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Abstract 

Edge-to-cloud continuum connects and extends the calculation from edge side via network to cloud platforms, 
where diverse workflows go back and forth, getting executed on scheduled calculation resources. To better utilize 
the calculation resources from all sides, workflow offloading problems have been investigating lately. Most works 
focus on optimizing constraints like: latency requirements, resource utilization rate limits, and energy consumption 
bounds. However, the dynamics among the offloading environment have hardly been researched, which easily results 
in uncertain Quality of Service(QoS) on the user side. Any part of the workload change, resource availability change or 
network latency could incur dynamics in an offloading environment. In this work, we propose a robust PAC (probably 
approximately correct) offloading algorithm to address this dynamic issue together with optimization. We train an 
LSTM-based sequence-to-sequence neural network to learn how to offload workflows in edge-to-cloud continuum. 
Comprehensive implementations and corresponding comparison against state-of-the-art methods demonstrate 
the robustness of our proposed algorithm. More specifically, our algorithm achieves better offloading performance 
regarding dynamic heterogeneous offloading environment and faster adaptation to newly changed environments 
than fine-tuned state-of-the-art RL-based offloading methods.

Keywords Workflow offloading, Meta learning, Time-critical, Robustness, Heterogeneous resources, MEC

Introduction
Wide use of edge-to-cloud continuum promotes a novel 
paradigm empowering intelligent and diverse applica-
tions in our daily life: intelligent transportation, intelli-
gent home, and E-Healthcare. However, such a paradigm 
also brings new challenges: the growing computation 
requirements on the user side, increasing data transmis-
sion, continuous interactive computation, and commu-
nication. With this trend, task offloading is a very widely 
used approach to better utilize diverse computation 
resources both on the edge side and cloud side, which 
contribute to an extended calculation pipeline together-
edge-to-cloud continuum. Within the popularity of the 
edge-to-cloud continuum, how to offload workflows 
properly matters in many contexts: energy consumption, 
latency control, and QoS. Moreover, with the evolution of 
the cellular network [1], the overall number of end-users 
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is increasing dramatically [2, 3].With the rocketing 
development on both sides of users and service suppli-
ers, offloading gains importance in a more heterogene-
ous environment where nodes have diverse capacities. 
The execution becomes more complicated with more 
resource options. Optimization on the edge side takes 
many aspects into account at the same time: execution 
capability, execution time, which are often contradicting 
against each other.

To address this NP-hard problem, many works have 
been done [4–6]. Among them, machine learning-based 
approaches especially Reinforcement-Learning(RL)-
based approaches have been investigated a lot:  Liu, et al. 
[6] proposed a robust scheduling framework for inde-
pendent tasks. Liu, et  al. [7] proposed a multi-objective 
optimization framework for time-critical task schedul-
ing. There also have been many works addressing het-
erogeneity in the offloading environment [8, 9]. Chen, 
et  al. [10] propose an end-edge-cloud architecture of 
vehicles for task computation offloading, where consid-
ers three task computing methods. For the dynamically 
changing environment in the IoV, they adopt an Asyn-
chronous Advantage Actor-Critic (A3C) based computa-
tion offloading algorithm to solve the problem and seek 
optimal offloading decisions. As workflows consist of 
tasks and their dependencies, when the tasks come with 
time-critical constraints the workflows also need to take 
these constraints into account. Chen, et al. [11] develop a 
distributed multihop task offloading decision model for 
task execution efficiency, which consists of two parts: 1) a 
candidate vehicle selection mechanism for screening the 
neighboring vehicles that can participate in offloading 
and 2) a task offloading decision algorithm for obtaining 
the task offloading solution. Wei, et al. [12] improve the 
nondominated sorting genetic algorithm II (NSGA-II) by 
modifying the initial population according to the match-
ing factor, dynamic crossover probability and mutation 
probability to promote excellent individuals and increase 
population diversity. Therefore, when we optimize off-
loading policies, we also need to meet the time-critical or 
latency requirements of those workflows [13, 14].

However, after reviewing related papers and work 
done lately, we find that the robustness of the offload-
ing performance has rarely been addressed in a dynamic 
heterogeneous resource edge-to-cloud continuum envi-
ronment. The robustness of offloading performance 
refers to the stability of the offloading performance 
in a dynamic environment, regarding performance 
measurements. The absence of robustness results in 
offloading performance deviation, which brings in 
the uncertainties to latency. Furthermore, the uncer-
tain latency influences the QoS even end up in viola-
tion of Service Legal Agreement(SLA). In our work, we 

propose a Meta-PAC(probably approximately correct)-
Reinforcement-Learning-based robust offloading 
algorithm(MLR-LC-DRLO) to address this issue in a het-
erogeneous environment. The main contributions of this 
paper include: 

1 Workflow offloading in the heterogeneous environ-
ment: we build up a heterogeneous environment to 
investigate workflow offloading.

2 Time-critical workflow offloading: we design a PAC 
Reinforcement-Learning scheme to learn offloading 
policy. The learning process is with maximum explo-
ration limit, which is based on workflow latency. In 
this way it offers offloading latency guarantee and 
makes the learning process more efficient.

3 Robust workflow offloading: we propose a Meta-
Learning-based offloading algorithm, achieving more 
robust offloading performance compared with typical 
RL-based offloading approaches.

In the remainder of this paper, firstly we give the gen-
eral formulation of the offloading in Problem formula-
tion section. Followed by Related work section, where 
we go through the related work. Then we propose the 
detailed framework and algorithm MLR-LC-DRLO in 
Methodology section. Next, we evaluate the robustness 
performance and optimization performance with com-
prehensive implementations in Evaluation section. We 
further discuss the implementation results and make 
future work plans in Discussion section. Finally, Conclu-
sion section summarizes the whole paper.

Problem formulation
We formulate offloading in a typical use case, as shown 
in Fig. 2, the workflow including the requests and corre-
sponding dependencies firstly go to the local scheduler. 
After local scheduler makes the decision whether to cal-
culate the request locally or offload them to MEC host. 
Between MEC host and end users, there is the MEC net-
work connecting the two parts, including the up link and 
down link. Then if the decision is to offload the request 
to the MEC host, the request will be transmitted to the 
MEC host, where the offloading orchastrator will allocate 
them to different VMs through gateways. In this work, 
the resource composition of each VM on MEC host side 
is heterogeneous.

