
Bharti et al. Journal of Cloud Computing (2023) 12:63
https://doi.org/10.1186/s13677-023-00429-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

ReactiveFnJ: A choreographed model
for Fork-Join Workflow in Serverless Computing
Urmil Bharti1* , Anita Goel2 and S. C. Gupta3

Abstract

Function-as-a-Service (FaaS) is an event-based reactive programming model where functions run in ephemeral
stateless containers for short duration. For building complex serverless applications, function composition is crucial
to coordinate and synchronize the workflow of an application. Some serverless orchestration systems exist, but they
are in their primitive state and do not provide inherent support for non-trivial workflows like, Fork-Join. To address
this gap, we propose a fully serverless and scalable design model ReactiveFnJ for Fork-Join workflow. The intent of this
work is to illustrate a design which is completely choreographed, reactive, asynchronous, and represents a dynamic
composition model for serverless applications based on Fork-Join workflow. Our design uses two innovative patterns,
namely, Relay Composition and Master-Worker Composition to solve execution time-out challenges. As a Proof-of-
Concept (PoC), the prototypical implementation of Split-Sort-Merge use case, based on Fork-Join workflow is dis-
cussed and evaluated. The ReactiveFnJ handles embarrassingly parallel computations, and its design does not depend
on any external orchestration services, messaging services, and queue services. ReactiveFnJ facilitates in designing
fully automated pipelines for distributed data processing systems, satisfying the Serverless Trilemma in true essence. A
file of any size can be processed using our effective and extensible design without facing execution time-out chal-
lenges. The proposed model is generic and can be applied to a wide range of serverless applications that are based
on the Fork-Join workflow pattern. It fosters the choreographed serverless composition for complex workflows. The
proposed design model is useful for software engineers and developers in industry and commercial organizations,
total solution vendors and academic researchers.

Keywords Serverless computing, FaaS, Event-driven function composition, Choreography, Parallel computing,
Distributed computing, Fork and Join, Orchestration

Introduction
Serverless computing is an emerging paradigm and is
gaining popularity in the cloud owing to its simplicity,
billing model, and inherent elasticity. This cloud comput-
ing execution model greatly simplifies the usage of cloud

resources and suits well to highly scalable, event-driven
applications in the cloud. Serverless architecture is espe-
cially effective at supporting modern applications with
unpredictable scale and user demand [1].

The Function as a Service (FaaS) programming model
of serverless allows programmers to develop cloud appli-
cations as individual functions that can run and scale
independently. This model is event-driven since func-
tions are activated in reaction to specific cloud events
like, a state change in an object store, receipt of a mes-
sage, a file upload, or insertion of a record in database.
Though FaaS looks like a promising option for deploy-
ing cloud applications, it has few limitations also. Most
notably, FaaS functions are stateless, short-lived, and

*Correspondence:
Urmil Bharti
urmil.bharti@rajguru.du.ac.in
1 Department of Computer Science, Shaheed Rajguru College of Applied
Sciences for Women, University of Delhi, Delhi, India
2 Department of Computer Science, Dyal Singh College, University
of Delhi, Delhi, India
3 Department of Computer Science, Indian Institute of Technology, Delhi,
India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00429-3&domain=pdf
http://orcid.org/0000-0003-2655-3001

Page 2 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

cannot communicate directly with each other [2, 3].
Thus, executing complex, burst-parallel jobs pose a sig-
nificant challenge for serverless execution frameworks
[4]. The composition of workflows in such jobs require
extensive fine-grained communication and synchroniza-
tion between independent functions that is challenging
to implement in a serverless framework [5]. These FaaS
challenges force developers to resort to alternate ways
to establish function communication like publish-sub-
scribe, passing data over some slow and expensive stor-
age medium, or serverless orchestration services, but all
these alternatives yield too high latency and cost [6].

At a high level, there are two approaches for function
composition in a serverless application: orchestration and
choreography [7], as shown in Fig. 1. In orchestration, a
controller module orchestrates and controls the interac-
tion between serverless functions. The controller module
governs the flow according to the needs of the business
logic. The choreography model is an event-driven para-
digm in which every function works autonomously as a
loosely coupled service. The functions work in a pipeline
based on the triggered events. Each function performs
its task, and its completion triggers the next function/s
down the pipeline. In an event-driven architecture where
each component plays a more architecturally aware role,
the choreography model is used in the design of work-
flows instead of an orchestration model [8, 9].

The Fork-Join model is a programming method that
exploits parallelism in applications based on inherent
divide and conquer algorithms [10]. This execution model
has already been successfully used for building parallel
systems where an incoming task splits into subtasks that
are processed by a set of parallel servers. The implemen-
tation of the Fork-Join model becomes more practical
in serverless computing as these platforms are inher-
ently scalable and do not need resource provisioning in
advance. Since horizontal scaling in serverless is entirely
automatic, elastic, and managed by its provider, dynamic

parallel processing in Fork-Join can best exploit these
characteristics.

Currently, Fork-Join workflow cannot be composed
using any of the available serverless orchestration ser-
vices [8] like Amazon Step Functions (ASF) (December
2016),1 Azure Durable Functions (June 2017),2 and IBM
Composer (October 2017).3 These services lack the abil-
ity to dynamically launch functions in parallel. Though
ASF, the most mature and performant project [4], sup-
ports the Parallel state type to execute tasks in paral-
lel. However, the application developers must list all
the tasks to execute in parallel in an array in the state
machine, thereby restricting the flexibility of the concur-
rency level [11].

In our research, we present ReactiveFnJ, an algorithm-
based serverless design model for Fork-Join workflow.
This serverless design is fully choreographed, vendor-
neutral, and platform-independent serverless design
model. The design solution uses innovative recursive
and reactive design patterns for Fork-Join workflow. Our
design is purely event-driven, trigger-based and satisfies
all the three Serverless Trilemma (ST) constraints [12],
and can handle hard execution time limits imposed by a
serverless provider. The ReactiveFnJ handles embarrass-
ingly parallel computations, but it does not depend on
any external orchestration services, messaging services,
and queue services. This model is generic, and several
other use cases can be implemented by substituting spe-
cialized FaaS functions in our Proof-of-Concept (PoC)
implementation. ReactiveFnJ model is the first work that
exhibits all the characteristics mentioned above to the
very best of our knowledge.

This manuscript is organized into several sections. Sec-
tion 2 presents the technical background, motivation
behind the proposed ReactiveFnJ serverless design model
and summarizes our contributions. The detailed design

Fig. 1 Function Composition Approaches (a) Orchestration (b) Choreography

1 https:// aws. amazon. com/ step- funct ions/
2 https:// docs. micro soft. com/ en- us/ azure/ azure- funct ions/ durab le/
3 https:// cloud. ibm. com/ funct ions/

https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://cloud.ibm.com/functions/

Page 3 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

and algorithms related to our serverless Fork-Process-
Join pipeline are described in Section 3. Section 4 gives a
detailed description of the implementation of our design
using the AWS services. Section 5 shows the evaluation
insights of the proposed models, followed by a discus-
sion and lessons in section 6. The related works about the
serverless applications implemented for parallel process-
ing are described in Section 7. The concluding remarks
and scope for future works are delineated in Section 8.

