
Qin et al. Journal of Cloud Computing (2023) 12:57
https://doi.org/10.1186/s13677-023-00435-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A split-federated learning and edge-cloud
based efficient and privacy-preserving
large-scale item recommendation model
Jiangcheng Qin1,2, Xueyuan Zhang1, Baisong Liu1* and Jiangbo Qian1

Abstract

The combination of federated learning and recommender system aims to solve the privacy problems of recom-
mendation through keeping user data locally at the client device during the model training session. However, most
existing approaches rely on user devices to fully compute the deep model designed for the large-scale item rec-
ommendation; therefore, imposing high calculation and communication overheads on resource-constrained user
devices. Consequently, achieving efficient federated recommendations across ubiquitous mobile devices remains an
open research problem. To this end, in this paper we propose an efficient and privacy-preserving federated learning
framework which is based on the cloud-edge collaboration for large-scale item recommendation called SpFedRec. In
our method, to reduce the computation and communication cost of the federated two-tower model, a split learning
approach is applied to migrate the item model from participants’ edge devices to the computationally powerful cloud
side and compress item data while transmitting. Meanwhile, to enhance the feature representation, the Squeeze-
and-Excitation network mechanism is used on the backbone model to optimize the perception of dominant features.
Moreover, because the gradients transmitted contain private information about the user; therefore, we propose a
multi-party circular secret-sharing chain based on secret sharing for better privacy protection. Extensive experiments
using plausible assumptions on two real-world datasets demonstrate that our proposed method improves the aver-
age computation time and communication cost by 23% and 49%, respectively. Furthermore, the proposed model
accomplishes comparable performance with other state-of-art federated recommendation models.

Keywords Federated learning, Recommendation system, Split learning, Cloud-edge collaboration, Computation and
communication compression

Introduction
Nowadays, information technology including storage and
computing is viewed as on-demand facilities, denoted
as "X as a Provider." Large-scale data owners typically
outsource their data to clouds to reduce the cost of data

storage and management while enhancing privacy. Even
so, data owners do not have direct control over their data
stored on remote cloud servers, which raises concerns
about their cloud services being illegally acquired or mis-
treated by cloud service providers (CSPs), particularly
for sensitive data such as health records, official records,
and email messages etc. Even though many CSPs argue
that their cloud services include several security meas-
ures such as access control, firewalls, and penetration
testing, concerns about the safety and confidentiality
of cloud services remain major roadblocks to the wide-
spread adoption of cloud computing [1]. Because of the
foregoing, privacy-preserving suggestions have become

*Correspondence:
Baisong Liu
qjc@nbu.edu.cn
1 College of Information Science and Engineering, Ningbo University,
Ningbo 315211, Zhejiang, China
2 Huzhou Key Laboratory of Sound Resource Data Mining and Intelligent
Service Technology, Huzhou University, Huzhou 313000, Zhejiang, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00435-5&domain=pdf

Page 2 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

a research hotspot as user privacy [2] and data security
[3] concerns have grown. Under strict regulatory require-
ments such as GDPR and CPRA [4] federated learning
(FL) [5] is regarded as one of the most efficient privacy-
preserving machine learning paradigms. Coordinated by
a central server, participants of FL cooperatively train a
model whereas keeping the training data locally. Since FL
can mitigate the systematical privacy hazards of a central
machine learning scenario, it fits the need for privacy
protection and data safety in recommender systems (RS).

Ammad et al. [6] combined the FL and collaborative fil-
tering and proposed FCF. FCF avoids the centralized col-
lection of users’ local training data to ensure privacy and
achieves minimal performance loss. However, the gradi-
ents uploaded by the client to the server can still expose
the user’s confidentiality. Following FCF, Lin et al. [7] pro-
posed a federated collaborative filtering recommendation
(FedRec) model by explicit feedback. They proposed an
obfuscated populating method: (1) Client randomly sam-
pling a set of unrated items list and assigned with false
rating values. (2) hybrid with real local historical data to
compute the design gradients and upload it to the server,
thus avoiding the server-aware local historical interac-
tion. Subsequent research extends the FL-based RS into
different application scenarios. Flanagen et al. [8] pro-
posed the first federated multi-view matrix factoriza-
tion (FED-MVMF) algorithm, which solves the cold-start
problem by integrating information from multiple data
sources.

Qi et al. [9] proposed the FedNewsRec framework by
combining news recommendations with FL, they used a
local differential privacy technique to add random noise
to the gradients to protect the privacy of the user. Chen
et al. proposed a privacy-preserving POI recommenda-
tion framework (PriRec) for the POI recommendation
scenario, some of the public data including POI descrip-
tion and category information is stored on the server to
reduce the communication cost on the client side. Luo
et al. [10] proposed an FL-based social recommendation
model that utilizes contrastive learning to eliminate het-
erogeneity of data distribution among users.

Additionally, although several approaches have been
planned to enhance the efficiency of FL-based RS, they
do not openly report the challenge within large-scale
item recommendations. Muhammad et al. [11] proposed
the FedFast algorithm, which combines the GMF (Gener-
alized Matrix Factorization) with FL. The FedFast accel-
erates the convergence of FedGMF by using client-side
sampling and enabling parameter sharing among cluster-
ing users, which can complete the training with a small
number of selected users, circumventing the delay caused
by some inefficient clients. Reisizadeh et al. [12] also
selected only some clients for model training and utilized

low-precision quantization methods to compress the
model parameters. Some studies [6, 13, 14] reduce the
communication cost between the client and the server by
performing multiple iterations of training locally on the
client side. However, they do not decrease the absolute
workload on a client device.

Qin et al. [15] proposed a novel privacy-preserving rec-
ommender scheme framework based on federated learn-
ing, which enables the server to build a matching model
using explicit feedback from a subset of users but causes
privacy exposure. Utmost present works undertake that
all client devices are immediately accessible and have suf-
ficient power to contribute in FL training. However, in
large-scale item recommendation, FL-based recommen-
dation still faces the challenge of communication and
computation limitations from the client device. (1) The
RSs in the industry are designed for massive data analy-
sis with large and complex models [16]. Many consumer-
grade mobile devices cannot handle the local training
task, thus leading to model training failure. (2) large-scale
RS often has millions of items to be filtered, and a cen-
tralized RS can alleviate this part of the work with the
matching mechanism under strict latency requirements.
However, in the FL recommendation scenario, since the
server cannot directly access the users’ data, the vast vol-
ume of raw item data has to be transmitted to the user’s
device, producing considerable communication and cal-
culation overhead. In summary, a major challenge for
implementing large-scale item federated recommenda-
tions is: How to efficiently compress the computation and
communication overhead under privacy protection and
enable resource-limited ubiquitous mobile devices to sat-
isfy the performance requirement of federated large-scale
item recommendations.

In this study, to overcome the challenge of the FL cli-
ent-side computation and communication compression
while ensuring privacy, we propose a cloud-edge collab-
oration-based Split Federated Recommendation frame-
work (SpFedRec). The SpFedRec leverages the two-tower
recommendation model’s unique structure and separates
the two independent sub-networks of user and item mod-
els based on split learning. The RS server (cloud side) is
responsible for maintaining the training and updating of
the item model. In contrast, the client device (edge side)
maintains the training and update of the user model.
Meanwhile, the RS server can provide the required low-
dimensional item embeddings to the clients involved
in FL training or online prediction, avoiding large-scale
item data transfer. With SpFedRec, the client device can
complete the similarity matching of cached user embed-
ding and server-provided items embedding for online
inferring by lightweight computation. To further improve
feature utilization and thus enhance recommendation

Page 3 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

performance in a decentralized state of data and models,
we utilize the SENet mechanism to learn feature impor-
tance dynamically. Currently, many privacy-preserving
techniques are introduced into FL, such as secure multi-
party computation (MPC) [17], differential privacy (DP)
[18], and homomorphic encryption (HE) [19] as the
local gradient updates may reveal private user informa-
tion [20]. Because DP introduces random noises into the
global model, affecting its accuracy, and HE requires too
much extra computation [21, 22], we opt for MPC, which
can offer provable privacy guarantees for multi-party
gradient aggregation at a lower computational cost.

