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Abstract 

Containers are light, numerous, and interdependent, which are prone to cascading fault, increasing the probabil-
ity of fault and the difficulty of detection. Existing detection methods are usually based on a cascade fault model 
with traditional association analysis. The tradition model lacks consideration of the fault cascade history dimen-
sion and container space correlation dimension which results in a lower detection effect. And the imbalance of 
fault data in the cloud environment to the detection method to bring interference. Instead, this paper proposes a 
cascade fault detection method based on spatial–temporal correlation in cloud environment. First, the container 
cascade fault relationship model is constructed by extracting the spatial–temporal correlation from historical 
container faults. Second, based on dynamic feedback data sampling combined with ensemble learning, a con-
tainer fault model learning method is designed to solve the imbalance of fault data. Then, a real-time container 
cascade fault detection mechanism for container cascade failure is proposed. The experimental results show that 
compared with the existing fault detection methods, the proposed method can effectively improve the detection 
accuracy, recall rate, and  F1 value.
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Introduction
With the popularization of cloud computing, cloud 
systems are applied in many fields. To improve the reli-
ability of cloud systems, researchers contribute a lot 
in data dissemination [1], data management [2], and 
security [3]. Still, the fault greatly affected the reliabil-
ity of cloud systems. In container-based cloud systems, 
faults generally occur on a large scale and in a time 
sequence, which may be the result of cascade faults 

[4]. Containers are light, numerous, and interdepend-
ent, which are prone to cascading fault, increasing the 
probability of fault and the difficulty of detection [5]. 
Fault detection methods used in traditional cloud plat-
forms will result in degraded detection performance 
when applied to the containerized cloud platform. A 
single cascade fault, if not detected and processed in 
time, can affect most services in the cloud platform, 
resulting in huge losses. For example, the Google 
Cloud outage brought down Google’s cloud services 
in multiple regions, including Dataflow, Big Query, 
Dialog Flow, Kubernetes Engine, Cloud Firestore, App 
Engine, and Cloud Console. The cascading fault model 
based on traditional correlation analysis does not well 
consider the spatial dimensional information such 
as application, service, node, and fault domain that 
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containers are distributed in the container-based cloud 
platform, as well as the time dimensional information 
of the cascade fault spread over time, which makes it 
impossible to calculate the fault propagation probabil-
ity of containers. Besides, fault detection methods are 
often based on historical data when they are running 
on cloud platforms, but few studies have focused on 
the problem of imbalanced data in a cloud environ-
ment, or have only used simple data preprocessing 
methods that cannot effectively address the effects of 
imbalanced data sample classification. Therefore, the 
reliability of containerized cloud platforms is facing 
the serious challenges.

To address these problems, we propose a Cascade Fault 
Detection method based on Spatial–Temporal Correla-
tion named CFD-STC. The main contributions of this 
work are as follows:

(1) A cascade fault relation model based on the spa-
tial–temporal correlation is proposed. The model 
can reasonably depict the cascade relations between 
containers and accurately calculate the probability 
of failure propagation.

(2) An ensemble learning method for imbalanced 
data is proposed. Dynamic feedback sampling and 
ensemble learning is adopted to improve the accu-
racy and recall rate of fault detection.

(3) Based on cascade fault relation model and ensem-
ble learning, we propose a method for real-time 
detecting container cascade faults.

The rest of this paper is organized as follows. Back-
ground section introduces the background. The pro-
cess of container cascade fault detection section 
describes the solution proposed in this paper. Experi-
ments and evaluation section verifies the validity of 
the methods proposed in this paper through experi-
ments. The conclusions and future work are presented 
in Conclusion section.

Background
Related work
Traditional fault detection methods are classified into 
those based on statistical models, mathematical mod-
els [6, 7], data mining [8], and machine learning [9, 10]. 
These methods depend on historical fault data and usu-
ally require prior knowledge of the fault and its perfor-
mance to formulate a series of rules to define the fault 
of the system [11] or to analyze the association between 
log information before and after the fault to detect the 
fault [12]. LCS [13] is a typical fault cascade and propa-
gation detection method based on historical fault data 

in the cloud environment. LCS with VMM [14] adopts a 
semisupervised method to improve the detection accu-
racy of LCS. Generally, the methods based on histori-
cal fault data analyze the occurrence of each fault singly 
and have high accuracy and timeliness for fault detec-
tion. However, it is difficult to accurately detect fault 
containers without considering the cascade and propa-
gation relationships between faults.