After we present the typical offloading pipeline, we for-
mulate each part of the pipeline step by step. First of all, 
it’s the workflow model. As is known, workflows consist of 
tasks and their dependencies. Here we define the workflow 
model as D = (TA,

−→
ED) , where we use TA to represent 

the tasks set, based on this we use the vector −→ED repre-
sents the dependencies, which are described as directed 
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edge connected between the tasks respectively. We take 
−→
ed = (tai, taj) as an example, where −→ed denotes the 
dependency between task tai and task taj meaning taj is an 
immediate successor task of tai . We also formulate several 
principles of workflow models as follows: 

1 As is shown in Fig. 1, for the two connected tasks, for 
example A and B, the one starts its execution earlier 
(A) is the leading task, the other one (B) is successor 
task.

2 The execution of a successor task only starts later 
than the ending of its leading task’s execution until 
the last one.

3 The tasks have no successor tasks are the exit tasks.

For different use cases and applications, the VMs and 
containers are getting more diverse, that is where the off-
loading heterogeneity comes. Based on the formulation 
of the workload, the heterogeneity of the environment 
comes from the heterogeneous resource composition of 
each VMs. Here we define ξ type of VMs, their computa-
tion capacities are represented as Capl , l ∈ [1, 2, 3, ..., ξ ] . 
For each task tai , it has several information including: the 
resource requirement for running task, Cpi , the sent data 
sizes, Dasi , and the received result data size , Dari  . After 
we formulate the tasks model and the VMs, we turn to 
the MEC model, which consists of: the wireless up-link 
channel transmission rate, UT, and the down-link chan-
nel transmission rate DT. Based on this formulation, the 
latency of task tai sending data, LatUi  , is calculated as:

getting executed on the MEC host, Exsi , is calculated as:

receiving the result data, LatDi  , is calculated as:

(1)LatUi = Dasi/UT

(2)Exsi = Cpi/Capl

(3)LatDi = Dari /DT

When a task tai gets scheduled to be executed locally, the 
latency is just the time spent on local execution on the end-
user side, which is calculated as

where CapLo represents the computational capacity of the 
end-user.

Once a task tai gets offloaded to the MEC host, the total 
latency are the sum of latency from all parts, which includes 
local processing, up-link transmission, and remote pro-
cessing latency and results transmission latency, as shown 
in Fig. 2. Based on the aforementioned model, we further 
formulate the offloading policy into Pol1:n = a1, a2, ..., an , 
where ai represents the corresponding offloading decision 
of each tai.

The finishing time of the process on the up-link channel, 
T U
i  , are defined as:

The finishing time of tai ’s execution on the MEC host, 
FTs

i  , and finishing time of its process on the down-link 
channel, FTD

i  are defined as:

The completion time of task tai on the end user side, 
FTUE

i  , are defined as:

Overall, given a offloading policy model Pol1:n , the total 
latency of a DAG, LatcA1:n

 , is defined as:

(4)LatLoi = Cpi/CapLo

(5)
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T
UE
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{T UE
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j }} + LatUEi

(8)AvUEi = max{AvUEi−1, T
UE
i−1 }.

Fig. 1 Workflow Model
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where K denotes the exit tasks set, which consists of the 
tasks which have no successor tasks. In the next section, 
we will propose the detailed offloading algorithm based 
on the model formulation (Table 1).

Related work
Learning-Based Offloading Han, et  al. [15] proposes a 
deep reinforcement learning-based approach to offload-
ing decision-making in mobile edge computing. Min, 
et al.  [16]proposed a deep RL-based offloading enabling 
the IoT device to optimize the offloading policy without 
knowledge of the MEC model, the energy consump-
tion model, and the computation latency model. Dinh, 
et  al.  [17] proposed a model-free reinforcement learn-
ing offloading mechanism which helps MUs learn their 
long-term offloading strategies to maximize their long-
term utilities. Cheng, et al [18] propose a deep reinforce-
ment learning-based computing offloading approach to 
learn the optimal offloading policy on-the-fly, where we 
adopt the policy gradient method to handle the large 
action space and actor-critic method to accelerate the 
learning process. Some work also adopted LSTM net-
work the to do prediction of the environment state [19]. 
Meta-Learning has also been investigated [20] to offer 
an fast adaptive offloading method-MRLCO. Cao et  al. 
proposed a novel multi-agent DRL based approach [21], 
which adopts act-critic neural networks to calculate 
Q-value based on corresponding reward function. DPM 
framework proposed by [22] applied the long short-term 
memory (LSTM) neural network investigated the pre-
diction and strategies of resource allocation under the 
objective of energy consumption reduction in cloud-edge 
continuum.

Some work also adopted LSTM network the to do pre-
diction of the environment state [19]. Meta-Learning 
has also been investigated [20] to offer an fast adaptive 
offloading method-MRLCO. Cao et al. proposed a novel 

(9)LatcPol1:n = max[max
tk∈K

{T UE
k , T D

k }]

Fig. 2 Overall Offloading Process

Table 1 Notation Summary

Symbols Explanation

E() Mean value calculation or function

tai task i

Dasi Size of data sent by task tai
Dari Size of data received by task tai
UT, DT Transmission rate of up-link

DT Transmission rate of down-link

CapLo Computational capacity of UE

Capl Computational capacity of VM l

Latuli , Lat
s
i , Lat

dl
i , Lat

UE
i

Latency of task tai from up-link channel, from 
MEC host side, from down-link channel, and 
from UE respectively.

T U
i ,T s

i ,T
D
i ,T UE

i
Finishing time of task tai on up-link channel, 
MEC host, down-link channel, and UE

AvUi , Av
s
i , Av

D
i , Av

UE
i

For specific task tai , the available time of up-
link channel, MEC host, down-link channel, 
and UE respectively

Pol1:n Offloading policies for task set including 
tai ...tan

Ti , ρ(T ) A learning task and distribution of learning 
tasks

si , ai , ri the i-th state, i-th action, and i-th reward of 
an MDP

π(a|s; θ) Offloading policy model

v(s; θ) Value function

τπ Trajectories sampled via policy model π.

