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Abstract 

The combination of federated learning and recommender system aims to solve the privacy problems of recom-
mendation through keeping user data locally at the client device during the model training session. However, most 
existing approaches rely on user devices to fully compute the deep model designed for the large-scale item rec-
ommendation; therefore, imposing high calculation and communication overheads on resource-constrained user 
devices. Consequently, achieving efficient federated recommendations across ubiquitous mobile devices remains an 
open research problem. To this end, in this paper we propose an efficient and privacy-preserving federated learning 
framework which is based on the cloud-edge collaboration for large-scale item recommendation called SpFedRec. In 
our method, to reduce the computation and communication cost of the federated two-tower model, a split learning 
approach is applied to migrate the item model from participants’ edge devices to the computationally powerful cloud 
side and compress item data while transmitting. Meanwhile, to enhance the feature representation, the Squeeze-
and-Excitation network mechanism is used on the backbone model to optimize the perception of dominant features. 
Moreover, because the gradients transmitted contain private information about the user; therefore, we propose a 
multi-party circular secret-sharing chain based on secret sharing for better privacy protection. Extensive experiments 
using plausible assumptions on two real-world datasets demonstrate that our proposed method improves the aver-
age computation time and communication cost by 23% and 49%, respectively. Furthermore, the proposed model 
accomplishes comparable performance with other state-of-art federated recommendation models.

Keywords Federated learning, Recommendation system, Split learning, Cloud-edge collaboration, Computation and 
communication compression

Introduction
Nowadays, information technology including storage and 
computing is viewed as on-demand facilities, denoted 
as "X as a Provider." Large-scale data owners typically 
outsource their data to clouds to reduce the cost of data 

storage and management while enhancing privacy. Even 
so, data owners do not have direct control over their data 
stored on remote cloud servers, which raises concerns 
about their cloud services being illegally acquired or mis-
treated by cloud service providers (CSPs), particularly 
for sensitive data such as health records, official records, 
and email messages etc. Even though many CSPs argue 
that their cloud services include several security meas-
ures such as access control, firewalls, and penetration 
testing, concerns about the safety and confidentiality 
of cloud services remain major roadblocks to the wide-
spread adoption of cloud computing [1]. Because of the 
foregoing, privacy-preserving suggestions have become 
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a research hotspot as user privacy [2] and data security 
[3] concerns have grown. Under strict regulatory require-
ments such as GDPR and CPRA [4] federated learning 
(FL) [5] is regarded as one of the most efficient privacy-
preserving machine learning paradigms. Coordinated by 
a central server, participants of FL cooperatively train a 
model whereas keeping the training data locally. Since FL 
can mitigate the systematical privacy hazards of a central 
machine learning scenario, it fits the need for privacy 
protection and data safety in recommender systems (RS).

Ammad et al. [6] combined the FL and collaborative fil-
tering and proposed FCF. FCF avoids the centralized col-
lection of users’ local training data to ensure privacy and 
achieves minimal performance loss. However, the gradi-
ents uploaded by the client to the server can still expose 
the user’s confidentiality. Following FCF, Lin et al. [7] pro-
posed a federated collaborative filtering recommendation 
(FedRec) model by explicit feedback. They proposed an 
obfuscated populating method: (1) Client randomly sam-
pling a set of unrated items list and assigned with false 
rating values. (2) hybrid with real local historical data to 
compute the design gradients and upload it to the server, 
thus avoiding the server-aware local historical interac-
tion. Subsequent research extends the FL-based RS into 
different application scenarios. Flanagen et  al. [8] pro-
posed the first federated multi-view matrix factoriza-
tion (FED-MVMF) algorithm, which solves the cold-start 
problem by integrating information from multiple data 
sources.

Qi et  al. [9] proposed the FedNewsRec framework by 
combining news recommendations with FL, they used a 
local differential privacy technique to add random noise 
to the gradients to protect the privacy of the user. Chen 
et  al. proposed a privacy-preserving POI recommenda-
tion framework (PriRec) for the POI recommendation 
scenario, some of the public data including POI descrip-
tion and category information is stored on the server to 
reduce the communication cost on the client side. Luo 
et al. [10] proposed an FL-based social recommendation 
model that utilizes contrastive learning to eliminate het-
erogeneity of data distribution among users.

Additionally, although several approaches have been 
planned to enhance the efficiency of FL-based RS, they 
do not openly report the challenge within large-scale 
item recommendations. Muhammad et al. [11] proposed 
the FedFast algorithm, which combines the GMF (Gener-
alized Matrix Factorization) with FL. The FedFast accel-
erates the convergence of FedGMF by using client-side 
sampling and enabling parameter sharing among cluster-
ing users, which can complete the training with a small 
number of selected users, circumventing the delay caused 
by some inefficient clients. Reisizadeh et  al. [12] also 
selected only some clients for model training and utilized 

low-precision quantization methods to compress the 
model parameters. Some studies [6, 13, 14] reduce the 
communication cost between the client and the server by 
performing multiple iterations of training locally on the 
client side. However, they do not decrease the absolute 
workload on a client device.

Qin et al. [15] proposed a novel privacy-preserving rec-
ommender scheme framework based on federated learn-
ing, which enables the server to build a matching model 
using explicit feedback from a subset of users but causes 
privacy exposure. Utmost present works undertake that 
all client devices are immediately accessible and have suf-
ficient power to contribute in FL training. However, in 
large-scale item recommendation, FL-based recommen-
dation still faces the challenge of communication and 
computation limitations from the client device. (1) The 
RSs in the industry are designed for massive data analy-
sis with large and complex models [16]. Many consumer-
grade mobile devices cannot handle the local training 
task, thus leading to model training failure. (2) large-scale 
RS often has millions of items to be filtered, and a cen-
tralized RS can alleviate this part of the work with the 
matching mechanism under strict latency requirements. 
However, in the FL recommendation scenario, since the 
server cannot directly access the users’ data, the vast vol-
ume of raw item data has to be transmitted to the user’s 
device, producing considerable communication and cal-
culation overhead. In summary, a major challenge for 
implementing large-scale item federated recommenda-
tions is: How to efficiently compress the computation and 
communication overhead under privacy protection and 
enable resource-limited ubiquitous mobile devices to sat-
isfy the performance requirement of federated large-scale 
item recommendations.

