
Chen et al. Journal of Cloud Computing (2023) 12:59
https://doi.org/10.1186/s13677-023-00438-2

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Container cascade fault detection based
on spatial–temporal correlation in cloud
environment
Ningjiang Chen1,2,3, Qingwei Zhong1, Yifei Liu1*, Weitao Liu1, Lin Bai1,2,3 and Liangqing Hu1,2

Abstract

Containers are light, numerous, and interdependent, which are prone to cascading fault, increasing the probabil-
ity of fault and the difficulty of detection. Existing detection methods are usually based on a cascade fault model
with traditional association analysis. The tradition model lacks consideration of the fault cascade history dimen-
sion and container space correlation dimension which results in a lower detection effect. And the imbalance of
fault data in the cloud environment to the detection method to bring interference. Instead, this paper proposes a
cascade fault detection method based on spatial–temporal correlation in cloud environment. First, the container
cascade fault relationship model is constructed by extracting the spatial–temporal correlation from historical
container faults. Second, based on dynamic feedback data sampling combined with ensemble learning, a con-
tainer fault model learning method is designed to solve the imbalance of fault data. Then, a real-time container
cascade fault detection mechanism for container cascade failure is proposed. The experimental results show that
compared with the existing fault detection methods, the proposed method can effectively improve the detection
accuracy, recall rate, and F1 value.

Keywords Containers, Cloud computing, Cascade fault, Fault detection, Association model, Ensemble learning

Introduction
With the popularization of cloud computing, cloud
systems are applied in many fields. To improve the reli-
ability of cloud systems, researchers contribute a lot
in data dissemination [1], data management [2], and
security [3]. Still, the fault greatly affected the reliabil-
ity of cloud systems. In container-based cloud systems,
faults generally occur on a large scale and in a time
sequence, which may be the result of cascade faults

[4]. Containers are light, numerous, and interdepend-
ent, which are prone to cascading fault, increasing the
probability of fault and the difficulty of detection [5].
Fault detection methods used in traditional cloud plat-
forms will result in degraded detection performance
when applied to the containerized cloud platform. A
single cascade fault, if not detected and processed in
time, can affect most services in the cloud platform,
resulting in huge losses. For example, the Google
Cloud outage brought down Google’s cloud services
in multiple regions, including Dataflow, Big Query,
Dialog Flow, Kubernetes Engine, Cloud Firestore, App
Engine, and Cloud Console. The cascading fault model
based on traditional correlation analysis does not well
consider the spatial dimensional information such
as application, service, node, and fault domain that

*Correspondence:
Yifei Liu
liu19990118a@163.com
1 School of Computer and Electronic Information, Guangxi University,
Nanning, Guangxi 530004, China
2 Guangxi Intelligent Digital Services Research Center of Engineering
Technology, Nanning, Guangxi 530004, China
3 Key Laboratory of Parallel, Distributed and Intelligent Computing
(Guangxi University), Education Department of Guangxi Zhuang
Autonomous Region, Nanning, Guangxi 530004, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00438-2&domain=pdf

Page 2 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

containers are distributed in the container-based cloud
platform, as well as the time dimensional information
of the cascade fault spread over time, which makes it
impossible to calculate the fault propagation probabil-
ity of containers. Besides, fault detection methods are
often based on historical data when they are running
on cloud platforms, but few studies have focused on
the problem of imbalanced data in a cloud environ-
ment, or have only used simple data preprocessing
methods that cannot effectively address the effects of
imbalanced data sample classification. Therefore, the
reliability of containerized cloud platforms is facing
the serious challenges.

To address these problems, we propose a Cascade Fault
Detection method based on Spatial–Temporal Correla-
tion named CFD-STC. The main contributions of this
work are as follows:

(1) A cascade fault relation model based on the spa-
tial–temporal correlation is proposed. The model
can reasonably depict the cascade relations between
containers and accurately calculate the probability
of failure propagation.

(2) An ensemble learning method for imbalanced
data is proposed. Dynamic feedback sampling and
ensemble learning is adopted to improve the accu-
racy and recall rate of fault detection.

(3) Based on cascade fault relation model and ensem-
ble learning, we propose a method for real-time
detecting container cascade faults.

The rest of this paper is organized as follows. Back-
ground section introduces the background. The pro-
cess of container cascade fault detection section
describes the solution proposed in this paper. Experi-
ments and evaluation section verifies the validity of
the methods proposed in this paper through experi-
ments. The conclusions and future work are presented
in Conclusion section.

Background
Related work
Traditional fault detection methods are classified into
those based on statistical models, mathematical mod-
els [6, 7], data mining [8], and machine learning [9, 10].
These methods depend on historical fault data and usu-
ally require prior knowledge of the fault and its perfor-
mance to formulate a series of rules to define the fault
of the system [11] or to analyze the association between
log information before and after the fault to detect the
fault [12]. LCS [13] is a typical fault cascade and propa-
gation detection method based on historical fault data

in the cloud environment. LCS with VMM [14] adopts a
semisupervised method to improve the detection accu-
racy of LCS. Generally, the methods based on histori-
cal fault data analyze the occurrence of each fault singly
and have high accuracy and timeliness for fault detec-
tion. However, it is difficult to accurately detect fault
containers without considering the cascade and propa-
gation relationships between faults.

The identification of fault cascades and propaga-
tion is an important step for effective fault recovery,
and this topic is currently receiving extensive atten-
tion. Bui D et al. [15] constructed the propagation path
through fault injection and verified the effectiveness
of the method on the OpenStack cloud computing
platform. Wang H et al. [16] proposed a cloud plat-
form cascade fault recovery system for cascade faults
in cloud data centers, but it is mainly for studying
cascade faults among physical machines in the cloud
platform. Wang T et al. [17] established a fault location
model by analyzing the context of fault propagation in
the cloud environment. Yu S et al. [18] obtained and
analysed system logs to detect faults by injecting faults
into the system, but it mainly aimed at detecting grey
faults in the cloud storage system. Toka L [19] trained
AI models for root-cause analysis of cascade faults in
the cloud by time series clustering. In [19], it consid-
ered the time dimensional information of the cascade
fault but ignored the spatial dimensional information.
However, the existing works are usually limited to ana-
lyzing the paths of historical fault propagation and
do not quantitatively evaluate the probability of fault
propagation, while container faults are usually closely
related to their locations in space and time, and the
probability of fault propagation is different for differ-
ent containers.