Fen ,Fde Encoder functions and decoder function

ei , di Encoder output and decoder output at time 
step i

ci Context vector at decoding step i

Ât Advantage function value

Up(θ ,Ti) Learning optimizer function (e.g., Adam)
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multi-agent DRL based approach [21], which adopts act-
critic neural networks to calculate Q-value based on cor-
responding reward function. Shan et  al. integrated DRL 
and Federated Learning to optimize resource allocation 
problems, which offers acceleration of DRL agents train-
ing. Lolos et  al. proposed a novel full-model based RL 
[23] for elastic resource management, employs adaptive 
state space partitioning.

Resource Heterougeneity Guan, et al.  [24] propose a 
novel hybrid offloading model to solve the heterogene-
ous resource-constraint offloading issues in the Cloud-
let, concerning the offloading energy and execution 
efficiency. Li, et al. [25] propose a task offloading strategy 
in the MEC system with a heterogeneous edge by consid-
ering the execution and transmission of tasks under the 
task offloading strategy, we present an architecture for 
the MEC system. Xiong, et al. [26] propose an intelligent 
task offloading framework in heterogeneous vehicular 
networks with three Vehicle-to-Everything (V2X) com-
munication technologies, namely Dedicated Short Range 
Communication (DSRC), cellular-based V2X (C-V2X) 
communication, and millimeter wave (mmWave) com-
munication.However, with the growing attention paid 
to offloading issues, there are still several issues missing 
among them: the absence of the accurate robust solution 
when the dynamics occur in the offloading environment; 
the absence of the recovery robust solution after the per-
formance deviation brought by the dynamics. During 
the past ten to twenty years, cloud-edge continuum has 
been further investigated, many new topics attract atten-
tion. Among those topics offloading, as an essential part 
of cloud-edge continuum, has been studied [27]. There 
has been many offloading solutions have been investi-
gated and proposed from different perspectives: using 
hierarchical method [28], or collaborative optimization 
method [29], energy-efficient method [30]. The optimiza-
tion performance of the conventional approaches often 
come from explicit models based on different resources 
or workflows and corresponding offloading policies mod-
els sometimes even a very specific system. As with the 
increasing popularity, Machine Learning-based optimiza-
tion solutions also have hence attracted certain research 
attention [4, 5] in context of offloading. Among Machine 
Learning-based approaches, Reinforcement Learning-
based approaches [5, 6, 17, 31] optimize offloading 
interactively without asking for data labelling. However, 
the performance of the approaches aforementioned is 
depending on and easily influenced by the dynamics 
from each component of the MEC pipeline: the resource 
availability, the request pattern, the data transmission 
latency. Thus, any changes from those parts could lead to 
performance deviation for those approaches, which asks 
for repeating of the pruning process or training process 

when it comes to learning-based solutions. From the 
robustness perspective, the higher deviation means the 
lower robustness of the offloading performance. There 
are some work addressing this issue from robustness 
perspective: adaptive optimization approach [20], con-
nection stability [32], robust network contention [33]. 
However, compared with throughput or energy con-
sumption, the offloading robustness among heterogene-
ous resources environments has not been well addressed 
lately. In the next section, we will formulate our approach 
step by step.
PAC-RL: Fiechter [34] first proposed the PAC RL frame-

work, and algorithms with sample complexity O((SAH3/2) 
log(1/)) have been developed  [35, 36], which are mini-
max-optimal in time-inhomogeneous MDPs  [37]. These 
algorithms combine a well-chosen halting rule with an 
optimistic sampling rule. Most optimistic sampling strate-
gies have been presented for regret minimization, where 
the policy t is the greedy policy with regard to an upper 
confidence constraint on the optimal Q function. In specifi-
cally, episodic MDPs are reached via the UCBVI method of 
Azar et al. [38] (with Bernstein bonuses). Instance-depend-
ent upper limits on the regret for optimistic algorithms 
have been presented in recent publications  [39–41]. A 
complexity term that is dependent on the MDP instance is 
present in an instance-dependent bound, generally through 
the idea of a sub-optimality gap. In particular, Wagenmaker 
et al. [42] shown that optimistic no-regret sampling proce-
dures cannot attain the instance-optimal rate for PAC iden-
tification. The basic idea is that an ideal PAC RL algorithm 
must visit each state-action combination at least a specific 
number of times, necessitating the use of playing strate-
gies that cover the whole MDP in the fewest possible epi-
sodes. A regret-minimizer, on the other hand, concentrates 
on using high-reward strategies that, depending on the 
MDP instance, may be arbitrarily ineffective in traveling to 
remote states.

Methodology
In this section we elaborate the approach we propose: 
MLR-LC-DRLO in details. We firstly start with the formu-
lation of latency-critical PAC-RL:

Latency‑critical Probably Approximate Correct (PAC) 
reinforcement learning
With the conventional Reinforcement Learning set up, 
there is rare upper bound of offloading accuracy during the 
exploration process, which leads the optimization to unde-
sired directions, wasting training time. So here we firstly 
formulate this upper bound of offloading to limit the train-
ing time and accuracy more preciscely. When there exit 
dynamics in the training environment, every time during 
the transition after the dynamic disturbances, the learning 
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process needs to optimize the offloading policies from the 
scratch again. During this process, specific upper bound 
on the exploration of training will save training time and 
offer better accuracy. And also guidance during the transi-
tion process could also save retraining time. To this end, we 
propose a probably approximate correct RL-based offload-
ing algorithm, which offers upper bound on the exploration 
process:

where, nS denotes number of states, nS represents the 
number of actions, ε is the accuracy parameter, and γ is 
the discount factor. The proof follows. In our latency-
critical PAC reinforcement-learning formulation, we take 
M as a finite Markov Decision Process(MDP), denoted 
as a tuple (S ,A, T ,R,Ŵ) . Within M , we take: S as the 
states set, A as the actions sets corresponding to each 
state, T  as the transition distribution and represented as: 
S ×A −→ �S , R is the reward distribution, and r ∈ [0, 1) 
is a reward discount factor. T (s