In this study, to overcome the challenge of the FL cli-
ent-side computation and communication compression 
while ensuring privacy, we propose a cloud-edge collab-
oration-based Split Federated Recommendation frame-
work (SpFedRec). The SpFedRec leverages the two-tower 
recommendation model’s unique structure and separates 
the two independent sub-networks of user and item mod-
els based on split learning. The RS server (cloud side) is 
responsible for maintaining the training and updating of 
the item model. In contrast, the client device (edge side) 
maintains the training and update of the user model. 
Meanwhile, the RS server can provide the required low-
dimensional item embeddings to the clients involved 
in FL training or online prediction, avoiding large-scale 
item data transfer. With SpFedRec, the client device can 
complete the similarity matching of cached user embed-
ding and server-provided items embedding for online 
inferring by lightweight computation. To further improve 
feature utilization and thus enhance recommendation 
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performance in a decentralized state of data and models, 
we utilize the SENet mechanism to learn feature impor-
tance dynamically. Currently, many privacy-preserving 
techniques are introduced into FL, such as secure multi-
party computation (MPC) [17], differential privacy (DP) 
[18], and homomorphic encryption (HE) [19] as the 
local gradient updates may reveal private user informa-
tion [20]. Because DP introduces random noises into the 
global model, affecting its accuracy, and HE requires too 
much extra computation [21, 22], we opt for MPC, which 
can offer provable privacy guarantees for multi-party 
gradient aggregation at a lower computational cost.

This paper concentrates on two useful compression 
objectives for FL-based RS in particular. (1) Good Com-
munications Compression [23] decreases communica-
tion overhead when FL training and online inferring 
devices are used. (2) Local Computation Reduction [19, 
24] decreases computation workload when devices par-
ticipate in FL training and online inference. The two-
tower model is commonly used to pre-filter huge items 
in large-scale item RS [25–27]. The two-tower model is 
distinguished by the fact that the user and item features 
are modeled as separate sub-networks and cached indi-
vidually [28]. When performing online inferring, only 
the cached embeddings of users and products must be 
matched for similarity. It is possible to separate these two 
independent sub-models, and their training and online 
inference can be conducted in separate entities. We high-
light our research contributions as given below:

• We propose SpFedRec for efficient and privacy-
preserving large-scale item recommendation. Apart 
from preventing users from sharing their private 
local data, we adopt a practical cloud-edge collabora-
tive split learning approach to enable SpFedRec sig-
nificantly reduce the computation and communica-
tion overhead on resource-constrained participants. 
SpFedRec can alleviate the critical communication 
and computation bottleneck for existing FL-based 
recommenders.
• To defend against the semi-honest server and 
malicious participants who may infer user data 
from intermediate information generated by the FL 
training process, we propose a multi-party circular 
secret-sharing chain to encrypt the gradient infor-
mation. We further introduce the obfuscated item 
request strategy to conceal the label information.
• We conduct extensive experiments on two real-
world datasets to verify the effectiveness and effi-
ciency of our proposed models, and results show that 
SpFedRec outperforms the state-of-art baselines. At 
the same time, it achieves effective communication 
and computation reduction.

The rest of this paper is organized as follows. In 
Sect.  "RQ2: Is the computation and communication 
efficiency of SpFedRec significantly improved com-
pared to the baseline models in the naïve FL setting?", 
we offer a brief overview of the related work and a few 
existing recommendation systems. Sect.  "RQ3: How do 
hyper-parameter settings  and  affect the performance 
and efficiency of SpFedRec?" introduces the preliminary 
knowledge and discusses several research methodologies. 
In Sect. "RQ4: How does our proposed privacy protection 
mechanism influence the performance and efficiency of 
SpFedRec?", we delibrate our proposed framework called 
SpFedRec. In Sect.  5, we present our experimental set-
tings and the obtained results. Finally, we conclude our 
paper in Sect.  6 and suggest few directions for further 
research and investigation.

Related work
These days, mobile edge computing as a technologi-
cal innovation is gaining traction [29], particularly the 
issue of MEC computing offloading. The majority of cur-
rent research uses delay, energy usage, a weighted sum 
of energy usage, and delay as the computing offloading 
effectiveness indicators. To achieve the optimum solu-
tion task scheduling technique for delay-based compu-
tational offloading, Liu et al. [30] developed an effective 
one-dimensional evolutionary algorithm to tackle the 
challenge of power-constrained delay reduction. Ning 
et  al. [31] suggested an adaptive heuristic allocation of 
resources for dynamic offloading judgments, taking into 
account the cooperation of mobile edge computing and 
cloud computing. Wu et al. [32] developed a computing 
offloading framework based on nonorthogonal multiple 
access (NOMA) innovations to reduce the total finish 
time of all mobile terminal jobs. Zhang et  al. [33] com-
bined computing offloading, information caching, and 
allocation of resources into a single model and created 
an asymmetric tree structure to reduce the total delay 
usage of computing tasks. On other hand, communica-
tion and computation represent a significant bottleneck 
in enabling practical applications of cross-device feder-
ated learning [4]. The bandwidth of the mobile device’s 
uplink channel is much narrower than the bandwidth of 
the connection inside the server, and the mobile network 
is expensive and unreliable. Meanwhile, consumer-grade 
processors in mobile devices are far less capable than the 
GPU on deep-learning servers. In deep learning models, 
the training session on client devices will consume a sig-
nificant amount of time and power, which is unaccepta-
ble to users.

