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Abstract 

Function-as-a-Service (FaaS) is an event-based reactive programming model where functions run in ephemeral 
stateless containers for short duration. For building complex serverless applications, function composition is crucial 
to coordinate and synchronize the workflow of an application. Some serverless orchestration systems exist, but they 
are in their primitive state and do not provide inherent support for non-trivial workflows like, Fork-Join. To address 
this gap, we propose a fully serverless and scalable design model ReactiveFnJ for Fork-Join workflow. The intent of this 
work is to illustrate a design which is completely choreographed, reactive, asynchronous, and represents a dynamic 
composition model for serverless applications based on Fork-Join workflow. Our design uses two innovative patterns, 
namely, Relay Composition and Master-Worker Composition to solve execution time-out challenges. As a Proof-of-
Concept (PoC), the prototypical implementation of Split-Sort-Merge use case, based on Fork-Join workflow is dis-
cussed and evaluated. The ReactiveFnJ handles embarrassingly parallel computations, and its design does not depend 
on any external orchestration services, messaging services, and queue services. ReactiveFnJ facilitates in designing 
fully automated pipelines for distributed data processing systems, satisfying the Serverless Trilemma in true essence. A 
file of any size can be processed using our effective and extensible design without facing execution time-out chal-
lenges. The proposed model is generic and can be applied to a wide range of serverless applications that are based 
on the Fork-Join workflow pattern. It fosters the choreographed serverless composition for complex workflows. The 
proposed design model is useful for software engineers and developers in industry and commercial organizations, 
total solution vendors and academic researchers.
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Introduction
Serverless computing is an emerging paradigm and is 
gaining popularity in the cloud owing to its simplicity, 
billing model, and inherent elasticity. This cloud comput-
ing execution model greatly simplifies the usage of cloud 

resources and suits well to highly scalable, event-driven 
applications in the cloud. Serverless architecture is espe-
cially effective at supporting modern applications with 
unpredictable scale and user demand [1].

The Function as a Service (FaaS) programming model 
of serverless allows programmers to develop cloud appli-
cations as individual functions that can run and scale 
independently. This model is event-driven since func-
tions are activated in reaction to specific cloud events 
like, a state change in an object store, receipt of a mes-
sage, a file upload, or insertion of a record in database. 
Though FaaS looks like a promising option for deploy-
ing cloud applications, it has few limitations also. Most 
notably, FaaS functions are stateless, short-lived, and 
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cannot communicate directly with each other [2, 3]. 
Thus, executing complex, burst-parallel jobs pose a sig-
nificant challenge for serverless execution frameworks 
[4]. The composition of workflows in such jobs require 
extensive fine-grained communication and synchroniza-
tion between independent functions that is challenging 
to implement in a serverless framework [5]. These FaaS 
challenges force developers to resort to alternate ways 
to establish function communication like publish-sub-
scribe, passing data over some slow and expensive stor-
age medium, or serverless orchestration services, but all 
these alternatives yield too high latency and cost [6].

At a high level, there are two approaches for function 
composition in a serverless application: orchestration and 
choreography [7], as shown in Fig. 1. In orchestration, a 
controller module orchestrates and controls the interac-
tion between serverless functions. The controller module 
governs the flow according to the needs of the business 
logic. The choreography model is an event-driven para-
digm in which every function works autonomously as a 
loosely coupled service. The functions work in a pipeline 
based on the triggered events. Each function performs 
its task, and its completion triggers the next function/s 
down the pipeline. In an event-driven architecture where 
each component plays a more architecturally aware role, 
the choreography model is used in the design of work-
flows instead of an orchestration model [8, 9].

The Fork-Join model is a programming method that 
exploits parallelism in applications based on inherent 
divide and conquer algorithms [10]. This execution model 
has already been successfully used for building parallel 
systems where an incoming task splits into subtasks that 
are processed by a set of parallel servers. The implemen-
tation of the Fork-Join model becomes more practical 
in serverless computing as these platforms are inher-
ently scalable and do not need resource provisioning in 
advance. Since horizontal scaling in serverless is entirely 
automatic, elastic, and managed by its provider, dynamic 

parallel processing in Fork-Join can best exploit these 
characteristics.

Currently, Fork-Join workflow cannot be composed 
using any of the available serverless orchestration ser-
vices [8] like Amazon Step Functions (ASF) (December 
2016),1 Azure Durable Functions (June 2017),2 and IBM 
Composer (October 2017).3 These services lack the abil-
ity to dynamically launch functions in parallel. Though 
ASF, the most mature and performant project [4], sup-
ports the Parallel state type to execute tasks in paral-
lel. However, the application developers must list all 
the tasks to execute in parallel in an array in the state 
machine, thereby restricting the flexibility of the concur-
rency level [11].

In our research, we present ReactiveFnJ, an algorithm-
based serverless design model for Fork-Join workflow. 
This serverless design is fully choreographed, vendor-
neutral, and platform-independent serverless design 
model. The design solution uses innovative recursive 
and reactive design patterns for Fork-Join workflow. Our 
design is purely event-driven, trigger-based and satisfies 
all the three Serverless Trilemma (ST) constraints [12], 
and can handle hard execution time limits imposed by a 
serverless provider. The ReactiveFnJ handles embarrass-
ingly parallel computations, but it does not depend on 
any external orchestration services, messaging services, 
and queue services. This model is generic, and several 
other use cases can be implemented by substituting spe-
cialized FaaS functions in our Proof-of-Concept (PoC) 
implementation. ReactiveFnJ model is the first work that 
exhibits all the characteristics mentioned above to the 
very best of our knowledge.