Background, motivation, and contribution
This section discusses current serverless challenges, the
motivation behind this work, and the significant contri-
butions of this research.

Serverless and its challenges
The serverless model was originally designed to exe-
cute event-driven, stateless functions in response to
user actions or changes in the storage tier, e.g., upload-
ing a photo to Amazon Simple Storage Service (S3), and
inserting/updating a record in DynamoDB [13]. Some
recent works have shown that the large-scale parallel-
ism and auto-scaling features provided by serverless
platforms make them well-suited for burst-parallel fine-
grained tasks and parallel computation workflows [14]. In
essence, the FaaS model is apt for embarrassingly parallel
computing use cases such as linear algebra [15], optimi-
zation algorithms [16], data analytics [17], and real-time
machine learning classifications [18].

Building a complex serverless application with numer-
ous short-lived, concurrent functions requires new
design guidelines. Beyond simple examples, serverless
applications need to be designed as a composition of
functions. In most cases, a serverless workflow composi-
tion needs an orchestration service that provides a coor-
dination mechanism between FaaS functions [19]. These
coordination services automatically trigger the execution
of each function in the workflow and synchronize their
behaviors and states. FaaS orchestration services such
as AWS Step Functions or IBM Composer offer limited
capabilities to coordinate serverless functions [20]. For
instance, even in the AWS Step function, there is no pro-
vision for multiple functions to synchronize in parallel
when the number of parallel instances is dynamic. So, in
place of orchestration services, developers use some indi-
rect ways to synchronize the dynamic parallel execution
of functions via notification services, queue services, and
in-memory data store/cache services [14] but each has its
own limitations.

Few researchers proposed solutions for handling
embarrassingly parallel computations in serverless.
PyWren [21] uses its own ad-hoc external orchestration
service, and ExCamera [22] relies on an external server

to synchronize the parallel executions. These solutions
add significant latency and cost as provisioning and con-
figuration of external servers is required. Nevertheless,
all the systems implemented so far for parallel comput-
ing do not comply with the four requirements claimed by
Amazon for a serverless application: (i) No server man-
agement, (ii) Flexible scaling, (iii) Pay for value, and (iv)
Automated high availability [8].

Barcelona-Pons. et al. argued that serverless func-
tions follow a trigger-based model, so a FaaS composi-
tion should also be trigger-based [8]. This means that
the termination of one or many functions should trigger
the next stage (function) using asynchronous events in a
workflow. From this perspective, any serverless compo-
sition achieving dynamic parallelism should also be trig-
ger-based. Therefore, we emphasize that it is of utmost
desire to build a serverless application as a complete
reactive system of FaaS function compositions.

Any function composition is referred as ST-safe if it sat-
isfies three main principles of Serverless Trilemma stated
by Baldini et al. [12]: (1) Substitution - Each composition
should behave like a function and could be substituted
in any other pipeline, (2) Black-box - Each component of
the workflow should be a black-box and abstracts from
rest of the system i.e. implementation details of functions
remain hidden from others, and (3) No Double billing -
FaaS is a pay-per-use model, i.e., fine-grained resource
measurement based on usage and there should not be
double-billing of cloud function.

Fork‑Join Model in serverless
The generic Fork-Join model of parallel processing splits
a compute-intensive task into smaller sub-tasks to pro-
cess them parallelly using the available CPU cores [23].
Therefore, the Fork-Join design model renders execu-
tion speed-up by running forked tasks in parallel and
combining their results. This model can be best utilized
in serverless implementation for use cases like, sorting
[24], searching [25], matrix multiplication [26], string
matching, MapReduce patterns like counting and sum-
ming, collating, and filtering [27]. In all the mentioned
cases where the volume of data fluctuates, and resource
requirements cannot be anticipated, the pay-per-use
model of serverless is best used.

The above use cases can be best implemented using
the generic Fork-Join workflow of parallel processing in
serverless but designing this scalable workflow efficiently
is a challenge in serverless frameworks. Currently, func-
tion composition for Fork-Join is not directly supported
by the existing serverless orchestration services [8]. The
available orchestration services are not designed for
managing parallel Fork-Join workflows in a scalable and
efficient way.

Page 4 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

Motivation
Execution time limit is a major constraint of FaaS and
hinders its implementation for applications where run-
ning time might go beyond the set time limits. We experi-
mented on a serverless compute platform, AWS Lambda,
provided as a part of Amazon Web Services. We found
that a Single FaaS4 function can only sort a file of size
560 KB in a default environment setting. If this serverless
function gets an input file of size more than 560 KB, it
ceases to complete due to execution time out.

It is just an example, but there are many compute-
intensive scientific and business applications where con-
stituent functions may time-out before their completion
and hence, applications are unable to harness the power
of serverless computing. There is a class of inherently
parallel applications in any domain, where the initial task
can be split into a large number of independent sub-tasks
(Fork), and then each sub-task can be implemented as
autonomous functions in serverless. This design brings
up two challenges in serverless: (i) to provide some coor-
dination mechanism to run in parallel a multitude of
functions derived from a single task and (ii) to devise a
synchronization mechanism to join the results of all split
tasks and to prepare the aggregated output (Join).

One can attempt to use an existing orchestration ser-
vice, but it may not be a viable solution as they do not
support the execution of tasks in parallel when number
of tasks are dynamically determined at runtime. As an
example, Amazon Step Functions support the Paral-
lel state type to execute tasks in parallel, but application
developers have to provide all the tasks to execute in par-
allel in an array construct of the state machine [5]. This
restricts the flexibility of concurrency level and hence, its
usage in scenarios, where launching of functions in paral-
lel is dynamic in nature.

The main downsides of currently available orchestra-
tion services are (i) Billing is based on the number of
transitions happening during workflow execution (ii)
Latency issues when working complex workflows (iii)
Non adherence to serverless trilemma (violation of sub-
stitution and double billing principles) (iv) extra efforts
are required to build a workflow in the orchestration
services.

To handle these problems, we aim to design and imple-
ment a function composition mechanism for Fork-Join
workflow which can be used into a broad spectrum of
applications.

Contributions
The main contribution of this work is an algorithm-based
design for serverless Fork-Join workflow. We have pro-
posed a trigger-based serverless design model namely,
ReactiveFnJ, for Fork-Join workflow. This design model
can be utilized in compute intensive and burst-parallel
applications. Our proposed model employs innovative
design patterns that can process a file of any size without
being time-out. In ReactiveFnJ, multiple component syn-
chronization and coordination is crafted by Relay Com-
position and Master-Worker Composition design patterns
thereby making it a choreographed and pure event-
driven system. ReactiveFnJ is an asynchronous dynamic
serverless composition design model that fully exploits
the scalability, availability, and built-in fault tolerance of
serverless infrastructure.

To prove the feasibility and viability of ReactiveFnJ
design, we build a prototypical implementation to sort
a large input file as a PoC. We call this sorting require-
ment as Split-Sort-Merge (SSM) use case throughout this
research article. In SSM, the main aim is to sort a data file
of any size (theoretically) where records are of variable
length. There are several approaches to sort a large data
file but the main challenge here is to develop an approach
for a serverless architecture, where serverless functions
are stateless and have a constrained execution environ-
ment. There exist multiple traditional serverful deploy-
ment frameworks for SSM, like, Map-Reduce and Apache
Spark however, these frameworks suffer from cluster
management, load balancing and task fairness issues [28].
Thus, developing/migrating these applications to server-
less platforms illustrates unique opportunities.