Additionally, most existing FL-based recommenda-
tion studies assume that all client devices are immedi-
ately available and have sufficient capacity to undertake 
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the computation of the entire recommendation model 
[6], which is tough for a mobile device with limited 
resources, especially since industrial RS are in huge 
size and have massive amounts of item data. Although 
several approaches have been planned to enhance the 
efficiency of FL-based RS, they do not openly address 
the challenge within large-scale item recommenda-
tions. There are some studies on the problem of mini-
mizing total mobile energy usage under the restriction 
of computational delay.  Muhammad et  al. [11] pro-
posed the FedFast algorithm, which combines the GMF 
(Generalized Matrix Factorization) with FL. The Fed-
Fast accelerates the convergence of FedGMF by using 
client-side sampling and enabling parameter sharing 
among clustering users, which can complete the train-
ing with a small number of selected users, circum-
venting the delay caused by some inefficient clients. 
Reisizadeh et  al. [12] also selected only some clients 
for model training and utilized low-precision quan-
tization methods to compress the model parameters. 
Some studies [6, 13, 14] reduce the communication 
cost between the client and the server by performing 
multiple iterations of training locally on the client side. 
However, they do not reduce the absolute workload on 
a client device. Qin et al. [15] proposed a novel privacy-
preserving recommender system framework based on 
federated learning, which enables the server to build a 
matching model using explicit feedback from a subset 
of users but causes privacy exposure.

Even so, the above said privacy and scheme load prob-
lems were planned for cloud computing or mobile cloud 
computing situations. This restriction has motivated our 
study to discover a solution for the FL client-side com-
putation and communication compaction challenging 
task while maintaining privacy, and we suggest a split 
federated recommendation framework based on cloud-
edge collaboration (SpFedRec). It proposes the suggested 
framework for efficient and privacy-preserving large-
scale item recommendation. Apart from preventing users 
from sharing their private local data, we adopt a practi-
cal cloud-edge collaborative split learning approach 
“SpFedRec” that significantly reduces the computation 
and communication overheads on resource-constrained 
participants. Moreover, we believe that our proposed 
SpFedRec model could improve the critical communica-
tion and computation bottleneck for existing FL-based 
recommenders.

Preliminaries
This section introduces some basics and preliminary 
knowledge about our backbone model, split-learning, 
and secure multi-party computing.

Backbone model
The standard setting of the two-tower model is 3 layers, 
fully linked neural network for both the item and user 
model, i.e., the Deep Semantic Similarity Model (DSSM) 
[28]. The most important characteristic of the two-tower 
design is that the user and item model are two independ-
ent sub-networks, as shown in Fig.  2(a). The two sub-
networks can be cached separately so that the online 
prediction only requires similarity matchings in mem-
ory, which is friendly to the industrial world that values 
computation efficiency. The two-tower model recom-
mendation structure is extensively utilized in advertising 
(Facebook) [34], information retrieval (Google) [30], and 
recommendation (YouTube) [35].

Specifically, the goal of utilizing the two-tower model 
for large-scale item recommendation is to retrieve a sub-
set of (hundreds of ) items for a given user for subsequent 
ranking. There are two different embedding functions 
u(x, θu) and v

(
y, θv

)
 , mapping both user {xi}Ni=1 and item 

yj
M

j
 to a k-dimensional vector space. The output is the 

similarity matching of the two embeddings by Eq. 1. The 
object of training is to learn the parameters θu and θv 
based on the training data D :=

{(
xi, yj, r

)}T
i=1

 , where the 
r is the label that indicates if the user interacts with an 
item.

Given a user x , the probability of getting item y from 
corpus M can be considered as a multi-classification 
problem, the SoftMax function as illustrate in Eq. 2. And 
the loss function is a log-likelihood loss as illustrate in 
Eq. 3, where the T denote the batch size.

Split learning
Split learning is a deep learning paradigm based on 
server and client collaboration [36]. Unlike the FL setups 
that emphasis on data and model distribution, the core 
idea of split learning is to divide the training and infer-
ence process of a deep model by layers and execute them 
in different entities [37].

The Cloud-Edge collaborative split learning in the 
U-shape configuration is a privacy-preserving varia-
tion, as shown in Fig. 1. The Edge-side includes various 
mobile devices, such as tablets, mobile phones, and lap-
tops) with limited computational resources but various 

(1)Sim
(
x, y

)
= �u(x, θu), v

(
y, θv

)
�

(2)P
(
y|x, θu, θv

)
=

eSim(x,y)
∑M

j=1e
Sim(x,yj)

(3)LT(θu, θv) := −
1

T

∑

i∈|T|
rilog(P

(
y|x, θu, θv

)
)
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data sources. Edge devices train deep models based 
on local data to provide better information services to 
edge-side users. However, due to the limitation of com-
putational power, it cannot complete the local training 
but requests the cloud server for co-computation. The 
cloud side provides redundant computing resources 
as a service to the edge-side devices. Both client-side 
input data and labels are not transferred to the cloud to 
ensure edge-side data privacy [38].

Formally, there is a deep model training task includ-
ing n hidden layers L_i , i ∈ [1, n] . An edge-device needs 
to train the deep model based on local data D but with 
insufficient computational capacity. The edge-device 
begins the model training with forward propagation 
until it reaches the split layer Ls where s < n . The fea-
ture mapping of Ls is then encrypted and sent to the 
cloud for further propagation Ls+1 → Ln . The output 
of the Ln will be sent back to the client for loss com-
putation. The output layer’s encrypted gradients will be 
directed to the cloud and backpropagation is from the 
Ln to the split layer in a opposite path. The gradients 
of Ls will be returned to the edge-side, and the rest of 
backpropagation will be finished. The above steps go 
through multiple iterations until the model converges.

Based on the cloud-edge collaborative split learning, 
we can split the hidden layer of a deep learning-based 
FL training task from a resource-constrained edge 
device. The cloud server that provides the computation 
service will handle the split workload, improving the 
efficiency of FL training and online inferring. To our 
knowledge, we proposed the first split learning-based 
federated recommendation framework to improve the 
computation efficiency and model training durations.

