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Abstract 

Task scheduling is a complex problem in cloud computing, and attracts many researchers’ interests. Recently, many 
deep reinforcement learning (DRL)-based methods have been proposed to learn the scheduling policy through 
interacting with the environment. However, most DRL methods focus on a specific environment, which may lead to 
a weak adaptability to new environments because they have low sample efficiency and require full retraining to learn 
updated policies for new environments. To overcome the weakness and reduce the time consumption of adapting 
to new environment, we propose a task scheduling method based on meta reinforcement learning called MRLCC. 
Through comparing MRLCC and baseline algorithms on the performance of shortening makespan in different envi-
ronments, we can find that MRLCC is able to adapt to different environments quickly and has a high sample efficiency. 
Besides, the experimental results demonstrate that MRLCC can maintain a high utilization rate over all baseline algo-
rithms after a few steps of gradient update.
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Introduction
Cloud computing has become a dominating paradigm for 
large scale information systems [1]. Cloud data centers 
consist of physical and virtual infrastructure resources 
which include server, network system and different 
resources. Cloud computing becomes an admired tech-
nology around the world because it offers a huge amount 
of storage and resource to different companies and 
organizations which can access these resources through 
proper management, rule and security. Some of the main 
characteristics of cloud computing are virtualization, 
large network access, automatic system and scalability 
[2]. In recent years, the development of cloud computing 
is remarkable. It has been used in several different fields, 
such as finance, health care, industrial manufacturing [3]. 
Many applications of cloud computing require the rapid 

increase of computing resources to satisfy the require-
ments of the clients. An easy solution for the problem 
is increasing the supply of resources. However, the eco-
nomic cost is so large that it is not practical. Other solu-
tions are proposed, such as improving the strategies of 
tasks scheduling to use resources as much as possible [4], 
executing the online and off-line tasks simultaneously to 
utilize the spare resources [5] and applying load balanc-
ing approaches to improve the utilization rate [1].

Many heuristic algorithms have been proposed to 
solve the problems mentioned above. For example, first 
fit [6], sample packing strategies [7], fair scheduling [8] 
and so on. There are also many complex meta-heuristic 
algorithms, like genetic algorithm [9], ant colony algo-
rithm [10]. The performance of the above heuristic algo-
rithms depends on not only the patterns of the resource 
demands, but also manual tests and adjustment. This 
means that it cannot adapt quickly if the environment 
changes.

However, the fast development in machine learning, 
particularly in reinforcement learning combining with 
deep neural network, offers new opportunities to tackle 
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the problem. For example, DeepRM [11] uses deep rein-
forcement learning to schedule tasks by representing the 
states as images, GoSu [12] applies graph convolution 
network to task scheduling, and Peng et  al. [13] solved 
the problem of task scheduling using Q-learning. The 
training process of reinforcement learning depends on 
the large amount of data collected through interacting 
with the environment. Also, if the environment changes 
or some unexpected perturbations happen, the trained 
model may fail because of the weak adaptability. There-
fore, it has low sample efficiency and needs full retraining 
to learn an updated policy for the new environment, and 
this process is time-consuming.

Meta learning is a promising method to address the 
aforementioned issues by taking advantage of the previ-
ous experiences across a range of learning tasks to signifi-
cantly accelerate learning efficiency of new tasks [14]. For 
the reinforcement learning problem, meta reinforcement 
learning (MRL) [15] aims to learn policies from new envi-
ronments within a small number of interactions with the 
environment by adjusting the previous meta model. The 
learning process of meta reinforcement learning consists 
of two “loops” of learning, the “outer loop” uses the expe-
rience over many tasks to gradually adjust the parameters 
of meta policy. The “inner loop” adapts fast to specific 
tasks through a small number of gradient updates.

There has been many researches related to meta rein-
forcement learning. For example, Pong et  al. [16] pro-
posed a hybrid offline meta-RL algorithm, which uses 
offline data to train an adaptive policy, and can adapt to 
a variety of new tasks at meta-test process. Dynamic-
PMPO-CMA [17] integrates meta-learning with 
dynamic-PPO-CMA to train robots to learn multi-task 
policy. Meta-MAPPO [18] applies meta reinforcement 
learning to routing problem of packet networks to opti-
mize the network performances under fixed and time-
varying traffic demands. Kim et al. [19] proposed a novel 
meta-multiagent policy gradient theorem that directly 
accounts for the non-stationary policy dynamics inherent 
to multiagent learning settings based on meta reinforce-
ment learning. However, there are few researches related 
to meta-RL of task scheduling in cloud. The most men-
tioned methods are applied in path planning of robots. 
So we combined meta learning with scheduling problems 
in this paper. And the meta learning process has large 
computing cost, we use the first-order approximation to 
reduce the cost.