After the successful implementation of SSM, it can be
claimed that applications designed using ReactiveFnJ will
not have dependency on any external orchestration ser-
vice, will not time out and will be free from vendor lock-
in problems.

The key contributions of this paper are-

• A pure event-driven choreographed design for Fork-
Join workloads in serverless deployment.

• State-of-the-art ST-safe function composition model.
• Uses asynchronous push-based design exploiting

recursive and parallel calling of functions.
• Self-driven function composition mechanism not

relying on external orchestration services.
• Algorithm-level solution to handle execution time

limitation imposed by serverless providers.
4 Throughout this paper, we have referred to “Single FaaS” as a single server-
less function instance that performs an operation without being time-out.

Page 5 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

Our approach shall be a tipping point where a single
machine/container is not big enough to perform a big
computation and a serverless function fails for the same
reason. Using our proposed novel algorithmic design
approach, it shall be feasible to execute burst-parallel,
compute intensive applications having large data-at-scale
by leveraging the scalability benefit of FaaS.

ReactiveFnJ: proposed design
This section presents the design proposal for Reac-
tiveFnJ in detail. Our design is inspired by external
merge sort algorithm. The external merge sort is used
when the data to be sorted do not fit into the main
memory of a computing device. In this scenario, the
data resides in an external memory (generally a hard
drive). The external merge sort has two phases i.e., Sort
and Merge [29]. In the sorting phase, a small chunk of
data that can easily fit in main memory is read from
external memory, sorted in main memory, and then
written to a temporary file. This creates multiple sorted
sub-files. In the merge phase, all sub-files are combined
into a single sorted file.

Our design approach also aims to sort a large data file
that cannot be handled by resources allocated to a sin-
gle FaaS function. However, our approach differs from
the external merge sort because we divide a large data
file into small sub-files, and use the autoscaling feature of
serverless environment to sort and merge the sub-files in
parallel.

ReactiveFnJ design has three main components i.e., 1)
Fork, 2) Process and 3) Join, as shown in Fig. 2. Using the
well-established divide and conquer principle, the Fork
component divides the main task into smaller subtasks
for parallel processing. Once the main task is subdivided,
each subtask is processed independently by Process com-
ponent and intermediate results are produced. Responsi-
bility of the Join module is to combine these intermediate
results to produce the result.

The Fork component
The Fork is the first component of ReactiveFnJ. It has
been designed to create small files from a data file of the-
oretically any size having records of variable length. To
regulate size of the small files, we define a configurable
parameter, namely, MaxSplitSize (MSS). The MaxSplit-
Size conveys the number of bytes that can be read and
written by an instance of function responsible for fork-
ing. The value of MSS, may be set depending on the set-
tings of the serverless execution environment.

Challenge in design
In a conventional way, data records of the input file can
be read to create small size files referred as split files in
this paper. Maximum number of records in a split file can
be passed as an input parameter. This design for reading
and splitting a file will eventually fail in case the input
data file is too big. In other words, reading and creating

Fig. 2 Fork-Process-Join pipeline

Page 6 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

smaller files will continue till the function itself does not
surpass the memory usage and execution time-out limits
imposed by service providers. This conventional design
challenge for serverless is alleviated by a Relay Composi-
tion pattern for Fork as described below.

Relay composition for Fork
In this design, a big file is read, and split files are created
by initiating a recursive Relay Composition pattern. This
pattern can handle an input file of any size, theoretically,
without being execution time-out. To make this com-
position more efficient, data is read and written in byte
chunks of almost fixed number of bytes. The MaxSplit-
Size indicates maximum byte chunk that can be read/
written by a single function without execution time-out.
MSS is an estimated value and can be calculated empiri-
cally to know the maximum number of bytes that a Single
FaaS function can read/write.

The number of split files N can be calculated as follows:

For 1, 2 . . . ,N there are F1,F2, …, FN split files where
|Fi| ≤ MSS, ∀Fi; i ∈ Z

+

The Relay Composition starts reading the first byte
chunk and writes it to a new file and triggers the next
instance asynchronously. New instance starts reading
from the byte position in the file where the previous
instance had stopped. The last record in a byte chunk
may be incomplete due to variable length records and
fixed MSS value. The composition design takes care
of this case by discarding the partial read record and
adjusting StartByteLocation parameter value as given in

N = ⌈
InputFileSize

MSS
⌉

Algorithm 1. StartByteLocation works as a relay baton
and is used to pass the next read position of the input file
to the subsequent instance. Hence, the StartByteLocation
is being relayed in every successive recursive instance till
the end of the file is reached. This recursive style in Relay
Composition where StartByteLocation being passed in
successive calls as shown in Fig. 3. Thus, a file of any size,
having variable length records can be forked in server-
less infrastructures without being time-out.

Each recursive instance creates a new split file that can
be processed by the Process component in the design
pipeline.

The design of the Fork component is for use in the use
cases where same operation is to be performed on differ-
ent data splits parallelly (data parallelism), as there is no

Fig. 3 Relay Composition used in spitting a big file

Page 7 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

dependency among parallel tasks. Also, the design is only
dependent on the value of MaxSplitSize that has to be
calculated for the serverless environment configuration.
It may be noted that the Fork component is suited for the
forking of tasks that have no limitations on the minimum
split size for processing.

The Process component
The Process is the second component of ReactiveFnJ.
This component is designed to perform computation
on all the split files carved in the previous step. All
the split files are processed in parallel by independ-
ent functions. In essence, the design of Process com-
ponent harnesses the power of scalability offered by a
serverless infrastructure. Hence, parallel processing of
sub-parts of initial data file helps in reducing the over-
all execution time in serverless. This component is the
realization of a serverless idea of dynamically creating
a compute cluster on demand without any overhead
of cluster management. It can implement use cases
where computation is data independent and therefore,
can be executed in parallel. Some exemplary use cases
include eCommerce, clickstream analytics, contact cen-
tre, legacy app modernization, and DevOps functions.
In Algorithm 2, in-memory sort on a split file has been
demonstrated but it could be any computation required
to run in parallel.

The Process component delete the input split file
(unsorted) at the end as its sorted copy is available for
Join component.

The Join component
The Join is the final component of ReactiveFnJ. It is the
core component of this design model. The results of the
Process component are combined in the Join component
to converge the result. The main job of this component
is to join the processed split files in parallel. As per the
design, in the first iteration, all available split files will be

paired first and then joined to create a single file. The join
component keeps on iterating this till a single file is left
as shown in Fig. 2. Design of Join component is extremely
efficient as number of iterations are growing in a binary
logarithmic fashion as shown in Fig. 4 below. The num-
ber of iterations i required to join N number of files can
be determined using our formula 2i−1

< N ≤ 2i where
i ∈ Z

+.
The design of Join component was the biggest challenge

we faced. Being a serverless component, the Join design
should adhere to the serverless principles: (i) complete
decentralized scheduling, (ii) reactive inter-module com-
munication, (iii) pure asynchronous push-based com-
munication approach. To claim a component to be truly
serverless, it should not use any external orchestration
service to synchronize its execution workflows along
with the principles mentioned above.