The identification of fault cascades and propaga-
tion is an important step for effective fault recovery, 
and this topic is currently receiving extensive atten-
tion. Bui D et al. [15] constructed the propagation path 
through fault injection and verified the effectiveness 
of the method on the OpenStack cloud computing 
platform. Wang H et  al. [16] proposed a cloud plat-
form cascade fault recovery system for cascade faults 
in cloud data centers, but it is mainly for studying 
cascade faults among physical machines in the cloud 
platform. Wang T et al. [17] established a fault location 
model by analyzing the context of fault propagation in 
the cloud environment. Yu S et  al. [18] obtained and 
analysed system logs to detect faults by injecting faults 
into the system, but it mainly aimed at detecting grey 
faults in the cloud storage system. Toka L [19] trained 
AI models for root-cause analysis of cascade faults in 
the cloud by time series clustering. In [19], it consid-
ered the time dimensional information of the cascade 
fault but ignored the spatial dimensional information. 
However, the existing works are usually limited to ana-
lyzing the paths of historical fault propagation and 
do not quantitatively evaluate the probability of fault 
propagation, while container faults are usually closely 
related to their locations in space and time, and the 
probability of fault propagation is different for differ-
ent containers.

Since the fault time of the cloud platform is short 
compared to the normal operation time, the data gen-
erated by the cloud platform are imbalanced, and the 
percentage of fault data will be far less than that of 
normal data. This affects the detection method based 
on the operation data of the cloud platform. Singh P 
[20] points out that in the software fault dataset, the 
imbalance of the normal data and fault data adversely 
affects the fault detection algorithm. Attempts to 
tackle this imbalance are usually divided into two cat-
egories: oversampling [21] and undersampling [22]. 
The undersampling method solves the imbalance 
problem of samples by abandoning a part of the major-
ity class samples [14]. However, as the data imbalance 
increases, too many majority class samples are lost, 
and the model cannot fit the sample features. This 
leads to a decrease in the recall rate of detection. The 
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oversampling method balances the original dataset by 
copying or generating sample features [16]. Because 
there are too many characteristics similar to the origi-
nal sample, it is easy for the model to overfit the train-
ing sets due to the overlap of data samples. This results 
in lower accuracy of real-time fault detection. Ensem-
ble learning trains multiple base models in parallel by 
constructing multiple balanced training sets and inte-
grates the multiple base models into a final model. As 
a result, fault detection is generally better than any 
single base model and performs better on imbalanced 
fault data [23–25]. However, the traditional ensemble 
learning method adopts a random sampling method 
for fault data samples when constructing the training 
dataset and pays less attention to the sample distribu-
tion. This leads to a poor model training effect. At the 
same time, during model integration, only one round 
of base model training and integration is applied and 
this is not enough to obtain an optimal model.

In summary, the existing cascade fault detection 
methods face the following two challenges. First, the 

traditional cascade fault model has insufficient abil-
ity to characterize the fault cascade among containers. 
Usually, it only describes the propagation path of faults 
and fails to quantify the probability of fault propaga-
tion. Second, the existing methods do not focus on 
the imbalance of historical fault data and thus cannot 
guarantee both accuracy and recall rate as the imbal-
ance rate increases.

The idea of solution
Our proposed detection method is shown in Fig.  1. It 
includes three key parts: cascade fault relation model 
construction, ensemble learning model training method, 
cascade fault detection method combined with cascade 
fault model and ensemble learning.

(1) Cascade fault relation model construction. 
Through the container fault cascade history, fre-
quently associated fault container instances are 
mined to analyze the container fault propagation 
path qualitatively. Then based on the time series 

Fig. 1 The framework of cascade fault detection based on spatial–temporal correlation
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dimension and spatial structure dimension of his-
torical fault data, the time correlation and spatial 
correlation of container fault propagation are calcu-
lated to quantitatively characterize the association 
strength and fault propagation probability between 
the fault containers. Based on the combination of 
qualitative and quantitative methods, the cascade 
fault relation model based on container spatial–
temporal correlation is established.

(2) Ensemble learning model training method. To 
avoid the error caused by the imbalanced historical 
dataset, multiple training sets with balanced cat-
egories are constructed by the sampling method, 
and multiple models are trained separately. Then, 
a weighted integration model is constructed by 
ensemble learning. By testing the effect of integrated 
model, the sample distribution of the imbalanced 
historical dataset is updated to iteratively improve 
the detection effect and model performance.

(3) Cascade fault detection method combined with 
cascade fault relation model and ensemble learn-
ing. Based on the above construction of cascade 
fault relation model and model training method, we 
design a container cascade fault detection method, 
which collects the metric data produced by cloud 
containers in real time and inputs it into the inte-
grated model. Through model prediction, it is pos-
sible to judge the probability of container fault.

The process of container cascade fault detection
Construction of container cascade fault relation model
Finding the associations among container faults is 
an important step in constructing the container cas-
cade fault relational model. As shown in Fig.  2, the 
relational model for spatial–temporal association is 
constructed in two stages. The model is trained by 
historical fault data and spatial–temporal correlation 

Fig. 2 Fault correlation model construction process
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data to more accurately characterize the propagation 
path and propagation probability of container cascade 
faults.

Finding frequently associated fault container instance 
sequences
Historical data that are classified as fault data are extracted. 
Through correlation mining, the frequently associated 
fault container instance sequences in the historical fault 
data are found. This association of historical fault contain-
ers means that faults in the future operation stage will also 
be frequently associated, which represents the propagation 
path of container cascade faults. Moreover, all the intro-
duced notations and their definitions that followed have 
been summarized in Table 1 for easy reference.