Secure multiparty computing
MPC is an algorithmic protocol based on cryptography to 
achieve privacy computing, and it is a comprehensive 
application of a variety of cryptography-based tools [17]. 
MPC ensures that multiple participants {√i}i∈[1,n] can 

jointly accomplish a specific confidential computation task 
f(x1, x2, . . . , xn) without revealing their private data xi , 
each party does not receive any additional information 
other than its inputs and outputs in the end of the task. 
MPC has been widely used in FL based RS for intermedia 
parameter secure aggregation, such as PriRec [39] and 
SeSoRec [40]. Here, we present the Addition MPC protocol 
by secret sharing that we will use in SpFedRec for secure 
gradient and BP error signal aggregation.

Denote multiple participants {√i}i∈[1,n] wish to compute 

the sum of their data xi without revealing their secrets. 
Each party √i generates n random data x1i , x

2
i , . . . , x

n
i  such 

that they satisfy Eq. 4. Then, send the split secrets to the 
corresponding party to enable the computation as Eq.  5. 
Finally, the computation results of Eq. 5 are aggregated to 
obtain the sum of all parties’ data as Eq. 6. With the secret 
sharing-based MPC protocol, none of the members can 
access others’ private data but can obtain the final sum 
result. The secrecy of the members’ data cannot be broken 
when the total number of adversarial members is less than 
(n − 1).

(4)x1i + x2i + · · · + xni = xi, i ∈ [1, n]

(5)x∗i = xi1 + xi2 + · · · + xin, i ∈ [1, n]

Fig. 1 Cloud-Edge Collaborative Split learning in U-Shape configuration [4]. The L_s denote the edge-side cut layer and the L_n represent the 
cloud-side output layer
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The SpFedRec framework
This section presents the proposed SpFedRec model and 
its design in detail. We first discuss the problem defini-
tion and then systematically explain the overall frame-
work, training steps, and online forecast. We conclude 
the section with an argument of backbone model varia-
tions. We list important notations used throughout the 
paper in Table 1.

Problem definition
Suppose that the recommendation server has a large-
scale item data V = {v1, v2, . . . } and a list of clients 
C = {c1, c2, . . . } . Each client ci is a user of recommenda-
tion service, his/her personalized feature ui and interac-
tion history are combined as Di =

{
ui,

(
vj, r

)}M
j=1

 stored 
locally on his/her device. The ui ∈ X  and vj ∈ Y are both 
feature representations of the respective feature space, 
and r is the interaction label. Let Mu(u, θu) and Mv(v, θv) 
be the embedding functions for user and item features 
representations, that can map user and item features to a 
uniformed low-dimensional dense vector ũ and ṽ for 
similarity matching, respectively.

The goal of SpFedRec is to collaborate clients from C 
to jointly learn model parameters θu and θv in a compu-
tationally and communicationally efficient way, while 

(6)SUM(x1, x2, . . . , xn) =
∑n

i=0
x∗i

the training data Di is distributed among the clients’ 
resource-limited mobile device.

Framework overview
The overall framework of the proposed SpFedRec model 
is shown in Fig. 2(c). The Rec Server maintains the large-
scale item data V  , and N  different client device ci main-
tains the local user data Di.

In contrast to the naïve setting of the federated two-
tower model shown in Fig. 2(b), the computation of the 
two-tower model is split into two independent sub-mod-
els, the user model and the item model. The edge side cli-
ent device is responsible for updating and computing the 
user model, while the powerful Rec Server on the cloud 
side maintains the item model. The model compression 
reduces the amount of communication when clients 
download and upload model parameters and improves 
the computation efficiency for the model update.

The large-scale item data will be mapped into low-
dimensional dense vectors through the server-side item 
model and provided to the clients. In fact, the lightweight 
item embedding will further reduce the clients’ compu-
tation and communication overheads during the training 
and online inferring phases.

Each client mixes randomly selected negative items 
with actual samples when sending item embedding 
requests to the Rec Server (Obfuscated Items Request), 
ensuring that the Rec Server cannot obtain the natural 
interaction history of individual users. A secure aggrega-
tion server (SAS) is applied to carry out secure aggrega-
tion of gradients and back-propagation (BP) error signal 
by circular secret-sharing chain (Sec 3.3.2). The privacy 
protection setting is able to against semi-honest adver-
saries ( < N − 1 ) from recover the user’s original training 
data.

In the following subsections, we are going to elaborate 
on the training process which is embedded to the pro-
posed SpFedRec model.

Split federated learning
At initial stage ( t = 0) , the Rec Server initializes the two 
independent sub-networks as Mu

(
u, θ0u

)
 and Mv

(
v, θ0v

)
 . 

Then randomly sample K available clients C0 =
{
c0k
}K
k=1

 , 
distribute the initialized user model Mu

(
u, θ0u

)
 to each 

sampled client for local user model training and SAS for 
global user model update.

Client‑side local training
The first step of local client-side training is requesting items 
embedding from Rec Server. However, sending the raw 
item list to the server may leak private user information. 
Thus, we propose obfuscated item request, a client ckt  ran-
domly samples a subset of items V−

k  as negative samples 

Table 1 List of mathematical notations

Notations Description

ui , vj User i  and item j

Mu(u, θu) , Mv(v , θv) User and item model

ũi , ṽj Output of user and item model

t Training round

θ0u , θ
0
v

Initial user and item model’s parameters

θtu , θ
t
v User and item model’s parameters at training round 

t

Ct Random selected subset of clients at training round 
t

K Number of selected clients in each training round

Btk Batch of training set for client k at training round t

V−
k  , V+

k
Subset of non-clicked and clicked items for client k

∇θ tu ,∇θ tv The gradients of User and item model at training 
round t

P Negative sampling rate

ηu , ηv Learning rate for user and item model update

β1 , β2,τ Hyperparameters for FedAdam optimizer

σ , δ Activation functions

r Reduction ratio
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and combines it with positive samples V+
k  . Denoting the 

obfuscated item request list as Vt
k = V+

k ∪ V−
k = {vtkj}

T
j=1 , 

where the T =
∣∣Vt

k

∣∣ as the local batch size. Once received 
the obfuscated item request, the Rec Server will compute 
the item embedding by Eq.  7 and returns items embed-
dings list Ṽt

k = {ṽtkj}
T
j=1 to the client device.

