithm
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not belong to any real commercial or non-commercial 
organization.

Experimental results
In this subsection, the results of comparing the proposed 
method, with the GRP-HEFT [56] and MOODS [57] are 
reported.

Resource utilization rate and scheduling success rate 
are important parameters in our evaluation that affect 
other parameters. In order to have a better resource 
utilization rate, resources should be given more work, 
and this will increase the workload of the resources 
and increase the rejection rate and waiting time. On 
the other hand, the higher the resource utilization 
rate and the higher the success rate of scheduling, the 

more energy will be spent, but the waiting time will be 
shorter.

Likewise, if the number of alive nodes are many during 
execution and we can have clusters with closer and more sta-
ble resources, as a result, we will have better and faster data 
transfer, and this will cause higher throughput and a lower 
failure rate. But having more alive nodes will not necessarily 
increase the throughput, and by not having an advantage in 
the number of alive nodes, it is possible to have a significant 
throughput. It can be concluded that usually the parameters 
are in conflict and the better of one does not necessarily 
make the other better. In general, in this paper, it has been 
tried to put the contradicting parameters in a trade-off and 
as the results show, our proposed method has performed 
better compared to the other two methods.

Fig. 10 Datacenters location in the environment
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• Fog/Cloud resource utilization for Scheduling per-
formance

Resource utilization in the Fog and Cloud can be defined as 
the amount of resource time used to perform scheduled tasks 
on it, which is defined as Eq. 22. Table 14 shows the resource 

utilization in the proposed method compared to GRP-HEFT 
and MOODS. The proposed method has a much higher 
resource utilization than the other two methods.

(22)Resource Utilization =
busyTime

totalUpTime
× 100

Fig. 11 Fog-points location in the environment

Table 14 Resource utilization

Method Average Utilization 
of Fog and Cloud 
Hosts

Proposed Method  ~ 71%

GRP-HEFT  ~ 58%

MOODS  ~ 55%

Table 15 Job scheduling success rate

Method Average Job 
Scheduling 
Success Rate

Proposed Method  ~ 82%

GRP-HEFT  ~ 65%

MOODS  ~ 62%
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• Success rate for scheduling performance

The success rate is defined in terms of the number of 
successful requests in relation to the total number of 
tasks, and represents the fraction of tasks that have been 
successfully scheduled and completed before the dead-
line. In the proposed scheduling algorithm, all scheduling 
is done according to the deadline and the success rate of 
the algorithm is due to the successful completion of the 
workflow before the deadline. Table 15 shows the success 
rate of resources in the proposed method compared to 
GRP-HEFT and MOODS. This rate is significantly higher 
in the proposed method than in the other two works, 
indicating that the proposed algorithm performed better.

Getting a better result in resource utilization and sched-
uling success rate shows that schedules are selected using 
the utility function that are better in terms of completion 
time and as a result, the selected cluster is a better cluster 
for workflow tasks. In fact, the better rate of resource utili-
zation shows that the clustering algorithm has worked very 
successfully.

• Time related parameters for scheduling perfor-
mance

This paper has examined the parameters degree of 
parallelism, makespan and waiting time as time related 
parameters in relation to scheduling performance.

Fig. 12 Parallelism degree. a Proposed Method. b GRP-HEFT. c MOODS
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◾ Parallelism degree

In this part, the degree of parallelism (number of 
tasks running in parallel) for GRP-HEFT and MOODS 
is compared to the proposed algorithm, which is shown 
in Figure  12. As can be seen in Figure  12.a, the pro-
posed algorithm has performed better in performing 
tasks in parallel, and in a period of time this number has 
reached a maximum of 30 tasks, while in GRP-HEFT 
and MOODS this value eventually reaches 23 tasks.

Due to dynamic clustering and creating clusters with 
closer and more stable resources, it can be concluded 
that more tasks are executed at the same time, and this 
causes us to consume more energy.

◾ MakeSpan

Makespan is the amount of time from providing a 
workflow to completing it. Figure 13 shows a comparison 
between the Makespan diagram of the proposed algo-
rithm with GRP-HEFT and MOODS. As has been seen 
in Figure 13(a, b, c), the proposed method and two other 
methods performed similarly in the initial time frame, but 
later the proposed scheduling algorithm performed bet-
ter (Figure 13.a) and more tasks were completed. It should 
also be noted that all completed work has been completed 
before the deadline. There is no guarantee that the work 
will be done, but if it is done, it will be done before the 
deadline.

Fig. 13 MakeSpan parameter. a Proposed Method. b GRP-HEFT. c MOODS
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◾ Waiting time

Waiting time is the average time it takes for a task to 
complete the scheduling process. Figure  14 shows the 
workflow waiting time. The waiting time for the pro-
posed method (Figure 14.a) is longer than the other two 
works (Figure 14.b and c). Given that the success rate and 
resource utilization of the proposed method is higher, 
this causes more work to be done, so that naturally the 
waiting time will be longer.

• Energy consumption

The energy consumption for the proposed scheduling 
algorithm, MOODS and GRP-HEFT is examined, and the 

results are shown in Figs. 15, 16 and 17. Figure 15.a shows 
the average energy consumption per step by the physical 
Cloud /Fog host, and the diagram in Fig. 15.b shows this 
for the total energy consumption at each step by all physi-
cal hosts. In the proposed algorithm, the average energy 
consumption in some time stages reaches 200, while this 
number will be in GRP-HEFT and MOODS 140 and 250 
respectively. The total energy consumption at each stage in 
some cases is higher than 28,000, while in the GRP-HEFT 
algorithm, this value is less than 18,000 in the usual steps. 
Also, in MOODS, the total energy reaches over 34,000. It 
must be kept in mind that the more resources used, the 
more energy will be consumed. As in the proposed sched-
uling algorithm, more tasks are successfully scheduled, so 
higher energy consumption values are expected to be seen.

