
Li and Cao Journal of Cloud Computing (2023) 12:52
https://doi.org/10.1186/s13677-023-00433-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Efficient online migration mechanism
for memory write-intensive virtual machines
Pingping Li1* and Jiuxin Cao1

Abstract

Online migration of virtual machines (VMs) is indispensable for system maintenance as it helps to achieve several
resource management objectives such as load balancing, proactive fault tolerance, green operation, and resource
management of data centers. The migration efficiency and reliability are two major challenges in the online migration
of memory write-intensive VMs. For example, pre-copy migration transfers a large amount of data and takes a long
time to migrate. This study proposes an efficient and reliable adaptive hybrid migration mechanism for memory write-
intensive VMs. The mechanism optimizes the data transfer mode of the common migration method and improves
the performance of conventional hybrid migration. First, the virtual machine (VM) memory data to be migrated are
divided into dynamic and static data based on the bitmap marking method, and the migration efficiency is improved
through parallel transmission based on different networks. Second, to accelerate the migration reliability, an itera-
tive convergence factor is proposed to evaluate the current system load state and adaptively calculate the switching
time of the migration mode for adaptive hybrid migration based on the convergence factor. Through adaptive hybrid
migration can achieve migration completed successfully, shorten the post-copy migration duration, and minimize
the impact on the performance of VMs. Finally, this paper implements the system prototype based on a kernel-based
virtual machine (KVM), and experiments are performed using multiple memory write-intensive load VMs. The results
show that the proposed migration algorithm can significantly improve migration performance and complete migra-
tion quickly to solve the pre-copy migration failure problem with a memory write-intensive load. Compared with the
traditional hybrid migration with only one round of pre-copy, the proposed migration algorithm reduces the total
migration time and transmits data by 23.2% and 26.7%, respectively.

Keywords Virtual machine, Online migration, Parallel migration, Hybrid migration, Network fault tolerance

Introduction
VM online migration is a critical feature in cloud com-
puting systems which refers to the migration of VM
memory, virtual central processing unit (vCPU) con-
text, virtual disk, and other devices status data to other
hosts over the network [1, 2]. Online migration is critical
for dynamic resource deployment, power consumption
management, system upgrade and maintenance, load bal-
ancing, and system fault tolerance in data centers [3–6].

Since most modern data center deployments are based
on Storage Area Network (SAN) or Network Attached
Storage (NAS), data on virtual disks do not need to
be transferred during migration. Thus, the task of VM
migration in shared storage scenarios is to migrate VM
memory data, vCPU context, and some device status
data. Efficient and fast migration of VM memory data
is a vital issue in online migration as most of the migra-
tion data are from VM memory data. Pre-copy is the
most commonly used VM migration method [7], such as
VMware, KVM, and Xen, mostly use the pre-copy mech-
anism [8, 9]. Pre-copy transmits memory data based on
the iterative mechanism, and each iteration transmits
the dirty memory pages of the previous round. Iteration

*Correspondence:
Pingping Li
230188114@seu.edu.cn
1 School Of Cyber Science and Engineering, Southeast University, Nanjing,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00433-7&domain=pdf

Page 2 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

stops when pre-copy achieves a short downtime; then,
the VM is temporarily suspended to migrate the remain-
ing data.

With the development of information technology,
increased memory write-intensive applications are avail-
able in data centers. However, online VMs migration
with memory write-intensive loads are a difficult prob-
lem for existing cloud platforms. Since the loads update
memory very quickly, numerous memory dirty pages are
repeatedly written during migration, which needs to be
retransmitted many times during pre-copy. Therefore,
a large amount of data is transferred, resulting in a long
total migration time. This inefficient transmission greatly
reduces the efficiency of dynamic resource allocation,
reduces system maintenance in the data center, causes
the waste of resources, and increases energy consump-
tion [10]. Additionally, when the network bandwidth is
limited, and the memory page update rate is greater than
the network transmits rate, pre-copy will not actively
converge to the stop-copy phase and will lead to uncom-
pleted migration within the expected downtime [11].
The common strategy to solve these problems is to for-
cibly suspend the VM or reduce the working frequency
of the vCPU to reduce the memory update frequency
[7, 12]. However, this approach will greatly prolong the
VM downtime, degrade VM performance, and result in
service-level agreement violation (SLAv). Without these
enforcement measures, pre-copy migration will fail
because iteration will be prevented from converging. The
post-copy mechanism [13] can optimize the pre-copy
migration problem. However, its reliability is poor. If a
network fault occurs during migration, VMs restoration
will be impossible. In addition, the VM performance will
be seriously affected owing to page fault interrupt prob-
lems. A hybrid migration mechanism [14, 15] can reduce
the impact of post-copy inherent disadvantages to a cer-
tain extent, but it still cannot avoid the existing problems.
Moreover, the conventional hybrid migration with a fixed
switching threshold ignores the dynamic nature of appli-
cations and fails to minimize the impact of post-copy on
VM performance.

Many studies have focused on two aspects of pre-copy
shortcomings: optimization of reducing data transfer
[16–20] and the migration process [21–24]. However,
for memory write-intensive VMs, the migration per-
formance is mediocre. Our proposed migration scheme
does not conflict with most of the existing studies and
offers better performance for memory write-intensive
VMs. Furthermore, better migration performance can be
achieved by integrating existing studies into our scheme.

This study proposes an efficient and reliable adap-
tive hybrid migration mechanism for VMs with mem-
ory write-intensive load. In our work, we developed an

efficient parallel transfer mechanism based on differ-
ent networks to optimize the pre-copy. The goal is to
shorten the migration time and improve the migration
efficiency through parallel processing of the full mem-
ory pages transmitted in the first phase and the dirty
memory pages in subsequent iterations phase. Further-
more, applying the compression migration technology
[16, 17] to the data of parallel processing can further
improve the migration efficiency and obtain better
migration performance. Based on the parallel trans-
fer mechanism, a reliable adaptive hybrid migration
is proposed that solves the problem of pre-copy non-
convergence. Moreover, hybrid migration optimizes
the problems associated with post-copy and VM per-
formance. We calculated the best adaptive switching
timing according to the designed iterative convergence
factor. The iterative convergence factor dynamically
senses the real-time load on the environment and accu-
rately achieves the iterative convergence state. Accord-
ing to the iterative convergence factor, the switchover
from pre-copy to post-copy is completed at the opti-
mal time, which facilitates the smooth migration and
shortest post-copy duration. Finally, we design a fault
tolerance mechanism to address the problem associ-
ated with the network faults after switching to post-
copy migration. The goal is to adaptively switch request
mode when sensing migration network faults to facili-
tate a smooth completion of migration and improve
migration reliability.

The main contributions of this paper are as follows:

(1) We propose a parallel migration mechanism using
different networks to improve migration efficiency.

(2) We propose an adaptive hybrid migration based on
a parallel mechanism to improve migration reliabil-
ity.

(3) We implemented our scheme based on KVM/
QEMU platform, and our proposed migration
mechanism could effectively reduce migration data
and time. For memory write-intensive VMs, the
existing migration mechanism often leads to migra-
tion failure or long downtime. However, our pro-
posed migration mechanism demonstrates signifi-
cant performance.