This manuscript is organized into several sections. Sec-
tion  2 presents the technical background, motivation 
behind the proposed ReactiveFnJ serverless design model 
and summarizes our contributions. The detailed design 

Fig. 1 Function Composition Approaches (a) Orchestration (b) Choreography

1 https:// aws. amazon. com/ step- funct ions/
2 https:// docs. micro soft. com/ en- us/ azure/ azure- funct ions/ durab le/
3 https:// cloud. ibm. com/ funct ions/

https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://cloud.ibm.com/functions/
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and algorithms related to our serverless Fork-Process-
Join pipeline are described in Section 3. Section 4 gives a 
detailed description of the implementation of our design 
using the AWS services. Section 5 shows the evaluation 
insights of the proposed models, followed by a discus-
sion and lessons in section 6. The related works about the 
serverless applications implemented for parallel process-
ing are described in Section  7. The concluding remarks 
and scope for future works are delineated in Section 8.

Background, motivation, and contribution
This section discusses current serverless challenges, the 
motivation behind this work, and the significant contri-
butions of this research.

Serverless and its challenges
The serverless model was originally designed to exe-
cute event-driven, stateless functions in response to 
user actions or changes in the storage tier, e.g., upload-
ing a photo to Amazon Simple Storage Service (S3), and 
inserting/updating a record in DynamoDB [13]. Some 
recent works have shown that the large-scale parallel-
ism and auto-scaling features provided by serverless 
platforms make them well-suited for burst-parallel fine-
grained tasks and parallel computation workflows [14]. In 
essence, the FaaS model is apt for embarrassingly parallel 
computing use cases such as linear algebra [15], optimi-
zation algorithms [16], data analytics [17], and real-time 
machine learning classifications [18].

Building a complex serverless application with numer-
ous short-lived, concurrent functions requires new 
design guidelines. Beyond simple examples, serverless 
applications need to be designed as a composition of 
functions. In most cases, a serverless workflow composi-
tion needs an orchestration service that provides a coor-
dination mechanism between FaaS functions [19]. These 
coordination services automatically trigger the execution 
of each function in the workflow and synchronize their 
behaviors and states. FaaS orchestration services such 
as AWS Step Functions or IBM Composer offer limited 
capabilities to coordinate serverless functions [20]. For 
instance, even in the AWS Step function, there is no pro-
vision for multiple functions to synchronize in parallel 
when the number of parallel instances is dynamic. So, in 
place of orchestration services, developers use some indi-
rect ways to synchronize the dynamic parallel execution 
of functions via notification services, queue services, and 
in-memory data store/cache services [14] but each has its 
own limitations.

Few researchers proposed solutions for handling 
embarrassingly parallel computations in serverless. 
PyWren [21] uses its own ad-hoc external orchestration 
service, and ExCamera [22] relies on an external server 

to synchronize the parallel executions. These solutions 
add significant latency and cost as provisioning and con-
figuration of external servers is required. Nevertheless, 
all the systems implemented so far for parallel comput-
ing do not comply with the four requirements claimed by 
Amazon for a serverless application: (i) No server man-
agement, (ii) Flexible scaling, (iii) Pay for value, and (iv) 
Automated high availability [8].

Barcelona-Pons. et  al. argued that serverless func-
tions follow a trigger-based model, so a FaaS composi-
tion should also be trigger-based [8]. This means that 
the termination of one or many functions should trigger 
the next stage (function) using asynchronous events in a 
workflow. From this perspective, any serverless compo-
sition achieving dynamic parallelism should also be trig-
ger-based. Therefore, we emphasize that it is of utmost 
desire to build a serverless application as a complete 
reactive system of FaaS function compositions.

Any function composition is referred as ST-safe if it sat-
isfies three main principles of Serverless Trilemma stated 
by Baldini et al. [12]: (1) Substitution - Each composition 
should behave like a function and could be substituted 
in any other pipeline, (2) Black-box - Each component of 
the workflow should be a black-box and abstracts from 
rest of the system i.e. implementation details of functions 
remain hidden from others, and (3) No Double billing - 
FaaS is a pay-per-use model, i.e., fine-grained resource 
measurement based on usage and there should not be 
double-billing of cloud function.

Fork‑Join Model in serverless
The generic Fork-Join model of parallel processing splits 
a compute-intensive task into smaller sub-tasks to pro-
cess them parallelly using the available CPU cores [23]. 
Therefore, the Fork-Join design model renders execu-
tion speed-up by running forked tasks in parallel and 
combining their results. This model can be best utilized 
in serverless implementation for use cases like, sorting 
[24], searching [25], matrix multiplication [26], string 
matching, MapReduce patterns like counting and sum-
ming, collating, and filtering [27]. In all the mentioned 
cases where the volume of data fluctuates, and resource 
requirements cannot be anticipated, the pay-per-use 
model of serverless is best used.

The above use cases can be best implemented using 
the generic Fork-Join workflow of parallel processing in 
serverless but designing this scalable workflow efficiently 
is a challenge in serverless frameworks. Currently, func-
tion composition for Fork-Join is not directly supported 
by the existing serverless orchestration services [8]. The 
available orchestration services are not designed for 
managing parallel Fork-Join workflows in a scalable and 
efficient way.
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Motivation
Execution time limit is a major constraint of FaaS and 
hinders its implementation for applications where run-
ning time might go beyond the set time limits. We experi-
mented on a serverless compute platform, AWS Lambda, 
provided as a part of Amazon Web Services. We found 
that a Single FaaS4 function can only sort a file of size 
560 KB in a default environment setting. If this serverless 
function gets an input file of size more than 560 KB, it 
ceases to complete due to execution time out.

