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Abstract 

The rapid advancement of the Internet has brought a exponential growth in network traffic. At present, devices 
deployed at edge nodes process huge amount of data, extract key features of network traffic and then forward them 
to the cloud server/data center. However, since the efficiency of mobile terminal devices in identifying and classifying 
encrypted and malicious traffic lags behind, how to identify network traffic more efficiently and accurately remains 
a challenging problem. We design a convolutional neural network model: One-dimensional convolutional neural 
network with hexadecimal data (HexCNN-1D) that combines normalized processing and attention mechanisms. By 
adding the attention mechanism modules Global Attention Block (GAB) and Category Attention Block (CAB), network 
traffic is classified and identified. By extracting effective load information from hexadecimal network traffic, our model 
can identify most categories of network traffic including encrypted and malicious traffic data. The experimental 
results show that the average accuracy is 98.8%. Our model can greatly improve the accuracy of network traffic data 
recognition.

Keywords Network traffic identification, Convolutional neural network, Attention mechanism, Traffic Data format 
conversion

Introduction
Recent years have witnessed the development of Cloud 
Computing, the Internet of things (IoTs) and even the 
conceptual Internet of Everything (IoE) [1, 2], and intel-
ligent application terminals in modern world are also 
developing in coherence with such trend. How to con-
duct real-time data analysis with limited networking and 
computing resources, and how to conduct network traf-
fic analysis and classification via edge\cloud computing 
devices, which poses new challenges to network traffic 
monitoring and related issues. Firstly, cybersecurity must 
possess the capability to identify and block intrusive traf-
fic data [3, 4]. Network security analysis of network traf-
fic mainly involves identification of malicious network 
traffic to prevent malicious network attacks resulting in 
significant economic losses [5, 6]. Secondly, identification 
and classification of network traffic with higher accuracy 
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will improve network Quality of Service (QoS) and ena-
ble efficient traffic monitoring followed with effective 
resource allocation. Thirdly, network traffic identifica-
tion can also be applied to Industrial Internet, Internet of 
Things (IoT), and cloud/edge network systems as well [7]. 
B. He et al. [8] proposed an intelligent VNFs configura-
tion framework to solve the problem of network resource 
scheduling in CoT. Accurate traffic identification has 
been recognized as a crucial technology for improving 
Quality of Service (QoS) of the network [9, 10]. To solve 
these problems mentioned above, many approached and 
works focusing on network traffic identification have 
been proposed. Among these proposed approaches, 
those based on machine learning have the most promis-
ing prospects in general [11]. With the increasing num-
ber of terminal devices in the Internet of Things, the need 
for more efficient use of shared computing and commu-
nication resources in an end-to-end edge-cloud environ-
ment becomes more urgent [12].

According to the recently published works, the meth-
ods for identifying network traffic mostly focused on the 
training of machine learning models, such as convolu-
tional neural networks, recurrent neural networks, deci-
sion trees, etc. Although machine learning models can 
greatly accelerate the extraction of network traffic char-
acteristics [13], most existing solutions do not take into 
account the processing of the network traffic data format 
itself.

Our contributions are as follows:

1. In the model data pre-processing process, we 
introduced the normalization module to resolve the 
problem of insufficient and unbalanced data distribu-
tion caused by the small difference of network traffic 
categories.
2. In the model design process, we introduced the 
adjusted Global Attention Block (GAB) and Cat-
egory Attention Block (CAB) to deal with more 
detailed data information of encrypted traffic and 
malicious traffic category.
3. We designed four different network experimen-
tal environments to identify conventional traffic, 
encrypted traffic, malicious traffic, mixed traffic, 
etc., so that it can detect and classify different net-
work traffic categories more efficiently. The classifica-
tion results are compared with other more advanced 
methods. The results show that our model can iden-
tify and classify network traffic data categories with 
higher precision.