The rest of this paper is organized as follows: Sect. 2
introduces the research background and challenges.
Section 3 discusses the core idea of the proposed migra-
tion mechanism. Section 4 provides an overview of our
design. Section 5 describes the experimental setup and
results. Section 6 introduces related work, and Sect. 7
summarizes the thesis and puts forward some sugges-
tions for future work.

Page 3 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

Background and challenges
Online VM migration is the cornerstone of cloud com-
puting and dynamic resource deployment allocation.
It improves data center performance, such as power
consumption, resource usage, and load balancing [10].
Nevertheless, online VM migration demands many
resources, such as memory capacity, communication
bandwidth, and cache memory, which consequently
affects the data efficiency and degrades running appli-
cation performances [25]. This will seriously affect the
cloud service provider’s quality of service (QoS) during
resources scheduling in the cloud data center. Efficient
and reliable VM migration can effectively ensure the
cloud service provider’s QoS to reduce SLAv [26, 27].
Moreover, migrating the VMs that are running a write-
intensive workload generates more dirt pages. Migration
failures and large downtimes can lead to abortion of TCP
(Transmission Control Protocol) connection. What’s
worse, when the VM memory size becomes larger, it will
be more difficult to migrate VM with memory write-
intensive loads.

Online migration technology
Total migration data, total migration time, and down-
time are three key indicators for evaluating online migra-
tion. Total migration data represents the amount of data
transferred from the source node to the target node dur-
ing migration. Data migration consumes the network
resources of both the source and target nodes because
applications running on VM and migration threads
share the same network infrastructures. The total migra-
tion time is defined as the time migration starts to the
time the VM runs independently on the target host. The
migration time directly affects the resource dynamic
deployment efficiency in the data center and performance
of VM. Avoiding issues that affect VM performance dur-
ing migration is vital. Downtime is the period between
VM suspension on the source node and VM recovery on
the target node. The downtime should be short enough to
have no noticeable impact on applications running inside
the VM. The default maximum-expected downtime for
KVM/QEMU [28] is 300 ms.

Clark et al. [8] proposed pre-copy online migration
in 2005, and it was the most popular migration method
today. The migration process is divided into three phases.
Phase 1: full-copy phase, in which the migration begins
by marking all memory pages as dirty to migrate all
memory data. For example, if the 4 GB of VM memory
is available for usage, the 4 GB of data is transferred in
this phase. Therefore, this phase has the largest trans-
mission data and the longest migration time in the
entire migration iteration. Phase 2: iterative-copy phase,
which iteratively transfers memory pages written dirtily

during the previous round of data transfer. As the VM
is running during the migration, some memory pages
are updated, and the dirty page bitmap marks update
memory pages and transmit them in the next iteration.
Iteration will stop until the remaining number of pages is
small enough. Phase 3: stop-copy phase, which suspends
the VM to transmit the remaining memory pages and
the device state data when the iterative copy is stopped.
Pre-copy keeps iterating to achieve a short downtime.
As a result, some memory pages are transferred multi-
ple times, leading to a large amount of data transfer and
a longer transfer time. In addition, when VMs are run-
ning memory write-intensive workloads, pre-copy faces
the iterative convergence problem, failing to complete the
migration within the expected downtime.

Hines et al. [13] proposed a post-copy migration
mechanism to alleviate the pre-copy problem. First,
post-copy suspends the VM at the start of migration.
Then, it migrates the vCPU context and device status
data to the target host and resumes the VM. Finally,
the source VM memory pages is synchronized through
on-demand and active push methods. When the target
VM visits an unsynchronized memory page, the VM is
interrupted and uses the Virtual Machine Monitor to
obtain the required memory page from the source host
through page fault request processing. Furthermore, the
source host actively pushes unsynchronized memory
pages to the target node. This mechanism transfers each
memory page once, does not have the iterative conver-
gence problem, and provides a reliable migration time.
However, post-copy has poor reliability. If a migration
network fault occurs during migration, the source and
target host possesses the incomplete memory status to
prevent VMs from being restored on any host [29]. In
addition, frequent page faults interrupt and increase
the memory access latencies and greatly reduce the VM
performance [30].

Hybrid migration [14, 15] is the combination of the
pre-copy and post-copy. In the first phase, multiple
rounds of pre-copy migration are performed, during
which most of the memory data is migrated. In the sec-
ond phase, switches to post-copy migration are per-
formed to migrate the remaining data. The process allows
only a small amount of data to migrate during post-copy.
Hybrid migration avoids the problems associated with a
pre-copy non-convergence and facilitates smooth migra-
tion. However, the existing conventional hybrid migra-
tion mechanisms only perform one or two rounds of
pre-copy migration and ignore the dynamic characteris-
tics of applications. When the application load changes,
setting a fixed number of pre-copy iterations either
increases the duration of the post-copy or increases the
number of invalid pre-copy iterations. In addition, if a

Page 4 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

network failure occurs during post-copy migration, the
VM cannot be restored.

Memory write‑intensive VM migration
The VMs with memory write-intensive workloads con-
sume a huge amount of memory and produce memory
dirty pages at a very fast rate. As a result, these dirty
pages are transferred repeatedly in the pre-copy itera-
tion, leading to inefficient migration. When the rate of
dirty pages generated exceeds the network bandwidth,
the iteration fails to actively converge to the stop-copy
phase and prevents the migration not completed within
the expected downtime. With these problems, the migra-
tion process is forced into the stop-copy phase with a
large number of dirty pages to transfer which leads to
extended migration downtime and prolongs total migra-
tion time. This will greatly affect the performance of VMs
which reduce customer satisfaction and bring unneces-
sary energy consumption. Efficient VM migration driven
by customer satisfaction and energy efficiency can greatly
reduce SLAv and energy consumption [31, 32]. In addi-
tion, an extended migration downtime can lead to service
interruptions and possibly disconnection of clients, loss
of database connections, or other issues. The following
experiments illustrate the problems and challenges of
migrating a write-intensive VM.

Challenges to migrating a memory write‑intensive VM
Memcached is a write-intensive workload. We migrate a
VM running the Memcached workload, and migration
bandwidth is limited to 50 MB/s based on QEMU. During

the pre-copy iteration, we keep track of the number of
memory pages transferred in each iteration. As shown in
Fig. 1, the number of memory pages migrated no longer
decreases as iterations are performed in the third itera-
tion because the dirty page generation rate is greater than
the migration rate. If the maximum number of iterations is
not set, iterations cannot converge to the stop-copy phase,
resulting in migration failure. Setting the maximum num-
ber of iterations will result in unacceptable downtime and
seriously affect VM performance. We set the maximum
number of iterations to 30 and re-tested the iterations. The
results show that the maximum downtime exceeds 12 s.
This significantly degrades the Memcached performance.
Therefore, completing memory write-intensive VM effi-
ciently and reliably is a big challenge, which is the problem
this study addresses.