While pending the items embeddings from Rec Server, 
the client ckt  compute the user embedding ũkt  by Eq.  8. 

(7)ṽtkj = Mv

(
vtkj , θ

t
v

)
, j ∈ [1,T ]

Combined the user embedding with received items 
embedding as local training set Bt

k = {ũkt ,
(
ṽtk, rj

)
}Tj=1 . 

Then, the client computes the similarity matching of each 
training set pairs by Eq. 9 and obtains the average loss by 
Eq.  10. Denote the local gradients of the user model as 
∇θtuk , which are computed as Eq. 11. The local gradients 
of the user model will be securely uploaded to the SAS 
for global aggregation by circular secret-sharing chain.

(8)ũtk = Mu

(
uk, θ

t
u

)

Fig. 2 Illustration of two-tower recommendation model in a centralized setting, b naïve federated learning setting, and c split federated learning 
framework (SpFedRec)
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Circular secret‑sharing chain
The circular secret-sharing of local user model gradients 
and loss starts with secret splitting. Each client ctk split the 
gradients of local user model ∇θtku as two random matrixes [
∇θtku

]
1
 and 

[
∇θtku

]
2
 that they satisfy Eq. 13. Split the loss in 

the same way to satisfy Eq. 14. Then, each client ctk delivers 
part of the secret 

[
∇θtku

]
2
 and 

[
LtBk

]
2
 to the next client ctk+1 . 

The last client, ctK , will pass his/her part of the secret to the 
first client ct1 . The process is under SAS’s coordination and 
forming a circular secret-sharing chain. After received the 
part of the secret from another client, sum it with the 
reserved part and obtain a mixed-secrets ∇θtku

∗ and LtBk
∗ by 

Eq. 15. Finally, during the las step each client uploads the 
mixed-secrets to the SAS for global model update.

Global model update
The SAS is responsible for the global user model update. 
Denote the average gradients of the user model as ∇θtu 
and the average loss of model as Lt , which are computed 
as Eq. 16.

The SAS will send the average loss of the model to the 
Rec Server. Then, SAS will update the global user model 
by the average gradients of the user model through the 
FedAdam optimizer [41] as Eq.  17, where the η is the 
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(12)∇θtku =
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2
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∗
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K
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LtBk

∗

learning rate, β1 , β2 , and τ are hyper-parameters. The 
updated global user model parameters θt+1

u  are distrib-
uted to all clients served for the next round of training.

After received the average loss of the model from SAS, 
the Rec Server compute the average gradients of item 
model ∇θtv  by Eq. 18.

Similarly, we use the FedAdam optimizer to update the 
universal entry model as Eq. 19. The efficient global entry 
model Mv

(
v, θt+1

v

)
 will provide obfuscated items embed-

ding for next training round.

Finally, update the training iteration as t = t + 1 until 
the model convergence.

Online inferring
After finishing the model’s training, the Rec Server will 
generate item embeddings based on the present global 
entry design. Denote the item embedding as Ṽ and allo-
cate it to all client devices. When performing online 
inferring, a client device only needs to compute the 
resemblance matching of locally cached user embedding 
ũ and each item embedding within Ṽ . Transferring low-
dimensional dense item embedding will be much less 
overhead to the client’s communication than transferring 
the original item data.

Model variations
The backbone model is a three-layer, fully linked neu-
ral network for both item and user model. However, the 
standard setting makes insufficient use of contralateral 
feature information due to the separate training of these 
two towers. Inspired by [42], we utilize SENet mecha-
nism to improve the perception of core features in the 
hidden layer, thus enhance their information representa-
tion in the similarly matching phase.

The SENet enhanced model architecture for both user 
and item model is illustrated in Fig. 3. The feature embed-
ding layer can embed the sparse feature of user and item 
data into dense real-value vector D = [d1, d2, . . . , df ] , 

(17)

mt
u = β1m
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u + (1− β1)∇θtu

µt
u = β2µ

t
u−1 + (1− β2)

(
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)2
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u√

µt
u+τ

(18)∇θtv =
∂Lt

∂θtv

(19)

mt
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t−1
v + (1− β1)∇θ tv

µt
v = β2µ

t
v−1 + (1− β2)

(
∇θ tv

)2
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v = θ tv + η
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v√
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where f denotes the number of features, di ∈ Rh and 
D ∈ Rf×h where h is the embedding size. The feature 
embedding will be fed into the SE Block, which includes 
the three steps of feature embedding manipulation high-
lighted in Fig. 4.

Squeeze
This step compressing the feature embedding in the spa-
tial dimension, apply average pooling to turn two-dimen-
sional feature embedding D into a real number vector 
A = [a1, a2, . . . , af ] , where ai is a scalar value and compute 
by Eq. 20.

Excitation
This step captures the weight of feature embedding and 
represent it as a weight vector S. The weight of feature 
embedding can be calculated as Eq. 21. The σ and δ are acti-
vation functions. W1 ∈ Rf× f

r , and W2 ∈ f
r × f represent 

two fully connected layers, where the r is reduction ratio to 
control capacity and computational cost [43].

Reweight
The final does field-wise multiplication of D and S and 
outputs the embedding E = [e1, e2, . . . ef ] , and ei ∈ R , 
which can be calculated as Eq. 22. Since the value range 
of a is in [0, 1] , the new embedding will retain useful fea-
tures and suppress less useful ones to improve model 
performance.