The rest of this paper is structured as follows: The sec-
ond section discusses the related work. The third section 

introduces the data preprocessing. The fourth and fifth 
sections respectively introduce the convolutional neural 
network model [14] HexCNN-1D and the batch normali-
zation and attention mechanism module we added after 
adjustment, respectively.  The sixth section presents the 
experimental data and index setting. The seventh section 
analyzes the experimental results. Section eighth dis-
cusses our future work and improvements.

Related work
There are four main network traffic classification meth-
ods [15–17]: methods based on port identification [18], 
methods based on deep packet detection [19], methods 
based on statistical processing [20], and methods based 
on user behavior [21]. Most network protocol ports are 
based on security policies; thus, the identification accu-
racy of such port identification-based methods is rela-
tively low, and the deep packet detection-based method 
cannot process the current encrypted network traffic 
data. With the ubiquitous usage of machine learning [22–
24], researchers are investigating approaches based on 
statistical processing and behavioral norms.

Traditional network traffic classification methods 
include clustering, support vector machines, C4.5 Deci-
sion Tree (C4.5), and etc. Most of these traditional meth-
ods have low accuracy and low classification efficiency. 
Anshu Priya et  al. [25] proposed the use of K-Means 
clustering algorithm to analyze real-time network data 
traffic situations in universities. However, the clustering 
algorithm has poor classification efficiency for data cat-
egories with high similarity. Wang et al. [26] used C4.5 to 
classify P2P traffic, which is used to describe the behav-
iour characteristics of applications. The disadvantages of 
the C4.5 algorithm is that the training time is long and it 
is only suitable for processing small data sets. Coull et al. 
[27] proposed to classify p2p traffic by analyzing packet 
features and proposed traffic analysis of encrypted mes-
saging services: Apple iMessage and other message classi-
fication. Mauro et al. [28] proposed to uncover encrypted 
WebRTC traffic by machine learning tools, using the ran-
dom forest approach. Traditional feature-based statistical 
classifiers are becoming less suitable for today’s massive 
data processing.

Deep learning has been gradually hybrided with more 
research fields to generate more efficient and appliable 
network models thanks to its powerful function extrac-
tion capability and efficient model parameter calcula-
tion. Segun I. Popoola et al. [4] proposed a deep neural 
network to classify network traffic in the scenario of 
Internet of Things, aiming at Zero-Day Botnet Attack 
Detection. However, the time cost of training model 
is large, so it cannot be applied to large-scale data.  Shi 
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Dong et  al. [29] proposed an optimization method for 
abnormal network traffic detection based on a semi-
supervised double-depth Q-network (SSDDQN). Based 
on the above, Shi Dong [30] proposed an improved sup-
port vector machine (SVM) algorithm, the cost-sensitive 
support vector machine (CMSVM), to solve the imbal-
ance problem in network traffic identification. Wang 
et  al. [31, 32] for feature extraction from raw traffic 
data after preprocessing in two dimensions of CNN-1D 
and CNN-2D. The authors demonstrated the superior-
ity of these two methods by observing and elaborating 
the accuracy scores achieved in the experimental evalu-
ation metrics, etc. Lotfollahi et  al. [33] proposed Deep 
Packet: a new method for cryptographic traffic clas-
sification using deep learning. However, the shortcom-
ing of deep packet detection technology is obvious, it 
is vulnerable against the same kind of network attacks, 
and the deployment of deep packet detection is difficult, 
lest additional burden on the processor.  Zou et  al. [34] 
proposed a method for cryptographic traffic classifica-
tion method based on convolutional Long Short-Term 
Memory (LSTM) neural networks. However, after a long 
period of training and increasing of the number of lay-
ers, the problem of gradient explosion is easily encoun-
tered.  Bu et  al. [35] proposed a deep parallel network 
(NIN) neural network model. Since its introduction, 
Deep learning has played an increasingly important role 
in machine learning. Convolutional neural networks 
(CNN), recurrent neural networks (RNN), and long and 
short-term memory network (LSTM) models gained 
their recognition for their excellent performance in the 
field of computer vision.

