
Liu et al. Journal of Cloud Computing (2023) 12:58
https://doi.org/10.1186/s13677-023-00434-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Robust-PAC time-critical workflow
offloading in edge-to-cloud continuum
among heterogeneous resources
Hongyun Liu1,2*, Ruyue Xin1, Peng Chen3*, Hui Gao4, Paola Grosso1 and Zhiming Zhao1*

Abstract

Edge-to-cloud continuum connects and extends the calculation from edge side via network to cloud platforms,
where diverse workflows go back and forth, getting executed on scheduled calculation resources. To better utilize
the calculation resources from all sides, workflow offloading problems have been investigating lately. Most works
focus on optimizing constraints like: latency requirements, resource utilization rate limits, and energy consumption
bounds. However, the dynamics among the offloading environment have hardly been researched, which easily results
in uncertain Quality of Service(QoS) on the user side. Any part of the workload change, resource availability change or
network latency could incur dynamics in an offloading environment. In this work, we propose a robust PAC (probably
approximately correct) offloading algorithm to address this dynamic issue together with optimization. We train an
LSTM-based sequence-to-sequence neural network to learn how to offload workflows in edge-to-cloud continuum.
Comprehensive implementations and corresponding comparison against state-of-the-art methods demonstrate
the robustness of our proposed algorithm. More specifically, our algorithm achieves better offloading performance
regarding dynamic heterogeneous offloading environment and faster adaptation to newly changed environments
than fine-tuned state-of-the-art RL-based offloading methods.

Keywords Workflow offloading, Meta learning, Time-critical, Robustness, Heterogeneous resources, MEC

Introduction
Wide use of edge-to-cloud continuum promotes a novel
paradigm empowering intelligent and diverse applica-
tions in our daily life: intelligent transportation, intelli-
gent home, and E-Healthcare. However, such a paradigm
also brings new challenges: the growing computation
requirements on the user side, increasing data transmis-
sion, continuous interactive computation, and commu-
nication. With this trend, task offloading is a very widely
used approach to better utilize diverse computation
resources both on the edge side and cloud side, which
contribute to an extended calculation pipeline together-
edge-to-cloud continuum. Within the popularity of the
edge-to-cloud continuum, how to offload workflows
properly matters in many contexts: energy consumption,
latency control, and QoS. Moreover, with the evolution of
the cellular network [1], the overall number of end-users

*Correspondence:
Hongyun Liu
h.liu@uva.nl
Peng Chen
chenpeng@mail.xhu.edu.cn
Zhiming Zhao
z.zhao@uva.nl
1 Multiscale Networked Systems (MNS), University of Amsterdam,
Amsterdam, The Netherlands
2 Graduate School Informatics, University of Amsterdam, Amsterdam, The
Netherlands
3 School of Computer and Software Engineering, Xihua University,
Chengdu, China
4 College of Electrical and Control Engineering, Shaanxi University
of Science and Technology, Xi’an, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00434-6&domain=pdf

Page 2 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

is increasing dramatically [2, 3].With the rocketing
development on both sides of users and service suppli-
ers, offloading gains importance in a more heterogene-
ous environment where nodes have diverse capacities.
The execution becomes more complicated with more
resource options. Optimization on the edge side takes
many aspects into account at the same time: execution
capability, execution time, which are often contradicting
against each other.

To address this NP-hard problem, many works have
been done [4–6]. Among them, machine learning-based
approaches especially Reinforcement-Learning(RL)-
based approaches have been investigated a lot: Liu, et al.
[6] proposed a robust scheduling framework for inde-
pendent tasks. Liu, et al. [7] proposed a multi-objective
optimization framework for time-critical task schedul-
ing. There also have been many works addressing het-
erogeneity in the offloading environment [8, 9]. Chen,
et al. [10] propose an end-edge-cloud architecture of
vehicles for task computation offloading, where consid-
ers three task computing methods. For the dynamically
changing environment in the IoV, they adopt an Asyn-
chronous Advantage Actor-Critic (A3C) based computa-
tion offloading algorithm to solve the problem and seek
optimal offloading decisions. As workflows consist of
tasks and their dependencies, when the tasks come with
time-critical constraints the workflows also need to take
these constraints into account. Chen, et al. [11] develop a
distributed multihop task offloading decision model for
task execution efficiency, which consists of two parts: 1) a
candidate vehicle selection mechanism for screening the
neighboring vehicles that can participate in offloading
and 2) a task offloading decision algorithm for obtaining
the task offloading solution. Wei, et al. [12] improve the
nondominated sorting genetic algorithm II (NSGA-II) by
modifying the initial population according to the match-
ing factor, dynamic crossover probability and mutation
probability to promote excellent individuals and increase
population diversity. Therefore, when we optimize off-
loading policies, we also need to meet the time-critical or
latency requirements of those workflows [13, 14].

However, after reviewing related papers and work
done lately, we find that the robustness of the offload-
ing performance has rarely been addressed in a dynamic
heterogeneous resource edge-to-cloud continuum envi-
ronment. The robustness of offloading performance
refers to the stability of the offloading performance
in a dynamic environment, regarding performance
measurements. The absence of robustness results in
offloading performance deviation, which brings in
the uncertainties to latency. Furthermore, the uncer-
tain latency influences the QoS even end up in viola-
tion of Service Legal Agreement(SLA). In our work, we

propose a Meta-PAC(probably approximately correct)-
Reinforcement-Learning-based robust offloading
algorithm(MLR-LC-DRLO) to address this issue in a het-
erogeneous environment. The main contributions of this
paper include:

1 Workflow offloading in the heterogeneous environ-
ment: we build up a heterogeneous environment to
investigate workflow offloading.

2 Time-critical workflow offloading: we design a PAC
Reinforcement-Learning scheme to learn offloading
policy. The learning process is with maximum explo-
ration limit, which is based on workflow latency. In
this way it offers offloading latency guarantee and
makes the learning process more efficient.

3 Robust workflow offloading: we propose a Meta-
Learning-based offloading algorithm, achieving more
robust offloading performance compared with typical
RL-based offloading approaches.

In the remainder of this paper, firstly we give the gen-
eral formulation of the offloading in Problem formula-
tion section. Followed by Related work section, where
we go through the related work. Then we propose the
detailed framework and algorithm MLR-LC-DRLO in
Methodology section. Next, we evaluate the robustness
performance and optimization performance with com-
prehensive implementations in Evaluation section. We
further discuss the implementation results and make
future work plans in Discussion section. Finally, Conclu-
sion section summarizes the whole paper.

Problem formulation
We formulate offloading in a typical use case, as shown
in Fig. 2, the workflow including the requests and corre-
sponding dependencies firstly go to the local scheduler.
After local scheduler makes the decision whether to cal-
culate the request locally or offload them to MEC host.
Between MEC host and end users, there is the MEC net-
work connecting the two parts, including the up link and
down link. Then if the decision is to offload the request
to the MEC host, the request will be transmitted to the
MEC host, where the offloading orchastrator will allocate
them to different VMs through gateways. In this work,
the resource composition of each VM on MEC host side
is heterogeneous.

After we present the typical offloading pipeline, we for-
mulate each part of the pipeline step by step. First of all,
it’s the workflow model. As is known, workflows consist of
tasks and their dependencies. Here we define the workflow
model as D = (TA,

−→
ED) , where we use TA to represent

the tasks set, based on this we use the vector −→ED repre-
sents the dependencies, which are described as directed

Page 3 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

edge connected between the tasks respectively. We take
−→
ed = (tai, taj) as an example, where −→ed denotes the
dependency between task tai and task taj meaning taj is an
immediate successor task of tai . We also formulate several
principles of workflow models as follows:

1 As is shown in Fig. 1, for the two connected tasks, for
example A and B, the one starts its execution earlier
(A) is the leading task, the other one (B) is successor
task.

2 The execution of a successor task only starts later
than the ending of its leading task’s execution until
the last one.