Challenge in design
The conventional way of joining N processed files in par-
allel is not a viable design in a serverless environment. In
the traditional design, all processed files are joined in par-
allel in pairs. Each pair of files initiates the event-driven
merging process, and a sorted file is created. Newly built
joined files are again ready for join and this process will
continue till a single file is left as shown in Fig. 5.

This conventional method works well when the size of
a joined file can be handled under the limits of a server-
less environment. But it shall eventually fail when file
size starts growing as the joining process exceeds the
serverless execution time limit. This design challenge
is resolved by a reactive Master-Worker Composition
(MWC) pattern as described below.

Master‑Worker Composition for Join
MWC is an innovative design solution to handle the
exponential increase in file size, the main cause of execu-
tion time-out, during the joining process. The Master is
responsible for initiating joining of two files and Worker
takes the responsibility of merging two sorted files. The
Worker can handle files of any size. So the main highlight
of this design is that it can join any number of files with-
out any constraint on file size. The detailed working of
this composition is described below.

In MWC, a parallel recursive join process is formu-
lated which is devoid of time-out constraint. In this
composition, we have two important modules, first is
MasterReactiveMerge (MRM) and other one is Worker-
RecursiveMerge (WRM). The MRM is responsible for
initiating a join between a pair of split files. As MRM is
reactive so whenever a pair of files is available for join,
it is invoked automatically. Event-driven characteristic

Page 8 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

of serverless architecture helps MRM to run in parallel
for each pair of files. Every instance of the MRM module
calls a WRM module, responsible for joining two files.
First invocation of this module keeps on joining the two
files till the size of the joined file reaches a limit called
JoinSafeLimit which is passed as a parameter to this mod-
ule. This parameter regulates the data size that can be
joined by a single serverless function instance. The Join-
SafeLimit is similar to the MaxSplitSize and can be cal-
culated empirically. Files joined by WRM could be of any
size so its multiple sequential instances may be required
to join files of big size. As the file size increases, the num-
ber of instances increases proportionally. One instance of

WRM joins two files upto JoinSafeLimit and before get-
ting time-out calls next WRM instance with appropri-
ate parameters like read positions for both the files. Two
files are read and joined to build a single joined file by
one or more WRM instances, where the resultant file is
appended by each instance.

The key design features of Join component are as
follows:

• Join process is automatic where the number of files
and their size are not known in advance.

• No central controller for joining the files. It uses
decentralized scheduling.

Fig. 4 Join Component – Binary Logarithmic Growth Curve

Fig. 5 Conventional method to join N files in Parallel

Page 9 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

• No additional messaging-service or shared-memory
for inter-module communication.

• Event-driven architecture and makes use of trigger-
based communication.

• Supports dynamic sequential and parallel composi-
tion of functions and synchronizes burst parallelism.

• Ensures that executions are not double-billed as
design is based on pure asynchronous push-based
communication approach.

• No use of external rendezvous server, ad-hoc orches-
trator service and current serverless orchestration
systems for task scheduling and synchronization.

• Based on reactive programming model that is highly
recommended for serverless.

Implementation
The ReactiveFnJ is implemented using cloud computing
services provided by Amazon Web Services. The server-
less functions are developed using AWS Lambda. It is a
mature FaaS platform, so we opted it for our experimen-
tal implementation.

To validate the design of ReactiveFnJ, we implement
Split-Sort-Merge (SSM) case study. In this study, the
main goal is to sort a data file of any size having variable
length records. SSM is a perfect case study based on the
generic Fork-Process-Join model of parallel processing.
In SSM, Fork component divide input file into split files,
Process component does in-memory sorting of individual
split files (in parallel), and Join component merges the
sorted files (in parallel). We have typically chosen this use
case to sort a very big text file that conventionally can-
not be sorted using the resources limitations of a single
serverless function container. There are many solutions
available for handling these scenarios like Cloud IaaS,
Hadoop Map Reduce, on-premises cluster etc. But we
understand, serverless Function as a Service (FaaS) is the
most attractive and methodical option because of its sim-
plicity, billing flexibility and inherent elasticity. Study and
implementation of this prototype aims to leverage exist-
ing event-based technology of serverless architectures to
enable triggered compositions in complex workflows.

General overview of SSM
In the implementation of SSM, the assorted AWS ser-
vices that have been used are as follows-

(1) Amazon S3 to store input file, split files, intermedi-
ate sorted files and final sorted file,

(2) AWS Lambda for execution of split, sort and merge
sub-tasks of workflow,

(3) Amazon S3 Event Notifications to send event mes-
sages for coordination of Lambda functions,

(4) AWS Identity and Access Management (IAM) to
manage/access AWS resources [30], and

(5) AWS CloudWatch to monitor/observe logs, metrics
and events for Fork-Join pipeline.

We implemented the AWS Lambda functions using
Python 3.8 because it offers library support to manage
critical operations like, creation, deletion of S3 bucket
folders at runtime, setting/retrieving input/output
file path, and read/write CSV format files. Addition-
ally, we have used few important Python modules-
Botocore, Boto3, S3FS, JSON, CSV, and OS in our
implementation.

Source code of all the components developed for
Split-Sort-Merge pipeline implementation is available at
https:// github. com/ anita goel/ React iveFnJ.

Specifics of AWS Lambda functions
In this section, AWS Lambda functions of the SSM
pipeline have been discussed. For the implementation
of the SSM, four functions have been developed – (i)
BL_ReadAndSplit (λBR&S) – Lambda function respon-
sible for creating split files, (ii) Sort (λS) - Lambda
function responsible for sorting a split file, (iii) Master-
ReactiveMerge (λMRM) – Lambda function responsible
for initiating join between two files and, (iv) WorkerRe-
cursiveMerge (λWRM) - Lambda function responsible
for merging two sorted files.

Further, for implementation of the SSM, five Amazon
S3 folders have been used – (i) input – stores input file,
(ii) to_process – for storing file splits, (iii) to_join – to
store sorted split files, intermediate merged files and final
merged file, (iv) to_merge – for temporarily storing pairs
of files undergoing merge, and (v) archive – to archive
input file after successful processing.

The interaction among all Lambda functions of the
SSM pipeline is based on S3 triggers set on PUT event of
the above-mentioned folders having “.csv” filter.

Figure 6 shows the complete deployment diagram of
SSM.

BL_ReadAndSplit
A large file can be read recursively to overcome the
restriction of execution time-out for an AWS Lambda
function. The recursive Lambda function, λBR&S,
reads a byte chunk and writes it to a new file. It is
invoked when an input file is uploaded to the folder “/
input” of S3 bucket. Data byte chunks are read from
the input file and split files are created in a new folder
“to_process” (created at runtime). A configurable

https://github.com/anitagoel/ReactiveFnJ

Page 10 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

parameter ByteChunkSize is used by this function that
determines the size of split files. Just before getting
time-out, this function asynchronously invokes itself
by passing the new read byte position in the input file.
First instance of λBR&S creates the first split file and
invokes the next instance to create the next split file
and so on. This process continues till the end of the
file. This recursive implementation works perfectly
for any size of input file. Invoking a function asyn-
chronously using lambda.invoke and setting Invo-
cation-type flag as “Event”, place invoke requests in
Lambda service queue for processing the requests as
they arrive. Keeping lambda.invoke as the last state-
ment in this function’s code eliminates double bill-
ing as it would not force the Lambda to wait for each
invocation to finish. Thus, recursive invocations of this
function where each invocation communicates and
coordinates with each other, attains “No Double Bill-
ing” condition for the serverless function composition
mechanism of serverless trilemma.