The VM memory sizes are becoming larger with the
development of information technology. For example,
Amazon EC2 X1e memory sizes range from 122 GB to
4 TB [33]. With this trend, it becomes trickier to migrate
memory write-intensive VMs since longer iterating spent
time leads to more dirty pages. To verify this problem
through experiments, we increment the memory size of
the VM running Memcached from 8 to 36 GB and set 10
concurrent access operations. The number of dirty pages
for each VM in the first iteration was recorded during
the migration. As shown in Table 1, the number of dirty
pages increases almost linearly with the VM memory size.
Therefore, as the memory increases, the migrated data also
increases. In addition, each iteration transferred data is
generated during the previous iteration. The more data pre-
copy fully copies in phase 1, the more data it transfers in
each iteration of phase 2. We performed the experiments to
understand the influence of full-copy in phase 1 on subse-
quent iterations of phase 2. We tested on a 2:3 read–write
ratio based on lmbench load to ensure the pre-copy itera-
tion converged and set concurrent threads to increase as
the VM memory grew. During the migration, we recorded
the number of memory pages transferred in the first five
iterations which contained most of the migration data. As
shown in Fig. 2, as the VM memory size increases, the data
transferred in the first iteration and subsequent iteration
also increases. Thus, an increase in the data of the first iter-
ation increases the amount of data of each subsequent iter-
ation and the total migration time. However, we separate
pre-copy phase 1 and phase 2 data migration for parallel
processing to effectively improve the migration efficiency.

Fig. 1 Number of memory pages transferred in each pre-copy
iteration when migrating a VM running Memcached

Table 1 Number of dirty pages of first iteration for different memory size VMs

mem (GB) 8 12 16 20 24 28 32 36

pages (K) 774 1386 1978 2595 3262 3893 4544 5153

Page 5 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

The above analysis shows that it is a great challenge
to migrate VM with memory write-intensive workloads
efficiently and reliably. In a production environment,
the migration network and the production network
share underlying network resources. Therefore, the
bandwidth allocated for migration is limited. In addi-
tion, the VM memory size tends to increase, making it
more difficult to migrate VM with memory write-inten-
sive loads.

Core idea
To reduce the migration time and improve migration
efficiency, the pre-copy full-copy (phase 1) and iterative-
copy (phase 2) are conducted in parallel migration based
on two channels. In addition, we propose an adaptive
hybrid migration based on parallel mechanism and net-
work fault tolerance to facilitate a smooth completion of
the migration process and improve the stability of migra-
tion. Figure 3 presents the overall flowchart, elaborated
in the next subsection.

Parallel migration using different net
The three-phase pre-copy migrations are serial tasks in
time series. We migrate the full memory data in the first
phase and the dirty memory pages transmitted in subse-
quent iterations phase through two channels based on
the storage network and migration network, respectively.
As shown in Fig. 3, the source VM is the full memory
data to be copied in the first phase. At the beginning of
the migration, the memory data in this area are saved to
the shared storage based on channel-1, equivalent to tak-
ing a memory snapshot at the start of migration. We treat
this part of the data as static data (StaticData). The data
saved into shared storage is called StaticData backup.
At the same time, channel-2 runs in parallel with chan-
nel-1 to transfer dirty pages of phase 2 to the target VM

Fig. 2 Number of memory pages transferred in first five pre-copy
iterations when migrating a VM running lmbench load for different
memory size VMs

Fig. 3 Overview of flow char

Page 6 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

through the migration network. Through continuous
iteration, channel-2 completes the transfer of dirty pages
generated during channel-1 migration. The transmit-
ted data of channel-2 are modified continuously during
migration. Thus, we treat this part of the data as dynamic
data (DynamicData). The target node enables processes-1
and processes-2 to receive data on channel-1 and chan-
nel-2, respectively. Process-1 reads the StaticData backup
from the shared storage, indirectly migrating the first
phase data of pre-copy over the storage network. Pro-
cess-2 receives dirty data from channel-2 over the migra-
tion network, which is equivalent to directly migrating
data of the pre-copy second phase. After the StaticData
migration is complete, we determine whether it is possi-
ble to proceed to the stop-copy phase, which is the third
phase of pre-copy.

In the above process, StaticData migration and Dynam-
icData migration are conducted in parallel and merged
afterward. Data consistency is considered during merg-
ing. When the target node process-1 merges data, some
memory pages of the VM already exist because chan-
nel-2 has transferred some memory dirty pages. Thus,
when the process-1 merges data, it checks whether the
corresponding memory page already has data. If the data
already exists, the merge will not be performed since the
data already exists in the VM memory.

Adaptive hybrid migration
The above parallel migration can effectively shorten
migration time and improve migration efficiency. How-
ever, when the DynamicData is migrated based on chan-
nel-2 for memory write-intensive VMs, iterations will fail
to converge, which increases the risk of migration failure
and extends the migration time. To enhance the smooth
migration of memory write-intensive VMs, an adap-
tive hybrid migration was proposed based on the opti-
mization of the parallel transfer mechanism. The hybrid
migration mechanism combines pre-copy with post-copy.
This is crucial as the post-copy can avoid the iterative
convergence of pre-copy and facilitate the completion of
the migration. Traditional hybrid approaches typically
perform one or two pre-copy iterations before switching
to post-copy. Our proposed hybrid migration approach
offers more effective leverage advantages of pre-copy
and post-copy and minimizes the shortcomings associ-
ated with the traditional hybrid approach. Compared to
traditional hybrid migration, our proposed method opti-
mizes two aspects. Optimization of switching timing
is the first aspect. This process adaptively switches the
migration mode and senses the dynamic characteristics
of the application to obtain the best migration benefits.
Optimization of migration network fault is the second
aspect that enhances the fault tolerance mechanism of

the network. In this process, the network failure auto-
matically switches request mode to further improve the
stability and reliability of migration.

Optimization of switching timing
Channel-2 calculates an iterative convergence factor
based on the number of dirty pages and transmission
bandwidth of historical iterations that automatically
determines whether to switch to post-copy. The prin-
ciples of selecting the switching time are as follows: (1)
The first is the adaptive sensing of the dynamic charac-
teristics of the environment and network transport status
during migration, which involves switching to post-copy
migration on time when iteration fails to converge to
avoid invalid iteration. When iteration is not converged,
the memory dirty pages transmitted become invalid data,
and the continuation of iteration increases the invalid
data transmission, which is not conducive to the comple-
tion of the migration. (2) The computing switchover time
ensures that the post-copy migration data and duration
are minimized to avoid an impact on VM performance.
This is necessary because the post-copy pages fault
request greatly lengthens the memory access time.

Optimization of migration network fault
A network fault that occurs during post-copy migration
can cause fatal problems to VM. Thus, we added network
fault tolerance during post-copy migration to avoid this
problem. As shown in Fig. 3, when switching to post-
copy migration, the data to be migrated by post-copy is
backed up based on shared storage. The backup data is
the dirty pages generated during the last iteration, which
is called post-copy backup data (PbData). Even if the
migration network fails during post-copy, the target node
chooses to load PbData from the shared storage to facili-
tate a smooth completion of the migration. The process
increases the fault tolerance of the migration network
and improves migration stability.

System design
We implemented the proposed scheme based on KVM/
QEMU platform. For simplicity, our system prototype is
implemented on QEMU-2.12.1 which contains the KVM
module.