3 The tasks have no successor tasks are the exit tasks.

For different use cases and applications, the VMs and
containers are getting more diverse, that is where the off-
loading heterogeneity comes. Based on the formulation
of the workload, the heterogeneity of the environment
comes from the heterogeneous resource composition of
each VMs. Here we define ξ type of VMs, their computa-
tion capacities are represented as Capl , l ∈ [1, 2, 3, ..., ξ] .
For each task tai , it has several information including: the
resource requirement for running task, Cpi , the sent data
sizes, Dasi , and the received result data size , Dari . After
we formulate the tasks model and the VMs, we turn to
the MEC model, which consists of: the wireless up-link
channel transmission rate, UT, and the down-link chan-
nel transmission rate DT. Based on this formulation, the
latency of task tai sending data, LatUi , is calculated as:

getting executed on the MEC host, Exsi , is calculated as:

receiving the result data, LatDi , is calculated as:

(1)LatUi = Dasi/UT

(2)Exsi = Cpi/Capl

(3)LatDi = Dari /DT

When a task tai gets scheduled to be executed locally, the
latency is just the time spent on local execution on the end-
user side, which is calculated as

where CapLo represents the computational capacity of the
end-user.

Once a task tai gets offloaded to the MEC host, the total
latency are the sum of latency from all parts, which includes
local processing, up-link transmission, and remote pro-
cessing latency and results transmission latency, as shown
in Fig. 2. Based on the aforementioned model, we further
formulate the offloading policy into Pol1:n = a1, a2, ..., an ,
where ai represents the corresponding offloading decision
of each tai.

The finishing time of the process on the up-link channel,
T U
i , are defined as:

The finishing time of tai ’s execution on the MEC host,
FTs

i , and finishing time of its process on the down-link
channel, FTD

i are defined as:

The completion time of task tai on the end user side,
FTUE

i , are defined as:

Overall, given a offloading policy model Pol1:n , the total
latency of a DAG, LatcA1:n

 , is defined as:

(4)LatLoi = Cpi/CapLo

(5)
T
U
i
= max{AvU

i
, max
j∈parent(ti)

{TUE
j

, T
D
j
}} + LatU

i
,AvU

i
= max{AvU

i−1
, T

U
i−1

}

(6)

T
s
i
= max{Avs

i
,max{TU

i
, max
j∈parent(ti)

{Ts
j
}}} + LatU

i
,

Avs
i
= max{Avs

i−1
, T

s
i−1

},

T
D
i
= max{AvD

i
, T

s
i
} + LatD

i
,AvD

i
= max{AvD

i−1
, T

D
i−1

}.

(7)

T
UE
i = max{AvUEi , max

j∈parent(ti)
{T UE

j , T D
j }} + LatUEi

(8)AvUEi = max{AvUEi−1, T
UE
i−1 }.

Fig. 1 Workflow Model

Page 4 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

where K denotes the exit tasks set, which consists of the
tasks which have no successor tasks. In the next section,
we will propose the detailed offloading algorithm based
on the model formulation (Table 1).

Related work
Learning-Based Offloading Han, et al. [15] proposes a
deep reinforcement learning-based approach to offload-
ing decision-making in mobile edge computing. Min,
et al. [16]proposed a deep RL-based offloading enabling
the IoT device to optimize the offloading policy without
knowledge of the MEC model, the energy consump-
tion model, and the computation latency model. Dinh,
et al. [17] proposed a model-free reinforcement learn-
ing offloading mechanism which helps MUs learn their
long-term offloading strategies to maximize their long-
term utilities. Cheng, et al [18] propose a deep reinforce-
ment learning-based computing offloading approach to
learn the optimal offloading policy on-the-fly, where we
adopt the policy gradient method to handle the large
action space and actor-critic method to accelerate the
learning process. Some work also adopted LSTM net-
work the to do prediction of the environment state [19].
Meta-Learning has also been investigated [20] to offer
an fast adaptive offloading method-MRLCO. Cao et al.
proposed a novel multi-agent DRL based approach [21],
which adopts act-critic neural networks to calculate
Q-value based on corresponding reward function. DPM
framework proposed by [22] applied the long short-term
memory (LSTM) neural network investigated the pre-
diction and strategies of resource allocation under the
objective of energy consumption reduction in cloud-edge
continuum.

Some work also adopted LSTM network the to do pre-
diction of the environment state [19]. Meta-Learning
has also been investigated [20] to offer an fast adaptive
offloading method-MRLCO. Cao et al. proposed a novel

(9)LatcPol1:n = max[max
tk∈K

{T UE
k , T D

k }]

Fig. 2 Overall Offloading Process

Table 1 Notation Summary

Symbols Explanation

E() Mean value calculation or function

tai task i

Dasi Size of data sent by task tai
Dari Size of data received by task tai
UT, DT Transmission rate of up-link

DT Transmission rate of down-link

CapLo Computational capacity of UE

Capl Computational capacity of VM l

Latuli , Lat
s
i , Lat

dl
i , Lat

UE
i

Latency of task tai from up-link channel, from
MEC host side, from down-link channel, and
from UE respectively.

T U
i ,T s

i ,T
D
i ,T UE

i
Finishing time of task tai on up-link channel,
MEC host, down-link channel, and UE

AvUi , Av
s
i , Av

D
i , Av

UE
i

For specific task tai , the available time of up-
link channel, MEC host, down-link channel,
and UE respectively

Pol1:n Offloading policies for task set including
tai ...tan

Ti , ρ(T) A learning task and distribution of learning
tasks

si , ai , ri the i-th state, i-th action, and i-th reward of
an MDP

π(a|s; θ) Offloading policy model

v(s; θ) Value function

τπ Trajectories sampled via policy model π.

Fen ,Fde Encoder functions and decoder function

ei , di Encoder output and decoder output at time
step i

ci Context vector at decoding step i

Ât Advantage function value

Up(θ ,Ti) Learning optimizer function (e.g., Adam)

Page 5 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

multi-agent DRL based approach [21], which adopts act-
critic neural networks to calculate Q-value based on cor-
responding reward function. Shan et al. integrated DRL
and Federated Learning to optimize resource allocation
problems, which offers acceleration of DRL agents train-
ing. Lolos et al. proposed a novel full-model based RL
[23] for elastic resource management, employs adaptive
state space partitioning.

Resource Heterougeneity Guan, et al. [24] propose a
novel hybrid offloading model to solve the heterogene-
ous resource-constraint offloading issues in the Cloud-
let, concerning the offloading energy and execution
efficiency. Li, et al. [25] propose a task offloading strategy
in the MEC system with a heterogeneous edge by consid-
ering the execution and transmission of tasks under the
task offloading strategy, we present an architecture for
the MEC system. Xiong, et al. [26] propose an intelligent
task offloading framework in heterogeneous vehicular
networks with three Vehicle-to-Everything (V2X) com-
munication technologies, namely Dedicated Short Range
Communication (DSRC), cellular-based V2X (C-V2X)
communication, and millimeter wave (mmWave) com-
munication.However, with the growing attention paid
to offloading issues, there are still several issues missing
among them: the absence of the accurate robust solution
when the dynamics occur in the offloading environment;
the absence of the recovery robust solution after the per-
formance deviation brought by the dynamics. During
the past ten to twenty years, cloud-edge continuum has
been further investigated, many new topics attract atten-
tion. Among those topics offloading, as an essential part
of cloud-edge continuum, has been studied [27]. There
has been many offloading solutions have been investi-
gated and proposed from different perspectives: using
hierarchical method [28], or collaborative optimization
method [29], energy-efficient method [30]. The optimiza-
tion performance of the conventional approaches often
come from explicit models based on different resources
or workflows and corresponding offloading policies mod-
els sometimes even a very specific system. As with the
increasing popularity, Machine Learning-based optimiza-
tion solutions also have hence attracted certain research
attention [4, 5] in context of offloading. Among Machine
Learning-based approaches, Reinforcement Learning-
based approaches [5, 6, 17, 31] optimize offloading
interactively without asking for data labelling. However,
the performance of the approaches aforementioned is
depending on and easily influenced by the dynamics
from each component of the MEC pipeline: the resource
availability, the request pattern, the data transmission
latency. Thus, any changes from those parts could lead to
performance deviation for those approaches, which asks
for repeating of the pruning process or training process