Since the fault time of the cloud platform is short
compared to the normal operation time, the data gen-
erated by the cloud platform are imbalanced, and the
percentage of fault data will be far less than that of
normal data. This affects the detection method based
on the operation data of the cloud platform. Singh P
[20] points out that in the software fault dataset, the
imbalance of the normal data and fault data adversely
affects the fault detection algorithm. Attempts to
tackle this imbalance are usually divided into two cat-
egories: oversampling [21] and undersampling [22].
The undersampling method solves the imbalance
problem of samples by abandoning a part of the major-
ity class samples [14]. However, as the data imbalance
increases, too many majority class samples are lost,
and the model cannot fit the sample features. This
leads to a decrease in the recall rate of detection. The

Page 3 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

oversampling method balances the original dataset by
copying or generating sample features [16]. Because
there are too many characteristics similar to the origi-
nal sample, it is easy for the model to overfit the train-
ing sets due to the overlap of data samples. This results
in lower accuracy of real-time fault detection. Ensem-
ble learning trains multiple base models in parallel by
constructing multiple balanced training sets and inte-
grates the multiple base models into a final model. As
a result, fault detection is generally better than any
single base model and performs better on imbalanced
fault data [23–25]. However, the traditional ensemble
learning method adopts a random sampling method
for fault data samples when constructing the training
dataset and pays less attention to the sample distribu-
tion. This leads to a poor model training effect. At the
same time, during model integration, only one round
of base model training and integration is applied and
this is not enough to obtain an optimal model.

In summary, the existing cascade fault detection
methods face the following two challenges. First, the

traditional cascade fault model has insufficient abil-
ity to characterize the fault cascade among containers.
Usually, it only describes the propagation path of faults
and fails to quantify the probability of fault propaga-
tion. Second, the existing methods do not focus on
the imbalance of historical fault data and thus cannot
guarantee both accuracy and recall rate as the imbal-
ance rate increases.

The idea of solution
Our proposed detection method is shown in Fig. 1. It
includes three key parts: cascade fault relation model
construction, ensemble learning model training method,
cascade fault detection method combined with cascade
fault model and ensemble learning.

(1) Cascade fault relation model construction.
Through the container fault cascade history, fre-
quently associated fault container instances are
mined to analyze the container fault propagation
path qualitatively. Then based on the time series

Fig. 1 The framework of cascade fault detection based on spatial–temporal correlation

Page 4 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

dimension and spatial structure dimension of his-
torical fault data, the time correlation and spatial
correlation of container fault propagation are calcu-
lated to quantitatively characterize the association
strength and fault propagation probability between
the fault containers. Based on the combination of
qualitative and quantitative methods, the cascade
fault relation model based on container spatial–
temporal correlation is established.

(2) Ensemble learning model training method. To
avoid the error caused by the imbalanced historical
dataset, multiple training sets with balanced cat-
egories are constructed by the sampling method,
and multiple models are trained separately. Then,
a weighted integration model is constructed by
ensemble learning. By testing the effect of integrated
model, the sample distribution of the imbalanced
historical dataset is updated to iteratively improve
the detection effect and model performance.

(3) Cascade fault detection method combined with
cascade fault relation model and ensemble learn-
ing. Based on the above construction of cascade
fault relation model and model training method, we
design a container cascade fault detection method,
which collects the metric data produced by cloud
containers in real time and inputs it into the inte-
grated model. Through model prediction, it is pos-
sible to judge the probability of container fault.

The process of container cascade fault detection
Construction of container cascade fault relation model
Finding the associations among container faults is
an important step in constructing the container cas-
cade fault relational model. As shown in Fig. 2, the
relational model for spatial–temporal association is
constructed in two stages. The model is trained by
historical fault data and spatial–temporal correlation

Fig. 2 Fault correlation model construction process

Page 5 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

data to more accurately characterize the propagation
path and propagation probability of container cascade
faults.

Finding frequently associated fault container instance
sequences
Historical data that are classified as fault data are extracted.
Through correlation mining, the frequently associated
fault container instance sequences in the historical fault
data are found. This association of historical fault contain-
ers means that faults in the future operation stage will also
be frequently associated, which represents the propagation
path of container cascade faults. Moreover, all the intro-
duced notations and their definitions that followed have
been summarized in Table 1 for easy reference.

First, historical cascade fault data and the spatial struc-
ture (service, node and fault domain) of the container
cluster must be obtained. The sequence of historical fault
container instances and frequently associated fault con-
tainer instances are obtained from fault data, and the set
of fault container sequences is constructed. Then, the fre-
quently associated fault container instances are found by
association rules. This paper obtains four attributes for
each data sample in the dataset through fault injection,
and each data sample in the dataset acquired through
fault injection has the four attributes of { timestamp , ID ,
PerformanceData , State }. Here ID is the unique identifier
of the container instance, PerformanceData is the CPU
usage, memory usage and other performance data in the
current state of the container instance, State is the runt-
ime state of containers (faulty or normal), and Timestamp
is the interval of fault injection.

Definition 1 Sequence of historical fault
container instances (Historical Sequence).
D = �containerID1, · · · , containerIDn�,containerIDi is the
unique identifier of the container instance. It is consid-
ered to be sequential, i.e., the fault containers in Histori-
cal Sequence are ordered in sequence.

The expression of fault container association is like
Di → Dj , and Di ∩ Dj = ∅ . The strength of an associa-
tion rule can be measured by its support and confidence.
The support degree s and confidence degree c are calcu-
lated by Formulas (1) and (2), respectively.

s Di → Dj is expressed as the proportion of the times
that Di and Dj break down at the same time. c

(

Di → Dj

)

represents the proportion of occurrences of Dj in the
sequence containing Di when Di appears, σ(Di) repre-
sents the number of occurrences of Di in the Historical
Sequence sets, and N is the total number of sequences in
the Historical Sequence set.