First, historical cascade fault data and the spatial struc-
ture (service, node and fault domain) of the container 
cluster must be obtained. The sequence of historical fault 
container instances and frequently associated fault con-
tainer instances are obtained from fault data, and the set 
of fault container sequences is constructed. Then, the fre-
quently associated fault container instances are found by 
association rules. This paper obtains four attributes for 
each data sample in the dataset through fault injection, 
and each data sample in the dataset acquired through 
fault injection has the four attributes of { timestamp , ID , 
PerformanceData , State }. Here ID is the unique identifier 
of the container instance, PerformanceData is the CPU 
usage, memory usage and other performance data in the 
current state of the container instance, State is the runt-
ime state of containers (faulty or normal), and Timestamp 
is the interval of fault injection.

Definition 1 Sequence of historical fault 
container instances (Historical Sequence). 
D = �containerID1, · · · , containerIDn�,containerIDi is the 
unique identifier of the container instance. It is consid-
ered to be sequential, i.e., the fault containers in Histori-
cal Sequence are ordered in sequence.

The expression of fault container association is like 
Di → Dj , and Di ∩ Dj = ∅ . The strength of an associa-
tion rule can be measured by its support and confidence. 
The support degree s and confidence degree c are calcu-
lated by Formulas (1) and (2), respectively.

s Di → Dj  is expressed as the proportion of the times 
that Di and Dj break down at the same time. c

(

Di → Dj

)

 
represents the proportion of occurrences of Dj in the 
sequence containing Di when Di appears, σ(Di)  repre-
sents the number of occurrences of Di  in the Historical 
Sequence sets, and N  is the total number of sequences in 
the Historical Sequence set.

Definition 2 Sequence of frequently failed asso-
ciated container instances (Association Sequence). 
C = �containerID1, · · · , containerIDn� , C equals is D or 
its subsequence with support and confidence greater than 
a custom minimum.

Definition 3 Sequence set of frequently fault associated 
container instances(Association Set). L = {C1,C2, · · · ,Cn} , 
Ci represents one of these related sequences C.

The mining process of the Association Sequence is 
shown in Fig.  3. The item with length 1 is obtained 
through the Historical Sequence set, and then the 
association set L1 with no less than the minimum sup-
port is screened. Then, the Association Sequence L1 is 
used as the basic fault container Association Sequence 
pattern and the known Association Set Lk is used to 
generate the candidate Association Sequence Ck+1 . 
Next the association set Lk+1 with length K + 1 is cal-
culated according to the minimum support. The above 
process is iterated until the next level candidate Asso-
ciation Sequence cannot be generated and it ends up 
with Association Set L . Based on the above mining 
process, the Association Set representing the fault 
propagation path can be obtained. However, more 
container fault cascade information is needed. There-
fore, the probability of container cascade fault propa-
gation will be calculated.

(1)s
(

Di → Dj

)

=
σ(Di∪Dj)

N

(2)c
(

Di → Dj

)

=
σ(Di∪Dj)
σ(Di)

Table 1 Types and methods of fault injection

Notation Definition

D Historical Sequence

C Association Sequence

L Association Set

ST (i, j) The spatial correlation strength of the 
cascade fault

Ss(i, j) The temporal correlation strength of the 
cascade fault

SO(i, j) The spatial–temporal correlation strength of 
the cascade fault

xT , xS weights of temporal correlation and spatial 
correlation degree

S = {SO(1, 1), . . . , SO(n, n)} Spatial–temporal correlation degree matrix

M base model

δ integrated model threshold

F(x) Final integrated model

xi container historical performance data
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Calculation of the spatial–temporal correlation degree 
of container faults
The propagation of container faults has a strong spatial–
temporal correlation, in contrast to traditional software. 
It is the key to determining the cascade association of 
container faults and calculating the probability of fault 
propagation. Therefore, the spatial–temporal correlation 
strength of the cascade faults is described by the time 
and space data of the fault container. The relevant defini-
tions are as follows.

Definition 4 The spatial correlation strength of the 
cascade fault ST (i, j) is defined as follows:

where Tk ,j and Tk ,i represent the time when fault con-
tainers j and i are faulty in fault container item set k 
that contains a subset of fault container sequences (i, j) . 
N

′ is the total number of containers in k . ST
(

i, j
)

 repre-
sents the average propagation time from the histori-
cal fault container i to container j after normalization, 
ST

(

i, j
)

∈ [0, 1] . The higher ST
(

i, j
)

 is, the shorter the 
fault propagation time is and the stronger the time asso-
ciation is.

The multi-layer spatial layers in the cloud environ-
ment, such as clusters, fault domains, server nodes, 
services, and containers, are abstracted into the layers 
of the cluster spatial tree. The Euclidean distance of 
the service, node and fault domains of two containers 

(3)ST
(

i, j
)

=

∑N
′
−1

k=0

(

1−

(

Tk ,j−Tk ,i
�T

))

N
′ , 0 ≤ i, 0 ≤ j

is used to represent the spatial distance between two 
containers, and the reciprocal of the Euclidean distance 
is used to represent the spatial correlation strength 
between two containers. The cluster spatial tree is 
shown in Fig. 4.