This paper concentrates on two useful compression
objectives for FL-based RS in particular. (1) Good Com-
munications Compression [23] decreases communica-
tion overhead when FL training and online inferring
devices are used. (2) Local Computation Reduction [19,
24] decreases computation workload when devices par-
ticipate in FL training and online inference. The two-
tower model is commonly used to pre-filter huge items
in large-scale item RS [25–27]. The two-tower model is
distinguished by the fact that the user and item features
are modeled as separate sub-networks and cached indi-
vidually [28]. When performing online inferring, only
the cached embeddings of users and products must be
matched for similarity. It is possible to separate these two
independent sub-models, and their training and online
inference can be conducted in separate entities. We high-
light our research contributions as given below:

• We propose SpFedRec for efficient and privacy-
preserving large-scale item recommendation. Apart
from preventing users from sharing their private
local data, we adopt a practical cloud-edge collabora-
tive split learning approach to enable SpFedRec sig-
nificantly reduce the computation and communica-
tion overhead on resource-constrained participants.
SpFedRec can alleviate the critical communication
and computation bottleneck for existing FL-based
recommenders.
• To defend against the semi-honest server and
malicious participants who may infer user data
from intermediate information generated by the FL
training process, we propose a multi-party circular
secret-sharing chain to encrypt the gradient infor-
mation. We further introduce the obfuscated item
request strategy to conceal the label information.
• We conduct extensive experiments on two real-
world datasets to verify the effectiveness and effi-
ciency of our proposed models, and results show that
SpFedRec outperforms the state-of-art baselines. At
the same time, it achieves effective communication
and computation reduction.

The rest of this paper is organized as follows. In
Sect. "RQ2: Is the computation and communication
efficiency of SpFedRec significantly improved com-
pared to the baseline models in the naïve FL setting?",
we offer a brief overview of the related work and a few
existing recommendation systems. Sect. "RQ3: How do
hyper-parameter settings and affect the performance
and efficiency of SpFedRec?" introduces the preliminary
knowledge and discusses several research methodologies.
In Sect. "RQ4: How does our proposed privacy protection
mechanism influence the performance and efficiency of
SpFedRec?", we delibrate our proposed framework called
SpFedRec. In Sect. 5, we present our experimental set-
tings and the obtained results. Finally, we conclude our
paper in Sect. 6 and suggest few directions for further
research and investigation.

Related work
These days, mobile edge computing as a technologi-
cal innovation is gaining traction [29], particularly the
issue of MEC computing offloading. The majority of cur-
rent research uses delay, energy usage, a weighted sum
of energy usage, and delay as the computing offloading
effectiveness indicators. To achieve the optimum solu-
tion task scheduling technique for delay-based compu-
tational offloading, Liu et al. [30] developed an effective
one-dimensional evolutionary algorithm to tackle the
challenge of power-constrained delay reduction. Ning
et al. [31] suggested an adaptive heuristic allocation of
resources for dynamic offloading judgments, taking into
account the cooperation of mobile edge computing and
cloud computing. Wu et al. [32] developed a computing
offloading framework based on nonorthogonal multiple
access (NOMA) innovations to reduce the total finish
time of all mobile terminal jobs. Zhang et al. [33] com-
bined computing offloading, information caching, and
allocation of resources into a single model and created
an asymmetric tree structure to reduce the total delay
usage of computing tasks. On other hand, communica-
tion and computation represent a significant bottleneck
in enabling practical applications of cross-device feder-
ated learning [4]. The bandwidth of the mobile device’s
uplink channel is much narrower than the bandwidth of
the connection inside the server, and the mobile network
is expensive and unreliable. Meanwhile, consumer-grade
processors in mobile devices are far less capable than the
GPU on deep-learning servers. In deep learning models,
the training session on client devices will consume a sig-
nificant amount of time and power, which is unaccepta-
ble to users.

Additionally, most existing FL-based recommenda-
tion studies assume that all client devices are immedi-
ately available and have sufficient capacity to undertake

Page 4 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

the computation of the entire recommendation model
[6], which is tough for a mobile device with limited
resources, especially since industrial RS are in huge
size and have massive amounts of item data. Although
several approaches have been planned to enhance the
efficiency of FL-based RS, they do not openly address
the challenge within large-scale item recommenda-
tions. There are some studies on the problem of mini-
mizing total mobile energy usage under the restriction
of computational delay. Muhammad et al. [11] pro-
posed the FedFast algorithm, which combines the GMF
(Generalized Matrix Factorization) with FL. The Fed-
Fast accelerates the convergence of FedGMF by using
client-side sampling and enabling parameter sharing
among clustering users, which can complete the train-
ing with a small number of selected users, circum-
venting the delay caused by some inefficient clients.
Reisizadeh et al. [12] also selected only some clients
for model training and utilized low-precision quan-
tization methods to compress the model parameters.
Some studies [6, 13, 14] reduce the communication
cost between the client and the server by performing
multiple iterations of training locally on the client side.
However, they do not reduce the absolute workload on
a client device. Qin et al. [15] proposed a novel privacy-
preserving recommender system framework based on
federated learning, which enables the server to build a
matching model using explicit feedback from a subset
of users but causes privacy exposure.

Even so, the above said privacy and scheme load prob-
lems were planned for cloud computing or mobile cloud
computing situations. This restriction has motivated our
study to discover a solution for the FL client-side com-
putation and communication compaction challenging
task while maintaining privacy, and we suggest a split
federated recommendation framework based on cloud-
edge collaboration (SpFedRec). It proposes the suggested
framework for efficient and privacy-preserving large-
scale item recommendation. Apart from preventing users
from sharing their private local data, we adopt a practi-
cal cloud-edge collaborative split learning approach
“SpFedRec” that significantly reduces the computation
and communication overheads on resource-constrained
participants. Moreover, we believe that our proposed
SpFedRec model could improve the critical communica-
tion and computation bottleneck for existing FL-based
recommenders.

Preliminaries
This section introduces some basics and preliminary
knowledge about our backbone model, split-learning,
and secure multi-party computing.

Backbone model
The standard setting of the two-tower model is 3 layers,
fully linked neural network for both the item and user
model, i.e., the Deep Semantic Similarity Model (DSSM)
[28]. The most important characteristic of the two-tower
design is that the user and item model are two independ-
ent sub-networks, as shown in Fig. 2(a). The two sub-
networks can be cached separately so that the online
prediction only requires similarity matchings in mem-
ory, which is friendly to the industrial world that values
computation efficiency. The two-tower model recom-
mendation structure is extensively utilized in advertising
(Facebook) [34], information retrieval (Google) [30], and
recommendation (YouTube) [35].

Specifically, the goal of utilizing the two-tower model
for large-scale item recommendation is to retrieve a sub-
set of (hundreds of) items for a given user for subsequent
ranking. There are two different embedding functions
u(x, θu) and v

(
y, θv

)
 , mapping both user {xi}Ni=1 and item

yj
M

j
 to a k-dimensional vector space. The output is the

similarity matching of the two embeddings by Eq. 1. The
object of training is to learn the parameters θu and θv
based on the training data D :=

{(
xi, yj, r

)}T
i=1

 , where the
r is the label that indicates if the user interacts with an
item.