After the successful completion of this function, the
input file is deleted from its folder and is moved to a “\
input_archive” folder in S3 bucket. Naming convention
of a split file carries two important attributes of informa-
tion i.e., (i) Total number of Splits and (ii) File Split Num-
ber as shown in Fig. 7. Split file name and achieve folder
helps in detecting and debugging failures, if any, via AWS
CloudWatch log.

Sort
Sort is the AWS Lambda function implemented for sort-
ing a split file. All split files invoke λS on their creation
and resultant sorted files are stored in the “/to_join”
folder of S3 bucket. Hence, λS instances will run in par-
allel. The coordination between BL_ReadAndSplit and
Sort is done through S3 event notification. In the time-
line, one ReadAndSplit Lambda function reads a large file
and creates multiple small files. Small files will be created
in sequence one after another and each of these files will
also get sorted and stored in a new S3 bucket folder as
shown in Fig. 6. Choreography of all these tasks is fully
event-driven.

Parallel Reactive Merge
Parallel Reactive Merge is a serverless solution to initiate
merging of two sorted files of any size. This implementa-
tion solves the challenge of merging files when the size
of sorted files starts growing and the execution time-out
limit reached before the merging process completes. So
Parallel Reactive Merge overcomes the serverless execu-
tion time-out constraint. For this, two Lambda functions
are implemented: (1) MasterReactiveMerge(λMRM) (2)
WorkerRecursiveMerge(λWRM).

In this implementation, a parallel reactive merging
process is devised that will complete the merging with-
out being time-out. A Lambda function MasterReactiv-
eMerge is invoked whenever a sorted file is dropped in

Fig. 6 The deployment diagram of SSM

Page 11 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

the to_join folder of S3 bucket. This Lambda function
picks up another file available in to_join for merging,
moves these two files to the to_merge folder and invokes
the first instance of WRM. The WRM merges records
from two sorted files and writes them to a new file. The
WRM takes input parameters as: i) Working Directory,
ii) File1, iii) File2 iv) Start Position in File1, v) Start Posi-
tion in File2, vi) Output File, and vii) Byte Threshold
Value. First invocation of WRM carries Start Position
for both the input files as zero. Before getting time-out,
WRM calls itself and the next instance starts append-
ing records to the same file created by the first instance.
Hence, λWRM, recursively calls itself till the single
merged file is created as depicted in Fig. 8. Last instance
of λWRM moves the merged file to the “/to_join” folder
and deletes both the input files. One instance of λMRM

followed by one or more instances of λWRM is initi-
ated for every pair of files in “/to_join” and this parallel
merging process continues till a single file is left in the “/
to_join” folder.

Evaluation
In this section, we describe the quantitative assessment
for our proposed design model. This will facilitate us to
demonstrate the feasibility of our algorithmic approach
in designing fully choregraphed Fork-Join workflow in a
serverless architecture.

We find that the serverless design using Relay Compo-
sition pattern can be successfully used for long running
computation. Our Fork component allows us to con-
clude that use cases where processing time might exceed
the execution time limit can also make use of serverless

Fig. 7 Split File Naming convention

Fig. 8 a Parallel Reactive Merge b Worker Recursive Merge

Page 12 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

technology. Results of our experiments are presented in
Table 1 where MaxSplitSize is taken as 450 KB.

The execution of a complex, burst-parallel workflow
can be addressed programmatically without using any
external orchestration service. The algorithmic approach
is a priori more powerful considering the availability of
basic control flow instructions in any serverless runtime
[17]. Our design model can handle burst-parallel work-
load by utilizing auto scalability of serverless along with
algorithmic design. Successful implementation of Fork-
Join workflow without using any external orchestration
service proves this argument. Results of SSM pipeline
based on ReactiveFnJ are given in Fig. 9.

We proved that it is possible to design a serverless sys-
tem using pure event-driven architecture for complex
workflows. The ReactiveFnJ, a pure event-driven system,
using two novel serverless design patterns i.e., Relay
Composition and Master-Worker Composition. These pat-
terns are used in prototypical implementation of SSM
pipeline that initiates when an input file gets uploaded
in the S3 bucket. Subsequent steps like splitting, sort-
ing, and merging are triggered automatically without any
human arbitration. This shows that complex parallel sys-
tems can be designed in a pure event-driven architecture.

To summarize our results, the ReactiveFnJ is a choreo-
graphed design model for the development of distributed
applications based on Fork-Join workflow with serverless
architectures. This design can handle long running tasks
by overcoming execution time-out constraint and is not
dependent on any external orchestration service for its
function composition.

As regards the cold start phenomenon during the
execution of Fork-Join pipeline, mostly the initial con-
tainers will face cold start delay. The Fork and Worker-
RecusiveMerge component of the pipeline uses the Relay
pattern (one invocation initiates the next one), so all the

containers except initial ones will have a warm start.
In Process and MasterReactiveMerge components, ini-
tial function invocations will suffer cold start, but once
their containers become available again, then rest of the
invocations will have warm start. Hence, the Relay pat-
tern and invocations of same functions again and again
creates a pool of containers available for warm start in
pipeline execution. So theoretically it can be inferred
that initial containers will have cold start delay but it
will not affect every invocation hence overall impact
will not be high.5

Discussion and limitations
Our model for Fork-Join workflow can be best utilized
in serverless environment as this technology provides
auto-scalability, built-in fault tolerance, availability, and
abstraction of underlying infrastructure. To make Fork-
Join workflow available, we build ReactiveFnJ, a serverless
composition model. The ReactiveFnJ uses an innovative
design that is purely event-driven, reactive, ST-safe, chore-
ographed composition model that conquers the hard time-
limit forced by serverless environment. To achieve these
characteristics, our model keeps two copies of data in the
Process stage i.e., unsorted input split files and its corre-
sponding sorted files. So, during Process, required storage
capacity becomes twofold temporarily for a short dura-
tion of time. It starts declining as the Process component
deletes unsorted input split file as soon as its correspond-
ing sorted file is prepared. At the end of the Fork-Join
workflow, only two files are available i.e., input file and
output file. The model can be easily updated to keep only
one final sorted file, if required. Our implementation uses
S3 storage which is an AWS object storage service. No

Table 1 Experimental Results – Single Lambda v/s Relay Composition pattern

a SF- Single FaaS
b RC- Relay Composition

Input File Size (KB) Design Used Time Out No. of Files (No. of Files x MaxSplitSize
(KB)) + Size of last split file
(KB)

200 aSF No 1 N/A

300 SF No 1 N/A

600 SF Yes 1 N/A
600 bRC No 2 (1 × 450) + 150

700 RC No 2 (1 × 450) + 250

800 RC No 2 (1 × 450) + 350

1000 RC No 3 (2 × 450) + 100

1200 RC No 3 (2 × 450) + 300

1400 RC No 4 (3 × 450) + 50

1600 RC No 4 (3 × 450) + 250

5 https:// docs. aws. amazon. com/ lambda/ latest/ opera torgu ide/ execu tion- envir
onmen ts. html

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html

Page 13 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

additional infrastructure costs are involved in this storage
option as it is managed by the provider and charged on
per-use basis.