Parallel migration process using different net
VM memory pages are marked as StaticData and Dynam-
icData when the parallel transmission is first launched.
We modify the QEMU code to add a StaticData Bitmap
(SBitmap) and mark the StaticData. The DynamicData
are marked by QEMU dirty pages bitmap, called Dynam-
icData Bitmap (DBitmap). During migration, Static-
Data and DynamicData are transferred in parallel using

Page 7 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

different networks based on SBitmap and DBitmap. The
process involves three phases: The first phase is to transfer
StaticData and DynamicData. For the StaticData, a file is
saved to share storage based on SBitmap. DynamicData is
transmitted iteratively based on DBitmap. Each iteration
transfers the memory page marked as "dirty" in the previ-
ous iteration. The second phase merges StaticData. After
the source node has saved the StaticData, the target node
loads the StaticData from the shared storage and merges
it with DynamicData. When merging, DynamicData is
treated as the latest data. If the target VM (TVM) has a
corresponding DynamicData, the page is not merged. The
third phase is stop-copy. After the second phase ends,
stop-copy judgment is performed, and if the remaining
data transmission time is less than the expected down-
time, we suspend the source VM (SVM) and transfer the
remaining data to the TVM. Then, the TVM is restored.
Algorithm 1 shows the pseudo-code of this process.

 Algorithm 1 Parallel migration process

Adaptive hybrid migration process

(1) The adaptive switching of the migration mode
when iteration fails to converge.

 During the migration, a data structure
migrateInfo is used to record the total number of
dirty pages pages(i) and convergence factors �(i)
transferred during each iteration of DynamicData
migration. The �(i) directly reflects the convergence
of this iteration, and indirectly reflects the dynamic
characteristics of the application load on the VM.
The application load that changes during the migra-
tion is sensed by �(i) . The �(1) < when the VM
memory update rate is less than the network trans-

fer rate, indicating converging of the iteration. Oth-
erwise, the iteration is divergent. In each iteration,
�(1) < allows the migration to be completed quickly.
Occasionally, �(i) > when the network or applica-
tion load fluctuates. This does not affect the normal
migration completion. However, if the � is greater
than 1 many times, this indicates that the iteration is
no longer convergent. Moreover, continuing iteration
is not conducive to the migration completion as it
increases the migration time and invalid data trans-
fer. The � is related to the memory dirty page genera-
tion rate R and transmission bandwidth B . Assuming
that the transmission time is T (i) and the transfer
memory dirty pages are pages(i) in a round i during
the iterative migration process, the R(1) and B(i) are
expressed as Eqs. (1) and (2), respectively:

 The convergence factor � is expressed as:

 The target node notifies the source node after the
StaticData is merged. From now on, at the beginning
of each subsequent iteration, the source node decides
whether to switch to post-copy based on the �(i) . The
specific strategy is as follows: Observe the value �(i)
for the last 3 times, when all �(i) values are less than 1,
the migration iteration is in the state of convergence,
revealing that switching is not required. When all �(i)
values are greater than 1 at least 2 times, we calculate
the average value �aver of �(i) the last 3 times. If the
�aver ≥ 1 , the iteration no longer converges, and the
post-copy mechanism is used. The average value of
the convergence factor is used as the reference value
at the switching time, which accurately represents the
convergence trend. This process prevents misjudg-
ment caused by the occasional fluctuation of the net-
work or application load.
(2) Adaptive switching of request method in case of
the network failure.
 When switching to the post-copy migration,
the target VM has most of the source data. Thus,
reducing the time of post-copy migration time is
vital. However, if a network fault occurs during

(1)R(1) =
pages(i + 1)

T (i)

(2)B(i) =
pages(i)

T (i)

(3)

�(i) =
R(i)

B(i)
= �(i) =

�(i) = 1

pages(i + 1)

pages(i)

i = 1

i > 1

Page 8 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

post-copy migration, the VM will fail to be restored.
To solve this problem, we saved the correspond-
ing dirty pages to the shared storage and named
PbData, according to the DBitmap of the final itera-
tion of channel-2. When the target node requests
the memory page from the source node and detects
a migration network fault, the target node loads the
remaining data from the shared storage to facilitate
the completion of the migration. In this process, the
fault migration network tolerance is realized, which
increases migration stability and reliability. Algo-
rithm 2 shows the pseudo-code of the network fault-
tolerant adaptive hybrid migration process.

 Algorithm 2 Adaptive hybrid migration process

The experimental evaluation
Experimental evaluation index and scheme design
This section evaluates our proposed migration mechanism.
The total migration time and data, VM downtime, and the
impact on VM performance are important performance
indicators. The lower the total migration time and data,
the higher the migration efficiency, and the smaller the

VM downtime, the lesser the impact on VM performance.
In addition, the shorter the post-copy duration of hybrid
migration, the smaller the impact on VM performance.

The performance of the proposed scheme was evalu-
ated based on the following workload, using the mean of
the 10 test results.

Memcached
This is a memory and network-intensive workload that
stores key-value pairs based on memory. When the
Memcached server receives a request that contains a key
value, the corresponding value responds to it. We con-
figured the Memcached VM with 8 vCPU and 6 GB of
memory, and allocated Memcached with 4 GB of cache
and 2 threads. The client uses the Memaslap test suite
from the libmemcached library. The client first preheats
the Memcached server with multiple key values to fill the
4 GB cache. During the migration, the client sets concur-
rent connections to 4 based on set operations.

Kernel compilation
This program is a system call-intensive load that can
test the performance of various resource types equally.
We allocated a VM with 4 vCPU and 2 GB of memory
to compile the Linux-3.10.0–957 kernel with 4 threads in
parallel.

Lmbench
This is an open-source and widely used benchmark for
performance testing. We allocated 8 vCPU and 6 GB of
memory to a VM running lmbench and ran 4 threads
concurrently to perform 2:3 read and write tests on a
4 GB memory area.

The results reveal that our scheme can significantly
improve migration performance. Compared with pre-
copy, our parallel transmission greatly reduces the data
and time of migration and significantly improves migra-
tion efficiency. Some workloads that did not migrate
within the expected downtime using pre-copy now
completed the migration quickly based on our parallel
mechanism. In addition, the adaptive hybrid migration
based on the parallel mechanism guarantees the suc-
cessful migration of all workloads. Compared with the
traditional hybrid migration with fixed threshold switch-
ing, our scheme effectively reduces the failure probabil-
ity of migration, shortens the duration of post-copy, and
reduces the inherent weaknesses of post-copy. In the fol-
lowing, we discuss the proposed migration mechanism in
detail.

Experimental environment setup
As revealed in Fig. 4, two physical servers perform the
functions of the source and target node, and their specific

Page 9 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

configurations are shown in Table 2. These servers con-
nect to the gigabit network through gigabit switches.
Additionally, the host node shares the back-end stor-
age from another machine using the SAN storage, and
the SAN storage server transmits data to the host node
over a 10-gigabit network. The Client–server runs the
memaslap benchmark as the test Client for Memcached.
Channel-1 is based on a 10-gigabit network for data
transmission, and channel-2 is based on a gigabit net-
work for data transmission. The test VM was deployed
on CentOS7.16–1810. The system prototype is based on
QEMU-2.12.1. The maximum downtime and iterations
are 300 ms and 30 times, respectively. The channel-2 net-
work’s bandwidth is 32 MB/s.

Parallel migration performance
First, we verify the performance of the parallel migrate
(par-migrate) mechanism by comparing the par-migrate
with the normal pre-copy [8].