It is just an example, but there are many compute-
intensive scientific and business applications where con-
stituent functions may time-out before their completion 
and hence, applications are unable to harness the power 
of serverless computing. There is a class of inherently 
parallel applications in any domain, where the initial task 
can be split into a large number of independent sub-tasks 
(Fork), and then each sub-task can be implemented as 
autonomous functions in serverless. This design brings 
up two challenges in serverless: (i) to provide some coor-
dination mechanism to run in parallel a multitude of 
functions derived from a single task and (ii) to devise a 
synchronization mechanism to join the results of all split 
tasks and to prepare the aggregated output (Join).

One can attempt to use an existing orchestration ser-
vice, but it may not be a viable solution as they do not 
support the execution of tasks in parallel when number 
of tasks are dynamically determined at runtime. As an 
example, Amazon Step Functions support the Paral-
lel state type to execute tasks in parallel, but application 
developers have to provide all the tasks to execute in par-
allel in an array construct of the state machine [5]. This 
restricts the flexibility of concurrency level and hence, its 
usage in scenarios, where launching of functions in paral-
lel is dynamic in nature.

The main downsides of currently available orchestra-
tion services are (i) Billing is based on the number of 
transitions  happening during workflow execution (ii) 
Latency issues when working complex workflows (iii) 
Non adherence to serverless trilemma (violation of sub-
stitution and double billing principles) (iv) extra efforts 
are required to build a workflow in the orchestration 
services.

To handle these problems, we aim to design and imple-
ment a function composition mechanism for Fork-Join 
workflow which can be used into a broad spectrum of 
applications.

Contributions
The main contribution of this work is an algorithm-based 
design for serverless Fork-Join workflow. We have pro-
posed a trigger-based serverless design model namely, 
ReactiveFnJ, for Fork-Join workflow. This design model 
can be utilized in compute intensive and burst-parallel 
applications. Our proposed model employs innovative 
design patterns that can process a file of any size without 
being time-out. In ReactiveFnJ, multiple component syn-
chronization and coordination is crafted by Relay Com-
position and Master-Worker Composition design patterns 
thereby making it a choreographed and pure event-
driven system. ReactiveFnJ is an asynchronous dynamic 
serverless composition design model that fully exploits 
the scalability, availability, and built-in fault tolerance of 
serverless infrastructure.

To prove the feasibility and viability of ReactiveFnJ 
design, we build a prototypical implementation to sort 
a large input file as a PoC. We call this sorting require-
ment as Split-Sort-Merge (SSM) use case throughout this 
research article. In SSM, the main aim is to sort a data file 
of any size (theoretically) where records are of variable 
length. There are several approaches to sort a large data 
file but the main challenge here is to develop an approach 
for a serverless architecture, where serverless functions 
are stateless and have a constrained execution environ-
ment. There exist multiple traditional serverful deploy-
ment frameworks for SSM, like, Map-Reduce and Apache 
Spark however, these frameworks suffer from cluster 
management, load balancing and task fairness issues [28]. 
Thus, developing/migrating these applications to server-
less platforms illustrates unique opportunities.

After the successful implementation of SSM, it can be 
claimed that applications designed using ReactiveFnJ will 
not have dependency on any external orchestration ser-
vice, will not time out and will be free from vendor lock-
in problems.

The key contributions of this paper are-

• A pure event-driven choreographed design for Fork-
Join workloads in serverless deployment.

• State-of-the-art ST-safe function composition model.
• Uses asynchronous push-based design exploiting 

recursive and parallel calling of functions.
• Self-driven function composition mechanism not 

relying on external orchestration services.
• Algorithm-level solution to handle execution time 

limitation imposed by serverless providers.
4 Throughout this paper, we have referred to “Single FaaS” as a single server-
less function instance that performs an operation without being time-out.
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Our approach shall be a tipping point where a single 
machine/container is not big enough to perform a big 
computation and a serverless function fails for the same 
reason. Using our proposed novel algorithmic design 
approach, it shall be feasible to execute burst-parallel, 
compute intensive applications having large data-at-scale 
by leveraging the scalability benefit of FaaS.

ReactiveFnJ: proposed design
This section presents the design proposal for Reac-
tiveFnJ in detail. Our design is inspired by external 
merge sort algorithm. The external merge sort is used 
when the data to be sorted do not fit into the main 
memory of a computing device. In this scenario, the 
data resides in an external memory (generally a hard 
drive). The external merge sort has two phases i.e., Sort 
and Merge [29]. In the sorting phase, a small chunk of 
data that can easily fit in main memory is read from 
external memory, sorted in main memory, and then 
written to a temporary file. This creates multiple sorted 
sub-files. In the merge phase, all sub-files are combined 
into a single sorted file.

Our design approach also aims to sort a large data file 
that cannot be handled by resources allocated to a sin-
gle FaaS function. However, our approach differs from 
the external merge sort because we divide a large data 
file into small sub-files, and use the autoscaling feature of 
serverless environment to sort and merge the sub-files in 
parallel.

ReactiveFnJ design has three main components i.e., 1) 
Fork, 2) Process and 3) Join, as shown in Fig. 2. Using the 
well-established divide and conquer principle, the Fork 
component divides the main task into smaller subtasks 
for parallel processing. Once the main task is subdivided, 
each subtask is processed independently by Process com-
ponent and intermediate results are produced. Responsi-
bility of the Join module is to combine these intermediate 
results to produce the result.

The Fork component
The Fork is the first component of ReactiveFnJ. It has 
been designed to create small files from a data file of the-
oretically any size having records of variable length. To 
regulate size of the small files, we define a configurable 
parameter, namely, MaxSplitSize (MSS). The MaxSplit-
Size conveys the number of bytes that can be read and 
written by an instance of function responsible for fork-
ing. The value of MSS, may be set depending on the set-
tings of the serverless execution environment.