′
|s, a) indicates the prob-

ability of the transition from states s to state s′ out of the 
distribution T (s, a) . Each time-step here is defined as a 
single time interaction between the learner and the envi-
ronment. Each time interaction between learning agent 
and the environment is described as a state-action pair 
(s, a) including the information of that the learner takes 
the specific action a from the state s. We use R(s,  a) to 
denote the expected reward out of reward distribution 
R(s, a) . During the Learning process, the learner accu-
mulates the rewards r ∼ R(s, a) when takes each action 
a at state s then transits to next state s′ with the possi-
bility: s′ ∼ T (s, a) . By repeating this process, the objec-
tive of the learner tries to achieve the objective, which is 
accumulating possible most reward within possible least 
times of attempts. A policy set consists of any strategy 
followed by the learner choosing actions. A stationary 
policy refers to the policy that produces an action based 
on only the current state, without considering the previ-
ous interaction experiences. For policy π , the discounted, 
infinite-horizon value function from state s is formulated 
as follows:

where, H represents the number of the steps, which is 
a positive integer, V π

M
(s,H) indicates the accumulated 

value out of H-step under policy π , starting from state 
s. Specifically, let st and ∇t be the tth encountered state 

(10)Õ(n2S × nA/(ε
3(1− γ )6))

(11)V π
M(s) = E[

∞
∑

j=1

r
j−1rj|s]

(12)Qπ
M(s) = E[

∞
∑

j=1

r
j−1rj|s]

and received reward, respectively, resulting from execu-
tion of policy π in MDP M . Here we define policy model 
π as non-stationary considering the dependencies among 
tasks. Here we define c = (s1, a1, r1, s2, a2, r2, ...) as a 
learning path of A . In this manner, at time t the state st is 
described as a serial state-action experiences denoted as: 
ct = (s1, a1, r1, ..., st) . Then we derive the expected value 
functions as follows:

where the expected values take all previous possible 
policy paths the learner follows. The optimal policy 
is denoted as π∗ and has value functions V ∗

M
(s) and 

Q∗
M

(s, a).
Based on the primary definitions, we further define sev-

eral properties used in PAC-MDP set up:
Definition of Sample Complexity of 

Exploration(Kakade 2003) Given an MDP M , an learn-
ing algorithm A within M , for any fixed ε > 0 , the sam-
ple complexity of exploration of A is the number of 
timesteps t such that the policy at time t, At , satisfies:

Definition of Efficient PAC-MDP Given an MDP 
M (here we refer the MDP we formulate as aforemen-
tioned), an learning algorithm A within M , A is an 
efficient PAC-MDP (Probably Approximately Correct 
in Markov Decision Processes) algorithm when, given 
ε > 0 and 0 < σ < 0 , A satisfies: the per-timestep com-
putational complexity, space complexity, and the sam-
ple complexity of A are less than some polynomial of 
(S,A, 1/ε, 1/σ , 1/(1− γ )) , with probability greater than 
1− σ . A is PAC-MDP when the definition is relaxed to 
be without computational complexity requirement.

Definition of Admissible Heuristics Given an MDP 
M , an learning algorithm A within M , we define a 
function:

it is admissible heuristic when it satisfies:

for all s ∈ S and a ∈ A.
We also assume that U(s, a) ≤ Vmax for all 

(s, a) ∈ S ×A and some quantity Vmax . We set:

(13)V π
M(ct) = E[

∞

j=0

r
jrt+j|ct]

(14)V π
M(ct ,H) = E[

H−1
∑

j=0

r
jrt+j|ct]

(15)VAt (St) < V ∗(St)− ε

(16)U : S ×A −→ R

(17)U(s, a) ≥ Q∗(s, a)
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since we have: V ∗(s) = maxa∈AQ
∗(s, a) , which is at 

most 1/(1− Ŵ) . Therefore, without loss of generality, we 
assume

for all (s, a) ∈ S ×A.
We assume that after each time disturbance of the 

dynamics, before the new convergence of the training, 
the offloading policy is an admissible heuristic. Consider-
ing that the learner has acted with respect to some expe-
rienced state-action pair (s,  a). We define n(s,  a) as the 
n-step experiences, where the learner takes action a from 
state s. Throughout the experiences, the received rewards 
at state s by taking action a: r[1], r[2], ..., r[n(s, a)] . Then, 
the empirical mean reward is:

After taking an action, the learner changes the environ-
ment accordingly through this interaction. We describe 
this process as: the learner has taken action a from state 
s and immediately transitioned to the state s′ through 
n(s, a, s

′
) times action-taking. Throughout this process, 

the empirical transition distribution T̂ (s, a) satisfies:

The objective of the learner through the learning pro-
cess is to maximize the current action value, Q(s, ·) by 
choosing the specific actions, offloading strategies here, 
and applying them to the environment. The update step 
is to solve the following set of Bellman equations:

where R̂(s, a) denotes the maximum-likelihood esti-
mates for the reward, T̂ (·|s, a) indicates transition 
distribution of state-action pair (s,a). That is, the compu-
tation of R̂(s, a) and T̂ (s

′
|s, a) in Eq. 22, uses only the first 

n(s, a) = m samples. R̂(s, a) and T̂ (·|s, a) here are the first 
m times observations of (s,  a). So during the transition 
process, instead of modeling each state-action pair, we 
assert their value to be U(s, a). U(s, a) here is guaranteed 
to be an upper bound on the true value function as we 
formulated aforementioned. To simplify the notation, we 

(18)U(s, a) = Vmax = 1/(1− Ŵ)

(19)0 ≤ U(s, a) ≤ Vmax ≤ 1/(1− Ŵ)

(20)R̂(s, a) :=
1

n(s, a)

n(s,a)
∑

i=1

r[i]

(21)T̂ (s
′

|s, a) :=
n(s, a, s

′
)

n(s, a)
, for each s

′

∈ S

(22)



















Q(s, , a) = R̂(s, a)+ Ŵ�s
′ T̂ (s

′
|s, a)max

a
′
Q(s

′
, a

′
),

if n(s, a) ≥ mn(s,a),
Q(s, , a) = U(s, a),
otherwise,

redefine n(s, a) to be minimum of m and number of times 
state-action pair (s, a) has been experienced.