Our model is generic, and several other workflows/use
cases can be implemented by substituting specialized FaaS
functions in ReactiveFnJ. With the intent to develop other
complex compute intensive and data parallel applications,
patterns analogous to our innovative composition pat-
terns i.e., Relay Composition and Master-Worker Composi-
tion should be discovered. We have articulated following
general design guidelines that will help serverless system
designers and architects to engineer their applications in
an efficient and effective manner.

Identification of iterative patterns in a long-running
task. An iterative pattern can be implemented as a
recursive serverless function where each function asyn-
chronously invokes the next instance by relaying the
appropriate parameters till the task is completed. Recog-
nition of computing patterns that are data independent
and hence, can be executed in parallel. These patterns
can be implemented as serverless functions runnable in
parallel exploiting on-demand scale features of server-
less infrastructure. For coordination between serverless
functions Master-Worker Composition is applied. In this
composition a master function is invoked automatically
on an event and is responsible for invoking and dispatch-
ing parameters to Worker. The Worker recursively calls
itself till the task is completed. In this composition Mas-
ter is reactive in nature and Worker is recursive in its
functioning.

The proposed design has some limitations too. Firstly,
for problem domains, like ad-hoc and less common

custom tasks that have limitations for the minimum possi-
ble split size, the proposed design may not be well-suited.

Secondly, our implementation of the proposed design
uses Amazon Web Services like AWS Lambda and Ama-
zon S3. So, Fork-Join workflow implementation primar-
ily depends on cloud object storage. The co-ordination
in workflow is handled either by the object storage event
notifications or the asynchronous invocations via server-
less functions. For this, Python modules like - Boto3 and
S3FS are used which are very specific to AWS environ-
ment. The implementation of our design in other server-
less platforms will require the use of their environment
specific Python libraries. Most of the leading serverless
service providers have Python modules offering services
similar to Boto3 and S3FS. In IBM cloud,6 Python sup-
port is provided through a fork of the boto3 library. In
Microsoft Azure, the open-source Azure libraries for
Python are available for using Azure resources.7 The
Python application gsutil, allows access to Google Cloud
Storage8 to do a wide range of bucket and object man-
agement tasks. In case similar Python modules are not
available in a serverless environment, then the required
services need to be developed to implement the proposed
model.

Fig. 9 Executions Results of Single Lambda vs FnJ Pipeline

6 https:// cloud. ibm. com/ docs/ cloud- object- stora ge? topic= cloud- object- stora
ge- python
7 https:// learn. micro soft. com/ en- us/ azure/ devel oper/ python/ sdk/ azure-
sdk- overv iew
8 https:// cloud. google. com/ stora ge/ docs/ gsutil

https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-python
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-python
https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview
https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview
https://cloud.google.com/storage/docs/gsutil

Page 14 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

Related Work
Composition of serverless functions to implement work-
flows is sparsely covered in the current scientific litera-
ture but immensely important in practice [3]. Workflow
management systems like Apache Airflow,9 Oozie [31]
and Camunda [32] exist but they depend on a dedicated
long-running stateful execution engine to handle the
orchestration. So, the serverless frameworks must pave
the way for complex function composition mechanisms
to build responsive, compute intensive, and burst-parallel
distributed serverless applications [5].

In some previous studies, researchers have explored
and harnessed the power of FaaS in parallel process-
ing applications. For massively parallel computations
on serverless, systems like PyWren [21] and ExCamera
[22], have used their own external ad-hoc orchestra-
tion services to synchronize the parallel execution of
cloud functions. PyWren utilized a polling mechanism
for the Amazon S3 bucket to consolidate its results. In
ExCamera implementation, an additional external server
is configured to synchronize the interactions of parallel
running executions. Shankar et al., developed a server-
less system Numpywren for highly parallel linear algebra
algorithms. For their implementation, authors introduced
a new domain-specific language “LAmbdaPACK” [15].
Zhang et al., proposed a new serverless framework
“Kappa”, that used a check-pointing mechanism to con-
trol function execution time-out [33].

On the academic front, the authors of [26], proposed a
design approach that exploits data parallelism in server-
less infrastructure for massively parallel computations.
A running prototype is implemented in AWS Lambda
for distributed matrix multiplication using the design
approach. Their design uses a central controller module
outside serverless environment. The authors [34] in thor-
oughly discussed different sequential workflow compo-
sitions in varied language runtime environments. They
also compared chaining composition in AWS serverless
platform and IBM Cloud Function. Their experimental
results show that a pure serverless composition is effi-
cient in terms of execution time in comparison to exter-
nal orchestration service. Witte et al., [35] illustrated
a cloud specific serverless implementation for seismic
imaging application. They used orchestration service
AWS Step Function visual workflow for their imple-
mentation and exploited the mathematical properties of
imaging optimization problem.

In a recent study, different FaaS platforms are analysed
and compared to run highly parallel computing jobs. This
research answers an important question: do all existing

serverless platforms suitable for parallel computations?
Their results clearly indicate that AWS and IBM provides
better automatic elasticity for parallelism [36]. In another
research, authors experimentally analysed the cur-
rent support for serverless workflows in FaaS platforms
and uncovered important weaknesses. They introduced
Abstract Function Choreography Language to overcome
some of the existing gaps [7]. Durable Functions allow
developers to implement advanced serverless work-
flows but can create an IOps bottleneck. To handle it, a
novel architecture "Netherite" is developed for executing
serverless workflows on an elastic cluster [37]. One of
the recent research works presents "DIFFUSE", a decen-
tralized and distributed platform. It enables function
composition in serverless environments, but it relies on
pluggable middleware support for conveying messages
among the platform components [38].

Serverless popular function orchestration services are-
AWS Step Functions, Azure Durable Functions, IBM
Cloud Functions, and Google Cloud Functions. They
render help to create services involving compositions of
serverless functions. But currently they do not support
Parallel Fork-Join workflows natively [8]. As per L´opez
et al., [1] serverless applications must follow a trigger-
based interaction mechanism. They expressed that the
FaaS orchestration system should also be event-triggered.
It means, in a complex business workflow, the termina-
tion of one FaaS should trigger the next function in the
pipeline using asynchronous events.

Concurrency and parallel computation of serverless are
well suited for requirements like sorting a huge data file.
Efficient sorting of large data sets is an extensively dis-
cussed area as it is central to large businesses, banks, and
institutions. Sorting counts for roughly one-fourth of the
total computer cycles [39]. Usually, if a data file is small
and can fit into the memory limits of a FaaS container, it
can be easily programmed for sorting. But in case a file
is huge then sorting by a single FaaS will time-out before
its completion. Due to resource limitations of a server-
less environment, processing of very large files is not
supported directly. Recently, Amazon Elastic File System
(EFS) volume mounted to handle such large files [40].
However, latency and additional cost are some challenges
around this way-out.