There are many common traffic classification meth-
ods, each with its own advantages and disadvantages. 
For example, port number-based classification is the 
easiest to implement, but has low identification accu-
racy and limited applicability. The classification method 
based on deep packets has a high accuracy but cannot 
detect encryption services. Therefore, future research 
will focus on network traffic classification and identi-
fication using machine learning methods. As a part of 
machine learning, researchers are trying to apply deep 
learning to the field of network traffic recognition tech-
nology. In this paper, a lightweight neural network 
model is proposed to identify classified network traffic 
data types.

Network traffic data pre‑processing
Hexadecimal data of network traffic conversion
The ISCX-VPN-NonVPN-2016 and USTC-TFC2016 
datasets are used in this paper. As shown in Table 1, we 
selected the following nine data streams by category 

in the ISCX-VPN-NonVPN-2016 dataset: AIM, Face-
book, Email, Netflix, Hangouts, YouTube, Skype, Vimeo, 
and Spotify, and packets corresponding to the nine data 
steams encapsulated by the VPN.

As shown in Table 2, we selected the 7 + 3 category in the 
USTC-TFC2016 dataset. Among them, there are seven dif-
ferent types of regular network traffic: BitTorrent, Facetime, 
Gmail, MySQL, Skype, Weibo, and World of Warcraft, and 
three different types of malicious network traffic: Zeus, 
Virut, and Nsis-ay. Above table shows the selected network 
traffic data types along with volume statistics.

We find that the effective content output in hexadeci-
mal form in each PACP packet in the two datasets has 
obvious characteristic features, and most of the effective 
bytes in the packet are between [50, 1480] bytes.

Therefore, for the data flows captured in the dataset 
described above, we store approximately 5000 pieces of 
data in hexadecimal format for each type of data flow. 
Each data flow collects 1480 bytes of packet load through 
the preprocessing model. If the payload length is less than 
1480 bytes of traffic, we use complement 0 to expand it to 
1480 bytes for storage.

Table 1 The data used In ISCX-VPN-NonVPN-2016

Class Option The Numerical Class Option Numerical

AIM 4869 VPN-AIM 5000

Email 5000 VPN-Email 5000

Facebook 5000 VPN-Facebook 5000

Hangout 5522 VPN-Hangout 5016

Netflix 5000 VPN-Netflix 5031

Skype 5000 VPN-Skype 5009

Spotify 5000 VPN-Spotify 5022

Vimeo 5000 VPN-Vimeo 5014

YouTube 5000 VPN-YouTube 5000

Table 2 The data used In USTC-TFC2016

Class Option The Numerical

BitTorrent 5000

Facetime 5000

Gmail 5272

MySQL 5000

World Of Warcraft 5000

Weibo 5001

Skype 5000

Virut 5035

Nsis-ay 5058

Zeus 5004
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Network traffic identification framework
Convolutional neural network architecture
The design process of the deep learning network model 
are proposed in this section. The original flow data is 
first input into the preprocessing module, and then out-
put data that can be directly used by the convolutional 
neural network via four steps: header information pro-
cessing [36], key information extraction, and data repro-
cessing. The preprocessed training data is then fed into 
the deep learning network training module [37], where 
the convolutional neural network model is trained 
through feature extraction, data simplification, category 
judgment, and feedback adjustment successively. Finally, 
the test data is fed into the test module, which contains 
the trained convolutional neural network model, and the 
system is evaluated and elaborated based on the classifi-
cation results.

HexCNN‑1D model structure design
The one-dimensional convolutional neural network 
(HexCNN-1D) workflow is based on the network traf-
fic recognition method. The input data of the model 
are the hexadecimal data obtained after preprocessing. 
After training the model, the network traffic identifica-
tion work is completed according to the different traffic 
categories.