Definition 5 The temporal correlation strength of the 
cascade fault Ss(i, j) is defined as follows:

where Seri represents the service to which container i 
belongs, Nodei represents the node to which container i 
belongs, and Faili represents the fault domain to which 
container i belongs. Zt is the normalization factor that 
makes Ss

(

i, j
)

∈ [0, 1) . The larger Ss
(

i, j
)

 is, the greater the 
spatial correlation between container i and container j.

Definition 6 The spatial–temporal correlation strength 
of the cascade fault SO(i, j) is defined as follows:

The spatial–temporal correlation degree of faults 
among containers is the weighted addition of the tem-
poral correlation degree and spatial correlation degree. 
xT  and xS represent the weights of the custom tempo-
ral correlation degree and spatial correlation degree, 
respectively. Because ST (i, j) ∈ [0, 1] , Ss(i, j) ∈ [0, 1] , and 
xT + xs = 1 , the value of SO

(

i, j
)

 is between 0 and 1. 

(4)Ss
�
i, j
�
=

⎧⎪⎨⎪⎩

�
1

(Serj−Seri)
2
+(Nodej−Nodei )

2+(Failj−Faili)
2

Zt

1Serj = Seri and Nodej = Nodei and Failj = Faili

(5)SO
(

i, j
)

= xTST
(

i, j
)

+ xsSs
(

i, j
)

xT + xs = 1

Fig. 3 Association Set mining process
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SO
(

i, j
)

 represents the strength of the spatial–temporal 
correlation degree of faults among containers.

Definition 7 Spatial–temporal correlation degree 
matrix S = {SO(1, 1), SO(0, 1), · · · , SO(n, n)} , in which 
the value of each element is the fault spatial–temporal 
correlation degree SO(i, j) of container i and container j.

Formula (5) is used to calculate the spatial–temporal 
correlation strength of faults among containers in the 

correlation item set. This is because it is of practical 
significance to calculate the spatial–temporal associa-
tion degree of faults only for containers with frequent 
fault association. The calculation of the spatial–tem-
poral correlation degree of faults among containers is 
shown in Algorithm  1. The flowchart of Algorithm  1 
is shown in Fig. 5.

Fig. 4 cluster spatial tree

Fig. 5 The flowchart of Algorithm 1
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Algorithm 1. Calculate the Spatial-temporal Correlation Degree of Faults 
Among Containers

Association Set and Historical Sequence are traversed 
through two loop statements to calculate the spatial–
temporal correlation strength, so the time complexity of 
the Algorithm 1 is O(n2) , where n is the number of dif-
ferent container instances in the correlation item set. 

Compared with the number of containers in the cloud 
platform, the container instances left in the association 
mining stage account for a small proportion. Hence the 
time complexity is acceptable.

Model learning method for imbalanced historical fault data
The traditional data imbalance processing methods are 
coarse and cannot guarantee the accuracy and recall rate 
at the same time. Hence, a model learning optimization 
method is proposed based on dynamic feedback sampling 
combined with ensemble learning. The flow of the method 
is shown in Fig. 6. It consists of the following stages.

(1) Data preparation. Before training and optimiza-
tion, the performance data and state data of con-
tainers are obtained by fault injection. The perfor-
mance data, container fault relational model and 
container instance state, which are strongly associ-
ated with the container, are combined as the input 
vector of the training model, the current state of the 
container is used as the label.

(2) Division. The historical dataset is divided into a 
cascade fault dataset D1 and a normal dataset D2.

(3) Sampling. Normal data are sampled by random 
sampling only for the first time, and the subsequent 
sampling is performed according to the sample dis-
tribution feedback from the model. After several put-
back extractions (depending on the number of basic 
models), normal data are combined with cascade 
fault data of containers to form a balanced training 
set of multiple normal classes and fault classes.

Fig. 6 Model learning method flow for imbalanced fault history data



Page 9 of 20Chen et al. Journal of Cloud Computing           (2023) 12:59  

(4) Basic model learning. The LSTM (long short-term 
memory) model [26] is used as the basic model 
because it can adapt well to the time sequence and 
backward dependence (fault propagation direc-
tion) of cluster historical datasets. Using a balanced 
training set to train the LSTM-based model, the 
basic model can accurately study the cascade rela-
tionship between fault containers and calculate the 
detection effect αi and weight value wi of each basic 
model in the historical dataset.

(5) Model integration and testing. Multiple basic mod-
els are weighted and combined with the previous 
round of integration model to obtain the integration 
model using the model weight wi obtained in the 
learning stage. Then the detection effect enhance-

ment value �ϕ of the integrated model is calculated. 
If �ϕ > δ , the sample distribution is updated so 
that the wrong samples detected by the integrated 
model receive more attention. The above steps are 
iteratively performed until �ϕ < δ , and the model is 
proved to have converged. The output of this round 
of integration model is the final integration model.