Fig. 14 Waiting Time parameter. a Proposed Method. b GRP-HEFT. c MOODS
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Figure 18 shows the percentage of clusters and their 
members compared to the proposed scheduling algo-
rithm, GRP-HEFT and MOODS. As can be seen in 
Fig.  18.a, 88% of the clusters formed in the proposed 
algorithm have less than 11 members, and only 1% have 
more than 20 members, while in GRP-HEFT (Fig. 18.b) 
26% of the clusters have between 15 and 20 members 
and 18% have more than 20 members. In MOODS, 
71% of the clusters have less than 6 members, 19% have 
between 6 and 10 members, 9% have 11 to 20 mem-
bers and 1% have more than 20 members (Fig.  18c). 
Figure  19 also shows the package delivery report for 
the proposed method and the other two methods. As 
can be seen in the figure, in total a larger amount of 

information was transmitted in the proposed method 
than in the other two methods, of which 72.4% were 
related to receiving via Wi-Fi and only 9.1% of the data 
were lost. These numbers in GRP-HEFT are 27.8% and 
16.6% respectively. MOODS also accounted for 61.7% 
of its data transmission via Wi-Fi and 10.3% of its data 
were lost through network failure.

Figure  20 shows the throughput and Fig.  21 shows 
the number of alive nodes in the simulation of the 
proposed algorithm, GRP-HEFT and MOODS. The 
throughput of the proposed algorithm (Fig.  20.a) in 
some time stages reaches a number close to 4000 
MBps, while this number is in GRP-HEFT 1400 and in 
MOODS 1800 MBps. This demonstrates the superiority 

Fig. 15 Energy consumption report for the proposed Method. a Average energy consumption in each step by a Fog/Cloud physical host. b Total 
energy consumption in each step by all physical host
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of the proposed algorithm in throughput. Since the 
number of alive nodes in this method is not much dif-
ferent from the other two methods, the reason for the 
high throughput rate can be considered the success of 
the clustering algorithm in creating more stable and 
optimal clusters. In the number of alive nodes, the pro-
posed algorithm works well and the number of nodes 
stays alive over time and their number decreases with 
a lower slope.

In fact, when there are more nodes in the network, as 
a result, more data is sent in the network. Because in the 
proposed method, the scheduling is done on a cluster 
and also more data is sent via Wi-Fi, this makes the data 
transfer speed higher and at the same time the failure 
rate decreases. This issue also has a very positive effect on 
throughput.

Conclusion
In this paper, a hybrid scheduling-clustering method for 
Cloud/Fog-based systems was proposed. The interac-
tion of Fog computing and Cloud computing significantly 
increases the performance of real-time interactive appli-
cations. This Cloud/Fog computing system has three 
hierarchical layers. The second layer (Fog layer), which 
is responsible for managing requests, has a scheduling 
management system that manages all user requests under 
the heading of workflow and creates the most appropri-
ate available scheduling for the workflow.

A decentralized and dynamic fuzzy inference based 
clustering algorithm was proposed that operates with 
the inherent mobility of nodes to form stable clusters 
with an appropriate number of members while avoid-
ing global clustering. In this algorithm, first, the node 

Fig. 16 Energy consumption report for GRP-HEFT. a Average energy consumption in each step by a Fog/Cloud physical host. b Total energy 
consumption in each step by all physical hosts
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Fig. 17 Energy consumption report for MOODS. a Average energy consumption in each step by a Fog/Cloud physical host. b Total energy 
consumption in each step by all physical hosts

Fig. 18 Cluster formation. a Proposed Method. b GRP-HEFT. c MOODS
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Fig. 19 Packet delivery report. a Proposed Method. b GRP-HEFT. c MOODS

Fig. 20 Throughput. a Proposed method. b GRP-HEFT. c MOODS
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score of the cluster heads were calculated using fuzzy 
inference system. Then, each node member of the clus-
ter obtained its mobility score in the same way and used 
four important parameters, and according to the mes-
sage it sent to connect to the cluster head nodes in its 
range, it is connected to a cluster. This allows the nodes 

with the closer mobility score to connect to their corre-
sponding clusters.

The scheduling management component in the pro-
posed architecture in the Fog layer performs sched-
uling workflow in three phases. In the first phase, 
using a critical path algorithm, important paths were 

Fig. 21 Alive nodes. a Proposed method. b GRP-HEFT. c MOODS
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extracted based on the priority value of each task. In 
the next step, all possible schedules were created using 
a scheduling algorithm and the best one was selected 
using a new utility function. In the last step, tasks were 
assigned to resources.

In this regard, the contributions of this paper can be 
summarized as follows:

• Devising a three-layer architecture that simulta-
neously takes into account the advantages of the 
cloud and fog layers to manage the scheduling of 
workflow tasks and also manage the mobility of fog 
nodes.

• Presenting a dynamic, light-weight, multi-criteria, 
and decentralized clustering algorithm to create 
clusters considering the mobility of nodes.

• Extending the scheduling component and intro-
ducing a new scheduling algorithm that considers: 
priority of tasks obtained by using a critical path 
algorithm, a novel utility function, and considering 
workflow deadlines.

This paper used extensive software simulation to 
compare the performance of proposed method with 
two new methods in real workload. The evaluation 
results showed that proposed method has performed 
significantly better in success rate, completion time of 
jobs and utilization of the resources.

For future research we will focus on adding inher-
ent support for workload prediction mechanisms in IoT 
layer to allow pro-active distributing of workloads and 
to enable future-aware scheduling of resource-intensive 
workloads.
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