To prevent overfitting, we added an attention mecha-
nism and a batch normalization layer to the design of 
the HexCNN-1D model. Normalization returns an 
uneven distribution to a normalized distribution. This 
allows the processing data to be distributed into sen-
sitive regions of the activation function, speeding up 
model training and preventing gradient disappearance.

The flow of the HexCNN-1D algorithm based on a con-
volutional neural network is shown in Fig. 1.

Batch normalization and attention mechanism addition
Considering the large amount and load of network traf-
fic data to be processed, the traditional one-dimensional 
convolutional neural network model design cannot meet 
the lightweight requirement of identifying the types and 
categories of encrypted and malicious traffic with higher 
accuracy.  Therefore, we add a normalized processing 
module and an attention mechanism module within our 
model.

Batch normalization addition
When designing the convolutional neural network 
model, the Batch Normalized (BN) module is consid-
ered as an addition to the normal convolutional neural 
network model [38]. The BN module can solve problems 
such as slow convergence rates and gradient saturation 
caused by internal covariate shift [39].

xi
(b) represents the value of the i − th input node of 

this layer when the b− th sample of the current batch 
is input, xi for [x1i , x

2
i , x

3
i , . . . , x

m
i ] a row vector, length of 

batch size m, µ and σ for the mean and standard devia-
tion, ǫ division by zero to prevent the introduction of a 
minimum quantity (negligible), β and γ for the shift and 
scale parameters.

Attention mechanism addition
Due to the uneven distribution of data, the model will 
pay more attention to sufficient data, which will affect 
the final classification effect. As mentioned in this paper 
[40], CBAM is a lightweight general module, that can be 
applied to any CNN model and plays a non-negligible 

(1)y
(b)
i = BN (xi)

(b) = γ
x
(b)
i − µ(xi)

σ (xi)
2 + ǫ

+ β

Fig. 1 HexCNN-1D Model Flow Chart
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role in the application of GAB and CAB [41]. GAB and 
CAB can be used to learn the recognition features, so as 
to better resolve the problem of low accuracy caused by 
uneven data distribution.

The channel attention feature Mc_a is calculated in For-
mula 2, where H denotes the height, W  represents the 
width, C represents the number of channels, and ReLU 
represents the use of ReLU activation function, GAP rep-
resents the global average pooling, MG−IN denotes the 
use of 1 × 1 convolution layer to reduce the number of 
channels.

The number of channels required for each category is 
calculated by M ′

,M
′
∈ RH×W×ck , where c is the number 

of channels needed to identify each category, and k is the 
number of classes. Half of the features are retained by 
M"(M" = M

′
) , and the Dropout function is removed to 

make a prediction with all the features.
Formula 3 calculates the output of GAB, namely 

the spatial attention feature map MG−OUT , 
MG−OUT = MG−IN . MG−OUT is used to store the subtle 
and different information of each network traffic cate-
gory in the detailed network traffic data, which is used as 
the input to the subsequent CAB.

As can be observed in Formula 4, Si represents the 
degree of significant response to the feature mapping 
of each category, GMP represents the global maximum 
pooling, m"

ij represents the JTH feature of class i in M" 
and the score S of each category of network traffic is cal-
culated by averaging the sum of M ′ ′ maximum pooling.

In Formula 5,  M ′

i_avg represents the feature output 
mapping feature map of the class i , and m′

ij represents the 
reaction of the JTH feature of the class i in M ′ . The sum 
of the characteristic fractions of each class is calculated 
and averaged.

(2)Mc_a = (ReLU (Conv2(GAP(MG_IN ))))⊗MG−IN ,M ∈ R
H×W×C ,MG−IN ∈ R

H×W×C
�

,C
�

= C∕2

(3)MG−OUT = Mc_a ⊗ (ReLU(C_G(Mc_a)))

(4)

Si =
1

n

n
∑

j=1

GMP(mε
ij
), i = {1,2, 3,… , k}, S = {S1, S2, S3,… , Sk}

(5)M
′

i_avg =
1

n

n
∑

j=1

m
′

ij , i =
{

1, 2, 3, . . . , k
}

(6)ACAB =
1

k

k
∑

i=1

SiM
′

i_avg ,ACAB ∈ RH×W×1

In Formula 6, ACAB is to multiply and average the cal-
culated scores of each class and the semantic features of 
the class. It helps to differentiate areas of DR Grading.