The training optimization process is shown in Algo-
rithm  2. Since the outer while loop of the algorithm  2 
cannot determine the number of loops, we only consider 
the time complexity of the algorithm inside the while 
loop. The time complexity of the Algorithm  2 is O(n), 
where n is the number of basic model. The flowchart of 
Algorithm 2 is shown in Fig. 7.

Fig. 7 The flowchart of Algorithm 2
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Algorithm 2. Model learning based on dynamic feedback sampling and 
ensemble learning

Container cascade fault detection based on the cascade 
fault relational model
Next, real-time container cascade fault detection based 
on cascade fault relational model and ensemble learn-
ing will be introduced. The detection process is shown in 
Fig. 8. Considering the temporal sequence of cascade faults 
and the sensitivity of the LSTM model to time-dependent 
data, we adopt the sliding window mechanism. Continuous 
detection of container faults can be realized by collecting 
container data at the previous n time points in advance.

• Data acquisition and input. Obtain container his-
torical performance data (including container CPU, 
memory, IO, etc.) at the previous n time. The state 
(the normal state is marked 0, and the fault state 
is marked 1) and the spatial–temporal correla-
tion degree of the container are combined as input 
data, denoted as {x1, x2, · · · , xn} , and they are input 
into the integrated model F(x) trained above, where 
xi = {ID,PerformanceData,Associatedmatrix,Othercontainerstates, State}.

• Fault detection process. The integrated model 
F(x) detects whether the container will fail at time 
(n + 1) based on the input vector{x1, x2, · · · , xn} . 
At the same time, it obtains the above data at time 
(n + 1) by the sliding window mechanism. Based on 
the sequence{x2, x3, · · · , xn+1} , the container state 

at time (n + 2) is detected. The detection window is 
continuously sliding to detect the possibility of con-
tainer fault.

• Results output. The output of the model is trans-
formed into the failure probability of the current 
container state by the sigmoid activation function, 
and the value range is between 0 to1. The greater the 
value is, the greater the possibility of failure.

Experiments and evaluation
Set up
To simulate the cascade faults between containers in 
the cloud environment, experiments are carried out by 
establishing a Docker cluster. We deploy different con-
tainer instances in the cluster to form different service 
instances, including data storage services, web ser-
vices, distributed computing services, and monitoring 
services. Figure 9 shows the intercontainer dependen-
cies and interservice dependencies in the container 
cluster. The Configuration setup table is shown in 
Table 2.

An experimental prototype system based on CAd-
visor + InfluxDB + Grafana combined with the cas-
cade fault detection method is constructed. The system 
framework is shown in Fig.  10. The software pack-
ages used by the system are Docker v19.03.8, cAdvisor 
v1.30.0, influxdb-1.7.6, grafana-6.0.0, Hadoop-3.1.0, Zoo-
keeper-2.7.5, Ceph-9.1.0, docker container stress genera-
tion and testing tool docker-stress-ng v1.0. CAdvisor is 
used for data collection, and the collected data are used 
as the data source of InfluxDB in the form of time series 
data and then stored in the Database. Docker-stress-ng, a 
special stress test and fault injection tool for Docker con-
tainers, is used to inject CPU, memory, disk and network 
pressure on container instances so that their resource 
usage reaches the bottleneck of system-limited resources. 
The types of injected faults are shown in Table 3.

To find the key performance indicators reflecting the 
failure of the container, we analyze the container resource 
usage patterns in different states in the Docker cluster 
and compare the average CPU usage, average memory 
usage, and average disk IO time between faulty contain-
ers and normal containers [27, 28]. Finally, the number of 
container CPU requests, CPU usage, memory requests, 
memory usage, disk IO, and network traffic are used as 
performance indicators for container fault detection, and 
these data are collected in the data collection phase.

(6)
outputi = model.predict({xi, xi+1, · · · , xn+i−1})

(7)predicti = sigmoid
(

outputi
)
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Here are the metrics used for model evaluation.TP is 
the number of samples with positive observed value and 
positive detected value, FN is the number of samples with 
positive observed value and negative detected value, FP 
is the number of samples with negative observed value 
and positive detected value, TN is the number of sam-
ples with negative observed value and negative detected 
value. Accuracy, precision, recall rate and  F1 are calcu-
lated by Formulas (8), (9), (10) and (11).

(8)accuracy = (TP + TN )/ALL

(9)precision = TP/(TP + FP)

Evaluation of fault relational model
The model is built and trained with the dataset of the 
Docker cluster obtained by simulation experiment. The 
LSTM training model is configured to train the fault 
correlation model with different network structures 
ranging from 4 to 8 hidden layers and from 8 to 256 
hidden neurons.