when it comes to learning-based solutions. From the
robustness perspective, the higher deviation means the
lower robustness of the offloading performance. There
are some work addressing this issue from robustness
perspective: adaptive optimization approach [20], con-
nection stability [32], robust network contention [33].
However, compared with throughput or energy con-
sumption, the offloading robustness among heterogene-
ous resources environments has not been well addressed
lately. In the next section, we will formulate our approach
step by step.
PAC-RL: Fiechter [34] first proposed the PAC RL frame-

work, and algorithms with sample complexity O((SAH3/2)
log(1/)) have been developed [35, 36], which are mini-
max-optimal in time-inhomogeneous MDPs [37]. These
algorithms combine a well-chosen halting rule with an
optimistic sampling rule. Most optimistic sampling strate-
gies have been presented for regret minimization, where
the policy t is the greedy policy with regard to an upper
confidence constraint on the optimal Q function. In specifi-
cally, episodic MDPs are reached via the UCBVI method of
Azar et al. [38] (with Bernstein bonuses). Instance-depend-
ent upper limits on the regret for optimistic algorithms
have been presented in recent publications [39–41]. A
complexity term that is dependent on the MDP instance is
present in an instance-dependent bound, generally through
the idea of a sub-optimality gap. In particular, Wagenmaker
et al. [42] shown that optimistic no-regret sampling proce-
dures cannot attain the instance-optimal rate for PAC iden-
tification. The basic idea is that an ideal PAC RL algorithm
must visit each state-action combination at least a specific
number of times, necessitating the use of playing strate-
gies that cover the whole MDP in the fewest possible epi-
sodes. A regret-minimizer, on the other hand, concentrates
on using high-reward strategies that, depending on the
MDP instance, may be arbitrarily ineffective in traveling to
remote states.

Methodology
In this section we elaborate the approach we propose:
MLR-LC-DRLO in details. We firstly start with the formu-
lation of latency-critical PAC-RL:

Latency‑critical Probably Approximate Correct (PAC)
reinforcement learning
With the conventional Reinforcement Learning set up,
there is rare upper bound of offloading accuracy during the
exploration process, which leads the optimization to unde-
sired directions, wasting training time. So here we firstly
formulate this upper bound of offloading to limit the train-
ing time and accuracy more preciscely. When there exit
dynamics in the training environment, every time during
the transition after the dynamic disturbances, the learning

Page 6 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

process needs to optimize the offloading policies from the
scratch again. During this process, specific upper bound
on the exploration of training will save training time and
offer better accuracy. And also guidance during the transi-
tion process could also save retraining time. To this end, we
propose a probably approximate correct RL-based offload-
ing algorithm, which offers upper bound on the exploration
process:

where, nS denotes number of states, nS represents the
number of actions, ε is the accuracy parameter, and γ is
the discount factor. The proof follows. In our latency-
critical PAC reinforcement-learning formulation, we take
M as a finite Markov Decision Process(MDP), denoted
as a tuple (S ,A, T ,R,Ŵ) . Within M , we take: S as the
states set, A as the actions sets corresponding to each
state, T as the transition distribution and represented as:
S ×A −→ �S , R is the reward distribution, and r ∈ [0, 1)
is a reward discount factor. T (s

′
|s, a) indicates the prob-

ability of the transition from states s to state s′ out of the
distribution T (s, a) . Each time-step here is defined as a
single time interaction between the learner and the envi-
ronment. Each time interaction between learning agent
and the environment is described as a state-action pair
(s, a) including the information of that the learner takes
the specific action a from the state s. We use R(s, a) to
denote the expected reward out of reward distribution
R(s, a) . During the Learning process, the learner accu-
mulates the rewards r ∼ R(s, a) when takes each action
a at state s then transits to next state s′ with the possi-
bility: s′ ∼ T (s, a) . By repeating this process, the objec-
tive of the learner tries to achieve the objective, which is
accumulating possible most reward within possible least
times of attempts. A policy set consists of any strategy
followed by the learner choosing actions. A stationary
policy refers to the policy that produces an action based
on only the current state, without considering the previ-
ous interaction experiences. For policy π , the discounted,
infinite-horizon value function from state s is formulated
as follows:

where, H represents the number of the steps, which is
a positive integer, V π

M
(s,H) indicates the accumulated

value out of H-step under policy π , starting from state
s. Specifically, let st and ∇t be the tth encountered state

(10)Õ(n2S × nA/(ε
3(1− γ)6))

(11)V π
M(s) = E[

∞
∑

j=1

r
j−1rj|s]

(12)Qπ
M(s) = E[

∞
∑

j=1

r
j−1rj|s]

and received reward, respectively, resulting from execu-
tion of policy π in MDP M . Here we define policy model
π as non-stationary considering the dependencies among
tasks. Here we define c = (s1, a1, r1, s2, a2, r2, ...) as a
learning path of A . In this manner, at time t the state st is
described as a serial state-action experiences denoted as:
ct = (s1, a1, r1, ..., st) . Then we derive the expected value
functions as follows:

where the expected values take all previous possible
policy paths the learner follows. The optimal policy
is denoted as π∗ and has value functions V ∗

M
(s) and

Q∗
M

(s, a).
Based on the primary definitions, we further define sev-

eral properties used in PAC-MDP set up:
Definition of Sample Complexity of

Exploration(Kakade 2003) Given an MDP M , an learn-
ing algorithm A within M , for any fixed ε > 0 , the sam-
ple complexity of exploration of A is the number of
timesteps t such that the policy at time t, At , satisfies:

Definition of Efficient PAC-MDP Given an MDP
M (here we refer the MDP we formulate as aforemen-
tioned), an learning algorithm A within M , A is an
efficient PAC-MDP (Probably Approximately Correct
in Markov Decision Processes) algorithm when, given
ε > 0 and 0 < σ < 0 , A satisfies: the per-timestep com-
putational complexity, space complexity, and the sam-
ple complexity of A are less than some polynomial of
(S,A, 1/ε, 1/σ , 1/(1− γ)) , with probability greater than
1− σ . A is PAC-MDP when the definition is relaxed to
be without computational complexity requirement.

Definition of Admissible Heuristics Given an MDP
M , an learning algorithm A within M , we define a
function:

it is admissible heuristic when it satisfies:

for all s ∈ S and a ∈ A.
We also assume that U(s, a) ≤ Vmax for all

(s, a) ∈ S ×A and some quantity Vmax . We set:

(13)V π
M(ct) = E[

∞

j=0

r
jrt+j|ct]

(14)V π
M(ct ,H) = E[

H−1
∑

j=0

r
jrt+j|ct]

(15)VAt (St) < V ∗(St)− ε

(16)U : S ×A −→ R

(17)U(s, a) ≥ Q∗(s, a)

Page 7 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

since we have: V ∗(s) = maxa∈AQ
∗(s, a) , which is at

most 1/(1− Ŵ) . Therefore, without loss of generality, we
assume

for all (s, a) ∈ S ×A.
We assume that after each time disturbance of the

dynamics, before the new convergence of the training,
the offloading policy is an admissible heuristic. Consider-
ing that the learner has acted with respect to some expe-
rienced state-action pair (s, a). We define n(s, a) as the
n-step experiences, where the learner takes action a from
state s. Throughout the experiences, the received rewards
at state s by taking action a: r[1], r[2], ..., r[n(s, a)] . Then,
the empirical mean reward is:

After taking an action, the learner changes the environ-
ment accordingly through this interaction. We describe
this process as: the learner has taken action a from state
s and immediately transitioned to the state s′ through
n(s, a, s

′
) times action-taking. Throughout this process,

the empirical transition distribution T̂ (s, a) satisfies:

The objective of the learner through the learning pro-
cess is to maximize the current action value, Q(s, ·) by
choosing the specific actions, offloading strategies here,
and applying them to the environment. The update step
is to solve the following set of Bellman equations:

where R̂(s, a) denotes the maximum-likelihood esti-
mates for the reward, T̂ (·|s, a) indicates transition
distribution of state-action pair (s,a). That is, the compu-
tation of R̂(s, a) and T̂ (s

′
|s, a) in Eq. 22, uses only the first

n(s, a) = m samples. R̂(s, a) and T̂ (·|s, a) here are the first
m times observations of (s, a). So during the transition
process, instead of modeling each state-action pair, we
assert their value to be U(s, a). U(s, a) here is guaranteed
to be an upper bound on the true value function as we
formulated aforementioned. To simplify the notation, we

(18)U(s, a) = Vmax = 1/(1− Ŵ)

(19)0 ≤ U(s, a) ≤ Vmax ≤ 1/(1− Ŵ)

(20)R̂(s, a) :=
1

n(s, a)

n(s,a)
∑

i=1

r[i]

(21)T̂ (s
′

|s, a) :=
n(s, a, s

′
)

n(s, a)
, for each s

′

∈ S

(22)



















Q(s, , a) = R̂(s, a)+ Ŵ�s
′ T̂ (s

′
|s, a)max

a
′
Q(s

′
, a

′
),

if n(s, a) ≥ mn(s,a),
Q(s, , a) = U(s, a),
otherwise,

redefine n(s, a) to be minimum of m and number of times
state-action pair (s, a) has been experienced.