The advantages of using meta reinforcement learning 
can be summarized as follows: First, the learning process 
of meta reinforcement learning is faster than reinforce-
ment learning. Second, the training data can be reused in 
the process of training, which means that it is not neces-
sary to get as much data as the reinforcement learning. 

Finally, the adaptability of meta reinforcement learning 
is better than reinforcement learning, and it can adapt to 
changes in the environment.

In this paper, we apply the meta reinforcement learn-
ing on task scheduling in cloud computing, and we pro-
posed the MRL-based method (MRLCC). To evaluate the 
performance of MRLCC under dynamic environment, 
we construct different task scheduling scenarios with 
unique features. Through comparing the performance 
of MRLCC and baseline algorithms, MRLCC guarantees 
the shortest makespan and highest utilization rate of the 
servers among all algorithms. Furthermore, we verify that 
MRLCC can adapt to new scenarios more quickly than 
heuristic algorithms and is better than a DRL algorithm.

The rest of this paper is organized as follows. The 
related work is reviewed in Section “Related work”. Back-
ground knowledge about RL and MRL is presented in 
Section “Background”. The detail of MRLCC is elaborated 
in Section “Design”. Section “Performance evaluation” is 
the performance evaluation of MRLCC and other algo-
rithms. Finally, Section “Conclusion and future work” 
concludes the paper.

Related work
The task scheduling problem has attracted many 
researchers’ interests. Based on the approaches used in 
task scheduling, there are two main kinds of the meth-
ods. One is the conventional approaches including heu-
ristic methods and meta-heuristic algorithms. The other 
kind is DRL-based methods.

Conventional approaches
There are many works being done to enhance the con-
ventional approaches. Pradhan et  al. [20] proposed a 
modified round robin resource allocation algorithm to 
satisfy customer demands by reducing the waiting time. 
DGLB [21] reduces the energy consuming in data cent-
ers by designing energy-aware and geographical load 
balancing schemes for data-center networks. Under this 
comprehensive approach, workload and power balancing 
schemes are designed across the network, novel smart-
grid features such as energy storage units are incorpo-
rated to cope with renewables, and incentive pricing 
mechanisms are adopted in the design. Ghobaei-Arani 
et  al. [22] proposed a linear programming approach to 
web service composition problem, which is called ‘LP-
WSC’, to select the most efficient service per request 
in a geographically distributed cloud environment for 
improving the quality-of-service criteria. Based on the 
concept of the control monitor-analyze-plan-execute 
(MAPE) loop, Ghobaei-Arani et  al. [23] proposed an 
autonomic resource provisioning approach. Megh [24] 
models the problem of energy and performance-efficient 
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resource management as a Markov decision process, it 
uses a novel dimensionality reduction scheme to pro-
ject the combinatorially explosive state-action space 
to a polynomial dimensional space with a sparse basis. 
Inspired by particle swarm algorithm, Kumar et  al. [25] 
presented PSO-COGENT algorithm that not only opti-
mizes execution cost and time but also reduces the 
energy consumption of cloud data centers. The APSO-
VI algorithm is used to provide nonlinear ideal average 
velocity to control the search process to avoid the prema-
turity and divergence problems of PSO. Inspired by the 
mechanism of biological evolution, Jin et  al. [26] took 
genetic algorithms as a mechanism based on optimal res-
ervation selection to optimize the dispatch probability. It 
performs well on reducing response time and optimiz-
ing the energy consumption in the cloud system. Medara 
et al. [27] used a nature-inspired meta-heuristic approach 
called WWO through shutting down unemployed hosts 
to maintain a balance between performance and energy 
consumption in a cloud environment. WWO can effi-
ciently search near-optimal solutions in multi-dimen-
sional optimization problems. The weakness of these 
methods is that they rely heavily on expert knowledge or 
mathematical models.