Definition 2 Sequence of frequently failed asso-
ciated container instances (Association Sequence).
C = �containerID1, · · · , containerIDn� , C equals is D or
its subsequence with support and confidence greater than
a custom minimum.

Definition 3 Sequence set of frequently fault associated
container instances(Association Set). L = {C1,C2, · · · ,Cn} ,
Ci represents one of these related sequences C.

The mining process of the Association Sequence is
shown in Fig. 3. The item with length 1 is obtained
through the Historical Sequence set, and then the
association set L1 with no less than the minimum sup-
port is screened. Then, the Association Sequence L1 is
used as the basic fault container Association Sequence
pattern and the known Association Set Lk is used to
generate the candidate Association Sequence Ck+1 .
Next the association set Lk+1 with length K + 1 is cal-
culated according to the minimum support. The above
process is iterated until the next level candidate Asso-
ciation Sequence cannot be generated and it ends up
with Association Set L . Based on the above mining
process, the Association Set representing the fault
propagation path can be obtained. However, more
container fault cascade information is needed. There-
fore, the probability of container cascade fault propa-
gation will be calculated.

(1)s
(

Di → Dj

)

=
σ(Di∪Dj)

N

(2)c
(

Di → Dj

)

=
σ(Di∪Dj)
σ(Di)

Table 1 Types and methods of fault injection

Notation Definition

D Historical Sequence

C Association Sequence

L Association Set

ST (i, j) The spatial correlation strength of the
cascade fault

Ss(i, j) The temporal correlation strength of the
cascade fault

SO(i, j) The spatial–temporal correlation strength of
the cascade fault

xT , xS weights of temporal correlation and spatial
correlation degree

S = {SO(1, 1), . . . , SO(n, n)} Spatial–temporal correlation degree matrix

M base model

δ integrated model threshold

F(x) Final integrated model

xi container historical performance data

Page 6 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Calculation of the spatial–temporal correlation degree
of container faults
The propagation of container faults has a strong spatial–
temporal correlation, in contrast to traditional software.
It is the key to determining the cascade association of
container faults and calculating the probability of fault
propagation. Therefore, the spatial–temporal correlation
strength of the cascade faults is described by the time
and space data of the fault container. The relevant defini-
tions are as follows.

Definition 4 The spatial correlation strength of the
cascade fault ST (i, j) is defined as follows:

where Tk ,j and Tk ,i represent the time when fault con-
tainers j and i are faulty in fault container item set k
that contains a subset of fault container sequences (i, j) .
N

′ is the total number of containers in k . ST
(

i, j
)

 repre-
sents the average propagation time from the histori-
cal fault container i to container j after normalization,
ST

(

i, j
)

∈ [0, 1] . The higher ST
(

i, j
)

 is, the shorter the
fault propagation time is and the stronger the time asso-
ciation is.

The multi-layer spatial layers in the cloud environ-
ment, such as clusters, fault domains, server nodes,
services, and containers, are abstracted into the layers
of the cluster spatial tree. The Euclidean distance of
the service, node and fault domains of two containers

(3)ST
(

i, j
)

=

∑N
′
−1

k=0

(

1−

(

Tk ,j−Tk ,i
�T

))

N
′ , 0 ≤ i, 0 ≤ j

is used to represent the spatial distance between two
containers, and the reciprocal of the Euclidean distance
is used to represent the spatial correlation strength
between two containers. The cluster spatial tree is
shown in Fig. 4.

Definition 5 The temporal correlation strength of the
cascade fault Ss(i, j) is defined as follows:

where Seri represents the service to which container i
belongs, Nodei represents the node to which container i
belongs, and Faili represents the fault domain to which
container i belongs. Zt is the normalization factor that
makes Ss

(

i, j
)

∈ [0, 1) . The larger Ss
(

i, j
)

 is, the greater the
spatial correlation between container i and container j.

Definition 6 The spatial–temporal correlation strength
of the cascade fault SO(i, j) is defined as follows:

The spatial–temporal correlation degree of faults
among containers is the weighted addition of the tem-
poral correlation degree and spatial correlation degree.
xT and xS represent the weights of the custom tempo-
ral correlation degree and spatial correlation degree,
respectively. Because ST (i, j) ∈ [0, 1] , Ss(i, j) ∈ [0, 1] , and
xT + xs = 1 , the value of SO

(

i, j
)

 is between 0 and 1.

(4)Ss
�
i, j
�
=

⎧⎪⎨⎪⎩

�
1

(Serj−Seri)
2
+(Nodej−Nodei)

2+(Failj−Faili)
2

Zt

1Serj = Seri and Nodej = Nodei and Failj = Faili

(5)SO
(

i, j
)

= xTST
(

i, j
)

+ xsSs
(

i, j
)

xT + xs = 1

Fig. 3 Association Set mining process

Page 7 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

SO
(

i, j
)

 represents the strength of the spatial–temporal
correlation degree of faults among containers.

Definition 7 Spatial–temporal correlation degree
matrix S = {SO(1, 1), SO(0, 1), · · · , SO(n, n)} , in which
the value of each element is the fault spatial–temporal
correlation degree SO(i, j) of container i and container j.

Formula (5) is used to calculate the spatial–temporal
correlation strength of faults among containers in the

correlation item set. This is because it is of practical
significance to calculate the spatial–temporal associa-
tion degree of faults only for containers with frequent
fault association. The calculation of the spatial–tem-
poral correlation degree of faults among containers is
shown in Algorithm 1. The flowchart of Algorithm 1
is shown in Fig. 5.

Fig. 4 cluster spatial tree

Fig. 5 The flowchart of Algorithm 1

Page 8 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Algorithm 1. Calculate the Spatial-temporal Correlation Degree of Faults
Among Containers

Association Set and Historical Sequence are traversed
through two loop statements to calculate the spatial–
temporal correlation strength, so the time complexity of
the Algorithm 1 is O(n2) , where n is the number of dif-
ferent container instances in the correlation item set.