Challenge in design
In a conventional way, data records of the input file can 
be read to create small size files referred as split files in 
this paper. Maximum number of records in a split file can 
be passed as an input parameter. This design for reading 
and splitting a file will eventually fail in case the input 
data file is too big. In other words, reading and creating 

Fig. 2 Fork-Process-Join pipeline
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smaller files will continue till the function itself does not 
surpass the memory usage and execution time-out limits 
imposed by service providers. This conventional design 
challenge for serverless is alleviated by a Relay Composi-
tion pattern for Fork as described below.

Relay composition for Fork
In this design, a big file is read, and split files are created 
by initiating a recursive Relay Composition pattern. This 
pattern can handle an input file of any size, theoretically, 
without being execution time-out. To make this com-
position more efficient, data is read and written in byte 
chunks of almost fixed number of bytes. The MaxSplit-
Size indicates maximum byte chunk that can be read/
written by a single function without execution time-out. 
MSS is an estimated value and can be calculated empiri-
cally to know the maximum number of bytes that a Single 
FaaS function can read/write.

The number of split files N can be calculated as follows:

For 1, 2 . . . ,N there are F1,F2, …, FN  split files where 
|Fi| ≤ MSS, ∀Fi; i ∈ Z

+

The Relay Composition starts reading the first byte 
chunk and writes it to a new file and triggers the next 
instance asynchronously. New instance starts reading 
from the byte position in the file where the previous 
instance had stopped. The last record in a byte chunk 
may be incomplete due to variable length records and 
fixed MSS value. The composition design takes care 
of this case by discarding the partial read record and 
adjusting StartByteLocation parameter value as given in 

N = ⌈
InputFileSize

MSS
⌉

Algorithm  1. StartByteLocation works as a relay baton 
and is used to pass the next read position of the input file 
to the subsequent instance. Hence, the StartByteLocation 
is being relayed in every successive recursive instance till 
the end of the file is reached. This recursive style in Relay 
Composition where StartByteLocation being passed in 
successive calls as shown in Fig. 3. Thus, a file of any size, 
having variable length records can be forked in server-
less infrastructures without being time-out.

Each recursive instance creates a new split file that can 
be processed by the Process component in the design 
pipeline.

The design of the Fork component is for use in the use 
cases where same operation is to be performed on differ-
ent data splits parallelly (data parallelism), as there is no 

Fig. 3 Relay Composition used in spitting a big file
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dependency among parallel tasks. Also, the design is only 
dependent on the value of MaxSplitSize that has to be 
calculated for the serverless environment configuration. 
It may be noted that the Fork component is suited for the 
forking of tasks that have no limitations on the minimum 
split size for processing.

The Process component
The Process is the second component of ReactiveFnJ. 
This component is designed to perform computation 
on all the split files carved in the previous step. All 
the split files are processed in parallel by independ-
ent functions. In essence, the design of Process com-
ponent harnesses the power of scalability offered by a 
serverless infrastructure. Hence, parallel processing of 
sub-parts of initial data file helps in reducing the over-
all execution time in serverless. This component is the 
realization of a serverless idea of dynamically creating 
a compute cluster on demand without any overhead 
of cluster management. It can implement use cases 
where computation is data independent and therefore, 
can be executed in parallel. Some exemplary use cases 
include eCommerce, clickstream analytics, contact cen-
tre, legacy app modernization, and DevOps functions. 
In Algorithm 2, in-memory sort on a split file has been 
demonstrated but it could be any computation required 
to run in parallel.

The Process component delete the input split file 
(unsorted) at the end as its sorted copy is available for 
Join component.

The Join component
The Join is the final component of ReactiveFnJ. It is the 
core component of this design model. The results of the 
Process component are combined in the Join component 
to converge the result. The main job of this component 
is to join the processed split files in parallel. As per the 
design, in the first iteration, all available split files will be 

paired first and then joined to create a single file. The join 
component keeps on iterating this till a single file is left 
as shown in Fig. 2. Design of Join component is extremely 
efficient as number of iterations are growing in a binary 
logarithmic fashion as shown in Fig. 4 below. The num-
ber of iterations i required to join N number of files can 
be determined using our formula 2i−1

< N ≤ 2i  where 
i ∈ Z

+.
The design of Join component was the biggest challenge 

we faced. Being a serverless component, the Join design 
should adhere to the serverless principles: (i) complete 
decentralized scheduling, (ii) reactive inter-module com-
munication, (iii) pure asynchronous push-based com-
munication approach. To claim a component to be truly 
serverless, it should not use any external orchestration 
service to synchronize its execution workflows along 
with the principles mentioned above.

Challenge in design
The conventional way of joining N processed files in par-
allel is not a viable design in a serverless environment. In 
the traditional design, all processed files are joined in par-
allel in pairs. Each pair of files initiates the event-driven 
merging process, and a sorted file is created. Newly built 
joined files are again ready for join and this process will 
continue till a single file is left as shown in Fig. 5.

This conventional method works well when the size of 
a joined file can be handled under the limits of a server-
less environment. But it shall eventually fail when file 
size starts growing as the joining process exceeds the 
serverless execution time limit. This design challenge 
is resolved by a reactive Master-Worker Composition 
(MWC) pattern as described below.

Master‑Worker Composition for Join
MWC is an innovative design solution to handle the 
exponential increase in file size, the main cause of execu-
tion time-out, during the joining process. The Master is 
responsible for initiating joining of two files and Worker 
takes the responsibility of merging two sorted files. The 
Worker can handle files of any size. So the main highlight 
of this design is that it can join any number of files with-
out any constraint on file size.  The detailed working of 
this composition is described below.