(10)recall = TP/(TP + FN )

(11)F1 = 2/(1/Precision+ 1/recall)

Fig. 8 Fault detection flow
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Performance comparison of cascade fault relational models
The formation of the cascade fault detection model 
includes two stages: construction of the relational model 
and training of the relational model. By comparing with 
the traditional correlation analysis method Apriori [29] 
and the fault history propagation path analysis method 
LCS [13], the effectiveness of the fault relational model 
proposed in this paper is evaluated for cascade faults. 
Table  4 shows the results based on 100,000 container 
cluster historical data.

Table  4 shows the number of fault propagation paths 
and times taken to construct the model. LCS calculates 
every historical fault propagation path that has occurred. 
Additionally, because it simply obtains the fault path, the 
model construction time is the shortest. When different 
faults occur in the fault propagation time window, Apri-
ori first lists the occurring fault as a candidate fault prop-
agation path and then judges whether the path is a fault 
propagation path after combining the minimum sup-
port and confidence calculation. CFD-STC is the same as 

Apriori in the calculation stage. After obtaining the final 
fault propagation path, CFD-STC also calculates the cor-
relation degree, so the time consumption is greater than 
that of Apriori. However, this increased consumption in 
the construction will be compensated in the subsequent 
model training process by reducing the formation time of 
the fault detection model.

Figure  11 shows the accuracy changes in the LSTM 
model training process using three different methods 
after obtaining the container fault propagation path. 
It can be seen that CFD-STC has higher training effi-
ciency in the model training stage, and the model is 
basically fitted after training approximately 400 times, 
while the other two methods are fitted after 600–800 
times. This is because the method in this paper fil-
ters out some fault propagation paths that have low 
confidence through frequent itemsets calculation. In 
addition, it calculates the fault correlation between 
containers and takes it as a model training feature 
so that the LSTM model training process can better 
judge and learn the probability of different cascade 
fault propagation paths. Thus each round of train-
ing obtains more effective cascade fault information, 
which improves the training efficiency of the model. At 
the same time, the training model obtains more fine-
grained fault propagation information, which better fits 
the fault propagation mode and obtains a higher detec-
tion model accuracy.

Comparison of fault detection effects
After the training of the fault detection model, the detec-
tion data are obtained in the same way as the training 

Fig. 9 The services configuration in the experiments

Table 2 Configuration setup table

Node Hardware configuration Container instances

1 2.4 GHz Intel Xeon E5-260 CPU,2G 
RAM

node exporter, Grafana, 
cAdvisor, ceph admin, 
hadoop master

2 2.4 GHz Intel Xeon E5-260 CPU,2G 
RAM

mysql, InfluxDB, web, web, 
ceph1, hadoop datanode1

3 2.4 GHz Intel Xeon E5-260 CPU,2G 
RAM

python, code, ceph2

4 2.4 GHz Intel Xeon E5-260 CPU,2G 
RAM

ceph3, hadoop datanode2



Page 13 of 20Chen et al. Journal of Cloud Computing           (2023) 12:59  

data, and the detection data are extracted with the same 
features as the training data and then input into the three 
cascade fault detection models. The detection results are 
shown in Table 5.

Although the three methods are all cascade fault detec-
tion models trained by the same data and the same LSTM 
network structure, the detection effect and model per-
formance of the LSTM fault detection model trained by 
the proposed approach are improved more, in terms of 
accuracy, recall rate and F1 value effect are improved by 
between 10 to 15% compared with the those of other mod-
els, and the model error is controlled to be a small value.

Effect evaluation of ensemble learning optimization 
method
The experimental method in this section is basically 
the same as that in Evaluation of fault relational model 

Fig. 10 Experimental prototype framework

Table 3 Types and methods of fault injection

Type of failure Description Action

CPU failure Simulate the container to request CPU usage, make the 
system reach the limit, and cause the container to crash

Stress-ng generates CPU pressure in the specified container to occupy all 
allocated CPU

Memory failure Simulate the container to request memory usage, make 
the system reach the limit, and cause the container to 
crash

Stress-ng simulates the creation of objects pointing to global static vari-
ables in the container, gradually filling up the memory of the container

Network failure Simulate container network bandwidth is fully occupied iPerf Continuously sends data packets to other container instances until the 
requested network bandwidth is occupied

Disk failure Simulate container disk IO is fully occupied Stress-ng simulates the disk write() function, continuously writes to the disk, 
occupying the container disk IO

Table 4 Model performance comparison

Model The number of fault 
propagation path

Time to 
construct/
sec

Apriori 376 13,608

LCS 1491 10,233

CFD-STC 376 13,834
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section. By applying the ensemble learning optimization 
method, the fault detection effect of the fault relational 
model in this paper is fully improved, and the perfor-
mance is superior in the face of imbalanced cascade fail-
ure history data. While obtaining an efficient detection 
model, the resource utilization rate in the cloud environ-
ment is maintained at a low level.

Comparison of different models
To verify the improvement of CFD-STC by combining 
the dynamic feedback sampling method and the ensem-
ble learning method, we use the Docker cluster dataset 
and Alibaba [30] cluster dataset to compare the effect 
of the model. We compare the performance of CFD-
STC and CFD-STC with the proposed model learn-
ing method, which is denoted CFD-STC-E. As shown 
in Tables 6 and 7, after training the model through the 
proposed sampling and learning methods, the fault 

detection effect on the two datasets has been improved, 
with the accuracy increased by 9.0 and 5.7%, and the 
recall increased by 8.7 and 7.9%, respectively.