Proof

Let Qi(s, a) denote the action-value estimates after the ith 
iteration of value iteration. We also have:

Then we have:

�

By deriving from the fact: ξ0 ≤ 1/(1− γ ) we get that: 
ξi ≤ γ i/(1− γ ) . Setting this value to be at most β and 
solving for i yields i ≥ ln(β(1−γ ))

lnγ
 . We claim that:

Note that (25) is equivalent to the statement 
1− γ ≤ −lnγ , which follows from the identity 
ex ≥ 1+ x . Given the previous setup and assumption, 
as efficient PAC-RL, to achieve an α−optional policy it 
is sufficient to run it for iterations number:

The real-valued parameter, ε1 , that specifies the 
desired closeness to optimality of the policies produced 
by value iteration. Based on this, we drive m and ε1 
with the characterization of other parameters includ-
ing: ε, σ , S,A, γ in context of the theoretical guarantees 
about the learning efficiency.

Firstly we give explicitly definition of m and ε1 during 
the learning process and some internal parameters: 

1 ε1 ∈ (0, 1) is a constant added to value estimate as a 
bonus value of exploration.

2 m is the number of experiences of a state-action pair 
before performing an update.

3 l(s, a) denotes the number of samples collected for 
(s, a).

(23)ξi := max(s,a)|Q
∗(s, a)− Qi(s, a)|

(24)

ξi = max(s,a)|(R(s, a)+ γ
∑

s
′

T (s, a, s
′

)V ∗(s
′

))

− (R(s, a)+ γ
∑

s
′

T (s, a, s
′

)Vi−1(s
′

))|

= max(s,a)|γ
∑

s
′

T (s, a, s
′

)(V ∗(s
′

)− Vi−1(s
′

))|

≤ γ ξi−1

(25)
ln 1

β(1−γ )

1− γ
≥

ln(β(1− γ ))

lnγ

(26)O
( ln(1/(α(1− Ŵ)))

1− Ŵ

)
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4 AU(s,  a) represents the the running sum of target 
values used to update Q(s, a) once the learning agent 
collects enough samples.

5 b(s, a) denotes the first timestep for which the first 
experience of (s, a) gets collected for the latest ongo-
ing update attempt.

6 FLG(s, a) ∈ {0, 1} indicated the binary value of sam-
pling action: 1, to collect sample for (s, a); 0, not to 
collect sample for (s, a).

Update Rules Formulation At time t, after collecting 
latest m steps of experiences pairs, including next states 
(sk1 , sk2 , ..., skm) in order of k1 < k2 < ... < km , where 
km = t . The received ith reward is denoted as ri . Thus, 
we could describe the update rule of learning agent tak-
ing action a from state s at time ki as follows:

the condition of a an update is performed is the following 
equation holds:

Then to simplify the calculation, the learning agent 
only calculates the updates when the FLG(s,  a) is 1 
(true), decreasing the update attempts to finite times. 
The conditions of turning FLG(s,  a) to be true are: 
firstly, initialization set up. Secondly, when any state-
action pair is updated. Conditions of turning FLG(s, a) 
from true to false is when no updates are made during 
a length of time for which (s, a) is experienced m times 
and the next attempted update of (s, a) fails. In this way 

(27)Qt+1(s, a) =
1

m

m
∑

i=1

(rki + εVki(rsi))+ ε1

(28)Qt(s, a)− (
1

m

m
∑

i=1

(rki + εVki(rsi))) ≥ 2ε1

no more attempted updates of (s,  a) are allowed until 
another action-value estimate is updated.

As shown in Fig.  3, we describe the overall learning 
process step by step. In general, the learning agent sam-
ples m steps in different environments for exploration 
then turn to the exploitation process. After finishing the 
learning process within each environment, the learn-
ing agent turns to another environment, repeating the 
same learning period. Once the dynamics appear, the 
learning agent also sample just first m samples in the 
new environment, doing the exploration and exploita-
tion with the upper bound Õ(n2S × nA/(ε

3(1− γ )6)) . In 
this way, the learning agent is able to keep the learning 
process always with the upper bound. Especially during 
the process right after the dynamics, the fixed sampling 
complexity and exploration upper bound helps against 
the influences from the newly changed environment.

Formulation of latency‑critical PAC‑RL
In this section, we continue the formulation of the 
learning process one step further to the formulation 
of the Reinforcement Learning and the Meta Learning. 
Based on the MDP M aforementioned, we formulate 
the RL part as follows: 

1 State: The needed state information of a task, tai , 
during the offloading process includes the encoded 
DAG dependencies and the corresponding offloading 
plans. The detailed state definition is as follows: 

(29)
S := {si|si = (D = (

−→
TA,

−→
ED),Pol1:i)}, i ∈ [1, |

−→
TA|],

Fig. 3 Overall Learning Process
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 where D = (
−→
TA,

−→
ED) is a sequence of task embed-

ding and Pol1:i is the offloading policy of the tasks 
scheduled before tai . Based on the above definition 
and formulation, we definite the offloading policy of 
tai : Pol(ai|D = (

−→
TA,

−→
ED),A1:i−1) as follows: 

2 Action: The offloading choice of each task is a con-
stant value, which indicates: execution locally, exe-
cution on different VMs with different resources. 
By adding up the actions of all the tasks we get the 
action space A.

3 Reward: Throughout the learning process of offload-
ing, minimizing latency LatAc

1:n
 , defined in Eq.  9 is 

the primary objective. To achieve this, we formulate 
the reward function into an estimated negative incre-
ment of the latency calculated every execution of an 
offloading decision taken for a task. The detailed defi-
nition is as follows: 

(30)
Pol(A1:n|D = (

−→
TA,

−→
ED))

=

n
∑

i=1

Pol(ai|D = (
−→
TA,

−→
ED),A1:i−1)

(31)�Latci = LatAc
1:i
− LatAc

1:i−1

More detailed offloading policy model learning para-
digm with aforementioned three parts is shown in 
Fig.  4. In our proposed training paradigm, we build up 
both encoder and decoder based on recurrent neural 
networks(RNN) [43] to learn the dependencies among 
tasks. First we apply the tasks embedding, which is the 
input of the encoder. We define Fen as the encoding func-
tion, the each step output of the encoder, ei , is corre-
spondingly formulated as:

To make sure decoder learn from different part of the 
source sequence without information loss, we apply the 
attention mechanism [44]. The output of the encoder 
is the input of the decoder, where we define the decod-
ing function as Fde . After decoder we get the offloading 
policies for the workflows,dj . The decoding process is as 
follows:

where cj is the context vector at decoding step j and is 
computed as a weighted sum of the encoder as follows:.