Compared with the number of containers in the cloud
platform, the container instances left in the association
mining stage account for a small proportion. Hence the
time complexity is acceptable.

Model learning method for imbalanced historical fault data
The traditional data imbalance processing methods are
coarse and cannot guarantee the accuracy and recall rate
at the same time. Hence, a model learning optimization
method is proposed based on dynamic feedback sampling
combined with ensemble learning. The flow of the method
is shown in Fig. 6. It consists of the following stages.

(1) Data preparation. Before training and optimiza-
tion, the performance data and state data of con-
tainers are obtained by fault injection. The perfor-
mance data, container fault relational model and
container instance state, which are strongly associ-
ated with the container, are combined as the input
vector of the training model, the current state of the
container is used as the label.

(2) Division. The historical dataset is divided into a
cascade fault dataset D1 and a normal dataset D2.

(3) Sampling. Normal data are sampled by random
sampling only for the first time, and the subsequent
sampling is performed according to the sample dis-
tribution feedback from the model. After several put-
back extractions (depending on the number of basic
models), normal data are combined with cascade
fault data of containers to form a balanced training
set of multiple normal classes and fault classes.

Fig. 6 Model learning method flow for imbalanced fault history data

Page 9 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

(4) Basic model learning. The LSTM (long short-term
memory) model [26] is used as the basic model
because it can adapt well to the time sequence and
backward dependence (fault propagation direc-
tion) of cluster historical datasets. Using a balanced
training set to train the LSTM-based model, the
basic model can accurately study the cascade rela-
tionship between fault containers and calculate the
detection effect αi and weight value wi of each basic
model in the historical dataset.

(5) Model integration and testing. Multiple basic mod-
els are weighted and combined with the previous
round of integration model to obtain the integration
model using the model weight wi obtained in the
learning stage. Then the detection effect enhance-

ment value �ϕ of the integrated model is calculated.
If �ϕ > δ , the sample distribution is updated so
that the wrong samples detected by the integrated
model receive more attention. The above steps are
iteratively performed until �ϕ < δ , and the model is
proved to have converged. The output of this round
of integration model is the final integration model.

The training optimization process is shown in Algo-
rithm 2. Since the outer while loop of the algorithm 2
cannot determine the number of loops, we only consider
the time complexity of the algorithm inside the while
loop. The time complexity of the Algorithm 2 is O(n),
where n is the number of basic model. The flowchart of
Algorithm 2 is shown in Fig. 7.

Fig. 7 The flowchart of Algorithm 2

Page 10 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Algorithm 2. Model learning based on dynamic feedback sampling and
ensemble learning

Container cascade fault detection based on the cascade
fault relational model
Next, real-time container cascade fault detection based
on cascade fault relational model and ensemble learn-
ing will be introduced. The detection process is shown in
Fig. 8. Considering the temporal sequence of cascade faults
and the sensitivity of the LSTM model to time-dependent
data, we adopt the sliding window mechanism. Continuous
detection of container faults can be realized by collecting
container data at the previous n time points in advance.

• Data acquisition and input. Obtain container his-
torical performance data (including container CPU,
memory, IO, etc.) at the previous n time. The state
(the normal state is marked 0, and the fault state
is marked 1) and the spatial–temporal correla-
tion degree of the container are combined as input
data, denoted as {x1, x2, · · · , xn} , and they are input
into the integrated model F(x) trained above, where
xi = {ID,PerformanceData,Associatedmatrix,Othercontainerstates, State}.

• Fault detection process. The integrated model
F(x) detects whether the container will fail at time
(n + 1) based on the input vector{x1, x2, · · · , xn} .
At the same time, it obtains the above data at time
(n + 1) by the sliding window mechanism. Based on
the sequence{x2, x3, · · · , xn+1} , the container state

at time (n + 2) is detected. The detection window is
continuously sliding to detect the possibility of con-
tainer fault.

• Results output. The output of the model is trans-
formed into the failure probability of the current
container state by the sigmoid activation function,
and the value range is between 0 to1. The greater the
value is, the greater the possibility of failure.

Experiments and evaluation
Set up
To simulate the cascade faults between containers in
the cloud environment, experiments are carried out by
establishing a Docker cluster. We deploy different con-
tainer instances in the cluster to form different service
instances, including data storage services, web ser-
vices, distributed computing services, and monitoring
services. Figure 9 shows the intercontainer dependen-
cies and interservice dependencies in the container
cluster. The Configuration setup table is shown in
Table 2.

An experimental prototype system based on CAd-
visor + InfluxDB + Grafana combined with the cas-
cade fault detection method is constructed. The system
framework is shown in Fig. 10. The software pack-
ages used by the system are Docker v19.03.8, cAdvisor
v1.30.0, influxdb-1.7.6, grafana-6.0.0, Hadoop-3.1.0, Zoo-
keeper-2.7.5, Ceph-9.1.0, docker container stress genera-
tion and testing tool docker-stress-ng v1.0. CAdvisor is
used for data collection, and the collected data are used
as the data source of InfluxDB in the form of time series
data and then stored in the Database. Docker-stress-ng, a
special stress test and fault injection tool for Docker con-
tainers, is used to inject CPU, memory, disk and network
pressure on container instances so that their resource
usage reaches the bottleneck of system-limited resources.
The types of injected faults are shown in Table 3.

To find the key performance indicators reflecting the
failure of the container, we analyze the container resource
usage patterns in different states in the Docker cluster
and compare the average CPU usage, average memory
usage, and average disk IO time between faulty contain-
ers and normal containers [27, 28]. Finally, the number of
container CPU requests, CPU usage, memory requests,
memory usage, disk IO, and network traffic are used as
performance indicators for container fault detection, and
these data are collected in the data collection phase.