As shown in Fig. 5, par-migrate significantly reduced
the total migration time and data under different load
tests compared to pre-copy. For Memcached, the total
migration time and data were reduced by 37.7% and
20.2%, respectively. For the kernel compilation, total
migration time and data were reduced by 29.5% and
8.3%, respectively, which were 39.1% and 19.2% lower for
lmbench load, respectively. Two main reasons are associ-
ated with these significant performance improvements:

Firstly, the par-migrate transmits phase 1 and phase 2
data in parallel based on different networks. The phase 1
and phase 2 data transmissions do not affect each other
in par-migrate, which greatly improves the data transmis-
sion speed and processing efficiency.

Secondly, as shown in Fig. 2, the initial data of pre-
copy iterative migration in phase 2 is related to the full
copy of phase 1. The larger the amount of data migrated
in phase 1, the longer the migration time, the more dirty

Fig. 4 Topology of the experimental environment

Table 2 Test physical server configurations

name Value

Type Inspur NF5280M5

CPU CPU Intel Xeon Gold 5118 (2.3 GHz/12 C)

Memory 8*32 G RDIMM DDR4

NIC One dual-port Gigabit NIC Intel I350,
One dual-port 10 Gigabit NIC Intel
82599ES

Disk M.2 interface Intel DC S3520

Fig. 5 Performance comparison for different workloads. a Total migration time b Total transferred data

Page 10 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

pages generated in phase 1, and the larger the initial
data of phase 2. By analogy, the data transferred and the
execution time of each subsequent iteration increase.
While par-migrate is not associated with this problem,
phase 1 migration does not affect the phase 2 initial data
because both are processed parallelly. Therefore, the data
migrated in subsequent iterations was greatly reduced.
We performed an experiment to understand that the iter-
ative migration of data in phase 2 is not affected by phase
1 using par-migrate. We tested on a 2:3 read–write ratio
based on lmbench load and set concurrent threads as the
VM memory grows. During the migration, we recorded
the memory pages transferred in phase 1 and the first
iteration of phase 2. As shown in Fig. 6, as the memory
pages transferred in phase 1 become larger, the mem-
ory pages in the first iteration of phase 2 remain almost
unchanged, revealing that phase 2 iteration migrations
can maintain a small initial data level using par-migrate.

Figure 7 shows that pre-copy downtime for all three
loads exceeds the maximum downtime of 300 ms, in
which kernel compilation is at a minimum of 1210 ms
and Memcached is at a maximum of 11,217 ms. For
par-migrate, the Memcached’s load downtime exceeded
300 ms, at 5912 ms. However, the other two loads are
within 300 ms.

For pre-copy, three loads generate memory dirty data
at a rate greater than the rate of transfer, and the itera-
tions fail to converge resulting in reaching the maximum
iteration, which leads to a longer downtime due to a large
amount of transferred data in the stop-copy phase. As
revealed in Table 3, pre-copy transmitted data was sig-
nificantly higher than par-migrate in all three loads dur-
ing the stop-copy phase. However, with the Memcached
load, par-migrate was unable to enter the stop-copy phase
naturally due to the memory dirty pages ware generated
very fast, resulting in significant downtime. But, our

comprehensive scheme addresses this problem, which is
discussed in section of comprehensive performance.

Adaptive hybrid migration performance
The adaptive switching for the proposed hybrid migra-
tion (As-hybrid) is compared with the traditional hybrid
migration based on fixed switching thresholds. That is,
traditional hybrid migration [14, 15] with only 1 round
of pre-copy (1-hybrid) and hybrid migration with only 2
rounds of pre-copy (2-hybrid). This section analyzes the
performance of As-hybrid separately and excludes the
benefits of par-migrate. We performed migration tests on
VM running Memcached loads for two scenarios:

Scenario 1: The read/write ratio of memaslap client
increases during migration, enabling As-hybrid to
trigger migration mode switchover.
Scenario 2: At the beginning of the migration, we set
the read/write ratio of the memaslap client to 10:1 to
slow the memory update frequency. During migra-
tion, the read/write ratio is occasionally set to 1:10 to
test the performance under load fluctuation.

During the experiment, the average latency for the
Memcached service and the amount of data transferred
during post-copy migration are recorded in real-time.
These two metrics were used to analyze the performance.

Figure 8a shows the test results of scenario 1. Dur-
ing the migration process, 1-hybrid and 2-hybrid switch
to post-copy at 140 s and 157 s, respectively. Moreover,
As-hybrid automatically senses the load changes based

Fig. 6 Number of memory pages transferred in phase 1 and the
first iteration of phase 2 when migrating a VM running lmbench for
different memory size VMs

Fig. 7 Downtime

Table 3 Send data in stop-copy phase (MB)

Memcached kernel‑
compilation

lmbench

pre-copy 349.4 38.7 126.8

par-migrate 165.5 5.2 6.1

Page 11 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

on iterative convergence factors and triggers the switch
to post-copy at 187 s. However, As-hybrid has the short-
est duration, 66% and 48% shorter than 1-hybrid and
2-hybrid, respectively. As shown in Fig. 9, As-hybrid
transmits the least data during post-copy, which effec-
tively shortens the post-copy duration. As revealed in
Table 4, the total migration time and data for As-hybrid
increased. Given this problem, it is solved by combining
As-hybrid with the par-migrate, that is our comprehen-
sive scheme.

The test results of scenario 2 are shown in Fig. 8b,
revealing that 1-hybrid and 2-hybrid are unable to sense
load fluctuations. Thus, the post-copy migration switch
is bound to trigger, leading to the Memcached service

latency. While As-hybrid uses the proposed iteration fac-
tor to filter such load fluctuations, it avoid unnecessary
switching and the Memcached service latency.

As shown in Fig. 8, the average latency of Memcached
service response time decreases significantly during
post-copy migration, and pre-copy has no significant
impact. Post-copy page fault request is the direct cause
of Memcached service response latency, which seriously
affects VM performance. When the pre-copy iteration
is convergent in hybrid migration, the migrated data
becomes smaller with the increase of pre-copy iterations.
If the load changes during the migration process, the pre-
copy iteration will fail to converge. With this issue, it is
no longer meaningful to continue iterating as the data
to be migrated will not decrease but may even increase.
Based on Scenario 1, we test with different fixed switch-
ing thresholds (1–10 pre-copy iterations). As shown in
Fig. 10, when the threshold is less than 5, the data trans-
ferred by a post-copy decrease as pre-copy iterations
increase. However, when the threshold is greater than
5, the data transferred by the post-copy increase as pre-
copy iterations increase. Thus, switching to post-copy at
the 5th pre-copy iteration can obtain the optimal post-
copy duration and total transfer data. The duration of
post-copy is significantly shortened as As-hybrid adap-
tively senses the iterative convergence state based on the
iterative convergence factor and switches at the optimal
moment.

Network fault tolerance
This section tests the adaptive switchover of data request
mode. When a network failure occurs during post-copy,
the source and target VM are impaired and unable to
work properly. This problem can be solved by As-hybrid
of network fault tolerance mechanism. The VM run-
ning Memcached load was migrated, and the migration
network was disconnected after switching to post-copy.