In MWC, a parallel recursive join process is formu-
lated which is devoid of time-out constraint. In this 
composition, we have two important modules, first is 
MasterReactiveMerge (MRM) and other one is Worker-
RecursiveMerge (WRM). The MRM is responsible for 
initiating a join between a pair of split files. As MRM is 
reactive so whenever a pair of files is available for join, 
it is invoked automatically. Event-driven characteristic 
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of serverless architecture helps MRM to run in parallel 
for each pair of files. Every instance of the MRM module 
calls a WRM module, responsible for joining two files. 
First invocation of this module keeps on joining the two 
files till the size of the joined file reaches a limit called 
JoinSafeLimit which is passed as a parameter to this mod-
ule. This parameter regulates the data size that can be 
joined by a single serverless function instance. The Join-
SafeLimit is similar to the MaxSplitSize and can be cal-
culated empirically. Files joined by WRM could be of any 
size so its multiple sequential instances may be required 
to join files of big size. As the file size increases, the num-
ber of instances increases proportionally. One instance of 

WRM joins two files upto JoinSafeLimit and before get-
ting time-out calls next WRM instance with appropri-
ate parameters like read positions for both the files. Two 
files are read and joined to build a single joined file by 
one or more WRM instances, where the resultant file is 
appended by each instance.

The key design features of Join component are as 
follows:

• Join process is automatic where the number of files 
and their size are not known in advance.

• No central controller for joining the files. It uses 
decentralized scheduling.

Fig. 4 Join Component – Binary Logarithmic Growth Curve

Fig. 5 Conventional method to join N files in Parallel
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• No additional messaging-service or shared-memory 
for inter-module communication.

• Event-driven architecture and makes use of trigger-
based communication.

• Supports dynamic sequential and parallel composi-
tion of functions and synchronizes burst parallelism.

• Ensures that executions are not double-billed as 
design is based on pure asynchronous push-based 
communication approach.

• No use of external rendezvous server, ad-hoc orches-
trator service and current serverless orchestration 
systems for task scheduling and synchronization.

• Based on reactive programming model that is highly 
recommended for serverless.

Implementation
The ReactiveFnJ is implemented using cloud computing 
services provided by Amazon Web Services. The server-
less functions are developed using AWS Lambda. It is a 
mature FaaS platform, so we opted it for our experimen-
tal implementation.

To validate the design of ReactiveFnJ, we implement 
Split-Sort-Merge (SSM) case study. In this study, the 
main goal is to sort a data file of any size having variable 
length records. SSM is a perfect case study based on the 
generic Fork-Process-Join model of parallel processing. 
In SSM, Fork component divide input file into split files, 
Process component does in-memory sorting of individual 
split files (in parallel), and Join component merges the 
sorted files (in parallel). We have typically chosen this use 
case to sort a very big text file that conventionally can-
not be sorted using the resources limitations of a single 
serverless function container. There are many solutions 
available for handling these scenarios like Cloud IaaS, 
Hadoop Map Reduce, on-premises cluster etc. But we 
understand, serverless Function as a Service (FaaS) is the 
most attractive and methodical option because of its sim-
plicity, billing flexibility and inherent elasticity. Study and 
implementation of this prototype aims to leverage exist-
ing event-based technology of serverless architectures to 
enable triggered compositions in complex workflows.

General overview of SSM
In the implementation of SSM, the assorted AWS ser-
vices that have been used are as follows-

(1) Amazon S3 to store input file, split files, intermedi-
ate sorted files and final sorted file,

(2) AWS Lambda for execution of split, sort and merge 
sub-tasks of workflow,

(3) Amazon S3 Event Notifications to send event mes-
sages for coordination of Lambda functions,

(4) AWS Identity and Access Management (IAM) to 
manage/access AWS resources [30], and

(5) AWS CloudWatch to monitor/observe logs, metrics 
and events for Fork-Join pipeline.

We implemented the AWS Lambda functions using 
Python 3.8 because it offers library support to manage 
critical operations like, creation, deletion of S3 bucket 
folders at runtime, setting/retrieving input/output 
file path,  and read/write CSV format files. Addition-
ally, we have used few important Python modules- 
Botocore, Boto3, S3FS, JSON, CSV, and OS in our 
implementation.

Source code of all the components developed for 
Split-Sort-Merge pipeline implementation is available at 
https:// github. com/ anita goel/ React iveFnJ.

Specifics of AWS Lambda functions
In this section, AWS Lambda functions of the SSM 
pipeline have been discussed. For the implementation 
of the SSM, four functions have been developed – (i) 
BL_ReadAndSplit (λBR&S) – Lambda function respon-
sible for creating split files, (ii) Sort (λS) - Lambda 
function responsible for sorting a split file, (iii) Master-
ReactiveMerge (λMRM) – Lambda function responsible 
for initiating join between two files and, (iv) WorkerRe-
cursiveMerge (λWRM) - Lambda function responsible 
for merging two sorted files.

Further, for implementation of the SSM, five Amazon 
S3 folders have been used – (i) input – stores input file, 
(ii) to_process – for storing file splits, (iii) to_join – to 
store sorted split files, intermediate merged files and final 
merged file, (iv) to_merge – for temporarily storing pairs 
of files undergoing merge, and (v) archive – to archive 
input file after successful processing.

The interaction among all Lambda functions of the 
SSM pipeline is based on S3 triggers set on PUT event of 
the above-mentioned folders having “.csv” filter.

Figure  6 shows the complete deployment diagram of 
SSM.