Given a user x , the probability of getting item y from
corpus M can be considered as a multi-classification
problem, the SoftMax function as illustrate in Eq. 2. And
the loss function is a log-likelihood loss as illustrate in
Eq. 3, where the T denote the batch size.

Split learning
Split learning is a deep learning paradigm based on
server and client collaboration [36]. Unlike the FL setups
that emphasis on data and model distribution, the core
idea of split learning is to divide the training and infer-
ence process of a deep model by layers and execute them
in different entities [37].

The Cloud-Edge collaborative split learning in the
U-shape configuration is a privacy-preserving varia-
tion, as shown in Fig. 1. The Edge-side includes various
mobile devices, such as tablets, mobile phones, and lap-
tops) with limited computational resources but various

(1)Sim
(
x, y

)
= �u(x, θu), v

(
y, θv

)
�

(2)P
(
y|x, θu, θv

)
=

eSim(x,y)
∑M

j=1e
Sim(x,yj)

(3)LT(θu, θv) := −
1

T

∑

i∈|T|
rilog(P

(
y|x, θu, θv

)
)

Page 5 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

data sources. Edge devices train deep models based
on local data to provide better information services to
edge-side users. However, due to the limitation of com-
putational power, it cannot complete the local training
but requests the cloud server for co-computation. The
cloud side provides redundant computing resources
as a service to the edge-side devices. Both client-side
input data and labels are not transferred to the cloud to
ensure edge-side data privacy [38].

Formally, there is a deep model training task includ-
ing n hidden layers L_i , i ∈ [1, n] . An edge-device needs
to train the deep model based on local data D but with
insufficient computational capacity. The edge-device
begins the model training with forward propagation
until it reaches the split layer Ls where s < n . The fea-
ture mapping of Ls is then encrypted and sent to the
cloud for further propagation Ls+1 → Ln . The output
of the Ln will be sent back to the client for loss com-
putation. The output layer’s encrypted gradients will be
directed to the cloud and backpropagation is from the
Ln to the split layer in a opposite path. The gradients
of Ls will be returned to the edge-side, and the rest of
backpropagation will be finished. The above steps go
through multiple iterations until the model converges.

Based on the cloud-edge collaborative split learning,
we can split the hidden layer of a deep learning-based
FL training task from a resource-constrained edge
device. The cloud server that provides the computation
service will handle the split workload, improving the
efficiency of FL training and online inferring. To our
knowledge, we proposed the first split learning-based
federated recommendation framework to improve the
computation efficiency and model training durations.

Secure multiparty computing
MPC is an algorithmic protocol based on cryptography to
achieve privacy computing, and it is a comprehensive
application of a variety of cryptography-based tools [17].
MPC ensures that multiple participants {√i}i∈[1,n] can

jointly accomplish a specific confidential computation task
f(x1, x2, . . . , xn) without revealing their private data xi ,
each party does not receive any additional information
other than its inputs and outputs in the end of the task.
MPC has been widely used in FL based RS for intermedia
parameter secure aggregation, such as PriRec [39] and
SeSoRec [40]. Here, we present the Addition MPC protocol
by secret sharing that we will use in SpFedRec for secure
gradient and BP error signal aggregation.

Denote multiple participants {√i}i∈[1,n] wish to compute

the sum of their data xi without revealing their secrets.
Each party √i generates n random data x1i , x

2
i , . . . , x

n
i such

that they satisfy Eq. 4. Then, send the split secrets to the
corresponding party to enable the computation as Eq. 5.
Finally, the computation results of Eq. 5 are aggregated to
obtain the sum of all parties’ data as Eq. 6. With the secret
sharing-based MPC protocol, none of the members can
access others’ private data but can obtain the final sum
result. The secrecy of the members’ data cannot be broken
when the total number of adversarial members is less than
(n − 1).

(4)x1i + x2i + · · · + xni = xi, i ∈ [1, n]

(5)x∗i = xi1 + xi2 + · · · + xin, i ∈ [1, n]

Fig. 1 Cloud-Edge Collaborative Split learning in U-Shape configuration [4]. The L_s denote the edge-side cut layer and the L_n represent the
cloud-side output layer

Page 6 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

The SpFedRec framework
This section presents the proposed SpFedRec model and
its design in detail. We first discuss the problem defini-
tion and then systematically explain the overall frame-
work, training steps, and online forecast. We conclude
the section with an argument of backbone model varia-
tions. We list important notations used throughout the
paper in Table 1.

Problem definition
Suppose that the recommendation server has a large-
scale item data V = {v1, v2, . . . } and a list of clients
C = {c1, c2, . . . } . Each client ci is a user of recommenda-
tion service, his/her personalized feature ui and interac-
tion history are combined as Di =

{
ui,

(
vj, r

)}M
j=1

 stored
locally on his/her device. The ui ∈ X and vj ∈ Y are both
feature representations of the respective feature space,
and r is the interaction label. Let Mu(u, θu) and Mv(v, θv)
be the embedding functions for user and item features
representations, that can map user and item features to a
uniformed low-dimensional dense vector ũ and ṽ for
similarity matching, respectively.

The goal of SpFedRec is to collaborate clients from C
to jointly learn model parameters θu and θv in a compu-
tationally and communicationally efficient way, while

(6)SUM(x1, x2, . . . , xn) =
∑n

i=0
x∗i

the training data Di is distributed among the clients’
resource-limited mobile device.

Framework overview
The overall framework of the proposed SpFedRec model
is shown in Fig. 2(c). The Rec Server maintains the large-
scale item data V , and N different client device ci main-
tains the local user data Di.

In contrast to the naïve setting of the federated two-
tower model shown in Fig. 2(b), the computation of the
two-tower model is split into two independent sub-mod-
els, the user model and the item model. The edge side cli-
ent device is responsible for updating and computing the
user model, while the powerful Rec Server on the cloud
side maintains the item model. The model compression
reduces the amount of communication when clients
download and upload model parameters and improves
the computation efficiency for the model update.

The large-scale item data will be mapped into low-
dimensional dense vectors through the server-side item
model and provided to the clients. In fact, the lightweight
item embedding will further reduce the clients’ compu-
tation and communication overheads during the training
and online inferring phases.

Each client mixes randomly selected negative items
with actual samples when sending item embedding
requests to the Rec Server (Obfuscated Items Request),
ensuring that the Rec Server cannot obtain the natural
interaction history of individual users. A secure aggrega-
tion server (SAS) is applied to carry out secure aggrega-
tion of gradients and back-propagation (BP) error signal
by circular secret-sharing chain (Sec 3.3.2). The privacy
protection setting is able to against semi-honest adver-
saries (< N − 1) from recover the user’s original training
data.

In the following subsections, we are going to elaborate
on the training process which is embedded to the pro-
posed SpFedRec model.

Split federated learning
At initial stage (t = 0) , the Rec Server initializes the two
independent sub-networks as Mu

(
u, θ0u

)
 and Mv

(
v, θ0v

)
 .

Then randomly sample K available clients C0 =
{
c0k
}K
k=1

 ,
distribute the initialized user model Mu

(
u, θ0u

)
 to each

sampled client for local user model training and SAS for
global user model update.