Fig. 8 Memcached service performance. a with increasing load. b with occasional load fluctuations

Fig. 9 Transferred data during post-copy

Table 4 Total migration time and transferred data

1‑hybrid 2‑hybrid As‑hybrid

Total time (s) 299 321 332

Total data
(MB)

8970 9951 10,292

Page 12 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

During the migration, the throughput rate of the Mem-
cached service was counted. As shown in Fig. 11, the
throughput decreased after switching to post-copy but
returned to normal after the migration was completed at
195 s. The result verifies that when the migration network
is disconnected during a post-copy migration, the migra-
tion process loads data from the shared storage rather
than interrupting the migration. Therefore, VMs can still
be migrated even after the migration network is discon-
nected. In this way, migration failure caused by migration
network faults is avoided.

Comprehensive performance
In this section, the comprehensive performance of par-
migrate and As-hybrid combined (PA-hybrid) is dis-
cussed. We perform the experiment using a VM with a
larger memory size and faster write dirty speed. We set
the VM memory to 32 GB that run the Memcached load.
We allocate 16 GB of cache and 12 processing threads
for Memcached. The memaslap concurrent connec-
tions were set to 10 with a read/write ratio of 3:7. To
improve test efficiency, we set the migration bandwidth
to 50 MB/s. The tests were compared with 1-hybrid,

2-hybrid and dynamic hybrid migration (Dyn-hybrid)
[14]. The Dyn-hybrid dynamically sets the number of
pre-copy based on the memory dirtying rate, the mem-
ory size, and migration network bandwidth to obtain
the best migration performance, which can effectively
solve the problem of memory write-intensive VM migra-
tion and reduce the duration of post-copy. Table 5 shows
the test results of total migration time and transmitted
data. Compared with the 1-hybrid, total migration time
and data were reduced by 23.2% and 26.7%, respectively,
which were 32.1% and 33.3% lower than 2-hybrid, respec-
tively. Compared with the Dyn-hybrid, total migration
time and data were reduced by 33.2% and 34.5%. There-
fore, the PA-hybrid demonstrates a more significant per-
formance improvement than the 1-hybrid, 2-hybrid and
Dyn-hybrid. Figure 12 shows the post-copy duration
during the migration, revealing that the PA-hybrid post-
copy duration is the shortest, only 21 s. The second best
is Dyn-hybrid which closer to PA-hybrid. However, the
maximum duration of 1-hybrid has reached more than
100 s. In addition, we tested the migration performance
of lmbench and kernel compilation workloads. As shown
in Fig. 13, our comprehensive scheme exhibited the best
performance for total migration time, total transferred
data, and post-copy duration.

As revealed in Table 6, the migration data and time
are larger than those of traditional hybrid migration for
As-hybrid which does not contain a parallel mechanism.
Because our scheme performs more rounds of pre-copy
iteration to find the optimal switching moment com-
pared to 1-hybrid and 2-hybrid, resulting in more data

Fig. 10 Data transferred using post-copy based on different fixed
switching thresholds when migrating the increasing workloads of
Memcached

Fig. 11 Memcached service throughput rate

Table 5 Total migration time and transferred data

1‑hybrid 2‑hybrid Dyn‑hybrid PA‑hybrid

Total time (s) 605.9 685.4 697.2 465.5

Total data (MB) 30,720 33,792 34,394 22,528

Fig. 12 Post-copy duration

Page 13 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

being transferred. The Heuristic hybrid migration [21]
and the Dyn-hybrid [14] also suffers from this prob-
lem, although it can enhance the successful migration
of memory write-intensive VMs and shorten post-copy
migration time. However, our hybrid migration com-
bined with a parallel mechanism can effectively solve this
problem. From the analysis of the challenges to migrate a
write-intensive VM as know, the more data pre-copy fully
copies in phase 1, the more data it transfers in each itera-
tion of phase 2. As a result, traditional hybrid mechanism
and Dyn-hybrid mechanism transfer more data during
pre-copy and post-copy. However, par-migrate transmits
data of phase 1 and phase 2 based on two parallel chan-
nels, and these data transfers do not affect each other
that greatly improve migration efficiency. In addition,
Fig. 6 also shows that the initial transfer data of phase 2
is always kept at a small value. Although multiple rounds
of iterations are performed, the data transmitted in each
round and the data migrated by post-copy are smaller.

From the above experiments, our proposed migra-
tion mechanism can effectively shorten the migration
time and improve the migration efficiency for VMs with
memory write-intensive load. Moreover, the migration

mechanism offers significant stability and reliability as it
facilitates the migration of all applications-loaded VMs
even with migration network failure. Compared with
the conventional hybrid mechanism, the algorithm sig-
nificantly reduces the post-copy duration and reduces the
impact of the migration process on VM performance.

Related works
VM migration technology has been widely studied by
scholars globally. Clark et al. [8] proposed the pre-copy
migration mechanism in 2005, demonstrating VM data
transmission to the target host through multiple itera-
tions. Due to strong reliability, pre-copy migration has
been widely used in existing virtualization platforms.
For memory write-intensive VMs, pre-copy suffers from
migration inefficiencies and iterative convergence prob-
lems. Given these problems, many existing studies focus
on two aspects: optimization of reducing data transfer
and optimization of the migration process.

Optimizations to reduce data transfer
Data compression technology is applied to VM migra-
tion to reduce the amount of migration data and improve

Fig. 13 Performance comparison for different workloads. a Total migration time. b Total transferred data. c Post-copy duration

Page 14 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

migration efficiency. Jin et al. [16] proposed a simple
and fast WKdm compression method for memory pages
with large similarities. They also use a complex and slow
LZO (Lempel–Ziv–Oberhumer) compression algorithm
for less similar memory pages. Singh et al. [17] pro-
posed a new model based on geometric programming
that dynamically allocated compression rates according
to the available network bandwidth. With low available
bandwidth using a slow compression algorithm and more
bandwidth using fast compression algorithms. Zhang
et al. [18] accelerated VM migration based on differential
compression technology, using the similarity detection
algorithm of HashSimilarityDetector [19]. The algorithm
identified memory pages with similar contents in the
entire VM memory and addressed space using a differen-
tial compression algorithm. The compression technology
can effectively reduce the amount of migrated data and
improve migration efficiency. Liu et al. [20] optimized
pre-copy migration using system checkpoint recovery
and record playback techniques. They sent log files to
the target node, which recorded VM non-deterministic
system events that occurred in the previous iteration
migration. Then, the target node plays back the received
log files to restore the state of the VM. As smaller log
files are sent instead of memory data, migration data is
significantly reduced. However, this approach is unsuit-
able for migrating VM with symmetrical multiprocessor
architecture operating systems. Since memory compe-
tition between different vCPU for recording and play-
back is very expensive. Riteau et al. [34] proposed a VM
migration method called "Shrinker". This method iden-
tifies the memory pages that have been transferred by a
service, and when memory pages with the same content
are transferred, only their identification is transferred.
Thus, this method can effectively reduce the transferred
data. The above algorithm only optimizes the amount
of data transferred during the migration, which partially
improves the migration efficiency. However, the iterative
convergence of pre-copy migration is not considered for
VMs with memory write-intensive workloads.