DRL‑based methods
The DRL-based methods have been used in cloud comput-
ing widely. QEEC [28] divides the scheduling process into 
two phases, the first phase implemented M/M/S to con-
struct queueing model, the second phase uses a Q-learning 
based scheduler to assign tasks to virtual machines. This 
method can minimize task response time and maximize 
each server’s CPU utilization. RLTS [29] works on reduc-
ing time consumption on task scheduling by using deep Q 
network. The reward function is related to the makespan 
after finishing action a at state s and transitioning to the 
next state s’. Besides, Yan et al. [30], Cheng et al. [31] and 
Cheng et al. [32] used deep Q-learning network to achieve 
high quality of service (QoS) by setting the reward function 
related to cost, response time and execution time of the 
job. Wei et al. [33] created a scheduler to make appropriate 
decisions to assign jobs without any prior knowledge using 
deep Q learning. Huang et al. [34] combined the adversarial 
imitation learning and deep Q learning together for cloud 
job scheduling, imitation learning provides an expert policy 
to guide the agent to find a near-optimal scheduling action. 
MADRL [35] is a multiagent deep reinforcement learning 
scheme, it uses actor-critic method to significantly reduce 
the computation delay and improve the channel access suc-
cess rate in mobile-edge computing. Guo et  al. [36] pro-
posed DeepRM_Plus based on DeepRM, the method used 
a convolutional neural network to capture the resource 
management model and utilized imitation learning to 

accelerate convergence in the training process. Liu et  al. 
[37] focused on saving the power consumption and energy 
usage, so they comprised a LSTM based workload pre-
dictor and a model-free RL based power manager in the 
local tier of the framework to predict workloads which can 
achieve the best trade-off between latency and power con-
sumption. Moreover, Xu et al. [38] applied a Deep Neural 
Network (DNN) to approximate the action-value function, 
and formally formulate the resource allocation problem 
as a convex optimization problem. The simulation results 
show it can achieve significant power savings. However, 
the training process of DRL relies on a huge amount of 
data and the training process is time-consuming. Besides, 
when facing with new scenario, the trained policy needs to 
retrain to adapt to the new environment and the previous 
policy may be lost during the training process, which leads 
to low sample efficiency.

Background
Reinforcement learning
The purpose of RL [39] is to train an agent, which will get 
a maximize cumulative reward through interacting with 
the environment. A learning task is modeled as a Markov 
decision process (MDP) [40] as shown in Fig. 1, which is 
defined by a tuple (S,A,P,P0,R, γ ) . The agent could col-
lect state information (s) from the environment, where s 
belongs to state space S, then the agent follows the state-
transition probabilities matrix (P) to select an action a 
belonging to an action set (A) . P0 is the initial state distri-
bution, which will be used at the first step. After each step, 
the agent will receive a reward as rt at time t, which is cal-
culated by the reward function (R) . The cumulative reward 
is calculated by adding the product of each-step reward 
and the discount factor (γ ∈ [0, 1]) . During the process of 
RL, we can sample a trajectory according a policy π(a | s) , 
where a ∈ A and s ∈ S. The trajectory is represented as τπ = 
( s0, a0, r0, s1, a1, r1, ...).

When the policy π(a | s) is parameterized by neural net-
work parameters θ as the Fig. 2, the state value function of a 
state st is calculated by

where Pτ (τ | θ) is the probability distribution of sam-
pled trajectories based on π(a | s; θ) . In this way, the 
goal of RL is to find optimal parameters to maximize the 
expected total rewards J = s0∼P0

vπ (s0).

Meta reinforcement learning
The goal of meta learning is to enable an agent to 
quickly acquire a policy for a new test task using 
only a small amount of experience in the test setting. 

(1)vπ (st) = Eτ∼pτ (τ |θ)

[

∑

k=t

γ k−t rk

]

,
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Specifically, the task here is not as same as the defini-
tion in cloud computing. As for the meta reinforcement 
learning, each learning task corresponds to a differ-
ent MDP with different reward functions in the learn-
ing process, but the different learning tasks have the 
approximate states and action spaces. To accomplish 
this goal, the model is trained during a meta learn-
ing phase on a set of tasks, then the trained model can 
quickly adapt to new test tasks using only a small num-
ber of examples or trials. Meta learning has been used 
in a variety of machine learning tasks, such as classifi-
cation, regression, and reinforcement learning [41, 42]. 
There are lots of methods, which present different ideas 
in different aspects of MRL. For example, MAML [15] 
presented a formulation of model-agnostic meta learn-
ing, which will be introduced later.

We take policy-based reinforcement learning as an 
example to simply introduce the process of meta rein-
forcement learning. For each task Ti , the objective 
function is denoted as JTi(θ) . During the process of 
training for each task Ti , the parameters are updated by

α is the learning rate for the task Ti , θ is the network 
parameters of meta policy. Each task uses θ as initial net-
work parameters to train reinforcement learning model, 
so we can get θ1 , θ2 , ..., θi . The learning process for the 
meta learning, follows the equation

where β is the learning rate for meta learning. The train-
ing process of meta reinforcement learning is shown in 
Fig. 3.