(6)
outputi = model.predict({xi, xi+1, · · · , xn+i−1})

(7)predicti = sigmoid
(

outputi
)

Page 11 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Here are the metrics used for model evaluation.TP is
the number of samples with positive observed value and
positive detected value, FN is the number of samples with
positive observed value and negative detected value, FP
is the number of samples with negative observed value
and positive detected value, TN is the number of sam-
ples with negative observed value and negative detected
value. Accuracy, precision, recall rate and F1 are calcu-
lated by Formulas (8), (9), (10) and (11).

(8)accuracy = (TP + TN)/ALL

(9)precision = TP/(TP + FP)

Evaluation of fault relational model
The model is built and trained with the dataset of the
Docker cluster obtained by simulation experiment. The
LSTM training model is configured to train the fault
correlation model with different network structures
ranging from 4 to 8 hidden layers and from 8 to 256
hidden neurons.

(10)recall = TP/(TP + FN)

(11)F1 = 2/(1/Precision+ 1/recall)

Fig. 8 Fault detection flow

Page 12 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Performance comparison of cascade fault relational models
The formation of the cascade fault detection model
includes two stages: construction of the relational model
and training of the relational model. By comparing with
the traditional correlation analysis method Apriori [29]
and the fault history propagation path analysis method
LCS [13], the effectiveness of the fault relational model
proposed in this paper is evaluated for cascade faults.
Table 4 shows the results based on 100,000 container
cluster historical data.

Table 4 shows the number of fault propagation paths
and times taken to construct the model. LCS calculates
every historical fault propagation path that has occurred.
Additionally, because it simply obtains the fault path, the
model construction time is the shortest. When different
faults occur in the fault propagation time window, Apri-
ori first lists the occurring fault as a candidate fault prop-
agation path and then judges whether the path is a fault
propagation path after combining the minimum sup-
port and confidence calculation. CFD-STC is the same as

Apriori in the calculation stage. After obtaining the final
fault propagation path, CFD-STC also calculates the cor-
relation degree, so the time consumption is greater than
that of Apriori. However, this increased consumption in
the construction will be compensated in the subsequent
model training process by reducing the formation time of
the fault detection model.

Figure 11 shows the accuracy changes in the LSTM
model training process using three different methods
after obtaining the container fault propagation path.
It can be seen that CFD-STC has higher training effi-
ciency in the model training stage, and the model is
basically fitted after training approximately 400 times,
while the other two methods are fitted after 600–800
times. This is because the method in this paper fil-
ters out some fault propagation paths that have low
confidence through frequent itemsets calculation. In
addition, it calculates the fault correlation between
containers and takes it as a model training feature
so that the LSTM model training process can better
judge and learn the probability of different cascade
fault propagation paths. Thus each round of train-
ing obtains more effective cascade fault information,
which improves the training efficiency of the model. At
the same time, the training model obtains more fine-
grained fault propagation information, which better fits
the fault propagation mode and obtains a higher detec-
tion model accuracy.

Comparison of fault detection effects
After the training of the fault detection model, the detec-
tion data are obtained in the same way as the training

Fig. 9 The services configuration in the experiments

Table 2 Configuration setup table

Node Hardware configuration Container instances

1 2.4 GHz Intel Xeon E5-260 CPU,2G
RAM

node exporter, Grafana,
cAdvisor, ceph admin,
hadoop master

2 2.4 GHz Intel Xeon E5-260 CPU,2G
RAM

mysql, InfluxDB, web, web,
ceph1, hadoop datanode1

3 2.4 GHz Intel Xeon E5-260 CPU,2G
RAM

python, code, ceph2

4 2.4 GHz Intel Xeon E5-260 CPU,2G
RAM

ceph3, hadoop datanode2

Page 13 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

data, and the detection data are extracted with the same
features as the training data and then input into the three
cascade fault detection models. The detection results are
shown in Table 5.

Although the three methods are all cascade fault detec-
tion models trained by the same data and the same LSTM
network structure, the detection effect and model per-
formance of the LSTM fault detection model trained by
the proposed approach are improved more, in terms of
accuracy, recall rate and F1 value effect are improved by
between 10 to 15% compared with the those of other mod-
els, and the model error is controlled to be a small value.

Effect evaluation of ensemble learning optimization
method
The experimental method in this section is basically
the same as that in Evaluation of fault relational model

Fig. 10 Experimental prototype framework

Table 3 Types and methods of fault injection

Type of failure Description Action

CPU failure Simulate the container to request CPU usage, make the
system reach the limit, and cause the container to crash

Stress-ng generates CPU pressure in the specified container to occupy all
allocated CPU

Memory failure Simulate the container to request memory usage, make
the system reach the limit, and cause the container to
crash

Stress-ng simulates the creation of objects pointing to global static vari-
ables in the container, gradually filling up the memory of the container

Network failure Simulate container network bandwidth is fully occupied iPerf Continuously sends data packets to other container instances until the
requested network bandwidth is occupied

Disk failure Simulate container disk IO is fully occupied Stress-ng simulates the disk write() function, continuously writes to the disk,
occupying the container disk IO

Table 4 Model performance comparison

Model The number of fault
propagation path

Time to
construct/
sec

Apriori 376 13,608

LCS 1491 10,233

CFD-STC 376 13,834

Page 14 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

section. By applying the ensemble learning optimization
method, the fault detection effect of the fault relational
model in this paper is fully improved, and the perfor-
mance is superior in the face of imbalanced cascade fail-
ure history data. While obtaining an efficient detection
model, the resource utilization rate in the cloud environ-
ment is maintained at a low level.

Comparison of different models
To verify the improvement of CFD-STC by combining
the dynamic feedback sampling method and the ensem-
ble learning method, we use the Docker cluster dataset
and Alibaba [30] cluster dataset to compare the effect
of the model. We compare the performance of CFD-
STC and CFD-STC with the proposed model learn-
ing method, which is denoted CFD-STC-E. As shown
in Tables 6 and 7, after training the model through the
proposed sampling and learning methods, the fault

detection effect on the two datasets has been improved,
with the accuracy increased by 9.0 and 5.7%, and the
recall increased by 8.7 and 7.9%, respectively.