BL_ReadAndSplit
A large file can be read recursively to overcome the 
restriction of execution time-out for an AWS Lambda 
function. The recursive Lambda function, λBR&S, 
reads a byte chunk and writes it to a new file. It is 
invoked when an input file is uploaded to the folder “/
input” of S3 bucket. Data byte chunks are read from 
the input file and split files are created in a new folder 
“to_process” (created at runtime). A configurable 

https://github.com/anitagoel/ReactiveFnJ
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parameter ByteChunkSize is used by this function that 
determines the size of split files. Just before getting 
time-out,  this function asynchronously invokes itself 
by passing the new read byte position in the input file. 
First instance of λBR&S creates the first split file and 
invokes the next instance to create the next split file 
and so on. This process continues till the end of the 
file.  This recursive implementation works perfectly 
for any size of input file.  Invoking a function asyn-
chronously using lambda.invoke and setting Invo-
cation-type flag as “Event”, place invoke requests in 
Lambda service queue for processing the requests as 
they arrive. Keeping lambda.invoke as the last state-
ment in this function’s code eliminates double bill-
ing as it would not force the Lambda to wait for each 
invocation to finish. Thus, recursive invocations of this 
function where each invocation communicates and 
coordinates with each other, attains “No Double Bill-
ing” condition for the serverless function composition 
mechanism of serverless trilemma.

After the successful completion of this function, the 
input file is deleted from its folder and is moved to a “\
input_archive” folder in S3 bucket. Naming convention 
of a split file carries two important attributes of informa-
tion i.e., (i) Total number of Splits and (ii) File Split Num-
ber as shown in Fig. 7. Split file name and achieve folder 
helps in detecting and debugging failures, if any, via AWS 
CloudWatch log.

Sort
Sort is the AWS Lambda function implemented for sort-
ing a split file. All split files invoke λS on their creation 
and resultant sorted files are stored in the “/to_join” 
folder of S3 bucket. Hence, λS instances will run in par-
allel. The coordination between BL_ReadAndSplit and 
Sort is done through S3 event notification. In the time-
line, one ReadAndSplit Lambda function reads a large file 
and creates multiple small files. Small files will be created 
in sequence one after another and each of these files will 
also get sorted and stored in a new S3 bucket folder as 
shown in Fig. 6. Choreography of all these tasks is fully 
event-driven.

Parallel Reactive Merge
Parallel Reactive Merge is a serverless solution to initiate 
merging of two sorted files of any size. This implementa-
tion solves the challenge of merging files when the size 
of sorted files starts growing and the execution time-out 
limit reached before the merging process completes. So 
Parallel Reactive Merge overcomes the serverless execu-
tion time-out constraint. For this, two Lambda functions 
are implemented: (1) MasterReactiveMerge(λMRM) (2) 
WorkerRecursiveMerge(λWRM).

In this implementation, a parallel reactive merging 
process is devised that will complete the merging with-
out being time-out. A Lambda function MasterReactiv-
eMerge is invoked whenever a sorted file is dropped in 

Fig. 6 The deployment diagram of SSM
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the to_join folder of S3 bucket. This Lambda function 
picks up another file available in to_join for merging, 
moves these two files to the to_merge folder and invokes 
the first instance of WRM.  The WRM merges records 
from two sorted files and writes them to a new file. The 
WRM takes input parameters as: i) Working Directory, 
ii) File1, iii) File2 iv) Start Position in File1, v) Start Posi-
tion in File2, vi) Output File, and vii) Byte Threshold 
Value. First invocation of WRM carries Start Position 
for both the input files as zero. Before getting time-out, 
WRM calls itself and the next instance starts append-
ing records to the same file created by the first instance. 
Hence, λWRM, recursively calls itself till the single 
merged file is created as depicted in Fig. 8. Last instance 
of λWRM moves the merged file to the “/to_join” folder 
and deletes both the input files. One instance of λMRM 

followed by one or more instances of λWRM is initi-
ated for every pair of files in “/to_join” and this parallel 
merging process continues till a single file is left in the “/
to_join” folder.

Evaluation
In this section, we describe the quantitative assessment 
for our proposed design model. This will facilitate us to 
demonstrate the feasibility of our algorithmic approach 
in designing fully choregraphed Fork-Join workflow in a 
serverless architecture.

We find that the serverless design using Relay Compo-
sition pattern can be successfully used for long running 
computation. Our Fork component allows us to con-
clude that use cases where processing time might exceed 
the execution time limit can also make use of serverless 

Fig. 7 Split File Naming convention

Fig. 8 a Parallel Reactive Merge b Worker Recursive Merge
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technology. Results of our experiments are presented in 
Table 1 where MaxSplitSize is taken as 450 KB.

The execution of a complex, burst-parallel workflow 
can be addressed programmatically without using any 
external orchestration service. The algorithmic approach 
is a priori more powerful considering the availability of 
basic control flow instructions in any serverless runtime 
[17]. Our design model can handle burst-parallel work-
load by utilizing auto scalability of serverless along with 
algorithmic design. Successful implementation of Fork-
Join workflow without using any external orchestration 
service proves this argument. Results of SSM pipeline 
based on ReactiveFnJ are given in Fig. 9.

We proved that it is possible to design a serverless sys-
tem using pure event-driven architecture for complex 
workflows. The ReactiveFnJ, a pure event-driven system, 
using two novel serverless design patterns i.e., Relay 
Composition and Master-Worker Composition. These pat-
terns are used in prototypical implementation of SSM 
pipeline that initiates when an input file gets uploaded 
in the S3 bucket. Subsequent steps like splitting, sort-
ing, and merging are triggered automatically without any 
human arbitration. This shows that complex parallel sys-
tems can be designed in a pure event-driven architecture.

To summarize our results, the ReactiveFnJ is a choreo-
graphed design model for the development of distributed 
applications based on Fork-Join workflow with serverless 
architectures. This design can handle long running tasks 
by overcoming execution time-out constraint and is not 
dependent on any external orchestration service for its 
function composition.