Design
Task scheduling scenario
The structure of the scheduling system can be decom-
posed into three parts [43], job pool, resource cluster, 
and the scheduler. The job pool is used to cache differ-
ent tasks from different types of users. The tasks are tem-
porarily stored in the task queue until the servers have 

(2)θi ← θ + α∇θ JTi(θ).

(3)θ ← θ + βETi∼ρ(T )

[

∇θ JTi(θi)
]

.

Fig. 1  The markov decision process

Fig. 2  The deep reinforcement learning
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enough resource to finish the tasks. The task is denoted 
by required resources res and execution time t. We 
assume that the resource demands and execution time 
of each task are known before scheduling. And we also 
assume that the problems like breaking down of servers 
and information loss don’t happen in the platform. The 
server cluster is deemed as the resource cluster, which is 
responsible for executing the tasks in the job pool rea-
sonably using remaining resources, usually the resources 
include CPU and memory. In this paper, we mainly 
consider the task scheduling problem about CPU. The 
scheduler is an important part of the cloud platform, it 
consists of multiple components, such as the job monitor, 

resource monitor, scheduling policy model and SLA. SLA 
is a mutually agreed agreement defined between service 
providers and users to guarantee the performance and 
availability of the service under cost. The state informa-
tion of tasks and servers is collected by job monitor and 
resource monitor. The scheduling policy model uses the 
collected information to make scheduling decisions. The 
scheduling policy is modeled by a neural network, which 
takes the state information as input and outputs the 
scheduling decision executed by the scheduler. The archi-
tecture of the system is shown in Fig. 4.

The systems architecture is constructed based on the 
DRL-based cloud platform, and the difference is that the 

Fig. 3  Training process of meta reinforcement learning

Fig. 4  The structure of the scheduling system
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network parameters θ have to be downloaded from the 
server. Then the agent applies the parameters to train a 
policy to schedule jobs, and parameters θ are updated fol-
lowing the reinforcement learning method in the cloud. 
After finishing the update process in different scenarios, 
the meta parameters θ have to be updated using the new 
parameters in those scenarios. The new parameters in 
different scenarios are uploaded to the server where meta 
parameters are stored, and the meta parameters θ are 
updated using the uploaded parameters to accomplish 
the outer loop of meta learning as the Eq. (2).

Model
In this section, we detail the state, action, reward of rein-
forcement learning in the training process of MRLCC.

States: The state of the cluster is defined as St at time 
t, the task and server are recorded as j, m respectively. 
We express the environment state of the system as a 
one-dimensional vector, which includes the resource 
usage of the server at the moment t as mu and the serv-
er’s resource capacity as mc . For task j, the resource 
demand is represented as jr , execution time of task j is 
je , and the task’s waiting time is jw . The resource usage 
of the server and the resource demand are represented 
as the occupancy rate of the resource. So the value of 
the two characteristics ranges from 0 to 1. For a clus-
ter including N servers, the state St can be defined as 
St =

[

Sm1 , Sm2 , ...SmN , Sj] = [mu
1 ,m

c
1, ...m

u
N ,m

c
N , j

r , je, jw
]

.
Actions: The job monitor pays attention to the job pool, 

when the task in the queue is ready, the scheduler is acti-
vated to make decisions using the reinforcement learn-
ing algorithm. The scheduling action of the scheduler 
can be expressed as a finite number of discrete numbers. 
For example, if the scheduling action is i, it means that 
the task should be scheduled to server i. Also, we con-
sider that the policy should take all situations in account, 
especially in some cases, the scheduler may take no 
action that means the scheduling policy thinks it is better 
to scheduling nothing. Then the task is put back to the 
queue to wait next time step. Therefore, we use action 
None to represent the action to delay the job to next time 
step. The state of a task is either scheduled to a server, 
or assigned to wait next step. The space is defined as 
A = {a | a ∈ {None, 1, 2, . . . ,N }} , where N is the Nth 
servers.

Rewards: The scheduling goal is to improve the over-
all resource utilization of all machines, besides we expect 
the scheduler could fast finish the scheduling process. 
So the reward function consider the resource utilization 
U and the amount of scheduled tasks Num at the time 
t. The resource utilization Ut at time t is represented by 
the average of all servers’ resource utilization, which is 
shown as:

where Ui
t is the ith server’s resource utilization and N is 

the number of servers.
However, the amount of scheduled tasks is not used 

directly as a part of the reward function, we combine the 
time t with it to be a part of the reward. This part is simi-
lar to the concept of handling capacity, which is the num-
ber of scheduled tasks per unit time.