The dataset of the Docker cluster obtained by fault
injection and the dataset of the Alibaba cloud platform

Fig. 11 Model training process

Table 5 Three methods to detect the effect of container
cascade fault

Metrics LCS + LSTM Apriori + LSTM CFD-STC + LSTM

RMSE 0.549 0.414 0.287

MAPE 0.607 0.511 0.315

R2 0.622 0.761 0.908

Precision 0.689 0.736 0.823

Recall 0.431 0.707 0.808

F1 0.530 0.722 0.815

Table 6 The effectiveness of the verification method in the
Docker cluster data set

Metrics CFD-STC CFD-STC-E

RMSE 0.287 0.213

MAPE 0.315 0.232

R2 0.908 0.950

Precision 0.823 0.913

Recall 0.808 0.895

F1 0.815 0.904

Table 7 The effectiveness of the verification method in the
Alibaba cluster data set

Metrics CFD-STC CFD-STC-E

RMSE 0.281 0.199

MAPE 0.302 0.203

R2 0.917 0.961

Precision 0.863 0.920

Recall 0.824 0.903

F1 0.843 0.911

Page 15 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

are unbalanced. This causes interference with CFD-STC,
which limits the accuracy and recall rate of cascade fault
detection and increases the error rate. Through the prob-
ability distribution sampling method, multiple balanced
training sets and corresponding basic LSTM models are
constructed. Each basic model obtains a balanced train-
ing set that effectively shields the impact of data imbal-
ance. Feedback sampling ensures that the data samples
with detected classification errors in the overall data-
set are repeatedly trained by the model. The integration
mechanism makes the integrated model better than any
single basic model in the same round. Therefore, CFD-
STC-E has better cascade fault detection performance.

Comparison of different imbalance rates
To verify the superiority of the ensemble learning opti-
mization method in the face of imbalanced cascade fault
data, datasets with different imbalance rates (IRs) are
extracted and constructed based on container cluster
data and Alibaba cluster data (the calculation formula of

IR is shown in Formula (12), in which N2 and N1 are the
numbers of normal data and fault data samples, respec-
tively), and 80% of them are used as the model training
set and 20% are used as the model test set. The proposed
fault relational model and LSTM are used to train the
cascade fault detection model to verify the guarantee and
improvement of the accuracy, recall and F1 (F-measure)
of the container cascade fault detection in the face of
imbalanced cascade fault data.

In Fig. 12, we compare the accuracies and recall rates
of the proposed method, the oversampling method, the
undersampling method [31], the no data processing
method, and the traditional ensemble learning method
under different IR values. The accuracy rate and recall
rate of the model without any data processing method
decrease with increasing IR, especially when the IR is
large, and there is a cliff-like decline. The undersampling

(12)IR =
N2

N1

Fig. 12 Detection effect of cascade faults under different IR conditions

Page 16 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

method constructs a balanced dataset by randomly
selecting normal data samples. However, it loses the data
information of many normal data samples. When the
IR increases, although it can maintain the recall rate, its
accuracy is reduced due to the decline in the accuracy
of the normal data. The oversampling method keeps
the balance of the training set by generating the fault
data, and its accuracy can remain stable when the IR is
small. However, with the increase in the IR, the new sam-
ples that need to be generated continue to increase. The
model often overfits the training samples, resulting in a
decrease in the accuracy and recall rate. Although the
accuracy of the ensemble learning method is stable at a
high level, with the increase in the IR, most class sample
information of the detection model based on the ensem-
ble learning method is discarded during the sample divi-
sion or iteration process, resulting in a downward trend
of accuracy. At the same time, the recall rate cannot be
guaranteed well with the increase of the IR.

CFD-STC-E maintains a high level of accuracy and
recall, and the accuracy and recall are basically stable
when the IR is constantly changing. This is because the
dynamic sampling method is used to construct multiple
datasets in the training model. Through the weighted
combination of multiple models and the dynamic adjust-
ment of the sample distribution, the normal data features
learned by the model are basically close to the overall
normal class sample data features. Next, we compare the
resource consumption of our method with other meth-
ods in the model training process. Figure 13 shows that
the undersampling method has the least resource uti-
lization in training under different IRs. The resource
consumption of the undersampling method decreases
with increasing IR when IR is greater than 1, while the
opposite is true for the oversampling method. The
resource consumption in the training process of the pro-
posed method is similar to that of traditional ensemble

learning. This is because we mainly improve the sam-
ple distribution update of traditional ensemble learning
before training and the model integration method after
training. It can be seen that the resource utilization rate
of the proposed method is higher when the IR is low, and
with the increase in the IR, the resource utilization rate
decreases gradually and is only higher than that of the
undersampling method. This is because the number of
ensemble learning models is usually 10–20. When the IR
is low, the data volume of the whole model is larger than
that of the original data, so the resource utilization rate
is higher than that of normal training. When the IR of
the data increases, the data of the whole model gradually
decrease compared to the initial data. In the real cloud
environment, the resource usage of our method is better
than most methods because the historical data imbalance
rate of the cloud platform is between 10 and 50.

Fault detection effect evaluation
Based on the above system, we compare the detection
effect of the proposed method with LCS and LCS with
VMM in cascade failure propagation. Figure 14 shows
the comparison of three methods for container cascade
faults.

By comparing the model performance of the two cas-
cade fault models on the Docker dataset, it can be seen
from Fig. 14 that CFD-STC-E is better than the other
two fault propagation detection models in terms of the
accuracy and recall of the cascade fault detection effect.
In addition, the error of the model is also less than that
of the compared methods. The two methods in [32]
only obtain the historical path of fault propagation
through fault injection, which is stored in the database,
and learn the characteristics of the normal path and
fault path through deep learning. In the model detec-
tion stage, if the analysis of the process execution path
does not conform to the normal path, it is identified as

Fig. 13 Comparison of CPU and memory usage during training with different methods

Page 17 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

an abnormal path. In contrast, our method comprehen-
sively considers the path of container fault propaga-
tion and the probability of cascade failure propagation
between containers. This can better characterize the
cascade failure propagation mode of containers, reduce
the misjudgment of faults, enhance the accuracy, and
reduce the error of the detection model. TPR and EPR
are calculated by Formulas (13) and (14).