Client‑side local training
The first step of local client-side training is requesting items
embedding from Rec Server. However, sending the raw
item list to the server may leak private user information.
Thus, we propose obfuscated item request, a client ckt ran-
domly samples a subset of items V−

k as negative samples

Table 1 List of mathematical notations

Notations Description

ui , vj User i and item j

Mu(u, θu) , Mv(v , θv) User and item model

ũi , ṽj Output of user and item model

t Training round

θ0u , θ
0
v

Initial user and item model’s parameters

θtu , θ
t
v User and item model’s parameters at training round

t

Ct Random selected subset of clients at training round
t

K Number of selected clients in each training round

Btk Batch of training set for client k at training round t

V−
k , V+

k
Subset of non-clicked and clicked items for client k

∇θ tu ,∇θ tv The gradients of User and item model at training
round t

P Negative sampling rate

ηu , ηv Learning rate for user and item model update

β1 , β2,τ Hyperparameters for FedAdam optimizer

σ , δ Activation functions

r Reduction ratio

Page 7 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

and combines it with positive samples V+
k . Denoting the

obfuscated item request list as Vt
k = V+

k ∪ V−
k = {vtkj}

T
j=1 ,

where the T =
∣∣Vt

k

∣∣ as the local batch size. Once received
the obfuscated item request, the Rec Server will compute
the item embedding by Eq. 7 and returns items embed-
dings list Ṽt

k = {ṽtkj}
T
j=1 to the client device.

While pending the items embeddings from Rec Server,
the client ckt compute the user embedding ũkt by Eq. 8.

(7)ṽtkj = Mv

(
vtkj , θ

t
v

)
, j ∈ [1,T]

Combined the user embedding with received items
embedding as local training set Bt

k = {ũkt ,
(
ṽtk, rj

)
}Tj=1 .

Then, the client computes the similarity matching of each
training set pairs by Eq. 9 and obtains the average loss by
Eq. 10. Denote the local gradients of the user model as
∇θtuk , which are computed as Eq. 11. The local gradients
of the user model will be securely uploaded to the SAS
for global aggregation by circular secret-sharing chain.

(8)ũtk = Mu

(
uk, θ

t
u

)

Fig. 2 Illustration of two-tower recommendation model in a centralized setting, b naïve federated learning setting, and c split federated learning
framework (SpFedRec)

Page 8 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

Circular secret‑sharing chain
The circular secret-sharing of local user model gradients
and loss starts with secret splitting. Each client ctk split the
gradients of local user model ∇θtku as two random matrixes [
∇θtku

]
1
 and

[
∇θtku

]
2
 that they satisfy Eq. 13. Split the loss in

the same way to satisfy Eq. 14. Then, each client ctk delivers
part of the secret

[
∇θtku

]
2
 and

[
LtBk

]
2
 to the next client ctk+1 .

The last client, ctK , will pass his/her part of the secret to the
first client ct1 . The process is under SAS’s coordination and
forming a circular secret-sharing chain. After received the
part of the secret from another client, sum it with the
reserved part and obtain a mixed-secrets ∇θtku

∗ and LtBk
∗ by

Eq. 15. Finally, during the las step each client uploads the
mixed-secrets to the SAS for global model update.

Global model update
The SAS is responsible for the global user model update.
Denote the average gradients of the user model as ∇θtu
and the average loss of model as Lt , which are computed
as Eq. 16.

The SAS will send the average loss of the model to the
Rec Server. Then, SAS will update the global user model
by the average gradients of the user model through the
FedAdam optimizer [41] as Eq. 17, where the η is the

(9)sim
(
utk, v

t
kj

)
=

ũtk · ṽ
t
kj

�ũtk��ṽ
t
kj�

(10)P
(
vtkj|u

t
k, θ

t
u, θ

t
v

)
=

e
sim

(
utk,v

t
kj

)

∑T
j=1e

sim
(
utk,v

t
kj

)

(11)LtBk = −
1

T

∑T

j=1
rj · log

(
P
(
vtkj|u

t
k, θ

t
u, θ

t
v

))

(12)∇θtku =
∂LtBk
∂θtu

(13)
[
∇θ tku

]
1
+

[
∇θ tku

]
2
= ∇θ tku

(14)
[
LtBk

]
1
+

[
LtBk

]
2
= LtBk

(15)
∇θt

ku

∗
=
[

∇θt
ku

]

1
+

[

∇θt
(k−1)u

]

2

, L
t

Bk

∗
=

[

L
t

Bk

]

1

+

[

L
t

B(k−1)

]

2

(16)∇θtu =
1

K

∑K

k=1
∇θtku

∗
, Lt =

1

K

∑K

k=1
LtBk

∗

learning rate, β1 , β2 , and τ are hyper-parameters. The
updated global user model parameters θt+1

u are distrib-
uted to all clients served for the next round of training.

After received the average loss of the model from SAS,
the Rec Server compute the average gradients of item
model ∇θtv by Eq. 18.

Similarly, we use the FedAdam optimizer to update the
universal entry model as Eq. 19. The efficient global entry
model Mv

(
v, θt+1

v

)
 will provide obfuscated items embed-

ding for next training round.

Finally, update the training iteration as t = t + 1 until
the model convergence.

Online inferring
After finishing the model’s training, the Rec Server will
generate item embeddings based on the present global
entry design. Denote the item embedding as Ṽ and allo-
cate it to all client devices. When performing online
inferring, a client device only needs to compute the
resemblance matching of locally cached user embedding
ũ and each item embedding within Ṽ . Transferring low-
dimensional dense item embedding will be much less
overhead to the client’s communication than transferring
the original item data.

Model variations
The backbone model is a three-layer, fully linked neu-
ral network for both item and user model. However, the
standard setting makes insufficient use of contralateral
feature information due to the separate training of these
two towers. Inspired by [42], we utilize SENet mecha-
nism to improve the perception of core features in the
hidden layer, thus enhance their information representa-
tion in the similarly matching phase.

The SENet enhanced model architecture for both user
and item model is illustrated in Fig. 3. The feature embed-
ding layer can embed the sparse feature of user and item
data into dense real-value vector D = [d1, d2, . . . , df] ,

(17)

mt
u = β1m

t−1
u + (1− β1)∇θtu

µt
u = β2µ

t
u−1 + (1− β2)

(
∇θtu

)2

θt+1
u = θtu + η

mt
u√

µt
u+τ

(18)∇θtv =
∂Lt

∂θtv

(19)

mt
v = β1m

t−1
v + (1− β1)∇θ tv

µt
v = β2µ

t
v−1 + (1− β2)

(
∇θ tv

)2

θ t+1
v = θ tv + η

mt
v√

µt
v+τ

Page 9 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

where f denotes the number of features, di ∈ Rh and
D ∈ Rf×h where h is the embedding size. The feature
embedding will be fed into the SE Block, which includes
the three steps of feature embedding manipulation high-
lighted in Fig. 4.

Squeeze
This step compressing the feature embedding in the spa-
tial dimension, apply average pooling to turn two-dimen-
sional feature embedding D into a real number vector
A = [a1, a2, . . . , af] , where ai is a scalar value and compute
by Eq. 20.

Excitation
This step captures the weight of feature embedding and
represent it as a weight vector S. The weight of feature
embedding can be calculated as Eq. 21. The σ and δ are acti-
vation functions. W1 ∈ Rf× f

r , and W2 ∈ f
r × f represent

two fully connected layers, where the r is reduction ratio to
control capacity and computational cost [43].

Reweight
The final does field-wise multiplication of D and S and
outputs the embedding E = [e1, e2, . . . ef] , and ei ∈ R ,
which can be calculated as Eq. 22. Since the value range
of a is in [0, 1] , the new embedding will retain useful fea-
tures and suppress less useful ones to improve model
performance.

(20)ai = Fsq(di)
1

h
=

∑h

j=1
di,j

(21)si = Fex(ai) = σ(W2 · δ(W1 · ai))

Finally, the user and item embedding are output by the
multiple hidden layers compressing several fully con-
nected layers. Let E(0) as the output of SE Block and fed
into the hidden layers. The feed-forward process is com-
puted by Eq. 23. The l is the depth of hidden layer, σ is the
activation function, W(l) and b(l) as the weight and bias
of l-th layer. The E(l) is the hidden layer’s output, which
also represents the user and item embedding for similar-
ity computation.