Finally, as shown in Formula 7, MC−OUT is obtained by 
multiplying CAB and category attention ACAB , enabling 
the model to obtain more accurate classification of differ-
ent network traffic categories.

Experimental data and index setting
In this section, the public network datasets ISCX and 
USTC are used for experiments. The testing ratio of the 
training set was set to 7:3, and the sample set used in 
each experiment was described in detail.

Experimental metrics settings
In this research, four classification indices were used 
in the experiment: Accuracy, Precision, Recall, and 
F1-score. TP denotes the positive sample correctly pre-
dicted by the model, FN denotes the positive sample 
incorrectly predicted by the model, FN denotes the nega-
tive sample incorrectly predicted by the model, and TN 
denotes the negative sample correctly predicted by the 
model.

We use the ablation experiment and the confusion 
matrix [42] to validate the detection of different data 
traffic categories and the experimental results. Ablation 
experiments are commonly used in neural networks to 
learn about the network by deleting part of the network 
and studying its performance. The confusion matrix’s 
function is to group the expected and actual results of all 
categories into the same table based on category. In this 
table, we can clearly observe the number of accurate and 
inaccurate recognitions for each category.

Dataset category classification
The ISCX dataset contains traffic characteristics and raw 
traffic (in PCAP format). In our experiment, the experi-
mental environment was divided into two categories 
(VPN and non-VPN), nine and eighteen.

The UTSC dataset uses the class 7 + 3 (seven non-
malicious traffic and three malicious traffic) categories 
in the UTSC dataset to determine the model’s ability to 
detect malicious traffic. We have 1,000 of each, for a total 
of 10,000 samples. The experiment went through 50–60 
iterations.

(7)MC−OUT = MC−IN ⊗ ACAB
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Configuration and parameter Settings
For hardware and software configuration, we have used 
python3, PC version of Windows 11, Processor 12th Gen 
Intel(R) Core (TM) i5-12500H 2.50 GHz, running mem-
ory 16.0 GB.

We iteratively optimized the hyperparameters of the 
model and conducted a lot of model tuning mainly for 
batch processing [43], optimizer, loss function, normali-
zation operation, etc., as shown in Table  3 below, the 
optimal parameter settings of the model are provided. 
The Adam optimizer is capable of updating the model 
parameters by calculating gradient optimization. Soft-
max loss function, etc.

Experimental results of network traffic identification
Compared with HexCNN‑1D methods
The following are the experimental findings of the 
HexCNN-1D convolutional neural network model 
in two classifications, nine classifications, eighteen 
classifications, and malicious and non-malicious 
classifications:

The HexCNN-1D model developed in this paper uses 
two different exposed data sets, as shown in Fig. 2, and 
the accuracy indices of all tests were kept above 98%.

As shown in Fig.  3, the above experimental results 
and data show that the HexCNN-1D model designed in 
this paper has a higher classification recognition accu-
racy and a more efficient classification effect.

Therefore, we suggest that the combination of a con-
volutional neural network and network traffic recogni-
tion can significantly improve the accuracy of network 
traffic classification technology and can be more suc-
cessfully applied to network traffic detection.

As shown in Table  4, the USTC-TFC data set shows 
that the HexCNN-1D model has more than 98% identi-
fication accuracy against malicious traffic such as Zeus, 
Virut, and Nsis-ay. This shows that the HexCNN-1D 
model established in this paper possesses the capability 
to detect malicious traffic. The packet length of mali-
cious traffic is longer than that of regular traffic. The 
model we designed can extract valid data fields and 
accurately identify different types of malicious traffic 
with limited packet length.