It is inappropriate to only consider accuracy to assess
the prediction model against imbalanced datasets. The
advantage of the ROC curve [29] is the fact that it depicts

(13)TPR = number of cascade faults checked correct

actual number of cascade faults

(14)FPR = number of cascade faults checked incorrect

actual number of non−cascade faults

the trade-off between TPR and FPR. Its value ranges from
0 and 1. The closer it is to 1, the better the model pre-
dicts. The P-R curves [12] show the correlation between
the recall and precision of the model. The receiver oper-
ating characteristic (ROC) curve and P-R curve of the
three methods were compared, and the results are shown
in Fig. 15. Under different FPR/TPR ratios, the proposed
method is superior to the compared methods and has
high accuracy. On the Docker historical dataset, the AUC
(area under the curve) of the proposed method is 0.908,
while the values of LCS and LCS with VMM are 0.802
and 0.769, respectively. This shows that CFD-STC-E is
superior to the compared methods in correctly detecting
cascade faults and correctly detecting non-cascade faults.

After 2, 4, 6, and 8 containers are randomly selected
in the system to inject faults, the resulting alarm

Fig. 14 Comparison of cascade fault detection effects of three methods

Fig. 15 Comparison of ROC and P-R curves of the two methods

Page 18 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

situation of the fault model is shown in Fig. 16. The
number of cascade fault warnings increases over time,
which indicates that the fault cascade and propagation
are caused by the injected fault container. The method
in this paper can better capture the occurrence of con-
tainer cascade fault and provide an early warning.

Figure 17 shows the change in the container failure
rate (number of fault containers/total number of con-
tainers) to see whether the cluster enables our method,
under different numbers of injected fault containers in
the container cluster. Figure 17a–d represent the ran-
dom selection of 2, 4, 6, and 8 container injection fail-
ures in the Docker container cluster, respectively. The
x-axis represents the time after fault injection, and the
y-axis represents the ratio of containers that fail at time
t. It can be seen that the final cascade faults do not

affect the entire container cluster, which is due to the
degree of correlation between containers, as well as the
fault isolation and fault tolerance measures in the cloud
platform.

Conclusion
To address the problems of lacking fine-grained con-
struction of targeted cascade fault models and the model
degradation caused by imbalanced fault data, the cas-
cading and propagation modes of inter-container faults
in a containerized cloud platform are studied in depth.
Firstly, the container fault spatial–temporal correlation
is modeled from the fault cascade history dimension and
container space correlation dimension. And the Cascade
Fault Detection method based on Spatial–Temporal Cor-
relation is designed. Secondly, aiming at the imbalance of

Fig. 16 Number of faults detected by the model

Page 19 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

data ignored by traditional detection methods, a model
training method combining dynamic feedback sampling
and ensemble learning is designed to further improve the
detection effect of container cascade fault. The results
show that the method is effective and accurate in terms
of container fault detection. However, container fault
cascade in cloud environment is focused on only. Con-
sidering the difference between container fault modes
in other complex and dynamic environments and cloud
environment, proposing a generic container cascade fault
detection method will be the main research work in the
future.

Authors’ contributions
Ningjiang Chen (First Author): Conceptualization, Methodology, Resources,
Supervision, Funding Acquisition; Qingwei Zhong: Validation, Formal Analysis,
Software, Writing—Original Draft; Yifei Liu (Corresponding Author): Investiga-
tion, Resources, Supervision, Writing—Review & Editing; Weitao Liu: Resources,
Supervision, Writing—Review & Editing; Lin Bai: Data collection and curation;
Liangqing Hu: Data processing and analysis. The author(s) read and approved
the final manuscript.

Funding
The authors disclosed receipt of the following financial support for the
research, authorship: This work was supported by the Natural Science Founda-
tion of China (No. 62162003, No. 61762008), and the National Key Research
and Development Project of China (No. 2018YFB1404404).

Availability of data and materials
This declaration is not applicable.

Fig. 17 Fault propagation rate comparison

Page 20 of 20Chen et al. Journal of Cloud Computing (2023) 12:59

Declarations

Ethics approval and consent to participate
This declaration is not applicable.

Competing interests
The authors declare no competing interests.

Received: 11 July 2022 Accepted: 4 April 2023

References
 1. Bali RS, Kumar N (2016) Secure clustering for efficient data dissemina-

tion in vehicular cyber–physical systems. Futur Gener Comput Syst
56:476–492

 2. Chaudhary R, Kumar N, Zeadally S (2017) Network service chaining in fog
and cloud computing for the 5G environment: data management and
security challenges. IEEE Commun Mag 55(11):114–122

 3. Challa S, Das AK, Gope P et al (2020) Design and analysis of authenticated
key agreement scheme in cloud-assisted cyber–physical systems. Futur
Gener Comput Syst 108:1267–1286

 4. The 10 Biggest Cloud Outages of 2020 (So Far) in 2020. pp 6–25. https://
www. crn. com/ slide- shows/ cloud/ the- 10- bigge st- cloud- outag es- of-
2020- so- far-/. Accessed 17 May 2022.