Proof

Let Qi(s, a) denote the action-value estimates after the ith
iteration of value iteration. We also have:

Then we have:

�

By deriving from the fact: ξ0 ≤ 1/(1− γ) we get that:
ξi ≤ γ i/(1− γ) . Setting this value to be at most β and
solving for i yields i ≥ ln(β(1−γ))

lnγ
 . We claim that:

Note that (25) is equivalent to the statement
1− γ ≤ −lnγ , which follows from the identity
ex ≥ 1+ x . Given the previous setup and assumption,
as efficient PAC-RL, to achieve an α−optional policy it
is sufficient to run it for iterations number:

The real-valued parameter, ε1 , that specifies the
desired closeness to optimality of the policies produced
by value iteration. Based on this, we drive m and ε1
with the characterization of other parameters includ-
ing: ε, σ , S,A, γ in context of the theoretical guarantees
about the learning efficiency.

Firstly we give explicitly definition of m and ε1 during
the learning process and some internal parameters:

1 ε1 ∈ (0, 1) is a constant added to value estimate as a
bonus value of exploration.

2 m is the number of experiences of a state-action pair
before performing an update.

3 l(s, a) denotes the number of samples collected for
(s, a).

(23)ξi := max(s,a)|Q
∗(s, a)− Qi(s, a)|

(24)

ξi = max(s,a)|(R(s, a)+ γ
∑

s
′

T (s, a, s
′

)V ∗(s
′

))

− (R(s, a)+ γ
∑

s
′

T (s, a, s
′

)Vi−1(s
′

))|

= max(s,a)|γ
∑

s
′

T (s, a, s
′

)(V ∗(s
′

)− Vi−1(s
′

))|

≤ γ ξi−1

(25)
ln 1

β(1−γ)

1− γ
≥

ln(β(1− γ))

lnγ

(26)O
(ln(1/(α(1− Ŵ)))

1− Ŵ

)

Page 8 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

4 AU(s, a) represents the the running sum of target
values used to update Q(s, a) once the learning agent
collects enough samples.

5 b(s, a) denotes the first timestep for which the first
experience of (s, a) gets collected for the latest ongo-
ing update attempt.

6 FLG(s, a) ∈ {0, 1} indicated the binary value of sam-
pling action: 1, to collect sample for (s, a); 0, not to
collect sample for (s, a).

Update Rules Formulation At time t, after collecting
latest m steps of experiences pairs, including next states
(sk1 , sk2 , ..., skm) in order of k1 < k2 < ... < km , where
km = t . The received ith reward is denoted as ri . Thus,
we could describe the update rule of learning agent tak-
ing action a from state s at time ki as follows:

the condition of a an update is performed is the following
equation holds:

Then to simplify the calculation, the learning agent
only calculates the updates when the FLG(s, a) is 1
(true), decreasing the update attempts to finite times.
The conditions of turning FLG(s, a) to be true are:
firstly, initialization set up. Secondly, when any state-
action pair is updated. Conditions of turning FLG(s, a)
from true to false is when no updates are made during
a length of time for which (s, a) is experienced m times
and the next attempted update of (s, a) fails. In this way

(27)Qt+1(s, a) =
1

m

m
∑

i=1

(rki + εVki(rsi))+ ε1

(28)Qt(s, a)− (
1

m

m
∑

i=1

(rki + εVki(rsi))) ≥ 2ε1

no more attempted updates of (s, a) are allowed until
another action-value estimate is updated.

As shown in Fig. 3, we describe the overall learning
process step by step. In general, the learning agent sam-
ples m steps in different environments for exploration
then turn to the exploitation process. After finishing the
learning process within each environment, the learn-
ing agent turns to another environment, repeating the
same learning period. Once the dynamics appear, the
learning agent also sample just first m samples in the
new environment, doing the exploration and exploita-
tion with the upper bound Õ(n2S × nA/(ε

3(1− γ)6)) . In
this way, the learning agent is able to keep the learning
process always with the upper bound. Especially during
the process right after the dynamics, the fixed sampling
complexity and exploration upper bound helps against
the influences from the newly changed environment.

Formulation of latency‑critical PAC‑RL
In this section, we continue the formulation of the
learning process one step further to the formulation
of the Reinforcement Learning and the Meta Learning.
Based on the MDP M aforementioned, we formulate
the RL part as follows:

1 State: The needed state information of a task, tai ,
during the offloading process includes the encoded
DAG dependencies and the corresponding offloading
plans. The detailed state definition is as follows:

(29)
S := {si|si = (D = (

−→
TA,

−→
ED),Pol1:i)}, i ∈ [1, |

−→
TA|],

Fig. 3 Overall Learning Process

Page 9 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

 where D = (
−→
TA,

−→
ED) is a sequence of task embed-

ding and Pol1:i is the offloading policy of the tasks
scheduled before tai . Based on the above definition
and formulation, we definite the offloading policy of
tai : Pol(ai|D = (

−→
TA,

−→
ED),A1:i−1) as follows:

2 Action: The offloading choice of each task is a con-
stant value, which indicates: execution locally, exe-
cution on different VMs with different resources.
By adding up the actions of all the tasks we get the
action space A.

3 Reward: Throughout the learning process of offload-
ing, minimizing latency LatAc

1:n
 , defined in Eq. 9 is

the primary objective. To achieve this, we formulate
the reward function into an estimated negative incre-
ment of the latency calculated every execution of an
offloading decision taken for a task. The detailed defi-
nition is as follows:

(30)
Pol(A1:n|D = (

−→
TA,

−→
ED))

=

n
∑

i=1

Pol(ai|D = (
−→
TA,

−→
ED),A1:i−1)

(31)�Latci = LatAc
1:i
− LatAc

1:i−1

More detailed offloading policy model learning para-
digm with aforementioned three parts is shown in
Fig. 4. In our proposed training paradigm, we build up
both encoder and decoder based on recurrent neural
networks(RNN) [43] to learn the dependencies among
tasks. First we apply the tasks embedding, which is the
input of the encoder. We define Fen as the encoding func-
tion, the each step output of the encoder, ei , is corre-
spondingly formulated as:

To make sure decoder learn from different part of the
source sequence without information loss, we apply the
attention mechanism [44]. The output of the encoder
is the input of the decoder, where we define the decod-
ing function as Fde . After decoder we get the offloading
policies for the workflows,dj . The decoding process is as
follows:

where cj is the context vector at decoding step j and is
computed as a weighted sum of the encoder as follows:.