(20)ai = Fsq(di)
1

h
=

∑h

j=1
di,j

(21)si = Fex(ai) = σ(W2 · δ(W1 · ai))

Finally, the user and item embedding are output by the 
multiple hidden layers compressing several fully con-
nected layers. Let E(0) as the output of SE Block and fed 
into the hidden layers. The feed-forward process is com-
puted by Eq. 23. The l is the depth of hidden layer, σ is the 
activation function, W(l) and b(l) as the weight and bias 
of l-th layer. The E(l) is the hidden layer’s output, which 
also represents the user and item embedding for similar-
ity computation.

In the subsequent experiments, we build DSSM based 
SpFedRec and SENet enhanced SpFedRec for perfor-
mance and efficiency evaluation.

Evaluation setup
This section introduces our evaluation settings.

Datasets
To evaluate the performance of the proposed model 
“SpFedRec” against the state-of-art baseline approaches, 
we conducted several experiments on two real datasets 
i.e. MovieLens-1  M [44] and Adressa-1  week [45], as 
explained as below:

MovieLens‑1 M
It contains about 1 million explicit rating data for over 
3,000 movies from 6,022 users. It includes movie’s meta-
data (movieID, title, genres) and user features including 

(22)ei = Fre(di, si) = di · si

(23)E(l) = σ

(
W (l) · E(l−1) + b(l)

)

Fig. 3 The SENet enhanced model architecture for user and item model. The SE Block including three phases of feature embedding manipulation, 
Squeeze, Excitation and Reweight
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(UserID, Gender, Age, Occupation, Zip-code). Following 
[46], we converted explicit ratings to implicit ones by treat-
ing not rated items as negative implicit feedback.

Adressa‑1 week
It is a real-world online news dataset which is released by 
multiple Norwegian news publishers. This dataset contains 
up to 2 million clicks from 186,255 users on 14,732 news 
items. Following [47], we use (news_id, news_title, key_
words, news_body) as item features. Since Adressa does 
not contain user features, therefore we randomly sampled 
five clicked news for the first 2 days as user feature.

To ensure that each client has sufficient interaction 
records, we removed the users with less than 20 implicit 
records in both two datasets. For each positive feedback, 
randomly sample 10 negative interactive items for obfus-
cated item requests. The statistics of the two datasets are 
presented in the following Table 2.

Evaluation metrics
The evaluation is in Top-K recommendation, and we 
verify the performance of SpFedRec and baseline mod-
els using Recall@10, NDCG@10, and AUC as evaluation 
metrics. Recall@10 and NDCG@10 focus on the very 

Fig. 4 Flowchart of feature embedding
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top of recommendation list, while AUC measures overall 
accuracy.

For communication efficiency evaluation, we evaluate 
the client’s communication size per round of training and 
online inferring in megabytes. For computation efficiency 
evaluation, we evaluate time spent per round of training 
and online inferring in milliseconds. Each experiment is 
repeated five times independently, and the average results 
are reported.

Implementation details
We implemented all models including the baseline meth-
ods with PyTorch in our numerical experiments. The 
feature embedding size is set to 20 for MovieLens and 
60 for Adressa. For SE Block, the two activation func-
tions are Relu, and the reduction ratio is set to 3. The 
backbone model with three-layer fully linked neural net-
work and the neuron density for each layer is set as < 256, 
128, 128 > . The activation function for individually layer 
is tanh. K is set as 120 for MovieLens-1  M and 150 for 
Adress-1  week. To mitigate overfitting, we apply drop-
out and set the dropout rate as 0.2 . The learning rate is 
0.0001. We initialize the user and item model parameters 
by Gaussian distribution with a mean of 0 and a standard 
deviation of 0.1 . We conduct our experiments with dual-
NVIDIA 2080Ti GPUs as the server and a MacBook Pro 
with an M1 chip as the client device.

Experiments
Following the evaluation settings in Sect.  "RQ4: How 
does our proposed privacy protection mechanism influ-
ence the performance and efficiency of SpFedRec?", we 
conduct experiments to evaluate our proposed SpFe-
dRec framework. Specifically, we intend to verify our 
major claims by answering to the following four research 
questions:

1. RQ1: How does our method perform compared 
with baseline models?
2. RQ2: Is the computation and communication 
efficiency of SpFedRec significantly improved com-
pared to the baseline models in the naïve FL setting?
3. RQ3: How do hyper-parameter settings ρ and K  
affect the performance and efficiency of SpFedRec?

4. RQ4: How does our proposed privacy protection 
mechanism influence the performance and efficiency 
of SpFedRec?

Performance evaluation (RQ1)
As the core of SpFedRec model is its capability of per-
forming recommendation, we compare SpFedRec with 
the following seven baseline methods, including the cen-
tralized DSSM, DSSM in naïve setting of FL, and other 
state-of-art FL recommender systems.

1. DSSM [28]. The centralized version of DSSM is a 
deep semantic matching model for large corpus item 
recommendation and information retrieval. The set-
ting of its hidden layer is the same as the backbone 
model.
2. FCF [6]. The Federated Collaborative Filtering 
approach is an FL-based matrix factorization for 
the privacy-preserving recommendation. The client 
reserves the training data and maintains the update 
of the user feature vector and the gradient update of 
the item feature vector.
3. FedMVMF [46]. The Federated multi-view matrix 
factorization recommendation model utilized side-
information from both users and items to improve 
FL-based CF’s performance and alleviate the cold 
start problem.
4. FedNewsRec [9]. The FedNewsRec is a FL 
based privacy-preserving recommendation model 
designed for news recommendation.
5. FedDSSM [48]. The FL based DSSM model in the 
naïve setting, the client device is accountable for the 
training of both user and item model.
6. SpFedRec. In this model, we will be using our pro-
posed SpFedRec framework to train the backbone 
model in a privacy-preserving and efficient manner.
7. SpFedRec-SENet. In this model, we will be using 
our proposed SpFedRec framework to train the 
SENet enhanced backbone model in a privacy-pre-
serving and well-organized manner.