(32)ei = Fen(tai, ei−1)

(33)dj = Fde(dj−1, aj−1, cj)

(34)cj =

n
∑

i=0

αjiei

Fig. 4 Paradigm of MLR-LC-DRLO
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The weight αji of each output of encoder, ei is computed 
by

where f (dj−1, ei) , is used to calculate the percent-
age that how much possibility the input at position i 
matches the output at position j. Regrading the struc-
ture of NN(Neural Network), we adopt the sequence-to-
sequence neural network [45], which is good at learning 
context information. The policy learned by NN is formu-
lated as Pol(aj|sj) . The value function is formulated as 
vPol(sj) . The action aj is determined based on the follow-
ing calculation:

Formulation of MLR‑LC‑DRLO
Based on the aforementioned PAC-RL formulation, we 
then optimize robustness concern by integrating Meta-
Learning optimization part [46]. As to Meta-Learning opti-
mization part, we have two loops of training: inner loop and 
outer loop, which we will elaborate in the following part. 
Overall we define the objective function based on Proximal 
Policy Optimization (PPO) [47]:

where, πθoi
 is the sample policy, θoi  is the vector of param-

eters of the sample policy network, πθi is the target policy, 
where θi equals to θoi  at the initial epoch. Prt is the prob-
ability ratio between the sample policy and target policy, 
which is defined as

We also define a function slice1+ǫ
1−ǫ (Prt) to remove the 

incentive for moving Prt outside the interval [1− ǫ, 1+ ǫ] 
giving specific limit to the value of Prt.

We formulate our advantage fucntino based on general 
advantage estimator (GAE) [48]. The detailed formulation 
which is as follows:

(35)αji =
exp(f (dj−1, ei))

∑n
k=1 exp(f (dj−1, ei))

,

(36)aj = argmaxaj vPol(aj|sj)

(37)J
C

tai
(𝜃

i
) = �

𝜏∈Ptai
(𝜏 ,𝜃o

i
)

[

n
∑

t=1

min
(

Pr
t
, Â

t
, slice

1+𝜖

1−𝜖
(Pr

t
)Â

t

)

]

(38)Prt =
πθi(at |D(TA,ED),A1:t)

πθoi
(at |D(TA,ED),A1:t)

(39)

Ât =

n−t+1
∑

k=0

(

γ �)k(rl+k + γ νπ (st+k+1)− νπ (st+k)

)

,

where Ât denotes the advantage function value at time 
step t, � ∈ [0, 1] is used to control the trade-off between 
bias and variance.

Overall, we define the objective function for each inner 
layer task learning as:

where c1 is the coefficient of value function loss. The 
outer layer objective is expressed as:

where θ ′

i = Upτ∼PTi (τ ,θi)
(θi, Ti), θi = θ . We adopt the fist-

order to approximate the second-order derivatives to 
save some calculation, which is defined as follows:

where we get n samples learning tasks in the outer loop, 
α is the learning rate of inner loop training, and m is the 
conducted gradient steps for the inner loop training.

Algorithm 1 Main Algorithm

(40)J PPOTi
(θi) = JCtai(θi)− c1J

VE
Ti

(θi),

(41)JMLD(θ) = E
Ti∼ρ(T ),τ∼PTi (τ ,θ

′

i )
[J PPOTi

(θ
′

i )],

(42)GradMLD :=
1

n

n
∑

i=1

[

(θ
′

i − θ)/α/m
]

,
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Algorithm 2 PAC‑RL AlgorithmAlgorithm
This section describes the detailed process of the MLR-
LC-DRLO algorithm, integrating and going through 
each part of the methodology formulated previously. As 
is shown in Algorithm 1, the input includes distribution 
over tasks, learning rates of the outer and inner loop. The 
meta policy neural network parameters are denoted as θ . 
We firstly sample a batch of learning tasks T  with batch 
size n and conduct inner loop training for each sampled 
learning task. The inner loop training is conducted based 
on the PAC-Reinforcement-Learning we formulated 
aforementioned. The first step is the initialization of the 
algorithm: setting the initial parameters of the policy 
model and resetting the data set D . Then is the sampling 
step: based on the number of environments, N data tra-
jectories are sampled from the distribution � according 
to the current policy model and added to the data set D . 
The following inner layer learning loop from are PAC-
RL-based learning processes; sampling data sets τH inside 
D to calculate updated θ ′H based on each loss function 
with PAC-RL. When the PAC-RL converges or reaches 
the upper bound of the exploration, unlike conventional 
RL or other learning methods, the overall policy model is 
not updated by inner layer learning agent. After achiev-
ing updated θ ′H , RL agent uses θ ′H model to sample new 
data samples τ ′H from D . After this, the algorithm turns 
to the outer learning layer, and the meta learner uses 
θ ′H to calculate loss function based on τ ′H to achieve an 
update of the overall policy model. In the next section we 
will evaluate MLR-LC-DRLO’s performance.

Evaluation
Evaluation Measurements
We define the measurements as follows:

Offloading Latency-Critical Measurements We define 
several measurements to indicate and compare differ-
ent experimental results and investigate different metrics 

specifically. One group is related to latency missing rate 
and offloading performance:

QoS-Latency-Critical Rate (QLCR) [6]: total percentage 
of executed tasks that meet latency required by QoS.

Expected-Latency-Critical Rate (ELCR) [6]: total percent-
age of executed tasks that meet expected latency. ELCR 
indicates the level of latency-critical for each method.

Necessary Training Iterations(NTI): the training itera-
tions needed for convergence of policy model in an 
environment.