As regards the cold start phenomenon during the 
execution of Fork-Join pipeline, mostly the initial con-
tainers will face cold start delay. The Fork and Worker-
RecusiveMerge component of the pipeline uses the Relay 
pattern (one invocation initiates the next one), so all the 

containers except initial ones will have a warm start. 
In Process and MasterReactiveMerge components, ini-
tial function invocations will suffer cold start, but once 
their containers become available again, then rest of the 
invocations will have warm start. Hence, the Relay pat-
tern and invocations of same functions again and again 
creates a pool of containers available for warm start in 
pipeline execution. So theoretically it can be inferred 
that initial containers will have cold start delay but it 
will not affect every invocation hence overall impact 
will not be high.5

Discussion and limitations
Our model for Fork-Join workflow can be best utilized 
in serverless environment as this technology provides 
auto-scalability, built-in fault tolerance, availability, and 
abstraction of underlying infrastructure. To make Fork-
Join workflow available, we build ReactiveFnJ, a serverless 
composition model. The ReactiveFnJ uses an innovative 
design that is purely event-driven, reactive, ST-safe, chore-
ographed composition model that conquers the hard time-
limit forced by serverless environment. To achieve these 
characteristics, our model keeps two copies of data in the 
Process stage i.e., unsorted input split files and its corre-
sponding sorted files. So, during Process, required storage 
capacity becomes twofold temporarily for a short dura-
tion of time. It starts declining as the Process component 
deletes unsorted input split file as soon as its correspond-
ing sorted file is prepared. At the end of the Fork-Join 
workflow, only two files are available i.e., input file and 
output file. The model can be easily updated to keep only 
one final sorted file, if required. Our implementation uses 
S3 storage which is an AWS object storage service. No 

Table 1 Experimental Results – Single Lambda v/s Relay Composition pattern

a SF- Single FaaS
b RC- Relay Composition

Input File Size (KB) Design Used Time Out No. of Files (No. of Files x MaxSplitSize 
(KB)) + Size of last split file 
(KB)

200 aSF No 1 N/A

300 SF No 1 N/A

600 SF Yes 1 N/A
600 bRC No 2 (1 × 450) + 150

700 RC No 2 (1 × 450) + 250

800 RC No 2 (1 × 450) + 350

1000 RC No 3 (2 × 450) + 100

1200 RC No 3 (2 × 450) + 300

1400 RC No 4 (3 × 450) + 50

1600 RC No 4 (3 × 450) + 250

5 https:// docs. aws. amazon. com/ lambda/ latest/ opera torgu ide/ execu tion- envir 
onmen ts. html

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
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additional infrastructure costs are involved in this storage 
option as it is managed by the provider and charged on 
per-use basis.

Our model is generic, and several other workflows/use 
cases can be implemented by substituting specialized FaaS 
functions in ReactiveFnJ. With the intent to develop other 
complex compute intensive and data parallel applications, 
patterns analogous to our innovative composition pat-
terns i.e., Relay Composition and Master-Worker Composi-
tion should be discovered. We have articulated following 
general design guidelines that will help serverless system 
designers and architects to engineer their applications in 
an efficient and effective manner.

Identification of iterative patterns in a long-running 
task. An iterative pattern can be implemented as a 
recursive serverless function where each function asyn-
chronously invokes the next instance by relaying the 
appropriate parameters till the task is completed. Recog-
nition of computing patterns that are data independent 
and hence, can be executed in parallel. These patterns 
can be implemented as serverless functions runnable in 
parallel exploiting on-demand scale features of server-
less infrastructure. For coordination between serverless 
functions Master-Worker Composition is applied. In this 
composition a master function is invoked automatically 
on an event and is responsible for invoking and dispatch-
ing parameters to Worker. The Worker recursively calls 
itself till the task is completed. In this composition Mas-
ter is reactive in nature and Worker is recursive in its 
functioning.

The proposed design has some limitations too. Firstly, 
for problem domains, like ad-hoc and less common 

custom tasks that have limitations for the minimum possi-
ble split size, the proposed design may not be well-suited.

Secondly, our implementation of the proposed design 
uses Amazon Web Services like AWS Lambda and Ama-
zon S3. So, Fork-Join workflow implementation primar-
ily depends on cloud object storage. The co-ordination 
in workflow is handled either by the object storage event 
notifications or the asynchronous invocations via server-
less functions. For this, Python modules like - Boto3 and 
S3FS are used which are very specific to AWS environ-
ment. The implementation of our design in other server-
less platforms will require the use of their environment 
specific Python libraries. Most of the leading serverless 
service providers have Python modules offering services 
similar to Boto3 and S3FS. In IBM cloud,6 Python sup-
port is provided through a fork of the boto3 library. In 
Microsoft Azure, the open-source Azure libraries for 
Python are available for using Azure resources.7 The 
Python application gsutil, allows access to Google Cloud 
Storage8 to do a wide range of bucket and object man-
agement tasks. In case similar Python modules are not 
available in a serverless environment, then the required 
services need to be developed to implement the proposed 
model.

Fig. 9 Executions Results of Single Lambda vs FnJ Pipeline

6 https:// cloud. ibm. com/ docs/ cloud- object- stora ge? topic= cloud- object- stora 
ge- python
7 https:// learn. micro soft. com/ en- us/ azure/ devel oper/ python/ sdk/ azure- 
sdk- overv iew
8 https:// cloud. google. com/ stora ge/ docs/ gsutil

https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-python
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-python
https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview
https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview
https://cloud.google.com/storage/docs/gsutil
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Related Work
Composition of serverless functions to implement work-
flows is sparsely covered in the current scientific litera-
ture but immensely important in practice [3]. Workflow 
management systems like Apache Airflow,9 Oozie [31] 
and Camunda [32] exist but they depend on a dedicated 
long-running stateful execution engine to handle the 
orchestration. So, the serverless frameworks must pave 
the way for complex function composition mechanisms 
to build responsive, compute intensive, and burst-parallel 
distributed serverless applications [5].