The experimental results of all these models are shown 
in Table 3, and we have the following observations during 
the numerical experiments:

• Compared to the centralized baseline model, SpFe-
dRec performs worse than the centralized DSSM but 
within the performance loss of FL [4]. The reason for 
the performance loss could be the bias introduced by 
the gradient averaging.

Table 2 Statistics of MovieLens-1 M and Adressa-1 week 
datasets

Dataset # Users # Items # Clicks Density (%) Item Data 
Size

MovieLens 6,022 3,043 995,154 5.4% 171Kbytes

Adressa 186,255 14,732 2,103,852 0.07% Gigabyte
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• Compared to the naive setting of FL based DSSM 
(FedDSSM), SpFedRec has only a slight performance 
loss. The use of average error for backward propaga-
tion of the item model is probably causing the minor 
performance loss. This result indicates that training 
the two-tower model using the SpFedRec frame-
work does not affect the performance too much.
• The SpFedRec-SENet outperforms the state-of-
art federated recommender models except less well 
than the FedNewsRec model on the Adressa dataset. 
The result demonstrates that our model well han-
dled the task of large-scale item recommendation.
• The SpFedRec-SENet significantly outperforms 
SpFedRec on both datasets (AUC +2.2% and +4.2% 
on the two datasets, respectively) and achieves com-
parable results to the centralized model. The main 
reason is that SE Block enhances the information uti-
lization of the dominant features while weakening the 
noise feature, allowing the dominant features to gain 
more weight in the similarity computation phase.

Efficiency comparison (RQ2)
This subsection presents the efficiency comparison of 
FedDSSM, SpFedRec, and SpFedRec-SENet on Mov-
ieLens and Adressa datasets. The evaluation includes 

the computation time (training time and online infer-
ring time) by milliseconds and communication overhead 
(training communication cost and inferring communica-
tion cost) by megabytes. The simulation of client compu-
tation is conducted on a MacBook pro with the M1 CPU. 
The total parameter size of DSSM is 0.57 MB and SENet 
enhanced is 1.03 MB. The computation of each client for 
each round is performed one by another and reported 
average score. The simulation results are reported in 
Table 4. The table highlight that on both datasets, utiliz-
ing the SpFedRec framework can significantly improve 
the efficiency of the federated two-tower model on the 
client’s device computation. Especially on Adressa data-
set, it is reducing the total time from 21690 to 574  ms 
and reducing the total communication from 571.48 MB 
to 9.37 MB, which yields an improvement of 38 × faster 
and 60 × less communication overhead. The SpFedRec-
SENet, with the addition of the SENet Block computa-
tion, improves 23 × faster and 49 × less communication. 
More specifically, we observed the following impacts 
during the experiments:

• The communication and computation overhead 
rise with the size of item data, but the growth rate of 
SpFedRec is flatter than the naïve FL setting.

Table 3 Comparison of our proposed models and relevant baselines on MovieLens and Adressa

Models MovieLens Adressa

AUC Recall@10 nDCG@10 AUC Recall@10 nDCG@10

DSSM 76.15 ± 0.91 15.01 ± 0.41 35.84 ± 1.11 69.24 ± 0.18 24.36 ± 0.41 40.17 ± 1.20

FCF 70.56 ± 0.41 10.84 ± 0.08 25.27 ± 0.71 54.49 ± 0.03 17.61 ± 0.06 27.09 ± 1.72

FedMVMF 72.15 ± 0.35 12.03 ± 0.88 27.15 ± 1.31 60.73 ± 0.01 20.91 ± 0.10 30.13 ± 0.58

FedNewsRec 75.81 ± 0.51 15.42 ± 0.01 34.22 ± 0.38 70.95 ± 0.18 26.30 ± 0.01 42.68 ± 1.84

FedDSSM 75.93 ± 0.25 14.63 ± 0.68 33.41 ± 0.54 68.45 ± 1.03 23.11 ± 0.22 39.13 ± 0.48

SpFedRec 75.55 ± 1.21 14.48 ± 1.73 32.96 ± 1.61 68.10 ± 1.25 22.79 ± 1.03 38.65 ± 1.71

SpFedRec‑SENet 76.93 ± 0.13 15.54 ± 1.11 36.21 ± 0.75 69.91 ± 0.22 25.43 ± 0.55 41.34 ± 1.01

Table 4 The efficiency comparison results of FedDSSM, SpFedRec, and SpFedRec-SENet on MovieLens and Adressa

MovieLens Adressa

FedDSSM SpFedRec SpFedRec‑SENet FedDSSM SpFedRec SpFedRec‑SENet

Device Training 1170 ms 228 ms 449 ms 2570 ms 324 ms 681 ms

Inferring Time 4090 ms 55 ms 55 ms 19120 ms 250 ms 250 ms

Total Time 5260 ms 283 ms 471 ms 21690 ms 574 ms 931 ms

 < Improvement > - 18 × 11 × - 38 × 23 × 

Training Comm 5.42 MB 1.05 MB 1.73 MB 13.68 MB 2.18 MB 4.40 MB

Inferring Comm 0.14 MB 0.05 MB 0.5 MB 557.80 MB 7.19 MB 7.19 MB

Total Comm 5.56 MB 1.10 MB 1.78 MB 571.48 MB 9.37 MB 11.59 MB

 < Improvement > - 5 × 3 × - 60 × 49 × 
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• In the dataset with a large number of items and 
dense features (Adressa), SpFedRec more signifi-
cantly reduces the computational and communi-
cation overhead for federated training and online 
prediction, further validating the effectiveness of 
SpFedRec in large-scale item recommendation sce-
narios.
• The overall efficiency comparison results show 
that SpFedRec is more friendly to the resource-
constrained mobile device than the naïve FL setting 
regarding computation time and communication 
size.