Offloading Robustness Measurements Robust-
ness measurements includes: Dynamic Pressure 
Index(DPI), Offloading Performance Deviation(OPD) 
and Adaptation Steps and Data Usage for Performance 
Recovery(ASDUPR). They are formulated as follows: 
Dynamic Pressure Index(DPI): the indicator of the dynamic 
level of the current environment, including portion of 
workload change, latency change. It is defined as follows:

where WORbefore,WORafter denotes the instant workload 
before and after the dynamics respectively. DPI shows the 
pressure level the system currently is having brougt by 
the dynamics. For OPD:

where, PERafter denotes the instant average offloading 
latency after the influence of dynamic, PERbefore indicates 
the previous converged average offloading latency value. 
Besides the instant performance deviation, ASDUPR is 
proposed to describe adaptation, includes time and data 
iteration needed for adaptation after performance devia-
tion incurred by dynamics:

where ITER demonstrates the iteration time, to describes 
time spent for each iteration.

Based on the metrics defined previously, we imple-
ment comprehensive evaluation to validate robustness 
of MLR-LC-DRLO. Throughout the implementations 
do we aim to evaluate our proposed MLR-LC-DRLO in 
next section.

Set up
The configuration of the implementation consists of 
two parts: the configuration of the platform, shown 
in Table  2, and the configuration of simulation model, 
shown in Table 3.

(43)DPI =
|WORafter −WORbefore|

WORbefore
× 100%

(44)OPD =
−(PERafter − PERbefore)

PERbefore
× 100%

(45)ASDUPR = OPD ∗ ITER ∗ to
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Simulation Environment: We consider a cellular 
network, where the data transmission rate varies with 
the UE position. The CPU clock speed of UE, fUE is set 
to 1GHz. There are four cores in each VM of the MEC 
host with a CPU clock speed of 2.5 GHz per core. The 
CPU clock speed of a VM, fVM is 4 × 2.5 = 10 GHz. We 
implement a synthetic DAG generator according to [20] 
based on four parameters: n, fat, density, and ccr, where 
n represents the task number, fat controls the width 
and height of the DAG, density decides the number of 
edges between two levels of the DAG, and ccr denotes 
the ratio between the communication and computation 
cost of tasks (Table 4 and 5).

Results
As is shown in Table 6, we change same share of workload 
to show and compare the latency-critical offloading perfor-
mance of our MLR-LC-DRLO algorithm against fine-tuned 
DQN, Double-DQN and CEM approaches on the same 
DAG data. More specifically, we add dynamic to schedul-
ing by increasing workload for each method while keeping 
the the same resource availability setup. Then we assess the 
average latency rates of scheduled tasks to compare the 
performance robustness of the proposed MLR-LC-DRLO 
offloading against other methods. As is shown, we put the 
items in bold, which perform best in each row. Overall, 
compared with the fine-tuned DQN, Double-DQN and 
CEM methods, our algorithm MLR-LC-DRLO offers more 
stable latency-critical offloading performance every time 
after dynamic influence in the environment. More specifi-
cally, MLR-LC-DRLO outperforms the fine-tuned DQN, 
Double-DQN and CEM approaches in the latency rates 
and necessary training iteration. From the perspective of 

latency rate, averagely more than 95.33%± 0.34% tasks 
offloaded by MLR-LC-DRLO finish their execution with 
the shorter latency than the expected latency 720ms [20]. 
While tasks offloaded by other RL-based methods finish 
their execution averagely with a range of 8.5− 20% viola-
tion rate of latency requirement. Moreover, when given 
heavier workflows (topology 2, n=30, UT=DT=5.5Mbps), 
shown in Table 6, our method MLR-LC-DRLO still offers 
workflows more stable latency-critical offloading perfor-
mance, which is more percentage of tasks finish execution 
with the lower latency than the expected one under dynam-
ics from the environments. After all MLR-LC-DRLO out-
performs the fine-tuned DQN, Double-DQN and CEM in 
performance stability.

As shown in Figs. 5 and 6, we show the change of OPD 
and ASDUPR under different dynamics to show the 
robustness of MLR-LC-DRLO from the perspective of 
offloading performance stability and the expense taken 
for the recovery from the performance deviation. Firstly, 
from the perspective of offloading performance stability, as 
shown in Fig. 5: we increase the workload with same per-
centage for all the offloading approaches. The performance 
deviation of our proposed MLR-LC-DRLO always remains 
stable within 55% throughout different workload environ-
ments, in some environment the deviation is even under 
25%. In contrast, fine-tuned DQN, Double-DQN and CEM 
approaches’ performance deviation range is rather broader 
between 50% and even beyond 300% with the same por-
tion of increased workload. Therefore, the offloading per-
formance stability of our MLR-LC-DRLO outperforms 
the conventional RL-based offloading approaches. Then 
from the perspective of performance deviation recovery, 
as shown in Fig. 6 where we compare the adaptation speed 

Table 2 Platform settings: The cluster, where we implement the experiments, consists of 18 nodes, each node’s configuration is 
shown in the table. The software environment includes: Anaconda, python-numpy, python-scipy, python-dev, python-pip, python-
nose, g++ libopenblas-dev, git, Thensorflow, and python-matplotlib

Components GTX 1080 Ti Intel(R) Xeon(R) Gold 
5118

CPU Memory Local HDD Local SSD

Configuration

4 x 2 x @ 2.30GHz (12 cores 
per cpu)

128 GB 2 x 10 TB 2 x 4 TB

Table 3 Simulation set up: We generate synthetic DAG according to [49], whose model is characterised by: n, fat, density, and ccr, 
where n represents the task number, fat controls the width and height of the DAG, density decides the number of edges between two 
levels of the DAG, and ccr denotes the ratio between the communication and computation cost of tasks

Items fUE Per VM DAG‑task number DAG‑width and 
height

DAG‑density DAG‑task cost

Configuration

1 GHz 4 x 2.5GHz n fat density ccr



Page 13 of 17Liu et al. Journal of Cloud Computing           (2023) 12:58  

or performance recovery speed discounted by the perfor-
mance deviation portion, which balances the adaptation 
speed and robustness performance. As shown, we cloud 
see that the adaptation speed of MLR-LC-DRLO is more 
than five times faster than fine-tuned DQN, Double-DQN 
and CEM averagely after every time increase of workload, 
at some point, even more, proving its robustness to dynam-
ics of the environment.