In the subsequent experiments, we build DSSM based
SpFedRec and SENet enhanced SpFedRec for perfor-
mance and efficiency evaluation.

Evaluation setup
This section introduces our evaluation settings.

Datasets
To evaluate the performance of the proposed model
“SpFedRec” against the state-of-art baseline approaches,
we conducted several experiments on two real datasets
i.e. MovieLens-1 M [44] and Adressa-1 week [45], as
explained as below:

MovieLens‑1 M
It contains about 1 million explicit rating data for over
3,000 movies from 6,022 users. It includes movie’s meta-
data (movieID, title, genres) and user features including

(22)ei = Fre(di, si) = di · si

(23)E(l) = σ

(
W (l) · E(l−1) + b(l)

)

Fig. 3 The SENet enhanced model architecture for user and item model. The SE Block including three phases of feature embedding manipulation,
Squeeze, Excitation and Reweight

Page 10 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

(UserID, Gender, Age, Occupation, Zip-code). Following
[46], we converted explicit ratings to implicit ones by treat-
ing not rated items as negative implicit feedback.

Adressa‑1 week
It is a real-world online news dataset which is released by
multiple Norwegian news publishers. This dataset contains
up to 2 million clicks from 186,255 users on 14,732 news
items. Following [47], we use (news_id, news_title, key_
words, news_body) as item features. Since Adressa does
not contain user features, therefore we randomly sampled
five clicked news for the first 2 days as user feature.

To ensure that each client has sufficient interaction
records, we removed the users with less than 20 implicit
records in both two datasets. For each positive feedback,
randomly sample 10 negative interactive items for obfus-
cated item requests. The statistics of the two datasets are
presented in the following Table 2.

Evaluation metrics
The evaluation is in Top-K recommendation, and we
verify the performance of SpFedRec and baseline mod-
els using Recall@10, NDCG@10, and AUC as evaluation
metrics. Recall@10 and NDCG@10 focus on the very

Fig. 4 Flowchart of feature embedding

Page 11 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

top of recommendation list, while AUC measures overall
accuracy.

For communication efficiency evaluation, we evaluate
the client’s communication size per round of training and
online inferring in megabytes. For computation efficiency
evaluation, we evaluate time spent per round of training
and online inferring in milliseconds. Each experiment is
repeated five times independently, and the average results
are reported.

Implementation details
We implemented all models including the baseline meth-
ods with PyTorch in our numerical experiments. The
feature embedding size is set to 20 for MovieLens and
60 for Adressa. For SE Block, the two activation func-
tions are Relu, and the reduction ratio is set to 3. The
backbone model with three-layer fully linked neural net-
work and the neuron density for each layer is set as < 256,
128, 128 > . The activation function for individually layer
is tanh. K is set as 120 for MovieLens-1 M and 150 for
Adress-1 week. To mitigate overfitting, we apply drop-
out and set the dropout rate as 0.2 . The learning rate is
0.0001. We initialize the user and item model parameters
by Gaussian distribution with a mean of 0 and a standard
deviation of 0.1 . We conduct our experiments with dual-
NVIDIA 2080Ti GPUs as the server and a MacBook Pro
with an M1 chip as the client device.

Experiments
Following the evaluation settings in Sect. "RQ4: How
does our proposed privacy protection mechanism influ-
ence the performance and efficiency of SpFedRec?", we
conduct experiments to evaluate our proposed SpFe-
dRec framework. Specifically, we intend to verify our
major claims by answering to the following four research
questions:

1. RQ1: How does our method perform compared
with baseline models?
2. RQ2: Is the computation and communication
efficiency of SpFedRec significantly improved com-
pared to the baseline models in the naïve FL setting?
3. RQ3: How do hyper-parameter settings ρ and K
affect the performance and efficiency of SpFedRec?

4. RQ4: How does our proposed privacy protection
mechanism influence the performance and efficiency
of SpFedRec?

Performance evaluation (RQ1)
As the core of SpFedRec model is its capability of per-
forming recommendation, we compare SpFedRec with
the following seven baseline methods, including the cen-
tralized DSSM, DSSM in naïve setting of FL, and other
state-of-art FL recommender systems.

1. DSSM [28]. The centralized version of DSSM is a
deep semantic matching model for large corpus item
recommendation and information retrieval. The set-
ting of its hidden layer is the same as the backbone
model.
2. FCF [6]. The Federated Collaborative Filtering
approach is an FL-based matrix factorization for
the privacy-preserving recommendation. The client
reserves the training data and maintains the update
of the user feature vector and the gradient update of
the item feature vector.
3. FedMVMF [46]. The Federated multi-view matrix
factorization recommendation model utilized side-
information from both users and items to improve
FL-based CF’s performance and alleviate the cold
start problem.
4. FedNewsRec [9]. The FedNewsRec is a FL
based privacy-preserving recommendation model
designed for news recommendation.
5. FedDSSM [48]. The FL based DSSM model in the
naïve setting, the client device is accountable for the
training of both user and item model.
6. SpFedRec. In this model, we will be using our pro-
posed SpFedRec framework to train the backbone
model in a privacy-preserving and efficient manner.
7. SpFedRec-SENet. In this model, we will be using
our proposed SpFedRec framework to train the
SENet enhanced backbone model in a privacy-pre-
serving and well-organized manner.

The experimental results of all these models are shown
in Table 3, and we have the following observations during
the numerical experiments:

• Compared to the centralized baseline model, SpFe-
dRec performs worse than the centralized DSSM but
within the performance loss of FL [4]. The reason for
the performance loss could be the bias introduced by
the gradient averaging.

Table 2 Statistics of MovieLens-1 M and Adressa-1 week
datasets

Dataset # Users # Items # Clicks Density (%) Item Data
Size

MovieLens 6,022 3,043 995,154 5.4% 171Kbytes

Adressa 186,255 14,732 2,103,852 0.07% Gigabyte

Page 12 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

• Compared to the naive setting of FL based DSSM
(FedDSSM), SpFedRec has only a slight performance
loss. The use of average error for backward propaga-
tion of the item model is probably causing the minor
performance loss. This result indicates that training
the two-tower model using the SpFedRec frame-
work does not affect the performance too much.
• The SpFedRec-SENet outperforms the state-of-
art federated recommender models except less well
than the FedNewsRec model on the Adressa dataset.
The result demonstrates that our model well han-
dled the task of large-scale item recommendation.
• The SpFedRec-SENet significantly outperforms
SpFedRec on both datasets (AUC +2.2% and +4.2%
on the two datasets, respectively) and achieves com-
parable results to the centralized model. The main
reason is that SE Block enhances the information uti-
lization of the dominant features while weakening the
noise feature, allowing the dominant features to gain
more weight in the similarity computation phase.

Efficiency comparison (RQ2)
This subsection presents the efficiency comparison of
FedDSSM, SpFedRec, and SpFedRec-SENet on Mov-
ieLens and Adressa datasets. The evaluation includes

the computation time (training time and online infer-
ring time) by milliseconds and communication overhead
(training communication cost and inferring communica-
tion cost) by megabytes. The simulation of client compu-
tation is conducted on a MacBook pro with the M1 CPU.
The total parameter size of DSSM is 0.57 MB and SENet
enhanced is 1.03 MB. The computation of each client for
each round is performed one by another and reported
average score. The simulation results are reported in
Table 4. The table highlight that on both datasets, utiliz-
ing the SpFedRec framework can significantly improve
the efficiency of the federated two-tower model on the
client’s device computation. Especially on Adressa data-
set, it is reducing the total time from 21690 to 574 ms
and reducing the total communication from 571.48 MB
to 9.37 MB, which yields an improvement of 38 × faster
and 60 × less communication overhead. The SpFedRec-
SENet, with the addition of the SENet Block computa-
tion, improves 23 × faster and 49 × less communication.
More specifically, we observed the following impacts
during the experiments:

• The communication and computation overhead
rise with the size of item data, but the growth rate of
SpFedRec is flatter than the naïve FL setting.