The dataset of the Docker cluster obtained by fault 
injection and the dataset of the Alibaba cloud platform 

Fig. 11 Model training process

Table 5 Three methods to detect the effect of container 
cascade fault

Metrics LCS + LSTM Apriori + LSTM CFD-STC + LSTM

RMSE 0.549 0.414 0.287

MAPE 0.607 0.511 0.315

R2 0.622 0.761 0.908

Precision 0.689 0.736 0.823

Recall 0.431 0.707 0.808

F1 0.530 0.722 0.815

Table 6 The effectiveness of the verification method in the 
Docker cluster data set

Metrics CFD-STC CFD-STC-E

RMSE 0.287 0.213

MAPE 0.315 0.232

R2 0.908 0.950

Precision 0.823 0.913

Recall 0.808 0.895

F1 0.815 0.904

Table 7 The effectiveness of the verification method in the 
Alibaba cluster data set

Metrics CFD-STC CFD-STC-E

RMSE 0.281 0.199

MAPE 0.302 0.203

R2 0.917 0.961

Precision 0.863 0.920

Recall 0.824 0.903

F1 0.843 0.911
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are unbalanced. This causes interference with CFD-STC, 
which limits the accuracy and recall rate of cascade fault 
detection and increases the error rate. Through the prob-
ability distribution sampling method, multiple balanced 
training sets and corresponding basic LSTM models are 
constructed. Each basic model obtains a balanced train-
ing set that effectively shields the impact of data imbal-
ance. Feedback sampling ensures that the data samples 
with detected classification errors in the overall data-
set are repeatedly trained by the model. The integration 
mechanism makes the integrated model better than any 
single basic model in the same round. Therefore, CFD-
STC-E has better cascade fault detection performance.

Comparison of different imbalance rates
To verify the superiority of the ensemble learning opti-
mization method in the face of imbalanced cascade fault 
data, datasets with different imbalance rates (IRs) are 
extracted and constructed based on container cluster 
data and Alibaba cluster data (the calculation formula of 

IR is shown in Formula (12), in which N2 and N1 are the 
numbers of normal data and fault data samples, respec-
tively), and 80% of them are used as the model training 
set and 20% are used as the model test set. The proposed 
fault relational model and LSTM are used to train the 
cascade fault detection model to verify the guarantee and 
improvement of the accuracy, recall and F1 (F-measure) 
of the container cascade fault detection in the face of 
imbalanced cascade fault data.

In Fig. 12, we compare the accuracies and recall rates 
of the proposed method, the oversampling method, the 
undersampling method [31], the no data processing 
method, and the traditional ensemble learning method 
under different IR values. The accuracy rate and recall 
rate of the model without any data processing method 
decrease with increasing IR, especially when the IR is 
large, and there is a cliff-like decline. The undersampling 

(12)IR =
N2

N1

Fig. 12 Detection effect of cascade faults under different IR conditions
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method constructs a balanced dataset by randomly 
selecting normal data samples. However, it loses the data 
information of many normal data samples. When the 
IR increases, although it can maintain the recall rate, its 
accuracy is reduced due to the decline in the accuracy 
of the normal data. The oversampling method keeps 
the balance of the training set by generating the fault 
data, and its accuracy can remain stable when the IR is 
small. However, with the increase in the IR, the new sam-
ples that need to be generated continue to increase. The 
model often overfits the training samples, resulting in a 
decrease in the accuracy and recall rate. Although the 
accuracy of the ensemble learning method is stable at a 
high level, with the increase in the IR, most class sample 
information of the detection model based on the ensem-
ble learning method is discarded during the sample divi-
sion or iteration process, resulting in a downward trend 
of accuracy. At the same time, the recall rate cannot be 
guaranteed well with the increase of the IR.

CFD-STC-E maintains a high level of accuracy and 
recall, and the accuracy and recall are basically stable 
when the IR is constantly changing. This is because the 
dynamic sampling method is used to construct multiple 
datasets in the training model. Through the weighted 
combination of multiple models and the dynamic adjust-
ment of the sample distribution, the normal data features 
learned by the model are basically close to the overall 
normal class sample data features. Next, we compare the 
resource consumption of our method with other meth-
ods in the model training process. Figure 13 shows that 
the undersampling method has the least resource uti-
lization in training under different IRs. The resource 
consumption of the undersampling method decreases 
with increasing IR when IR is greater than 1, while the 
opposite is true for the oversampling method. The 
resource consumption in the training process of the pro-
posed method is similar to that of traditional ensemble 

learning. This is because we mainly improve the sam-
ple distribution update of traditional ensemble learning 
before training and the model integration method after 
training. It can be seen that the resource utilization rate 
of the proposed method is higher when the IR is low, and 
with the increase in the IR, the resource utilization rate 
decreases gradually and is only higher than that of the 
undersampling method. This is because the number of 
ensemble learning models is usually 10–20. When the IR 
is low, the data volume of the whole model is larger than 
that of the original data, so the resource utilization rate 
is higher than that of normal training. When the IR of 
the data increases, the data of the whole model gradually 
decrease compared to the initial data. In the real cloud 
environment, the resource usage of our method is better 
than most methods because the historical data imbalance 
rate of the cloud platform is between 10 and 50.