Discussion
As shown in the result section, compared with conven-
tional RL-based approaches, our proposed offloading 
approach MLR-LC-DRLO shows advantages in terms 
of the offloading performance robustness and recovery 
speed after influence from dynamics among heteroge-
neous environments. More specifically, the offloading 
performance deviation and adaptation speed of our pro-
posed approach MLR-LC-DRLO show a stable pattern of 
change during increased workload. When the dynamic 
change of the DPI is within 30%-50%, both offloading 
performance deviation and adaptation speed increase 
with DPI; When the dynamic change of the DPI is in a 
range of 30%-50%, both offloading performance devia-
tion and adaptation speed decrease with DPI; When 
the dynamic change of the DPI is beyond 50%, both off-
loading performance deviation and adaptation speed 

increase again. Overall, when the DPI is within 50%, 
MLR-LC-DRLO could stay robustness with lower than 
30% performance deviation. When DPI goes beyond 
50%, the performance deviation of MLR-LC-DRLO still 
stay within 50%. The robustness starts to decrease when 
DPI beyond 50% but still with lower than 50% perfor-
mance deviation, much lower than fine-tuned RL meth-
ods (more than 300%). One of our future work directions 
is to expand the robustness range against the dynam-
ics, that is keeping lower performance deviation against 
wider range of DPI change. Another direction of future 
work is to reduce the instant offloading performance 
deviation right after the DPI changes. Furthermore, by 
investigating exploration strategies of the RL framework, 
we could better control the training time and accu-
racy. We are currently investigating the exploration and 
exploitation accuracy of RL-based approaches.

Regarding the superiority achieved by our proposed 
methods, there are two main aspects of the insight, the 
first one is the merit that Meta-learning can leverage 
prior knowledge from previous tasks to improve learn-
ing on new tasks. In this way, the prior offloading knowl-
edge can be accumulated and transferred to the following 
phase. By analyzing patterns and relationships across 
multiple environments, a meta-learning model can iden-
tify commonalities and transfer knowledge from one 
environment to another. This transfer learning can help 
a model learn new offload patterns more efficiently and 
effectively. Also, meta-learning can help avoid overfitting 
to specific training data by learning a more generalizable 
learning strategy. By training on multiple tasks, the meta-
learning model can learn to generalize across tasks and 
avoid overfitting to specific examples. This can lead to 
a more adaptive model that can perform well on a wide 
range of tasks and data.

The other aspect is Probably Approximate Correct 
(PAC), which is a framework in machine learning that 
aims to balance the accuracy of a model with the amount 
of data needed to achieve that accuracy. The PAC frame-
work provides a way to measure the sample complexity 

Table 4 Fine-tuned baseline approaches: we train DQN, Double-DQN, CEM based approaches as baselines of our proposed MLR-LC-
DRLO

Fine‑tuned RL Approaches

Parameters NN Layers Replay Buffer 
Size

Optimizer ρ Learning Rate Activation Function

Baseline Approaches

DQN 4 − Adam 0.95 1e-3 ReLU, Softmax

Double-DQN 3 500 Adam 0.95 1e-3 ReLU, Softmax

CEM 3 − Adam 0.95 1e-3 ReLU, Softmax

Table 5 MLR-LC-DRLO Hyperparameter set up

Hyperparameter Set up Hyperparameter Set up

Encoder NN LSTM, 2 Layers, 
norm: on

Outer Learning 
Rate

5× 10−4

NN Neuron 
Amount

256 Activation Func-
tion

tanh

Decoder NN LSTM, 2 layers, 
norm: on

Loss Coefficient 0.5

Inner Learning Rate 5× 10−4 Slice Constant 0.2

Optimizer Adam Discount Factor 0.99

Gradient step m 3 Adv Discount 
Factor

0.95
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of a learning algorithm, which is the number of training 
examples needed to achieve a certain level of accuracy. 
One advantage of the PAC framework is that it can lead 
to faster convergence of learning algorithms. The PAC 
framework is designed to ensure that a learning algo-
rithm will be able to generalize well from the training 
data to new, unseen data. To achieve this, the PAC frame-
work requires that the algorithm be able to achieve a cer-
tain level of accuracy with high probability, meaning that 
the algorithm should be able to correctly classify most of 

the test examples with high confidence. This requirement 
ensures that the algorithm will perform well on new data, 
even if it has not seen those examples during training.

In addition, the PAC framework provides a way to 
measure the sample complexity of a learning algorithm. 
This measure is based on the required level of accuracy 
and the confidence level, and provides a way to estimate 
the number of training examples needed to achieve the 
desired level of accuracy. This allows researchers to 
compare different learning algorithms and choose the 

Fig. 5 Performance deviation of MLR-LC-DRLO and other 3 fine-tuned other fine-tuned RL-based approaches: with the same amount of DPI, 
MLR-LC-DRLO experiences lower performance deviation

Fig. 6 Adaptation time spent on retraining after workload changes between MLR-LC-DRLO and other fine-tuned RL-based approaches: with the 
same amount of DPI, MLR-LC-DRLO spend less time to recover offloading performance
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one with the lowest sample complexity, which can lead 
to faster convergence and more efficient learning.

As of the limitation of our work, one is the real-time adap-
tation efficiency. Currently, the algorithm is trained offline 
then adapt to a new environment. We plan to integrate an 
online-offline switch scheme in the future to improve the 
real-time adaptation efficiency. Also, more implementations 
of real world data is also part of our future steps.

Conclusion
In this work, MLR-LC-DRLO, a robust task schedul-
ing framework, is presented to offer latency-guaran-
teed scheduling for time-critical tasks and improve 
the schedule’s robustness in the meantime. We pro-
pose a meta-gradient robust reinforcement learn-
ing framework to quickly adapt a scheduling policy 
model to a newly changed environment while using 
a PAC-based latency-critical RL scheme to maintain 
the latency guarantee. Experimental results show that 
our approach can provide the latency guarantee, out-
performing fine-tuned RL methods. Furthermore, our 
MLR-LC-DRLO approach finishes adaptation in new 
environments using fewer training iterations, 2 × to 5 × 
faster than the fine-tuned RL approach, achieving bet-
ter robustness while offering latency guarantees.
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