Table 3 Comparison of our proposed models and relevant baselines on MovieLens and Adressa

Models MovieLens Adressa

AUC Recall@10 nDCG@10 AUC Recall@10 nDCG@10

DSSM 76.15 ± 0.91 15.01 ± 0.41 35.84 ± 1.11 69.24 ± 0.18 24.36 ± 0.41 40.17 ± 1.20

FCF 70.56 ± 0.41 10.84 ± 0.08 25.27 ± 0.71 54.49 ± 0.03 17.61 ± 0.06 27.09 ± 1.72

FedMVMF 72.15 ± 0.35 12.03 ± 0.88 27.15 ± 1.31 60.73 ± 0.01 20.91 ± 0.10 30.13 ± 0.58

FedNewsRec 75.81 ± 0.51 15.42 ± 0.01 34.22 ± 0.38 70.95 ± 0.18 26.30 ± 0.01 42.68 ± 1.84

FedDSSM 75.93 ± 0.25 14.63 ± 0.68 33.41 ± 0.54 68.45 ± 1.03 23.11 ± 0.22 39.13 ± 0.48

SpFedRec 75.55 ± 1.21 14.48 ± 1.73 32.96 ± 1.61 68.10 ± 1.25 22.79 ± 1.03 38.65 ± 1.71

SpFedRec‑SENet 76.93 ± 0.13 15.54 ± 1.11 36.21 ± 0.75 69.91 ± 0.22 25.43 ± 0.55 41.34 ± 1.01

Table 4 The efficiency comparison results of FedDSSM, SpFedRec, and SpFedRec-SENet on MovieLens and Adressa

MovieLens Adressa

FedDSSM SpFedRec SpFedRec‑SENet FedDSSM SpFedRec SpFedRec‑SENet

Device Training 1170 ms 228 ms 449 ms 2570 ms 324 ms 681 ms

Inferring Time 4090 ms 55 ms 55 ms 19120 ms 250 ms 250 ms

Total Time 5260 ms 283 ms 471 ms 21690 ms 574 ms 931 ms

 < Improvement > - 18 × 11 × - 38 × 23 ×

Training Comm 5.42 MB 1.05 MB 1.73 MB 13.68 MB 2.18 MB 4.40 MB

Inferring Comm 0.14 MB 0.05 MB 0.5 MB 557.80 MB 7.19 MB 7.19 MB

Total Comm 5.56 MB 1.10 MB 1.78 MB 571.48 MB 9.37 MB 11.59 MB

 < Improvement > - 5 × 3 × - 60 × 49 ×

Page 13 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

• In the dataset with a large number of items and
dense features (Adressa), SpFedRec more signifi-
cantly reduces the computational and communi-
cation overhead for federated training and online
prediction, further validating the effectiveness of
SpFedRec in large-scale item recommendation sce-
narios.
• The overall efficiency comparison results show
that SpFedRec is more friendly to the resource-
constrained mobile device than the naïve FL setting
regarding computation time and communication
size.

Hyper‑parameter investigation (RQ3)
This subsection studies the influence of negative sam-
pling rate on model performance, and the influence
of selected user size on convergence iterations, server
aggregation time, device secret sharing time, and device
training communication size.

First, we studied the effect of parameter ρ. From the
Fig. 5, we observe that the performance of SpFedRec and
SpFedRec-SENet improves as ρ increases. The results are
consistent with previous works, such as Shen et al. [49],
of applying DSSM in a centralized recommendation
scenario.

Secondly, we study the effect of parameter K. The
amount of users selected to participate in a training
round affects the model’s convergence efficiency and
secure aggregation efficiency. The comparison results are
shown in Fig. 6.

As shown in Fig. 6(a), with the increasing of k , the fast
the model converges. However, when the number of
users involved in a round of training reaches a certain

number, the effect on the speed of model convergence
gradually decreases.

The impact of k on secure aggregation time (server-
side) is shown in Fig. 6(b), the secure aggregation time
increase with larger number of users involved per round
of training.

From Fig. 6(a) and Fig. 6(b), we can obtain the opti-
mal number of users involved per training round for
SpFedRec.

This should be noted that the proposed multi-party
circular secret-sharing chain only needs clients share
confidences with the member next to him/her, so that
the computation time and communication size of secure
aggregation (client-size) is not affected by the k as shown
in Fig. 6(c) and Fig. 6(d).

Privacy protection mechanism investigation (RQ4)
In this section, we study the effect of privacy protection
components: To further investigate the effects of the pro-
posed obfuscated item request (OI) and secure aggrega-
tion by secret sharing (SA) on model performance and
efficiency, in this section, we conduct an ablation study of
these two privacy protection components in SpFedRec.
We set SpFedRec-DSSM and SpFedRec-SENet as base
model and perform it in the following ways: (1) NO-OI:
remove the obfuscated item request from SpFedRec, the
client will directly request items’ ID of positive samples
to the server. The impact of different privacy protection
components in SpFedRec on performance and efficiency
can be highlighted in Table 5.

The server will mix the negative samples by proportion
ρ and return the computed items embedding to the client.
(2) NO-SA: remove the secure aggregation from SpFe-
dRec, the gradients and loss of user model will directly

Fig. 5 The performance comparison with different ρ on Adressa

Page 14 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

Fig. 6 The effectiveness effect of factor of K on Adressa

Table 5 The impact of different privacy protection components in SpFedRec on performance and efficiency. (Comm. Denote the
communication overhead)

Method MovieLens Adressa

AUC Training Time Training Comm AUC Training Time Training Comm

SpFedRec‑DSSM 74.83 228 ms 1.35 MB 67.79 324 ms 2.18 MB

NO‑OI 74.83 225 ms 1.35 MB 67.79 322 ms 2.18 MB

NO‑SA 75.55 182 ms 0.91 68.10 279 ms 1.62 MB

SpFedRec‑SENet 76.32 449 ms 1.73 MB 69.15 681 ms 4.40 MB

NO‑OI 76.32 444 ms 1.73 MB 69.15 678 ms 4.40 MB

NO‑SA 76.93 336 ms 1.02 MB 69.91 569 ms 3.26 MB

Page 15 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

send to the recommendation server for gradients average
and item model backpropagation. We noted the follow-
ing observations in Table 5.

• The obfuscated item request does not affect the
performance and efficiency of the SpFedRec, and
there is only a slight decrease in user device training
time, which is mainly caused by the random nega-
tive sampling operation. The secure aggregation can
increase the computation and communication cost of
user devices, and also have slightly impact on recom-
mendation performance.

Now, we assess our suggested scheme’s computational
cost and memory requirements in terms of the data out-
sourcing phase. During this phase, we take into account
the computation complexity as well as storage overhead
of the information outsourcing phase, which is primar-
ily due to the index construction runtime and memory
requirements. Figures 7 and 8 show the data outsourcing
construction runtime and storage overhead compared
to the number of records n and ρ attributes. We can see
from these figures that both computation complexity and
storage overhead progressively increase with n and ρ.