After investigating previous and recent research works,
a clear gap surfaced regarding the non-existence of reac-
tive Fork-Join workflow runnable for serverless infra-
structures. To the best of our knowledge, ours is the first
work that presents the design and implementation of
ReactiveFnJ - a pure reactive, choreographed, ST-safe,
algorithmic solution and answer the intrinsic constraint
of serverless environments. This makes the best use of
the scalability and fault tolerance feature of serverless. 9 https:// airfl ow. apache. org/

https://airflow.apache.org/

Page 15 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

ReactiveFnJ is judicious to be used for large-sized data-
sets where divide and conquer strategies can be applied.

Conclusions and future work
Current serverless technology provides its users with fine
billing granularity and affordability to run arbitrary func-
tions on-demand. We can reap great benefits of server-
less when it comes to the runtime scalability of functions.
Subtle barriers of this architecture are resource limit of
functions, designing complex applications that require
state and composability of long running functions.

This paper is an academic endeavour that designs a
choreography model ReactiveFnJ for Fork-Join work-
flow in serverless architecture. This model is pure event-
driven, ST-Safe, and makes best use of scalability and
fault tolerance features of serverless environment. This
research proves the viability of a serverless design for a
complex burst-parallel workflow where every server-
less challenge is resolved at algorithmic level rather than
using any external orchestration service, shared mem-
ory, or messaging services for its task scheduling and
synchronization. This solution is platform independent
as a result it is free from vendor lock-in problem also.
Our model will render help to serverless architects and
developers in fabricating compositions based on Fork-
Join workflows. We contemplate that each component
of the Fork-Join pipeline can be substituted by a variety
of serverless functions to generate diverse workflows.
The proof-of-concept and evaluation results authenticate
that ReactiveFnJ can deliver sufficient performance and
suggests its adoption in serverless frameworks for large-
scale distributed computing. As future work, we would
like to develop specific modules and libraries for Fork-
Join components in serverless for the production grade
applications.

Abbreviations
FaaS Function as a Service
ST Serverless Trilemma
SSM Split-Sort-Merge
MSS MaxSplitSize
MWC Master-Worker Composition
MRM MasterReactiveMerge
WRM WorkerRecursiveMerge
IAM AWS Identity and Access Management
PoC Proof-of-Concept
ASF Amazon Step Functions;
λBR&S Lambda for BL_ReadAndSplit
λS Lambda for Sort
λMRM Lambda for MasterReactiveMerge
λWRM Lambda for WorkerRecursiveMerge

Acknowledgements
Not applicable.

Authors’ contributions
All authors take part in the discussion of the work described in this paper.
Urmil Bharti contributed to the model design and validation experiment of

this work. She drafted the manuscript and coordinated the review task among
authors. The author(s) read and approved the final manuscript.

Authors’ information
Ms. Urmil Bharti has done B.Sc. Computer Science (University of Delhi, India),
M.Sc. Computer Science (DAVV Indore, India) and M.Phil. Computer Science
(MKU, India). She has over 15 years of teaching experience as Assistant
Professor in constituent colleges of University of Delhi. Earlier she worked in
IT industry for more than 10 years. Her last designation in industry was Senior
Quality Analyst. She is currently doing her research in Cloud and Distributed
Computing. Her key research area is cloud computing, serverless technology
and software engineering. She has authored several national and international
research publications.
Dr. Anita Goel is currently a Professor with the Department of Computer Sci-
ence, Dyal Singh College, University of Delhi, India. She has a work experience
of more than 30 years. She is also a visiting faculty to several universities in
India. She has been a fellow of Computer Science with the Institute of Life
Long Learning (ILLL), University of Delhi. She has guided several students for
their doctoral studies and has travelled internationally to present research
papers. She is a serving member of program committee of several interna-
tional conferences. She has authored 21 books in computer science. She has
several national and international research publications. Her research interests
include cloud computing, microservices, serverless computing, software
engineering, and technology-enhanced education (MOOC).
Dr SC Gupta is B.Tech (EE) from IIT Delhi and has worked at Computer Group
at Tata Institute of Fundamental Research and NCSDCT (now C-DAC Mumbai),
Till recently, he worked as Deputy Director General, Scientist-G and Head of
Training at National Informatics Centre, New Delhi and was responsible for
keeping its 3000 scientists/engineers up-to-date in various technologies. He
has extensive experience in design and development of large Complex Soft-
ware Systems. Currently he is a Visiting Faculty at Dept of Computer Science
and Engineering, IIT Delhi. His research interests include Software Engineering,
Database and Cloud Computing. He has been teaching Cloud Computing at
IIT Delhi, which includes emerging disruptive technologies like SDN and SDS.
He has guided many M.Tech. & PhD Research students in these technologies
and has many publications in Software Engineering and Cloud Technology in
National and International Conferences and Journals.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 26 September 2021 Accepted: 20 March 2023

References
 1. Arjona A, López PG, Sampé J, Slominski A, Villard L (2021) Triggerflow:

Trigger-based orchestration of serverless workflows. Futur Gener Comput
Syst 124:215–229. https:// doi. org/ 10. 1016/j. future. 2021. 06. 004

 2. Hassan HB, Barakat SA, Sarhan QI (2021) Survey on serverless computing.
J Cloud Comput 10:1–29

 3. Leitner P, Wittern E, Spillner J, Hummer W (2019) A mixed-method empiri-
cal study of Function-as-a-Service software development in industrial
practice. J Syst Softw 149:340–359

 4. López PG, Sánchez-Artigas M, Par\’\is G, Pons DB, Ollobarren ÁR, Pinto
DA (2018) Comparison of FaaS orchestration systems. 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion). pp 148–153

 5. Carver B, Zhang J, Wang A, Anwar A, Wu P, Cheng Y (2020) Wukong:
A scalable and locality-enhanced framework for serverless parallel

https://doi.org/10.1016/j.future.2021.06.004

Page 16 of 16Bharti et al. Journal of Cloud Computing (2023) 12:63

computing. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting, pp. 1-15.

 6. Pu Q, Venkataraman S, Stoica I (2019) Shuffling, Fast and Slow: Scalable
Analytics on Serverless Infrastructure. In NSDI, vol. 19, pp. 193-206.

 7. Ristov S, Pedratscher S, Fahringer T (2021) AFCL: An abstract function cho-
reography language for serverless workflow specification. Futur Gener
Comput Syst 114:368–382

 8. Barcelona-Pons D, Garc\’\ia-López P, Ruiz Á, Gómez-Gómez A, Par\’\is
G, Sánchez-Artigas M (2019) Faas orchestration of parallel workloads.
Proceedings of the 5th International Workshop on Serverless Computing.
pp 25–30

 9. Leite LAF, Oliva GA, Nogueira GM, Gerosa MA, Kon F, Milojicic DS (2013)
A systematic literature review of service choreography adaptation. Serv
Oriented Comput Appl 7:199–216

 10. Landset S, Khoshgoftaar TM, Richter AN, Hasanin T (2015) A survey of
open source tools for machine learning with big data in the Hadoop
ecosystem. J Big Data 2:1–36

 11. Yu T, Liu Q, Du D, Xia Y, Zang B, Lu Z, Yang P, Qin C, Chen H (2020) Char-
acterizing serverless platforms with serverlessbench. Proceedings of the
11th ACM Symposium on Cloud Computing. pp 30–44