(32)ei = Fen(tai, ei−1)

(33)dj = Fde(dj−1, aj−1, cj)

(34)cj =

n
∑

i=0

αjiei

Fig. 4 Paradigm of MLR-LC-DRLO

Page 10 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

The weight αji of each output of encoder, ei is computed
by

where f (dj−1, ei) , is used to calculate the percent-
age that how much possibility the input at position i
matches the output at position j. Regrading the struc-
ture of NN(Neural Network), we adopt the sequence-to-
sequence neural network [45], which is good at learning
context information. The policy learned by NN is formu-
lated as Pol(aj|sj) . The value function is formulated as
vPol(sj) . The action aj is determined based on the follow-
ing calculation:

Formulation of MLR‑LC‑DRLO
Based on the aforementioned PAC-RL formulation, we
then optimize robustness concern by integrating Meta-
Learning optimization part [46]. As to Meta-Learning opti-
mization part, we have two loops of training: inner loop and
outer loop, which we will elaborate in the following part.
Overall we define the objective function based on Proximal
Policy Optimization (PPO) [47]:

where, πθoi
 is the sample policy, θoi is the vector of param-

eters of the sample policy network, πθi is the target policy,
where θi equals to θoi at the initial epoch. Prt is the prob-
ability ratio between the sample policy and target policy,
which is defined as

We also define a function slice1+ǫ
1−ǫ (Prt) to remove the

incentive for moving Prt outside the interval [1− ǫ, 1+ ǫ]
giving specific limit to the value of Prt.

We formulate our advantage fucntino based on general
advantage estimator (GAE) [48]. The detailed formulation
which is as follows:

(35)αji =
exp(f (dj−1, ei))

∑n
k=1 exp(f (dj−1, ei))

,

(36)aj = argmaxaj vPol(aj|sj)

(37)J
C

tai
(𝜃

i
) = �

𝜏∈Ptai
(𝜏 ,𝜃o

i
)

[

n
∑

t=1

min
(

Pr
t
, Â

t
, slice

1+𝜖

1−𝜖
(Pr

t
)Â

t

)

]

(38)Prt =
πθi(at |D(TA,ED),A1:t)

πθoi
(at |D(TA,ED),A1:t)

(39)

Ât =

n−t+1
∑

k=0

(

γ �)k(rl+k + γ νπ (st+k+1)− νπ (st+k)

)

,

where Ât denotes the advantage function value at time
step t, � ∈ [0, 1] is used to control the trade-off between
bias and variance.

Overall, we define the objective function for each inner
layer task learning as:

where c1 is the coefficient of value function loss. The
outer layer objective is expressed as:

where θ ′

i = Upτ∼PTi (τ ,θi)
(θi, Ti), θi = θ . We adopt the fist-

order to approximate the second-order derivatives to
save some calculation, which is defined as follows:

where we get n samples learning tasks in the outer loop,
α is the learning rate of inner loop training, and m is the
conducted gradient steps for the inner loop training.

Algorithm 1 Main Algorithm

(40)J PPOTi
(θi) = JCtai(θi)− c1J

VE
Ti

(θi),

(41)JMLD(θ) = E
Ti∼ρ(T),τ∼PTi (τ ,θ

′

i)
[J PPOTi

(θ
′

i)],

(42)GradMLD :=
1

n

n
∑

i=1

[

(θ
′

i − θ)/α/m
]

,

Page 11 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

Algorithm 2 PAC‑RL AlgorithmAlgorithm
This section describes the detailed process of the MLR-
LC-DRLO algorithm, integrating and going through
each part of the methodology formulated previously. As
is shown in Algorithm 1, the input includes distribution
over tasks, learning rates of the outer and inner loop. The
meta policy neural network parameters are denoted as θ .
We firstly sample a batch of learning tasks T with batch
size n and conduct inner loop training for each sampled
learning task. The inner loop training is conducted based
on the PAC-Reinforcement-Learning we formulated
aforementioned. The first step is the initialization of the
algorithm: setting the initial parameters of the policy
model and resetting the data set D . Then is the sampling
step: based on the number of environments, N data tra-
jectories are sampled from the distribution � according
to the current policy model and added to the data set D .
The following inner layer learning loop from are PAC-
RL-based learning processes; sampling data sets τH inside
D to calculate updated θ ′H based on each loss function
with PAC-RL. When the PAC-RL converges or reaches
the upper bound of the exploration, unlike conventional
RL or other learning methods, the overall policy model is
not updated by inner layer learning agent. After achiev-
ing updated θ ′H , RL agent uses θ ′H model to sample new
data samples τ ′H from D . After this, the algorithm turns
to the outer learning layer, and the meta learner uses
θ ′H to calculate loss function based on τ ′H to achieve an
update of the overall policy model. In the next section we
will evaluate MLR-LC-DRLO’s performance.

Evaluation
Evaluation Measurements
We define the measurements as follows:

Offloading Latency-Critical Measurements We define
several measurements to indicate and compare differ-
ent experimental results and investigate different metrics

specifically. One group is related to latency missing rate
and offloading performance:

QoS-Latency-Critical Rate (QLCR) [6]: total percentage
of executed tasks that meet latency required by QoS.

Expected-Latency-Critical Rate (ELCR) [6]: total percent-
age of executed tasks that meet expected latency. ELCR
indicates the level of latency-critical for each method.

Necessary Training Iterations(NTI): the training itera-
tions needed for convergence of policy model in an
environment.

Offloading Robustness Measurements Robust-
ness measurements includes: Dynamic Pressure
Index(DPI), Offloading Performance Deviation(OPD)
and Adaptation Steps and Data Usage for Performance
Recovery(ASDUPR). They are formulated as follows:
Dynamic Pressure Index(DPI): the indicator of the dynamic
level of the current environment, including portion of
workload change, latency change. It is defined as follows:

where WORbefore,WORafter denotes the instant workload
before and after the dynamics respectively. DPI shows the
pressure level the system currently is having brougt by
the dynamics. For OPD:

where, PERafter denotes the instant average offloading
latency after the influence of dynamic, PERbefore indicates
the previous converged average offloading latency value.
Besides the instant performance deviation, ASDUPR is
proposed to describe adaptation, includes time and data
iteration needed for adaptation after performance devia-
tion incurred by dynamics:

where ITER demonstrates the iteration time, to describes
time spent for each iteration.

Based on the metrics defined previously, we imple-
ment comprehensive evaluation to validate robustness
of MLR-LC-DRLO. Throughout the implementations
do we aim to evaluate our proposed MLR-LC-DRLO in
next section.

Set up
The configuration of the implementation consists of
two parts: the configuration of the platform, shown
in Table 2, and the configuration of simulation model,
shown in Table 3.

(43)DPI =
|WORafter −WORbefore|

WORbefore
× 100%

(44)OPD =
−(PERafter − PERbefore)

PERbefore
× 100%

(45)ASDUPR = OPD ∗ ITER ∗ to

Page 12 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

Simulation Environment: We consider a cellular
network, where the data transmission rate varies with
the UE position. The CPU clock speed of UE, fUE is set
to 1GHz. There are four cores in each VM of the MEC
host with a CPU clock speed of 2.5 GHz per core. The
CPU clock speed of a VM, fVM is 4 × 2.5 = 10 GHz. We
implement a synthetic DAG generator according to [20]
based on four parameters: n, fat, density, and ccr, where
n represents the task number, fat controls the width
and height of the DAG, density decides the number of
edges between two levels of the DAG, and ccr denotes
the ratio between the communication and computation
cost of tasks (Table 4 and 5).

Results
As is shown in Table 6, we change same share of workload
to show and compare the latency-critical offloading perfor-
mance of our MLR-LC-DRLO algorithm against fine-tuned
DQN, Double-DQN and CEM approaches on the same
DAG data. More specifically, we add dynamic to schedul-
ing by increasing workload for each method while keeping
the the same resource availability setup. Then we assess the
average latency rates of scheduled tasks to compare the
performance robustness of the proposed MLR-LC-DRLO
offloading against other methods. As is shown, we put the
items in bold, which perform best in each row. Overall,
compared with the fine-tuned DQN, Double-DQN and
CEM methods, our algorithm MLR-LC-DRLO offers more
stable latency-critical offloading performance every time
after dynamic influence in the environment. More specifi-
cally, MLR-LC-DRLO outperforms the fine-tuned DQN,
Double-DQN and CEM approaches in the latency rates
and necessary training iteration. From the perspective of

latency rate, averagely more than 95.33%± 0.34% tasks
offloaded by MLR-LC-DRLO finish their execution with
the shorter latency than the expected latency 720ms [20].
While tasks offloaded by other RL-based methods finish
their execution averagely with a range of 8.5− 20% viola-
tion rate of latency requirement. Moreover, when given
heavier workflows (topology 2, n=30, UT=DT=5.5Mbps),
shown in Table 6, our method MLR-LC-DRLO still offers
workflows more stable latency-critical offloading perfor-
mance, which is more percentage of tasks finish execution
with the lower latency than the expected one under dynam-
ics from the environments. After all MLR-LC-DRLO out-
performs the fine-tuned DQN, Double-DQN and CEM in
performance stability.