Optimization of the migration process
The common solution for the pre-copy iteration conver-
gence problem is to set the maximum number of itera-
tions and force the VM to suspend when the maximum
number of iterations is reached. Hines et al. [13] proposed
the post-copy mechanism to avoid the pre-copy iterative
convergence problem. However, its frequent page fault
request increases the VM delay memory access, which
has a serious impact on VM performance [30]. Li et al.
[21] proposed a heuristic hybrid migration based on pre-
copy and post-copy. They compared the number of dirty

pages generated and the number of pages transmitted in
each iteration. If the number of dirty memory pages gen-
erated is not less than the number of transferred memory
pages, post-copy migration is enabled. This avoids the
convergence problem of pre-copy iteration and reduces
the impact of pre-copy migration on VM performance.
However, the network failure during a post-copy migra-
tion will cause the migration failure. Deshpande et al.
[22] proposed a scatter–gather migration method, in
which the data to be migrated is distributed to multiple
nodes, and these nodes are treated as a relay node. The
target node obtains migration data from the relay node
and the source node, thereby improving the efficiency of
data transmission. Zaw et al. [35] proposed a framework
to extend pre-copy based on the pre-processing mecha-
nism. They combine Least Recent Used (LRU) cache and
splay tree algorithm to predict the working set and pre-
process the pre-copy to reduce the transfer of memory
pages.

However, the above studies fail to consider VMs’
parallel migration in the optimization of data transfer
reduction and the optimization of the migration pro-
cess. Song et al. [23] proposed a time-limited parallel
migration method, using data and pipeline parallelism
to parallelize the migration process. However, the par-
allel data transmission in the same network increases
the competition for network resources. Akiyama et al.
[24] focused on VM migration based on shared storage,
revealing that the normal pages and the cached pages
of VMs were transmitted in parallel. The normal pages
were transmitted through the migration network, and
the target host loaded the cached pages from the shared
storage. However, Akiyama et al. [24] need to modify
client operating system, which limited to the open-
source Linux system and not applicable to the Windows
system.

In addition, this paper studies VM migration based
on shared storage. However, in a WAN scenario with
non-shared storage, VM storage data needs to be trans-
ferred. Zheng et al. [36] proposed a storage migration
scheduling algorithm. They use the history of VM disk
I/O operation to predict the I/O locality characteristics
of the migrated workload. Based on this feature, migra-
tion scheduling is carried out. This effectively solves the
problem that VM I/O performance deteriorates during
storage migration. Wood et al. [37] proposed an effec-
tive migration framework to efficiently migrate VM in
WAN based on VPN. The framework reduces the cost of
transferring VM storage and memory data over a WAN.
Migration of non-shared storage scenarios is not the
focus of this paper, but will serve as our future research
in VM migration.

Page 15 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

Conclusion
This study proposes an efficient and reliable online migra-
tion for memory write-intensive VMs. Firstly, this paper
proposes a parallel migration mechanism to improve
the efficiency of VM migration. We analyze the existing
problems associated with the memory write-intensive
VMs’ online migration. To solve these problems, we
implement an efficient parallel transmission mechanism
that migrates data based on two channels and receiver
threads. Our proposed scheme shortens migration time
and improves migration efficiency. Secondly, this paper
proposes an adaptive hybrid migration to improve the
reliability of VM migration. The adaptive hybrid migra-
tion is implemented based on parallel transmission. We
select the optimal switching time based on the proposed
iterative convergence factor when pre-copy iterations fail
to converge to achieve a smooth completion of migra-
tion and minimize the performance impact of post-copy
migration on VMs. The strategy helps to improve the
performance and reliability of the migration. To improve
network reliability and avoid shortcomings associated
with post-copy migration, the network fault tolerance
mechanism is added after the adaptive hybrid migra-
tion is switched to post-copy. Finally, the validity of this
study is verified experimentally. The proposed migration
mechanism is evaluated and reveals that the mechanism
has obvious performance advantages for VMs migration.

This study mainly focuses on online migration in VMs
based on shared storage for memory write-intensive load
in a LAN. Future work will focus on a WAN scenario
without shared storage, with low bandwidth, high latency,
and other problems. Future work will also explore a strat-
egy to effectively shorten the migration time and improve
migration efficiency and reliability.

Abbreviations
VMs Virtual machines
KVM Kernel-based virtual machine
vCPU Virtual central processing unit
SAN Storage Area Network
NAS Network Attached Storage
TCP Transmission Control Protocol
SBitmap Static data Bitmap
DBitmap Dynamic data Bitmap
TVM Target VM
SVM Source VM
par-migrate Parallel migrate
As-hybrid Adaptive switching of hybrid migration
1-hybrid Traditional hybrid migration with 1 round of pre-copy
2-hybrid Traditional hybrid migration with only 2 rounds of pre-copy
PA-hybrid Adaptive switching of hybrid migration of par-migrate and As-

hybrid combined
SLAv Service-level agreement violation
Dyn-hybrid Dynamic hybrid migration

Acknowledgements
The authors would like to thank the anonymous referees for their valuable
comments and suggestions.

Authors’ contributions
Pingping Li put forward the main ideas, contributed to the modeling, con-
ducted the experiments, performed the data analysis and wrote the manu-
script; Jiuxin Cao guided the research and made suggestions for the article. All
authors read and approve the final manuscript.

Funding
Project is supported by the National Natural Science Foundation of China
(62172089,61972087,62172090) Forward-looking and Key R&D Project of
Jiangsu Province (SBK2019022870). Key Laboratory of Network and Informa-
tion Security Project of Jiansu Province (BM2003201).

Availability of data and materials
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 8 May 2022 Accepted: 26 March 2023

References
 1. Wan X, Zhang X, Chen L (2012) An improved vtpm migration protocol

based trusted channel. In: Proceedings of 2012 International conference
on systems and informatics. Yantai, pp 870–875

 2. Dong Y (2013) Efficent migration of virtual functions to enable high avail-
ability and resource rebalance. US Patent 8:533–713

 3. Cao R, Tang Z, Li K, Li K (2021) HMGOWM: a hybrid decision mechanism
for automating migration of virtualmachines. IEEE Trans Serv Comput
14(5):1397–1410. https:// doi. org/ 10. 1109/ TSC. 2018. 28736 94

 4. Shen H, Chen L (2020) A resource usage intensity aware load balancing
method for virtual machine migration in cloud datacenters. IEEE Trans
Cloud Comput 8(1):17–31. https:// doi. org/ 10. 1109/ TCC. 2017. 27376 28

 5. Mireslami S, Rakai L, Wang M, Far BH (2021) Dynamic cloud resource
allocation considering demand uncertainty. IEEE Trans Cloud Comput
9(3):981–994. https:// doi. org/ 10. 1109/ TCC. 2019. 28973 04

 6. Kherbache V, Madelaine É, Hermenier F (2020) Scheduling live migration
of virtual machines. IEEE Trans Cloud Comput 8(1):282–296. https:// doi.
org/ 10. 1109/ TCC. 2017. 27542 79

 7. Le T (2020) A survey of live virtual machine migration techniques. Com-
put Sci Rev 38(11):100304

 8. Clark C, Fraser K, Hand S (2005) Live migration of virtual machines. In: Pro-
ceedings of the 2nd conference on symposium on networked systems
design and implementation. IEEE Piscataway NJ USA 2:273–286

 9. Nelson M, Lim B H, Hutchins G (2005) Fast transparent migration for
virtual machines. In: Proceedings of the USENIX annual technical confer-
ence. Anaheim, pp 391–394

 10. Nitin SM, Rajesh BI (2020) Optimizing the topology and energy-aware vm
migration in cloud computing. International Journal of Ambient Comput-
ing and Intelligence 11(3):42–65