 5. Manu AR, Patel JK, Akhtar S, et al (2016) A study, analysis and deep dive
on cloud PAAS security in terms of Docker container security. In: 2016
international conference on circuit, power and computing technologies
(ICCPCT). IEEE, Piscataway, pp 1–13

 6. Birke R, Giurgiu I, Chen LY, et al (2014) Failure analysis of virtual and physi-
cal machines: patterns, causes and characteristics. In: 2014 44th annual
IEEE/IFIP international conference on dependable systems and networks.
IEEE, Piscataway, pp 1–12

 7. Ye K, Liu Y, Xu G, et al (2018) Fault injection and detection for artificial
intelligence applications in container-based clouds. In: International
conference on cloud computing. Springer, Cham, pp 112–127

 8. Yuan Z, Zhao P (2019) An improved ensemble learning for imbalanced
data classification. In: 2019 IEEE 8th joint international information tech-
nology and artificial intelligence conference (ITAIC). IEEE, Piscataway, pp
408–411

 9. Das A, Mueller F, Siegel C, et al (2018) Desh: deep learning for system
health prediction of lead times to failure in hpc. In: Proceedings of the
27th international symposium on high-performance parallel and distrib-
uted computing. pp 40–51

 10. Mohammed B, Awan I, Ugail H et al (2019) Failure prediction using
machine learning in a virtualised HPC system and application. Clust
Comput 22(2):471–485

 11. Zhang PY, Shu S, Zhou MC (2018) An online fault detection model
and strategies based on SVM-grid in clouds. IEEE/CAA J Autom Sin
5(2):445–456

 12. Le VH, Zhang H (2021) Log-based anomaly detection without log parsing.
In: 2021 36th IEEE/ACM international conference on automated software
engineering (ASE). IEEE, Piscataway, pp 492–504

 13. Bergroth L, Hakonen H, Raita T (2000) A survey of longest common sub-
sequence algorithms. In: Proceedings seventh international symposium
on string processing and information retrieval. SPIRE 2000. IEEE, Piscata-
way, pp 39–48

 14. Cotroneo D, De Simone L, Liguori P, et al (2019) Enhancing failure
propagation analysis in cloud computing systems. In: 2019 IEEE 30th
international symposium on software reliability engineering (ISSRE). IEEE,
Piscataway, pp 139–150

 15. Bui DM, Huynh-The T, Lee S (2016) Fuzzy fault detection in IaaS cloud
computing. In: Proceedings of the 10th international conference on
ubiquitous information management and communication. pp 1–6

 16. Wang H, Shen H, Li Z (2018) Approaches for resilience against cascading
failures in cloud datacenters. In: 2018 IEEE 38th international conference
on distributed computing systems (ICDCS). IEEE, Piscataway, pp 706–717

 17. Wang T, Zhang W, Wei J, et al (2015) Fault detection for cloud comput-
ing systems with correlation analysis. In: 2015 IFIP/IEEE international
symposium on integrated network management (IM). IEEE, Piscataway,
pp 652–658

 18. Yu S, Chen N, Liang B (2021) Predicting gray fault based on context graph
in container-based cloud. In: 2021 IEEE international symposium on
software reliability engineering workshops (ISSREW). IEEE, Piscataway, pp
224–234

 19. Toka L, Dobreff G, Haja D, et al (2021) Predicting cloud-native application
failures based on monitoring data of cloud infrastructure. In: 2021 IFIP/
IEEE international symposium on integrated network management (IM).
IEEE, Piscataway, pp 842–847

 20. Singh P (2019) Learning from software defect datasets. In: 2019 5th
international conference on signal processing, computing and control
(ISPCC). IEEE, Piscataway, pp 58–63

 21. Sara A, Wael M, Walid M (2018) Using SMOTE and heterogeneous stacking
in ensemble learning for software defect prediction. In: Proceedings of
the 7th international conference on software and information engineer-
ing. Association for Computing Machinery, New York, p 44–47

 22. Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning with class
imbalance. J Big Data 6(1):1–54

 23. Ribeiro VHA, Reynoso-Meza G (2020) Ensemble learning by means of a
multi-objective optimization design approach for dealing with imbal-
anced data sets. Expert Syst Appl 147:113232

 24. Kaur H, Pannu HS, Malhi AK (2019) A systematic review on imbalanced
data challenges in machine learning: applications and solutions. ACM
Comput Surv (CSUR) 52(4):1–36

 25. Lu C, Ye K, Xu G, et al (2017) Imbalance in the cloud: an analysis on ali-
baba cluster trace. In: 2017 IEEE international conference on big data (big
data). IEEE, Piscataway, pp 2884–2892

 26. Lindemann B, Maschler B, Sahlab N et al (2021) A survey on anomaly
detection for technical systems using LSTM networks. Comput Ind
131:103498

 27. Heinrich R, van Hoorn A, Knoche H, et al (2017) Performance engineering
for microservices: research challenges and directions. In: Proceedings of
the 8th ACM/SPEC on international conference on performance engi-
neering companion. pp 223–226

 28. Jamshidi P, Pahl C, Mendonça NC et al (2018) Microservices: the journey
so far and challenges ahead. IEEE Softw 35(3):24–35

 29. Shao Y, Liu B, Wang S et al (2018) A novel software defect predic-
tion based on atomic class-association rule mining. Expert Syst Appl
114:237–254

 30. Hai D, Chang Z (2019) Alibaba Cluster Trace Program [EB/OL]. https://
github. com/ aliba ba/ cluster data

 31. Tahir MA, Kittler J, Yan F (2012) Inverse random under sampling for class
imbalance problem and its application to multi-label classification. Pat-
tern Recogn 45(10):3738–3750

 32. Cotroneo D, De Simone L, Liguori P, et al (2020) Fault injection analytics:
a novel approach to discover failure modes in cloud-computing systems.
In: IEEE transactions on dependable and secure computing

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020-so-far-/
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020-so-far-/
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020-so-far-/
https://github.com/alibaba/
https://github.com/alibaba/

	Container cascade fault detection based on spatial–temporal correlation in cloud environment
	Abstract
	Introduction
	Background
	Related work
	The idea of solution

	The process of container cascade fault detection
	Construction of container cascade fault relation model
	Finding frequently associated fault container instance sequences

	Calculation of the spatial–temporal correlation degree of container faults
	Model learning method for imbalanced historical fault data
	Container cascade fault detection based on the cascade fault relational model

	Experiments and evaluation
	Set up
	Evaluation of fault relational model
	Performance comparison of cascade fault relational models
	Comparison of fault detection effects

	Effect evaluation of ensemble learning optimization method
	Comparison of different models
	Comparison of different imbalance rates
	Fault detection effect evaluation

	Conclusion
	References