As shown in Figs. 5 and 6, we show the change of OPD
and ASDUPR under different dynamics to show the
robustness of MLR-LC-DRLO from the perspective of
offloading performance stability and the expense taken
for the recovery from the performance deviation. Firstly,
from the perspective of offloading performance stability, as
shown in Fig. 5: we increase the workload with same per-
centage for all the offloading approaches. The performance
deviation of our proposed MLR-LC-DRLO always remains
stable within 55% throughout different workload environ-
ments, in some environment the deviation is even under
25%. In contrast, fine-tuned DQN, Double-DQN and CEM
approaches’ performance deviation range is rather broader
between 50% and even beyond 300% with the same por-
tion of increased workload. Therefore, the offloading per-
formance stability of our MLR-LC-DRLO outperforms
the conventional RL-based offloading approaches. Then
from the perspective of performance deviation recovery,
as shown in Fig. 6 where we compare the adaptation speed

Table 2 Platform settings: The cluster, where we implement the experiments, consists of 18 nodes, each node’s configuration is
shown in the table. The software environment includes: Anaconda, python-numpy, python-scipy, python-dev, python-pip, python-
nose, g++ libopenblas-dev, git, Thensorflow, and python-matplotlib

Components GTX 1080 Ti Intel(R) Xeon(R) Gold
5118

CPU Memory Local HDD Local SSD

Configuration

4 x 2 x @ 2.30GHz (12 cores
per cpu)

128 GB 2 x 10 TB 2 x 4 TB

Table 3 Simulation set up: We generate synthetic DAG according to [49], whose model is characterised by: n, fat, density, and ccr,
where n represents the task number, fat controls the width and height of the DAG, density decides the number of edges between two
levels of the DAG, and ccr denotes the ratio between the communication and computation cost of tasks

Items fUE Per VM DAG‑task number DAG‑width and
height

DAG‑density DAG‑task cost

Configuration

1 GHz 4 x 2.5GHz n fat density ccr

Page 13 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

or performance recovery speed discounted by the perfor-
mance deviation portion, which balances the adaptation
speed and robustness performance. As shown, we cloud
see that the adaptation speed of MLR-LC-DRLO is more
than five times faster than fine-tuned DQN, Double-DQN
and CEM averagely after every time increase of workload,
at some point, even more, proving its robustness to dynam-
ics of the environment.

Discussion
As shown in the result section, compared with conven-
tional RL-based approaches, our proposed offloading
approach MLR-LC-DRLO shows advantages in terms
of the offloading performance robustness and recovery
speed after influence from dynamics among heteroge-
neous environments. More specifically, the offloading
performance deviation and adaptation speed of our pro-
posed approach MLR-LC-DRLO show a stable pattern of
change during increased workload. When the dynamic
change of the DPI is within 30%-50%, both offloading
performance deviation and adaptation speed increase
with DPI; When the dynamic change of the DPI is in a
range of 30%-50%, both offloading performance devia-
tion and adaptation speed decrease with DPI; When
the dynamic change of the DPI is beyond 50%, both off-
loading performance deviation and adaptation speed

increase again. Overall, when the DPI is within 50%,
MLR-LC-DRLO could stay robustness with lower than
30% performance deviation. When DPI goes beyond
50%, the performance deviation of MLR-LC-DRLO still
stay within 50%. The robustness starts to decrease when
DPI beyond 50% but still with lower than 50% perfor-
mance deviation, much lower than fine-tuned RL meth-
ods (more than 300%). One of our future work directions
is to expand the robustness range against the dynam-
ics, that is keeping lower performance deviation against
wider range of DPI change. Another direction of future
work is to reduce the instant offloading performance
deviation right after the DPI changes. Furthermore, by
investigating exploration strategies of the RL framework,
we could better control the training time and accu-
racy. We are currently investigating the exploration and
exploitation accuracy of RL-based approaches.

Regarding the superiority achieved by our proposed
methods, there are two main aspects of the insight, the
first one is the merit that Meta-learning can leverage
prior knowledge from previous tasks to improve learn-
ing on new tasks. In this way, the prior offloading knowl-
edge can be accumulated and transferred to the following
phase. By analyzing patterns and relationships across
multiple environments, a meta-learning model can iden-
tify commonalities and transfer knowledge from one
environment to another. This transfer learning can help
a model learn new offload patterns more efficiently and
effectively. Also, meta-learning can help avoid overfitting
to specific training data by learning a more generalizable
learning strategy. By training on multiple tasks, the meta-
learning model can learn to generalize across tasks and
avoid overfitting to specific examples. This can lead to
a more adaptive model that can perform well on a wide
range of tasks and data.

The other aspect is Probably Approximate Correct
(PAC), which is a framework in machine learning that
aims to balance the accuracy of a model with the amount
of data needed to achieve that accuracy. The PAC frame-
work provides a way to measure the sample complexity

Table 4 Fine-tuned baseline approaches: we train DQN, Double-DQN, CEM based approaches as baselines of our proposed MLR-LC-
DRLO

Fine‑tuned RL Approaches

Parameters NN Layers Replay Buffer
Size

Optimizer ρ Learning Rate Activation Function

Baseline Approaches

DQN 4 − Adam 0.95 1e-3 ReLU, Softmax

Double-DQN 3 500 Adam 0.95 1e-3 ReLU, Softmax

CEM 3 − Adam 0.95 1e-3 ReLU, Softmax

Table 5 MLR-LC-DRLO Hyperparameter set up

Hyperparameter Set up Hyperparameter Set up

Encoder NN LSTM, 2 Layers,
norm: on

Outer Learning
Rate

5× 10−4

NN Neuron
Amount

256 Activation Func-
tion

tanh

Decoder NN LSTM, 2 layers,
norm: on

Loss Coefficient 0.5

Inner Learning Rate 5× 10−4 Slice Constant 0.2

Optimizer Adam Discount Factor 0.99

Gradient step m 3 Adv Discount
Factor

0.95

Page 14 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

Ta
bl

e
6

O
ffl

oa
di

ng
 P

er
fo

rm
an

ce
 C

om
pa

ris
on

: w
e

co
m

pa
re

 M
LR

-L
C

-D
RL

O
 w

ith
 fi

ne
-t

un
ed

 D
Q

N
, D

ou
bl

e-
D

Q
N

 a
nd

 C
EM

 t
o

sh
ow

 t
ha

t
M

LR
-L

C
-D

RL
O

 a
ch

ie
ve

s
be

tt
er

 la
te

nc
y-

cr
iti

ca
l o

ffl
oa

di
ng

 p
er

fo
rm

an
ce

A
pp

ro
ac

he
s

M
LR

‑L
C‑

D
RL

O
D

Q
N

D
ou

bl
e‑

D
Q

N
CE

M

In
di

ca
to

rs
Q

LC
R

EL
CR

N
TI

Q
LC

R
EL

CR
N

TI
Q

LC
R

EL
CR

N
TI

Q
LC

R
EL

CR
N

TI

W
or

kfl
ow

 T
op

ol
og

y

To

po
lo

gy
 1

 9
8.

33
%
±

0.
56

%
 9

6.
13

%
±

3.
24

%
 5

37
±

32
95

.3
3%

±
1.

78
%

90
.2

2±
2.

23
%

6
5
3
±

2
8

96
.1

2%
±

0.
65

%
93

.2
3±

2.
15

%
6
1
1
±

3
4

8
7
.5
5
%
±

2
.7
6
%

8
5
.3
1
%
±

5
.8
2
%

8
2
6
±

5
7

To

po
lo

gy
 2

97
.0

1%
±

1.
28

%
95

.6
6%

±
2.

46
%

58
1±

17
93

.9
2%

±
1.

78
%

88
.6

7±
3.