Conclusions and future work
In this study, we propose a cloud-edge collaboration
based split federated learning framework for the large-
scale item recommendation called SpFedRec. In our
method, to reduce the computation and communication
cost of the federated two-tower model, a split learning
approach is applied to migrating the item model from
participants’ edge devices and compressing item data

transmitting. Meanwhile, to enhance the feature repre-
sentation, the Squeeze-and-Excitation network mecha-
nism is used on the backbone model to optimize the
perception of dominant features. Moreover, because the
gradients transmitted contain private information about
the user, we propose a multi-party circular secret-sharing
chain based on secret sharing for better privacy protec-
tion. Extensive experiments using plausible assumptions
on two real-world datasets demonstrate that our method
improves the average computation time and communi-
cation cost by 23% and 49%, respectively. Furthermore,

Fig. 7 Comparison of data outsourcing running times and number of the records (where, attribute ρ = 3)

Fig. 8 Comparison of storage overhead and number of records n
(where, attributes ρ is between 2 to 5)

Page 16 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

the proposed model attains similar performance with the
state-of-art federated recommendation models.

In the future, we aim to test the model in a real-time
platform and generalize the obtained outcomes. We will
implement deep learning model and integrate them with
the proposed learning model to improve the efficiency of
the recommendation system in terms of training accu-
racy. This could be achieved through deploying the rec-
ommendation system in various modules so that each
module runs independently on different machines i.e.
edge cloud, and/or remote cloud. We will investigate how
the proposed system can be deployed into various mod-
ules and then where each module should run in order to
improve the training and prediction durations.

Authors’ contributions
All authors contribute this paper. The author(s) read and approved the final
manuscript.

Authors’ information
Jiangcheng Qin was born in Huzhou, Zhejiang, China, in 1993. He received
theMaster’s degree from Blekinge Institute of Technology, Sweden. Now, he
is aPh.D. candidate in College of Information Science and Engineering, Ning-
boUniversity and works at Huzhou University. His research interests areprivacy-
preserving recommender systems and federated learning.E-mail:qjc@zjhu.
edu.cn
Xueyuan Zhang was born in Ningbo, Zhejiang, China, in 1993. He received
theMaster’s degree from Ningbo University, P.R. China. Now, he is a
Ph.D.candidate in College of Information Science and Engineering, Ningbo
University.His research interests are information hiding, data security attack
and defensetechniques.E-mail:1711082129@nbu.edu.cn
BaisongLiu was born in 1971. He received the PhD degree from ZhejiangUni-
versity, China. Now, he works as a professor in College of InformationScience
and Engineering, Ningbo University, His research interests includeinformation
retrieval and recommendation system, multi-party trusted computingand
privacy protection, big data analysis and knowledge organization.E-mail: qjc@
nbu.edu.cn
JiangboQian was born in 1974. Now, he works as a professor in College
ofInformation Science and Engineering, Ningbo University, His research inter-
estsinclude database management, steaming data processing, multidimen-
sionalindexing and Bloom filter.E-mail: qianjiangbo@nbu.edu.cn

Funding
This work was supported in part by the National Science Foundation of
China (No. 61472194), Natural Science Foundation of Zhejiang Province
(No. LZ20F020001), Science and Technology Innovation 2025 Major Project
of Ningbo (No. 20211ZDYF020036), and the Natural Science Foundation of
Ningbo (No. 2021J091).

Availability of data and materials
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 16 November 2022 Accepted: 4 April 2023

References
 1. S. Grzonkowski, P. M. Corcoran, and T. Coughlin (2011), “Security analysis

of authentication protocols for next-generation mobile and CE cloud ser-
vices,” in Proceedings of the IEEE International Conference on Consumer
Electronics, pp. 83–87, Berlin, Germany.

 2. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava
G (2021) A survey on security and privacy of federated learning. Futur
Gener Comput Syst 115:619–640

 3. Chai D, Wang L, Chen K, Yang Q (2020) Secure federated matrix factoriza-
tion. IEEE Intell Syst 36(5):11–20

 4. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz
K, Charles Z, Cormode G, Cummings R, D’Oliveira RG (2021) Advances
and open problems in federated learning. Found Trends Mach Learn
14(1–2):1–210

 5. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A (2017) .:
Communication-efficient learning of deep networks from decentral-
ized data. In: Singh, A., Zhu, X.J. (eds.) Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2017.
Proceedings of Machine Learning Research, 54, 1273–1282. PMLR, Fort
Lauderdale, USA

 6. Ammad-ud-din M, Ivannikova E, Khan SA, Oyomno W, Fu Q, Tan KE,
Flanagan A (2019) Federated collaborative filtering for privacy-preserving
personalized recommendation system. CoRR abs 1901:09888

 7. Lin GY, Liang F, Pan WK et al (2020) FedRec: federated recommendation
with explicit feedback. IEEE Intell Syst 2020(36):21–30

 8. Flanagan A, Oyomno W, Grigorievskiy A, Tan KE, Khan SA, Ammad-ud-
din M (2020) Federated multi-view matrix factorization for personalized
recommendations. In: Hutter F, Kersting K, Lijffijt J, Valera I (eds) Machine
Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2020, vol 12458. Lecture Notes in Computer Science.
Springer, Ghent, Belgium, pp 324–347

 9. Qi T, Wu F, Wu C, Huang Y, Xie X (2020) Privacy-preserving news recom-
mendation model learning. arXiv preprint arXiv:2003.09592

 10. Luo L, Liu B (2022) Dual-Contrastive for Federated Social Recommenda-
tion. In 2022 International Joint Conference on Neural Networks (IJCNN)
(pp. 1-8). IEEE

 11. Muhammad K, Wang Q, O’Reilly-Morgan D, Tragos EZ, Smyth B, Hurley N,
Geraci J, Lawlor A (2020) Fedfast: Going beyond average for faster train-
ing of federated recommender systems. In: Gupta R, Liu Y, Tang J, Prakash
BA (eds) KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM, Virtual Event, CA, USA, pp 1234–1242

 12. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R (2020)
Fedpaq: A communication-efficient federated learning method with peri-
odic averaging and quantization. In International Conference on Artificial
Intelligence and Statistics (pp. 2021-2031). PMLR

 13. Khan FK, Flanagan A, Tan KE, Alamgir Z, Ammad-ud-din M (2021) A
payload optimization method for federated recommender systems. In:
Pampín HJC, Larson MA, Willemsen MC, Konstan JA, McAuley JJ, Garcia-
Gathright J, Huurnink B, Oldridge E (eds) RecSys ’21: Fifteenth ACM Con-
ference on Recommender Systems. ACM, Amsterdam, The Netherlands,
pp 432–442

 14. Khan A, Marijn ten Thij M, Wilbik A (2022) Communication-efficient verti-
cal federated learning. Algorithms 15(8):273

 15. Qin J, Liu B, Qian J (2021) A novel privacy-preserved recommender sys-
tem framework based on federated learning. In: Li Y, Nishi H (eds) ICSIM
2021: 2021 The 4th International Conference on Software Engineering
and Information Management. ACM, Yokohama, Japan, pp 82–88

 16. Acun B, Murphy M, Wang X, Nie J, Wu CJ, Hazelwood K (2021) Under-
standing training efficiency of deep learning recommendation models
at scale. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (pp. 802-814). IEEE

 17. Lindell Y, Pinkas B (2009) Secure multiparty computation for privacy
preserving data mining. J Priv Confidentiality 1(1):197

 18. Dwork C, Roth A et al (2014) The algorithmic foundations of differential
privacy. Found Trends Theor Comput Sci 9(3–4):211–407

 19. Lim WYB, Luong NC, Hoang DT, Jiao Y, Liang YC, Yang Q, Niyato D, Miao
C (2020) Federated learning in mobile edge networks: A comprehensive
survey. IEEE Communications Surveys & Tutorials 22(3):2031-2063