Fault detection effect evaluation
Based on the above system, we compare the detection 
effect of the proposed method with LCS and LCS with 
VMM in cascade failure propagation. Figure  14 shows 
the comparison of three methods for container cascade 
faults.

By comparing the model performance of the two cas-
cade fault models on the Docker dataset, it can be seen 
from Fig.  14 that CFD-STC-E is better than the other 
two fault propagation detection models in terms of the 
accuracy and recall of the cascade fault detection effect. 
In addition, the error of the model is also less than that 
of the compared methods. The two methods in [32] 
only obtain the historical path of fault propagation 
through fault injection, which is stored in the database, 
and learn the characteristics of the normal path and 
fault path through deep learning. In the model detec-
tion stage, if the analysis of the process execution path 
does not conform to the normal path, it is identified as 

Fig. 13 Comparison of CPU and memory usage during training with different methods



Page 17 of 20Chen et al. Journal of Cloud Computing           (2023) 12:59  

an abnormal path. In contrast, our method comprehen-
sively considers the path of container fault propaga-
tion and the probability of cascade failure propagation 
between containers. This can better characterize the 
cascade failure propagation mode of containers, reduce 
the misjudgment of faults, enhance the accuracy, and 
reduce the error of the detection model. TPR and EPR 
are calculated by Formulas (13) and (14).

It is inappropriate to only consider accuracy to assess 
the prediction model against imbalanced datasets. The 
advantage of the ROC curve [29] is the fact that it depicts 

(13)TPR = number of cascade faults checked correct

actual number of cascade faults

(14)FPR = number of cascade faults checked incorrect

actual number of non−cascade faults

the trade-off between TPR and FPR. Its value ranges from 
0 and 1. The closer it is to 1, the better the model pre-
dicts. The P-R curves [12] show the correlation between 
the recall and precision of the model. The receiver oper-
ating characteristic (ROC) curve and P-R curve of the 
three methods were compared, and the results are shown 
in Fig. 15. Under different FPR/TPR ratios, the proposed 
method is superior to the compared methods and has 
high accuracy. On the Docker historical dataset, the AUC 
(area under the curve) of the proposed method is 0.908, 
while the values of LCS and LCS with VMM are 0.802 
and 0.769, respectively. This shows that CFD-STC-E is 
superior to the compared methods in correctly detecting 
cascade faults and correctly detecting non-cascade faults.

After 2, 4, 6, and 8 containers are randomly selected 
in the system to inject faults, the resulting alarm 

Fig. 14 Comparison of cascade fault detection effects of three methods

Fig. 15 Comparison of ROC and P-R curves of the two methods
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situation of the fault model is shown in Fig.  16. The 
number of cascade fault warnings increases over time, 
which indicates that the fault cascade and propagation 
are caused by the injected fault container. The method 
in this paper can better capture the occurrence of con-
tainer cascade fault and provide an early warning.

Figure  17 shows the change in the container failure 
rate (number of fault containers/total number of con-
tainers) to see whether the cluster enables our method, 
under different numbers of injected fault containers in 
the container cluster. Figure  17a–d represent the ran-
dom selection of 2, 4, 6, and 8 container injection fail-
ures in the Docker container cluster, respectively. The 
x-axis represents the time after fault injection, and the 
y-axis represents the ratio of containers that fail at time 
t. It can be seen that the final cascade faults do not 

affect the entire container cluster, which is due to the 
degree of correlation between containers, as well as the 
fault isolation and fault tolerance measures in the cloud 
platform.

Conclusion
To address the problems of lacking fine-grained con-
struction of targeted cascade fault models and the model 
degradation caused by imbalanced fault data, the cas-
cading and propagation modes of inter-container faults 
in a containerized cloud platform are studied in depth. 
Firstly, the container fault spatial–temporal correlation 
is modeled from the fault cascade history dimension and 
container space correlation dimension. And the Cascade 
Fault Detection method based on Spatial–Temporal Cor-
relation is designed. Secondly, aiming at the imbalance of 

Fig. 16 Number of faults detected by the model
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data ignored by traditional detection methods, a model 
training method combining dynamic feedback sampling 
and ensemble learning is designed to further improve the 
detection effect of container cascade fault. The results 
show that the method is effective and accurate in terms 
of container fault detection. However, container fault 
cascade in cloud environment is focused on only. Con-
sidering the difference between container fault modes 
in other complex and dynamic environments and cloud 
environment, proposing a generic container cascade fault 
detection method will be the main research work in the 
future.
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