 12. Baldini I, Cheng P, Fink SJ, Mitchell N, Muthusamy V, Rabbah R, Suter P, Tardieu
O (2017) The serverless trilemma: Function composition for serverless com-
puting. Proceedings of the 2017 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software.
pp 89–103. https:// doi. org/ 10. 1145/ 31338 50. 31338 55

 13. Kuhlenkamp J, Werner S, Tai S (2020) The ifs and buts of less is more: A
serverless computing reality check. 2020 IEEE International Conference
on Cloud Engineering (IC2E). pp 154–161

 14. García-López P, Sánchez-Artigas M, Shillaker S, Pietzuch P, Breitgand D,
Vernik G, Sutra P, Tarrant T, Juan-Ferrer A, París G (2022) Trade-Offs and
Challenges of Serverless Data Analytics. In: Curry E, Auer S, Berre AJ,
Metzger A, Perez MS, Zillner S (eds) Technologies and Applications for Big
Data Value. Springer International Publishing, Cham, pp 41–61

 15. Shankar V, Krauth K, Vodrahalli K, Pu Q, Recht B, Stoica I, Ragan-Kelley J,
Jonas E, Venkataraman S (2020) Serverless linear algebra. Proceedings of
the 11th ACM Symposium on Cloud Computing. pp 281–295

 16. Dai D, Chen Y, Kimpe D, Ross RB (2018) Trigger-based incremental data
processing with unified sync and async model. IEEE Trans Cloud Comput
9:372–385

 17. Sampé J, Vernik G, Sánchez-Artigas M, Garc\’\ia-López P (2018) Serverless
data analytics in the IBM cloud. Proceedings of the 19th International
Middleware Conference Industry. pp 1–8

 18. Christidis A, Davies R, Moschoyiannis S (2019) Serving machine learning
workloads in resource constrained environments: A serverless deploy-
ment example. 2019 IEEE 12th Conference on Service-Oriented Comput-
ing and Applications (SOCA). pp 55–63

 19. Hellerstein JM, Faleiro J, Gonzalez JE, Schleier-Smith J, Sreekanti V,
Tumanov A, Wu C (2018) Serverless computing: One step forward, two
steps back. arXiv preprint arXiv:1812.03651.

 20. Barcelona-Pons D, Sánchez-Artigas M, Par\’\is G, Sutra P, Garc\’\ia-López
P (2019) On the faas track: Building stateful distributed applications with
serverless architectures. Proceedings of the 20th international middle-
ware conference. pp 41–54

 21. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B (2017) Occupy the cloud:
Distributed computing for the 99\%. Proceedings of the 2017 symposium
on cloud computing. pp 445–451

 22. Fouladi S, Wahby RS, Shacklett B, Balasubramaniam KV, Zeng W, Bhalerao
R, Sivaraman A, Porter G, Winstein K (2017) Encoding, Fast and Slow:$\
{$Low-Latency$\}$ Video Processing Using Thousands of Tiny Threads.
14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). pp 363–376

 23. Rizk A, Poloczek F, Ciucu F (2015) Computable bounds in fork-join queue-
ing systems. Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. pp
335–346. https:// doi. org/ 10. 1145/ 27963 14. 27458 59

 24. Klimovic A, Wang Y, Kozyrakis C, Stuedi P, Pfefferle J, Trivedi A (2018)
Understanding ephemeral storage for serverless analytics. 2018 USENIX
Annual Technical Conference (USENIX ATC 18). pp 789–794

 25. Holubiev V, Ihnatiuk B, Voytyuk I (2018) Next-generation serverless system
for contextual search based on rich media content

 26. Bharti U, Bajaj D, Goel A, Gupta SC (2021) A novel design approach
exploiting data parallelism in serverless infrastructure. In Advances in
Computing and Network Communications: Proceedings of CoCoNet
2020, Volume 1, pp. 247-260. Springer Singapore.

 27. Giménez-Alventosa V, Moltó G, Caballer M (2019) A framework and a
performance assessment for serverless MapReduce on AWS Lambda.
Futur Gener Comput Syst 97:259–274

 28. Arfat Y, Usman S, Mehmood R, Katib I (2020) Big data for smart infra-
structure design: Opportunities and challenges. Smart Infrastructure and
Applications: Foundations for Smarter Cities and Societies 491-518.

 29. Zheng L, Larson P-A (1996) Speeding up external mergesort. IEEE Trans
Knowl Data Eng 8:322–332

 30. Zahoor E, Asma Z, Perrin O (2017) A formal approach for the verification
of AWS IAM access control policies. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Springer, Cham, pp 59–74

 31. Islam M, Huang AK, Battisha M, Chiang M, Srinivasan S, Peters C, Neu-
mann A, Abdelnur A (2012) Oozie: towards a scalable workflow manage-
ment system for Hadoop. Proceedings of the 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies. pp 1–10

 32. Wiemuth M, Burgert O (2019) A workflow management system for the
OR based on the OMG standards BPMN, CMMN, and DMN. p 79

 33. Zhang W, Fang V, Panda A, Shenker S (2020) Kappa: A programming
framework for serverless computing. Proceedings of the 11th ACM Sym-
posium on Cloud Computing. pp 328–343

 34. Bharti U, Bajaj D, Goel A, Gupta SC (2021) Sequential Workflow in Produc-
tion Serverless FaaS Orchestration Platform. Proceedings of International
Conference on Intelligent Computing, Information and Control Systems.
pp 681–693

 35. Witte PA, Louboutin M, Modzelewski H, Jones C, Selvage J, Herrmann FJ
(2020) An event-driven approach to serverless seismic imaging in the
cloud. IEEE Trans Parallel Distrib Syst 31:2032–2049

 36. Barcelona-Pons D, Garc\’\ia-López P (2021) Benchmarking parallelism in
FaaS platforms. Futur Gener Comput Syst 124:268–284

 37. Burckhardt S, Chandramouli B, Gillum C, Justo D, Kallas K, McMahon C,
Meiklejohn CS, Zhu X (2022) Netherite: efficient execution of serverless
workflows. Proc VLDB Endow 15:1591–1604

 38. Sabbioni A, Rosa L, Bujari A, Foschini L, Corradi A (2022) DIFFUSE: A
DIstributed and decentralized platForm enabling Function composition
in Serverless Environments. Comput Networks 210:108993

 39. Leu F-C, Tsai Y-T, Tang CY (2000) An efficient external sorting algorithm.
Inf Process Lett 75:159–163

 40. Obrutsky S (2016) Cloud storage: Advantages, disadvantages and enter-
prise solutions for business. Conference: EIT New Zealand

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1145/2796314.2745859

	ReactiveFnJ: A choreographed model for Fork-Join Workflow in Serverless Computing
	Abstract
	Introduction
	Background, motivation, and contribution
	Serverless and its challenges
	Fork-Join Model in serverless
	Motivation
	Contributions
	ReactiveFnJ: proposed design
	The Fork component
	Challenge in design
	Relay composition for Fork
	The Process component
	The Join component
	Challenge in design
	Master-Worker Composition for Join
	Implementation
	General overview of SSM
	Specifics of AWS Lambda functions
	BL_ReadAndSplit
	Sort
	Parallel Reactive Merge
	Evaluation

	Discussion and limitations
	Related Work
	Conclusions and future work

	Acknowledgements
	References