34
%

6
9
2
±

3
6

95
.5

5%
±

1.
38

%
92

.1
4±

3.
24

%
6
4
9
±

3
4

8
3
.8
4
%
±

3
.5
7
%

8
0
.0
6
%
±

1
.3
6
%

8
6
4
±

3
9

n=

20
97

.3
3%

±
1.

14
%

95
.8

8%
±

2.
16

%
55

3±
26

94
.5

2%
±

2.
63

%
89

.5
3±

3.
25

%
6
3
3
±

3
7

95
.3

6%
±

0.
91

%
91

.5
3±

2.
26

%
6
0
3
±

1
1

8
9
.9
8
%
±

1
.3
6
%

8
7
.4
3
%
±

3
.3
5
%

6
3
8
±

4
2

n=

30
95

.3
3%

±
0.

34
%

94
.2

7%
±

1.
24

%
56

9±
31

91
.5

7%
±

3.
21

%
88

.5
6±

1.
53

%
6
8
7
±

4
5

93
.6

6%
±

1.
80

%
91

.0
8±

1.
30

%
5
7
9
±

4
3

8
6
.5
0
%
±

1
.0
9
%

8
5
.6
6
%
±

2
.5
7
%

7
1
2
±

3
5

U

T=
D

T=
8.

5M
bp

s
98

.1
2%

±
0.

68
%

96
.7

7%
±

2.
15

%
49

3±
46

93
.5

8%
±

2.
20

%
91

.6
5±

1.
10

%
5
8
6
±

3
5

97
.3

9%
±

0.
60

%
95

.4
2±

3.
63

%
5
2
3
±

5
2

8
9
.3
3
%
±

1
.5
5
%

8
6
.4
5
%
±

2
.3
3
%

7
2
1
±

2
2

U

T=
D

T=
5.

5M
bp

s
96

.0
6%

±
1.

06
%

95
.6

9%
±

1.
53

%
55

6±
32

91
.0

6%
±

2.
73

%
90

.3
2±

0.
34

%
6
3
5
±

3
0

95
.5

3%
±

1.
66

%
93

.6
5±

1.
98

%
6
0
9
±

2
5

8
5
.3
4
%
±

3
.8
7
%

8
2
.6
8
%
±

2
.0
8
%

8
6
5
±

4
8

Page 15 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

of a learning algorithm, which is the number of training
examples needed to achieve a certain level of accuracy.
One advantage of the PAC framework is that it can lead
to faster convergence of learning algorithms. The PAC
framework is designed to ensure that a learning algo-
rithm will be able to generalize well from the training
data to new, unseen data. To achieve this, the PAC frame-
work requires that the algorithm be able to achieve a cer-
tain level of accuracy with high probability, meaning that
the algorithm should be able to correctly classify most of

the test examples with high confidence. This requirement
ensures that the algorithm will perform well on new data,
even if it has not seen those examples during training.

In addition, the PAC framework provides a way to
measure the sample complexity of a learning algorithm.
This measure is based on the required level of accuracy
and the confidence level, and provides a way to estimate
the number of training examples needed to achieve the
desired level of accuracy. This allows researchers to
compare different learning algorithms and choose the

Fig. 5 Performance deviation of MLR-LC-DRLO and other 3 fine-tuned other fine-tuned RL-based approaches: with the same amount of DPI,
MLR-LC-DRLO experiences lower performance deviation

Fig. 6 Adaptation time spent on retraining after workload changes between MLR-LC-DRLO and other fine-tuned RL-based approaches: with the
same amount of DPI, MLR-LC-DRLO spend less time to recover offloading performance

Page 16 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

one with the lowest sample complexity, which can lead
to faster convergence and more efficient learning.

As of the limitation of our work, one is the real-time adap-
tation efficiency. Currently, the algorithm is trained offline
then adapt to a new environment. We plan to integrate an
online-offline switch scheme in the future to improve the
real-time adaptation efficiency. Also, more implementations
of real world data is also part of our future steps.

Conclusion
In this work, MLR-LC-DRLO, a robust task schedul-
ing framework, is presented to offer latency-guaran-
teed scheduling for time-critical tasks and improve
the schedule’s robustness in the meantime. We pro-
pose a meta-gradient robust reinforcement learn-
ing framework to quickly adapt a scheduling policy
model to a newly changed environment while using
a PAC-based latency-critical RL scheme to maintain
the latency guarantee. Experimental results show that
our approach can provide the latency guarantee, out-
performing fine-tuned RL methods. Furthermore, our
MLR-LC-DRLO approach finishes adaptation in new
environments using fewer training iterations, 2 × to 5 ×
faster than the fine-tuned RL approach, achieving bet-
ter robustness while offering latency guarantees.

Authors’ contributions
Hongyun Liu: Conceptualization, Methodology, Software, Writing- Original
draft preparation. Ruyue Xin: Conceptualization, Methodology, Software, Writ-
ing- Original draft preparation. Peng Chen: Conceptualization, Methodology,
Software, Writing, Data curation, Writing- Original draft preparation.Hui Gao:
Methodology, Software, Writing, Data curation, Writing. Paola Grosso: Supervi-
sion, Writing- Reviewing and Editing. Zhiming Zhao: Supervision, Writing-
Reviewing and Editing. All authors read and approved the final manuscript.

Funding
This work is funded by the European Union’s Horizon 2020 projects: ARTICONF
(Grant No. 825134), ENVRI-FAIR project (Grant No. 824068), BLUECLOUD (Grant
No. 862409), Bluecloud2026(Grant No. 101094227) and LifeWatch ERIC, the
Natural Science Foundation of Shaanxi (Grant No. 2022JQ-651), China Scholar-
ship Council, Science and Technology Program of Sichuan Province (Grant
No.2020YFG0326), and Talent Program of Xihua University (Grant No.Z202047).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 4 November 2022 Accepted: 2 April 2023

References
 1. Wu L, Liu M, Wang XM, Chen Gh, Hg Gong (2011) Mobile distribution-

aware data dissemination for vehicular ad hoc networks. Ruanjian
Xuebao/J Softw 22(7):1580–1596

 2. Pham QV, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang WJ, Ding Z (2020)
A survey of multi-access edge computing in 5g and beyond: Fun-
damentals, technology integration, and state-of-the-art. IEEE Access
8:116974–117017

 3. Song C, Liu M, Cao J, Zheng Y, Gong H, Chen G (2009) Maximizing net-
work lifetime based on transmission range adjustment in wireless sensor
networks. Comput Commun 32(11):1316–1325

 4. Yu S, Wang X, Langar R (2017) Computation offloading for mobile edge
computing: A deep learning approach. In: 2017 IEEE 28th Annual Inter-
national Symposium on Personal, Indoor, and Mobile Radio Communica-
tions (PIMRC). IEEE, New York, pp 1–6

 5. Wang J, Hu J, Min G, Zhan W, Ni Q, Georgalas N (2019) Computation off-
loading in multi-access edge computing using a deep sequential model
based on reinforcement learning. IEEE Commun Mag 57(5):64–69

 6. Liu H, Chen P, Zhao Z (2021) Towards a robust meta-reinforcement
learning-based scheduling framework for time critical tasks in cloud
environments. In: 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, pp 637–647

 7. Liu H, Xin R, Chen P, Zhao Z (2022) Multi-objective robust workflow
offloading in edge-to-cloud continuum. In: 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD). IEEE, pp 469–478

 8. Singh S, Dhillon HS, Andrews JG (2013) Offloading in heterogeneous net-
works: Modeling, analysis, and design insights. IEEE Trans Wirel Commun
12(5):2484–2497

 9. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang
Y (2016) Energy-efficient offloading for mobile edge computing in 5g
heterogeneous networks. IEEE Access 4:5896–5907

 10. Chen C, Li H, Li H, Fu R, Liu Y, Wan S (2022) Efficiency and fairness oriented
dynamic task offloading in internet of vehicles. IEEE Trans Green Com-
mun Netw 6(3):1481–1493. https:// doi. org/ 10. 1109/ TGCN. 2022. 31676 43

 11. Chen C, Zeng Y, Li H, Liu Y, Wan S (2023) A multihop task offloading deci-
sion model in mec-enabled internet of vehicles. IEEE Internet Things J
10(4):3215–3230. https:// doi. org/ 10. 1109/ JIOT. 2022. 31435 29