In some previous studies, researchers have explored 
and harnessed the power of FaaS in parallel process-
ing applications. For massively parallel computations 
on serverless, systems like PyWren [21] and ExCamera 
[22], have used their own external ad-hoc orchestra-
tion services to synchronize the parallel execution of 
cloud functions. PyWren utilized a polling mechanism 
for the Amazon S3 bucket to consolidate its results. In 
ExCamera implementation, an additional external server 
is configured to synchronize the interactions of parallel 
running executions. Shankar et  al., developed a server-
less system Numpywren for highly parallel linear algebra 
algorithms. For their implementation, authors introduced 
a new domain-specific language “LAmbdaPACK” [15]. 
Zhang et  al., proposed a new serverless framework 
“Kappa”, that used a check-pointing mechanism to con-
trol function execution time-out [33].

On the academic front, the authors of [26], proposed a 
design approach that exploits data parallelism in server-
less infrastructure for massively parallel computations. 
A running prototype is implemented in AWS Lambda 
for distributed matrix multiplication using the design 
approach. Their design uses a central controller module 
outside serverless environment. The authors [34] in thor-
oughly discussed different sequential workflow compo-
sitions in varied language runtime environments. They 
also compared chaining composition in AWS serverless 
platform and IBM Cloud Function. Their experimental 
results show that a pure serverless composition is effi-
cient in terms of execution time in comparison to exter-
nal orchestration service. Witte et  al., [35] illustrated 
a cloud specific serverless implementation for seismic 
imaging application. They used orchestration service 
AWS Step Function visual workflow for their imple-
mentation and exploited the mathematical properties of 
imaging optimization problem.

In a recent study, different FaaS platforms are analysed 
and compared to run highly parallel computing jobs. This 
research answers an important question: do all existing 

serverless platforms suitable for parallel computations? 
Their results clearly indicate that AWS and IBM provides 
better automatic elasticity for parallelism [36]. In another 
research, authors experimentally analysed the cur-
rent support for serverless workflows in FaaS platforms 
and uncovered important weaknesses. They introduced 
Abstract Function Choreography Language to overcome 
some of the existing gaps [7]. Durable Functions allow 
developers to implement advanced serverless work-
flows but can create an IOps bottleneck. To handle it, a 
novel architecture "Netherite" is developed for executing 
serverless workflows on an elastic cluster [37]. One of 
the recent research works presents "DIFFUSE", a decen-
tralized and distributed platform. It enables function 
composition in serverless environments, but it relies on 
pluggable middleware support for conveying messages 
among the platform components [38].

Serverless popular function orchestration services are- 
AWS Step Functions, Azure Durable Functions, IBM 
Cloud Functions, and Google Cloud Functions. They 
render help to create services involving compositions of 
serverless functions. But currently they do not support 
Parallel Fork-Join workflows natively [8]. As per L´opez 
et  al., [1] serverless applications must follow a trigger-
based interaction mechanism. They expressed that the 
FaaS orchestration system should also be event-triggered. 
It means, in a complex business workflow, the termina-
tion of one FaaS should trigger the next function in the 
pipeline using asynchronous events.

Concurrency and parallel computation of serverless are 
well suited for requirements like sorting a huge data file. 
Efficient sorting of large data sets is an extensively dis-
cussed area as it is central to large businesses, banks, and 
institutions. Sorting counts for roughly one-fourth of the 
total computer cycles [39]. Usually, if a data file is small 
and can fit into the memory limits of a FaaS container, it 
can be easily programmed for sorting. But in case a file 
is huge then sorting by a single FaaS will time-out before 
its completion. Due to resource limitations of a server-
less environment, processing of very large files is not 
supported directly. Recently, Amazon Elastic File System 
(EFS) volume mounted to handle such large files [40]. 
However, latency and additional cost are some challenges 
around this way-out.

After investigating previous and recent research works, 
a clear gap surfaced regarding the non-existence of reac-
tive Fork-Join workflow runnable for serverless infra-
structures. To the best of our knowledge, ours is the first 
work that presents the design and implementation of 
ReactiveFnJ - a pure reactive, choreographed, ST-safe, 
algorithmic solution and answer the intrinsic constraint 
of serverless environments. This makes the best use of 
the scalability and fault tolerance feature of serverless. 9 https:// airfl ow. apache. org/

https://airflow.apache.org/
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ReactiveFnJ is judicious to be used for large-sized data-
sets where divide and conquer strategies can be applied.

Conclusions and future work
Current serverless technology provides its users with fine 
billing granularity and affordability to run arbitrary func-
tions on-demand. We can reap great benefits of server-
less when it comes to the runtime scalability of functions. 
Subtle barriers of this architecture are resource limit of 
functions, designing complex applications that require 
state and composability of long running functions.

This paper is an academic endeavour that designs a 
choreography model ReactiveFnJ for Fork-Join work-
flow in serverless architecture. This model is pure event-
driven, ST-Safe, and makes best use of scalability and 
fault tolerance features of serverless environment. This 
research proves the viability of a serverless design for a 
complex burst-parallel workflow where every server-
less challenge is resolved at algorithmic level rather than 
using any external orchestration service, shared mem-
ory, or messaging services for its task scheduling and 
synchronization. This solution is platform independent 
as a result it is free from vendor lock-in problem also. 
Our model will render help to serverless architects and 
developers in fabricating compositions based on Fork-
Join workflows. We contemplate that each component 
of the Fork-Join pipeline can be substituted by a variety 
of serverless functions to generate diverse workflows. 
The proof-of-concept and evaluation results authenticate 
that ReactiveFnJ can deliver sufficient performance and 
suggests its adoption in serverless frameworks for large-
scale distributed computing. As future work, we would 
like to develop specific modules and libraries for Fork-
Join components in serverless for the production grade 
applications.
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