Page 17 of 17Qin et al. Journal of Cloud Computing (2023) 12:57

 20. Zeng, Q., Lv, Z., Li, C., Shi, Y., Lin, Z., Liu, C., Song, G (2022). Fedprols: feder-
ated learning for iot perception data prediction. Appl Intell, 1–13

 21. Dwork C, McSherry F, Nissim K, Smith A (2016) Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Confidentiality
7(3):17–51

 22. Pulido-Gaytan B, Tchernykh A, Cortés-Mendoza JM, Babenko M, Rad-
chenko G, Avetisyan A, Drozdov AY (2021) Privacy-preserving neural
networks with homomorphic encryption: challenges and opportunities.
Peer-to-Peer Networking and Applications 14(3):1666–1691

 23. Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: Challenges,
methods, and future directions. IEEE Signal Process Mag 37(3):50–60

 24. Wang X, Han Y, Leung VC, Niyato D, Yan X, Chen X (2020) Convergence of
edge computing and deep learning: a comprehensive survey. IEEE Com-
munications Surveys & Tutorials 22(2):869–904

 25. Yang J, Yi X, Zhiyuan Cheng D, Hong L, Li Y, Xiaoming Wang S, Xu T, Chi EH
(2020) Mixed negative sampling for learning two-tower neural networks
in recommendations. In Companion Proceedings of the Web Conference
2020 (pp. 441-447)

 26. Wang J, Zhu J, He X (2021) Cross-batch negative sampling for training
two-tower recommenders. In: Diaz F, Shah C, Suel T, Castells P, Jones R,
Sakai T (eds) SIGIR ’21: The 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, Virtual Event,
Canada, pp 1632–1636

 27. Cai X, Wang N, Yang L, Mei X (2022) Global-local neighborhood based
network representation for citation recommendation. Applied Intel-
ligence, pp.1-18

 28. Huang P, He X, Gao J, Deng L, Acero A, Heck LP (2013) Learning deep
structured semantic models for web search using clickthrough data. In:
He Q, Iyengar A, Nejdl W, Pei J, Rastogi R (eds) 22nd ACM International
Conference on Information and Knowledge Management, CIKM’13. ACM,
San Francisco, CA, USA, pp 2333–2338

 29. Wu M, Tan L, Xiong N (2015) A structure fidelity approach for big data
collection in wireless sensor networks. Sensors 15(1):248–273

 30. Liu J, Mao Y, Zhang J, Letaief KB (2016) Delay-optimal computation task
scheduling for mobile-edge computing systems. In 2016 IEEE interna-
tional symposium on information theory (ISIT) (pp. 1451-1455). IEEE

 31. Ning Z, Dong P, Kong X, Xia F (2019) A cooperative partial computation
offloading scheme for mobile edge computing enabled internet of
things. IEEE Internet Things Journal 6(3):4804–4814

 32. Wu Y, Qian LP, Ni K, Zhang C, Shen X (2019) Delay-minimization non-
orthogonal multiple access enabled multi-user mobile edge computa-
tion offloading. IEEE Journal of Selected Topics in Signal Processing
13(3):392–407

 33. Zhang J, Zhang J, Hu X et al (2019) Joint resource allocation for latency-
sensitive services over mobile edge computing networks with caching.
IEEE Internet Things Journal 6(3):4283–4294

 34. Huang J, Sharma A, Sun S, Xia L, Zhang D, Pronin P, Padmanabhan J, Otta-
viano G, Yang L (2020) Embedding-based retrieval in facebook search. In:
Gupta R, Liu Y, Tang J, Prakash BA (eds) KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM, Virtual
Event, CA, USA, pp 2553–2561

 35. Yi X, Yang J, Hong L, Cheng DZ, Heldt L, Kumthekar A, Zhao Z, Wei L,
Chi E (2019) Sampling-bias-corrected neural modeling for large corpus
item recommendations. In Proceedings of the 13th ACM Conference on
Recommender Systems (pp. 269-277)

 36. Gupta O, Raskar R (2018) Distributed learning of deep neural network
over multiple agents. J Netw Comput Appl 116:1–8

 37. Singh A, Vepakomma P, Gupta O, Raskar R (2019) Detailed comparison of
communication efficiency of split learning and federated learning. arXiv
preprint arXiv:1909.09145

 38. Vepakomma P, Gupta O, Swedish T, Raskar R (2018) Split learning for
health: Distributed deep learning without sharing raw patient data. arXiv
preprint arXiv:1812.00564

 39. Chen C, Zhou J, Wu B, Fang W, Wang L, Qi Y, Zheng X (2020) Practical
privacy preserving poi recommendation. ACM Transactions on Intelligent
Systems and Technology (TIST) 11(5):1–20

 40. Chen C, Li L, Wu B, Hong C, Wang L, Zhou J (2020) Secure social recom-
mendation based on secret sharing. arXiv preprint arXiv:2002.02088

 41. Reddi S, Charles Z, Zaheer M, Garrett Z, Rush K, Konečný J, Kumar S,
McMahan HB (2020) Adaptive federated optimization. arXiv preprint
arXiv:2003.00295

 42. Huang T, Zhang Z, Zhang J (2019) FiBiNET: combining feature impor-
tance and bilinear feature interaction for click-through rate prediction. In
Proceedings of the 13th ACM Conference on Recommender Systems (pp.
169-177)

 43. Ying Y, Zhang N, Shan P, Miao L, Sun P, Peng S (2021) Psigmoid: Improv-
ing squeeze-and-excitation block with parametric sigmoid. Appl Intell
51(10):7427–7439

 44. Harper FM, Konstan JA (2015) The movielens datasets: History and con-
text. Acm transactions on interactive intelligent systems (tiis) 5(4):1–19

 45. Gulla JA, Zhang L, Liu P, Özgöbek Ö, Su X (2017) The adressa dataset for
news recommendation. In Proceedings of the international conference
on web intelligence (pp. 1042-1048)

 46. Yang F, Wang H, Fu J (2021) Improvement of recommendation algorithm
based on collaborative deep learning and its parallelization on spark.
Journal of Parallel and Distributed Computing 148:58–68

 47. Hu L, Xu S, Li C, Yang C, Shi C, Duan N, Xie X, Zhou M (2020) Graph neural
news recommendation with unsupervised preference disentanglement.
In Proceedings of the 58th annual meeting of the association for compu-
tational linguistics (pp. 4255-4264)

 48. Huang M, Li H, Bai B, Wang C, Bai K, Wang F (2020) A federated multi-view
deep learning framework for privacy-preserving recommendations. arXiv
preprint arXiv:2008.10808

 49. Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model
with convolutional-pooling structure for information retrieval. In Pro-
ceedings of the 23rd ACM international conference on conference on
information and knowledge management (pp. 101-110)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	A split-federated learning and edge-cloud based efficient and privacy-preserving large-scale item recommendation model
	Abstract
	Introduction
	Related work
	Preliminaries
	Backbone model
	Split learning
	Secure multiparty computing

	The SpFedRec framework
	Problem definition
	Framework overview
	Split federated learning
	Client-side local training
	Circular secret-sharing chain
	Global model update
	Online inferring

	Model variations
	Squeeze
	Excitation
	Reweight

	Evaluation setup
	Datasets
	MovieLens-1 M
	Adressa-1 week
	Evaluation metrics
	Implementation details

	Experiments
	Performance evaluation (RQ1)
	Efficiency comparison (RQ2)
	Hyper-parameter investigation (RQ3)
	Privacy protection mechanism investigation (RQ4)

	Conclusions and future work
	References