 11. Kostenko VA, Chupakhin A (2020) Live migration schemes in data centers.
Program Comput Softw 46(5):312–315

 12. Jin H, Gao H, Wu W, Shi S, Wu X, F. Zhou F, (2011) Optimizing the live
migration of virtual machine by CPU scheduling. J Netw Comput Appl
34(4):1088–1096

 13. Hines MR, Deshpande U, Gopalan K (2009) Post-copy live migration of
virtual machines. Operating systems review 43(3):14–26

 14. Altahat MA, Agarwal A, Goel N, Kozlowski J (2020) Dynamic hybrid-copy
live virtual machine migration: Analysis and comparison. Procedia Com-
puter Science 171:1459–1468

 15. Sahni S, Varma V (2012) A hybrid approach to live migration of virtual
machines. In: Proceedings of IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM). Bangalore, pp 1–5

https://doi.org/10.1109/TSC.2018.2873694
https://doi.org/10.1109/TCC.2017.2737628
https://doi.org/10.1109/TCC.2019.2897304
https://doi.org/10.1109/TCC.2017.2754279
https://doi.org/10.1109/TCC.2017.2754279

Page 16 of 16Li and Cao Journal of Cloud Computing (2023) 12:52

 16. Hai J, Li Deng Wu, Song, (2009) Live virtual machine migration with
adaptive memory compression. Proceeding of the IEEE International
Conference on Cluster Computing and Workshops. Los Alamitos, USA, pp
1–10

 17. Singh G, Singh AK (2021) Optimizing multi-VM migration by allocating
transfer and compression rate using geometric programming. Simul
Model Pract Theory 106:102201

 18. Zhang X, Huo Z, Ma J (2010) Exploiting data deduplication to accelerate live
virtual machine migration. In: Proceedings of the IEEE International Confer-
ence on Cluster Computing and Workshops (CLUSTER). Heraklion, pp 88–96

 19. Gupta D, Lee S, Vrable M (2008) Difference engine harnessing memory
redundancy in virtual machines. In: Proceeding of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation. Berkeley, pp
309–322

 20. Haikun L, Hai J, Xiaofei L (2009) Live migration of virtual machine based
on full system trace and replay. Proceeding of the 18th ACM International
Symposium on High Performance Distributed Computing. ACM, New
York, pp 101–110

 21. Li C, Feng D, Hua Y, Qin L (2019) Efficient live virtual machine migration
for memory write-intensive workloads. Future Gener Comput Syst (FGCS)
95(1):126–139

 22. Deshpande U, Chan D, Chan S (2018) Scatter-gather live migration of
virtual machines. IEEE Transactions on Cloud Computing 6(1):196–208

 23. Song X, Shi J, Liu R (2013) Parallelizing live migration of virtual machines.
In: Proceedings of the ACM SIGPLAN/SIGOPS international conference on
Virtual Execution Environments (VEE). Houston, pp 85–95

 24. Akiyama S, Hirofuchi T, Takano R (2016) Fast live migration for IO-intensive
vms with parallel and adaptive transfer of page cache via SAN. IEICE Trans
Inf Syst 99(12):3024–3034

 25. Choudhary A, Govil MC, Singh G, Awasthi LK, Pilli ES, Kapil D (2017) A criti-
cal survey of live virtual machine migration techniques. J Cloud Comput
6(23). https:// doi. org/ 10. 1186/ s13677- 017- 0092-1

 26. Li H, Zhu G, Zhao Y, Yu D, Tian W (2017) Energy-efficient and QoS-aware
model based resource consolidation in cloud data centers. J Cluster
Computing 20(7):1–11. https:// doi. org/ 10. 1007/ s10586- 017- 0893-5

 27. Singh S, Chana I, Buyya R (2020) STAR: SLA-aware autonomic man-
agement of cloud resources. IEEE Transactions on Cloud Computing
8(4):1040–1053. https:// doi. org/ 10. 1109/ TCC. 2017. 26487 88

 28. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) KVM: The Linux virtual
machine monitor. Proceedings Linux Symposium 15:225–230

 29. Abe Y, Geambasu R, Joshi K (2016) Urgent virtual machine eviction with
enlightened post-copy. In: Proceedings of the ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual Execution Environments (VEE). Atlanta, pp 51–64

 30. Jalaei N, Safi-Esfahani F (2021) virtual CPU scheduling for Post-copy live
migration of virtual machines. Int J Inf Technol 13(5):239–250

 31. Li H, Zhu G, Cui C, Tang H, Dou Y, He C (2016) Energy-efficient migra-
tion and consolidation algorithm of virtual machines in data centers for
cloud computing. J Computing 98(3):303–317. https:// doi. org/ 10. 1007/
s00607- 015- 0467-4

 32. Li H, Zhao Y, Fang S (2020) CSL-driven and energy-efficient resource
scheduling in cloud data center. J Supercomputing 76(1):481–498.
https:// doi. org/ 10. 1007/ s11227- 019- 03036-9

 33. (2018) Amazon EC2 X1e Instances. https:// aws. amazon. com/ cn/ ec2/ insta
ncety pes/ x1e/. Accessed 17 Oct 2018

 34. Riteau P, Morin C, Priol T (2011) Shrinker: improving live migration of vir-
tual clusters over WANs with distributed data deduplication and content-
based addressing. In: Proceedings of the 17th International Conference
on Parallel Processing and Distributed Computing. Bordeaux, pp 431–442

 35. Zaw EP, Ni LT (2012) Improved live VM Migration using LRU and splay tree
algorithm. Int J Comput Sci Telecommun J 3(3):1–7

 36. Zheng J, Ng T, Sripanidkulchai K (2011) Workload-aware live storage migra-
tion for clouds. In: Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. ACM, New York, pp 133–144

 37. Wood T, Shenoy P, Ramakrishnan K, Merwe J (2015) CloudNet:
Dynamic pooling of cloud resources by live WAN migration of virtual
machines. IEEE ACM Trans Netw 23(5):1568–1583

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13677-017-0092-1
https://doi.org/10.1007/s10586-017-0893-5
https://doi.org/10.1109/TCC.2017.2648788
https://doi.org/10.1007/s00607-015-0467-4
https://doi.org/10.1007/s00607-015-0467-4
https://doi.org/10.1007/s11227-019-03036-9
https://aws.amazon.com/cn/ec2/instancetypes/x1e/
https://aws.amazon.com/cn/ec2/instancetypes/x1e/

	Efficient online migration mechanism for memory write-intensive virtual machines
	Abstract
	Introduction
	Background and challenges
	Online migration technology
	Memory write-intensive VM migration
	Challenges to migrating a memory write-intensive VM

	Core idea
	Parallel migration using different net
	Adaptive hybrid migration
	Optimization of switching timing
	Optimization of migration network fault

	System design
	Parallel migration process using different net
	Adaptive hybrid migration process

	The experimental evaluation
	Experimental evaluation index and scheme design
	Memcached
	Kernel compilation
	Lmbench

	Experimental environment setup
	Parallel migration performance
	Adaptive hybrid migration performance
	Network fault tolerance
	Comprehensive performance

	Related works
	Optimizations to reduce data transfer
	Optimization of the migration process

	Conclusion
	Acknowledgements
	References