 12. Wei W, Yang R, Gu H, Zhao W, Chen C, Wan S (2022) Multi-objective opti-
mization for resource allocation in vehicular cloud computing networks.
IEEE Trans Intell Transp Syst 23(12):25536–25545. https:// doi. org/ 10. 1109/
TITS. 2021. 30913 21

 13. Ye Y, Hu RQ, Lu G, Shi L (2020) Enhance latency-constrained com-
putation in mec networks using uplink noma. IEEE Trans Commun
68(4):2409–2425

 14. Feng J, Pei Q, Yu FR, Chu X, Shang B (2019) Computation offloading and
resource allocation for wireless powered mobile edge computing with
latency constraint. IEEE Wirel Commun Lett 8(5):1320–1323

 15. Meng H, Chao D, Guo Q (2019) Deep reinforcement learning based task
offloading algorithm for mobile-edge computing systems. In: Proceed-
ings of the 2019 4th International Conference on Mathematics and
Artificial Intelligence. Association for Computing Machinery, New York,
pp 90–94

 16. Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W (2019) Learning-based
computation offloading for iot devices with energy harvesting. IEEE Trans
Veh Technol 68(2):1930–1941

 17. Dinh TQ, La QD, Quek TQ, Shin H (2018) Learning for computation offload-
ing in mobile edge computing. IEEE Trans Commun 66(12):6353–6367

 18. Cheng N, Lyu F, Quan W, Zhou C, He H, Shi W, Shen X (2019) Space/aerial-
assisted computing offloading for iot applications: A learning-based
approach. IEEE J Sel Areas Commun 37(5):1117–1129

 19. Li M, Yu FR, Si P, Wu W, Zhang Y (2020) Resource optimization for delay-
tolerant data in blockchain-enabled iot with edge computing: A deep
reinforcement learning approach. IEEE Internet Things J 7(10):9399–9412

 20. Wang J, Hu J, Min G, Zomaya AY, Georgalas N (2020) Fast adaptive task
offloading in edge computing based on meta reinforcement learning.
IEEE Trans Parallel Distrib Syst 32(1):242–253

 21. Cao Z, Zhou P, Li R, Huang S, Wu D (2020) Multiagent deep reinforcement
learning for joint multichannel access and task offloading of mobile-edge
computing in industry 4.0. IEEE Internet Things J 7(7):6201–6213

https://doi.org/10.1109/TGCN.2022.3167643
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.1109/TITS.2021.3091321
https://doi.org/10.1109/TITS.2021.3091321

Page 17 of 17Liu et al. Journal of Cloud Computing (2023) 12:58

 22. Lu H, Gu C, Luo F, Ding W, Liu X (2020) Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforce-
ment learning. Futur Gener Comput Syst 102:847–861

 23. Lolos K, Konstantinou I, Kantere V, Koziris N (2017) Elastic management of
cloud applications using adaptive reinforcement learning. In: 2017 IEEE
International Conference on Big Data (Big Data). IEEE, pp 203–212

 24. Guan S, Boukerche A, Loureiro A (2020) Novel sustainable and heteroge-
neous offloading management techniques in proactive cloudlets. IEEE
Trans Sustain Comput 6(2):334–346

 25. Li W, Jin S (2021) Performance evaluation and optimization of a task off-
loading strategy on the mobile edge computing with edge heterogene-
ity. J Supercomput 77(11):12486–12507

 26. Xiong K, Leng S, Huang C, Yuen C, Guan YL (2020) Intelligent task offload-
ing for heterogeneous v2x communications. IEEE Trans Intell Transp Syst
22(4):2226–2238

 27. Mach P, Becvar Z (2017) Mobile edge computing: A survey on archi-
tecture and computation offloading. IEEE Commun Surv Tutor
19(3):1628–1656

 28. Zhao Z, Zhao R, Xia J, Lei X, Li D, Yuen C, Fan L (2019) A novel framework
of three-hierarchical offloading optimization for mec in industrial iot
networks. IEEE Trans Ind Inform 16(8):5424–5434

 29. Huang M, Liu W, Wang T, Liu A, Zhang S (2019) A cloud-mec collaborative
task offloading scheme with service orchestration. IEEE Internet Things J
7(7):5792–5805

 30. Yang X, Yu X, Huang H, Zhu H (2019) Energy efficiency based joint com-
putation offloading and resource allocation in multi-access mec systems.
IEEE Access 7:117054–117062

 31. Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Optimized computa-
tion offloading performance in virtual edge computing systems via deep
reinforcement learning. IEEE Internet Things J 6(3):4005–4018

 32. Chen M, Guo S, Liu K, Liao X, Xiao B (2020) Robust computation offload-
ing and resource scheduling in cloudlet-based mobile cloud computing.
IEEE Trans Mob Comput 20(5):2025–2040

 33. Hyytiä E, Spyropoulos T, Ott J (2015) Offload (only) the right jobs: Robust
offloading using the markov decision processes. In: 2015 IEEE 16th
international symposium on a world of wireless, mobile and multimedia
networks (WoWMoM). IEEE, pp 1–9

 34. Fiechter CN (1994) Efficient reinforcement learning. In: Proceedings of the
seventh annual conference on Computational learning theory. pp 88–97

 35. Dann C, Li L, Wei W, Brunskill E (2019) Policy certificates: Towards account-
able reinforcement learning. In: International Conference on Machine
Learning. PMLR, pp 1507–1516

 36. Ménard P, Domingues OD, Jonsson A, Kaufmann E, Leurent E, Valko M
(2021) Fast active learning for pure exploration in reinforcement learning.
In: International Conference on Machine Learning. PMLR, pp 7599–7608

 37. Domingues OD, Ménard P, Kaufmann E, Valko M (2021) Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. In:
Algorithmic Learning Theory. PMLR, pp 578–598

 38. Azar MG, Osband I, Munos R (2017) Minimax regret bounds for reinforce-
ment learning. In: International Conference on Machine Learning. PMLR,
pp 263–272

 39. Simchowitz M, Jamieson KG (2019) Non-asymptotic gap-depend-
ent regret bounds for tabular mdps. Adv Neural Inf Process Syst
32:1153–1162

 40. Xu H, Ma T, Du S (2021) Fine-grained gap-dependent bounds for tabular
mdps via adaptive multi-step bootstrap. In: Conference on Learning
Theory. PMLR, pp 4438–4472

 41. Dann C, Marinov TV, Mohri M, Zimmert J (2021) Beyond value-function
gaps: Improved instance-dependent regret bounds for episodic rein-
forcement learning. Adv Neural Inf Process Syst 34:1–12

 42. Wagenmaker AJ, Simchowitz M, Jamieson K (2022) Beyond no regret:
Instance-dependent pac reinforcement learning. In: Conference on
Learning Theory. PMLR, pp 358–418

 43. Zaremba W, Sutskever I, Vinyals O (2014) Recurrent neural network regu-
larization. arXiv preprint arXiv: 1409. 2329

 44. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv: 1409. 0473

 45. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with
neural networks. Adv Neural Inf Process Syst 27

 46. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast
adaptation of deep networks. In: International conference on machine
learning. PMLR, pp 1126–1135

 47. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal
policy optimization algorithms. arXiv preprint arXiv: 1707. 06347

 48. Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimen-
sional continuous control using generalized advantage estimation. arXiv
preprint arXiv: 1506. 02438

 49. Arabnejad H, Barbosa JG (2013) List scheduling algorithm for heteroge-
neous systems by an optimistic cost table. IEEE Trans Parallel Distrib Syst
25(3):682–694

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1506.02438

	Robust-PAC time-critical workflow offloading in edge-to-cloud continuum among heterogeneous resources
	Abstract
	Introduction
	Problem formulation
	Related work
	Methodology
	Latency-critical Probably Approximate Correct (PAC) reinforcement learning
	Formulation of latency-critical PAC-RL
	Formulation of MLR-LC-DRLO
	Algorithm

	Evaluation
	Evaluation Measurements
	Set up
	Results

	Discussion
	Conclusion
	References