The deep learning convolutional neural network clas-
sification model HexCNN-1D was trained to extract 
different label features. Four independent scenario 
tests were set up to collect experimental data of the 
HexCNN-1D model and compare it with the classical 
machine learning model. As can be observed in Table 5, 
the model proposed in this paper is superior to other 
network machine learning models in identifying VPN 
and non-VPN traffic. Compared to the traditional 
model (Deep Packet, C4.5), the accuracy of our model 

Table 3 Optimal hyperparameter setting

Hyper‑Paramete Value

Batch_size 20

Learning_rate 0.0001

Loss Softmax_loss

Optimizer Adam

Epochs 50

Fig. 2 HexCNN-1D Mode Experimental Results
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is improved by 14% to 28%. Compared to the common 
1D-CNN model, the accuracy of encapsulating network 
traffic in both Non-VPN and VPN is increased by about 
3 percentage points.

Ablation experiments
In order to evaluate the effectiveness of the model by 
adding normalized processing and attention mecha-
nisms, we performed ablation experiments on HexCNN-
1D. As shown in Table 6, the model is mainly processed 
by a one-dimensional convolutional neural network, 

followed by modules for normalization processing and 
attention mechanism.

First, a single one-dimensional convolutional neural 
network was tested to calculate the Accuracy, Preci-
sion, Recall and F1-score of the model. Then, the accu-
racy of F1-score and other indicators of the model were 
increased by about 3% after the addition of normalized 
processing.  Finally, CAB and GAB were added to the 
base model, and the overall index increased by about 
2%, indicating that the attention module improved the 
efficiency of the model in identifying network traffic 
categories.

Confusion matrix validation experiment results
We used the confusion matrix shown in Fig. 4 to verify 
the experimental data and the classification accuracy of 
the experimental results.

The experimental results show that the HexCNN-1D 
classification model adopted in this paper has higher 
accuracy in four experimental scenarios, and has 
achieved excellent recognition results in the scenarios of 
encrypted traffic and malicious traffic identification.

Fig. 3 Experimental Results of HexCNN-1D Model

Table 4 Malicious traffic identification by HexCNN-1D

Precision Recall F1‑score

Zeus 99.8% 99.1% 99.3%

Virut 99.1% 98.4% 98.6%

Nsis-ay 98.1% 98.3% 97.9%

Table 5 Comparison with experimental results of different 
models

Non‑VPN VPN

Precision Recall Precision Recall

Deep Packet [31] 70.6% 70.6% - 85.5%

C4.5 [17] 84% 87.6% 89% 85.5%

1D-CNN [32] 95.6% 95.6% 95.6% 95.6%

NIN(large) [24] 97.5% 97.4% 97.9% 97.9%

CNN-2D 98.7% 98.6% 98.6% 97.7%

HexCNN-1D 98.8% 98.7% 98.8% 98.7%

Table 6 Comparison of ablation experiments

Model Accuracy Precision Recall F1‑score

CNN-1D 90.1% 91.2% 92.7% 92.3%

CNN-1D + BN 95.2% 94.3% 94.6% 94.5%

CNN-1D + CAB + GAB 96.6% 96.7% 96.4% 96.6%

Our Model 98.9% 98.8% 98.7% 98.7%
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Conclusion
In this paper, a convolutional neural network model is 
designed to study network traffic recognition. In the 
data preprocessing stage, the influence of redundant 
information is ignored. The data preprocessing method 
was coupled with the convolutional neural network 
model designed by HexCNN-1D. Our model identifies 
traditional traffic data and VPN encapsulated traffic 
with an accuracy of 99%.  We found that in the detec-
tion of malicious network traffic, such as Zeus, Virut 
and Nsis-ay, the accuracy of network traffic identifi-
cation reached more than 98%.  In the future, we will 
investigate the robustness of these models and the per-
formance migration of the models under different flow 
modes.
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