Hyper‑parameter investigation (RQ3)
This subsection studies the influence of negative sam-
pling rate on model performance, and the influence 
of selected user size on convergence iterations, server 
aggregation time, device secret sharing time, and device 
training communication size.

First, we studied the effect of parameter ρ. From the 
Fig. 5, we observe that the performance of SpFedRec and 
SpFedRec-SENet improves as ρ increases. The results are 
consistent with previous works, such as Shen et al. [49], 
of applying DSSM in a centralized recommendation 
scenario.

Secondly, we study the effect of parameter K. The 
amount of users selected to participate in a training 
round affects the model’s convergence efficiency and 
secure aggregation efficiency. The comparison results are 
shown in Fig. 6.

As shown in Fig. 6(a), with the increasing of k , the fast 
the model converges. However, when the number of 
users involved in a round of training reaches a certain 

number, the effect on the speed of model convergence 
gradually decreases.

The impact of k on secure aggregation time (server-
side) is shown in Fig.  6(b), the secure aggregation time 
increase with larger number of users involved per round 
of training.

From Fig.  6(a) and Fig.  6(b), we can obtain the opti-
mal number of users involved per training round for 
SpFedRec.

This should be noted that the proposed multi-party 
circular secret-sharing chain only needs clients share 
confidences with the member next to him/her, so that 
the computation time and communication size of secure 
aggregation (client-size) is not affected by the k as shown 
in Fig. 6(c) and Fig. 6(d).

Privacy protection mechanism investigation (RQ4)
In this section, we study the effect of privacy protection 
components: To further investigate the effects of the pro-
posed obfuscated item request (OI) and secure aggrega-
tion by secret sharing (SA) on model performance and 
efficiency, in this section, we conduct an ablation study of 
these two privacy protection components in SpFedRec. 
We set SpFedRec-DSSM and SpFedRec-SENet as base 
model and perform it in the following ways: (1) NO-OI: 
remove the obfuscated item request from SpFedRec, the 
client will directly request items’ ID of positive samples 
to the server. The impact of different privacy protection 
components in SpFedRec on performance and efficiency 
can be highlighted in Table 5.

The server will mix the negative samples by proportion 
ρ and return the computed items embedding to the client. 
(2) NO-SA: remove the secure aggregation from SpFe-
dRec, the gradients and loss of user model will directly 

Fig. 5 The performance comparison with different ρ on Adressa



Page 14 of 17Qin et al. Journal of Cloud Computing           (2023) 12:57 

Fig. 6 The effectiveness effect of factor of K on Adressa

Table 5 The impact of different privacy protection components in SpFedRec on performance and efficiency. (Comm. Denote the 
communication overhead)

Method MovieLens Adressa

AUC Training Time Training Comm AUC Training Time Training Comm

SpFedRec‑DSSM 74.83 228 ms 1.35 MB 67.79 324 ms 2.18 MB

NO‑OI 74.83 225 ms 1.35 MB 67.79 322 ms 2.18 MB

NO‑SA 75.55 182 ms 0.91 68.10 279 ms 1.62 MB

SpFedRec‑SENet 76.32 449 ms 1.73 MB 69.15 681 ms 4.40 MB

NO‑OI 76.32 444 ms 1.73 MB 69.15 678 ms 4.40 MB

NO‑SA 76.93 336 ms 1.02 MB 69.91 569 ms 3.26 MB



Page 15 of 17Qin et al. Journal of Cloud Computing           (2023) 12:57  

send to the recommendation server for gradients average 
and item model backpropagation. We noted the follow-
ing observations in Table 5.

• The obfuscated item request does not affect the 
performance and efficiency of the SpFedRec, and 
there is only a slight decrease in user device training 
time, which is mainly caused by the random nega-
tive sampling operation. The secure aggregation can 
increase the computation and communication cost of 
user devices, and also have slightly impact on recom-
mendation performance.

Now, we assess our suggested scheme’s computational 
cost and memory requirements in terms of the data out-
sourcing phase. During this phase, we take into account 
the computation complexity as well as storage overhead 
of the information outsourcing phase, which is primar-
ily due to the index construction runtime and memory 
requirements. Figures 7 and 8 show the data outsourcing 
construction runtime and storage overhead compared 
to the number of records n and ρ attributes. We can see 
from these figures that both computation complexity and 
storage overhead progressively increase with n and ρ.

Conclusions and future work
In this study, we propose a cloud-edge collaboration 
based split federated learning framework for the large-
scale item recommendation called SpFedRec. In our 
method, to reduce the computation and communication 
cost of the federated two-tower model, a split learning 
approach is applied to migrating the item model from 
participants’ edge devices and compressing item data 

transmitting. Meanwhile, to enhance the feature repre-
sentation, the Squeeze-and-Excitation network mecha-
nism is used on the backbone model to optimize the 
perception of dominant features. Moreover, because the 
gradients transmitted contain private information about 
the user, we propose a multi-party circular secret-sharing 
chain based on secret sharing for better privacy protec-
tion. Extensive experiments using plausible assumptions 
on two real-world datasets demonstrate that our method 
improves the average computation time and communi-
cation cost by 23% and 49%, respectively. Furthermore, 

Fig. 7 Comparison of data outsourcing running times and number of the records (where, attribute ρ = 3)

Fig. 8 Comparison of storage overhead and number of records n 
(where, attributes ρ is between 2 to 5)
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the proposed model attains similar performance with the 
state-of-art federated recommendation models.

In the future, we aim to test the model in a real-time 
platform and generalize the obtained outcomes. We will 
implement deep learning model and integrate them with 
the proposed learning model to improve the efficiency of 
the recommendation system in terms of training accu-
racy. This could be achieved through deploying the rec-
ommendation system in various modules so that each 
module runs independently on different machines i.e. 
edge cloud, and/or remote cloud. We will investigate how 
the proposed system can be deployed into various mod-
ules and then where each module should run in order to 
improve the training and prediction durations.
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