In order to avoid the scheduler prefers to schedule the 
short tasks, we use cost to be a part of the reward func-
tion to stimulate the scheduler to schedule the long tasks 
if the requests could be satisfied. The cost of the task is 
shown as:

where Executionj and Requirej are the execution time and 
required resources of task j respectively. So, the reward 
function could be expressed as:

we have tested many combinations of the coefficient, 
then �,µ, ν are set to 0.4, 0.4, 0.2. Besides, when the 
action is None, ν is set to 0 and �,µ are both 0.5 to make 
U and Through have same weight.

Training algorithm of MRLCC
The process of MRLCC consists of two parts, as we men-
tioned before, the one part is to train a policy for a specific 
scenario which is the “inner loop”, the another is to improve 
the meta policy, this is the “outer loop”. For the specific 
scenario training, we apply policy gradient method as the 
training method of reinforcement learning algorithm. 
Policy gradient method is one of the major reinforcement 
learning methods, compared with value-based algorithm 
like Q-learning [44], it works on the policy directly through 
sampling trajectories from the environment iteratively [45]. 
The policy is parameterized by parameters θ , it is a map-
ping between the environment state and the action, and 
the state vectors are input of the policy network. It trains 
a probability distribution through policy sampling and 
enhances the probability of selecting actions that lead to 
high returns. In other words, it directly strengthens the 
probability of selecting good behaviors and weakens the 
probability of selecting bad behaviors via rewards. θ rep-
resents the parameters of meta policy, it is initialized 
randomly. For each scenario i, the initial parameters of 
the policy network θ i is copied from the meta policy, this 

(4)Ut =

∑N
i=1U

i
t

N
,

(5)Throught =
Numt

t
.

(6)Costj = Executionj × Requirej ,

(7)r(t) = �Ut + µThrought + νCostj ,
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means that θ i = θ at the beginning of training, which is the 
step 5 in Algorithm 1. The reward function has been intro-
duced in the last part, for a trajectory τ sampled using the 
policy parameters θ , the cumulative return is expressed as

The expected total reward J mentioned in reinforcement 
learning is recorded as R̄θ , the expectation of the col-
lected N trajectories. Then the gradient of the expecta-
tion R̄θ is expressed as

As we can see, the gradient is related to the probability 
of the choice, we use the gradient to finish the process of 
gradient ascent, as the Eq. (2). After the training process, 
the policy is updated to be suitable for the specific sce-
nario i and the parameters of the policy is updated as θ ′

i.
Next, we will introduce the “outer loop” of MRLCC. 

We apply the training process of policy gradient on all 
scenarios, and we can get several different policy net-
works [ θ ′

1 , θ
′

2 , ..., θ ′

M ], they are used to update the meta 
policy parameters. Then, we conduct the gradient ascent 
to maximize the expectation of all scenarios, the expecta-
tion is expressed as follows.

It aims to get a policy which can adapt fast to perform 
well among all scenarios, but it is unexpected to overfit. 
However, the gradient of the expectation is hard to calcu-
late, because the computation cost is too large to imple-
ment. So we use the first-order approximation to replace 
the second-order derivatives [46], the process can be sim-
plified as

g is the simplified gradient, M is the number of training 
scenarios, and α is the learning rate for the process of 

(8)Rθ =

T
∑

t=0

γ T−t rt .

(9)

∇R̄θ =
∑

τ

R(τ )∇pθ (τ )

=
∑

τ

R(τ )pθ (τ )∇ log(pθ (τ ))

≈
1

N

N
∑

n=1

R(τn)∇ log(pθ (τ
n))

=
1

N

N
∑

n=1

T
∑

t=1

R(τn)∇ log(pθ )(a
n
t | snt ).

(10)ETi∼ρ(T )JTi

(

θ
′

i

)

.

(11)g =
1

M

M
∑

i=1

[(

θ
′

i − θ

)

/α

]

.

gradient ascent in the “inner loop”. The overall design of 
the algorithm is presented in Algorithm 1.

We first set a batch of learning scenarios for the train-
ing of the specific environment. After finishing the train-
ing, we update the meta-policy parameters θ by using 
gradient ascent mentioned in the Eq. (3). β is the learning 
rate of the meta-policy updating process, and the process 
of getting the gradient is a little different from the defini-
tion of the goal of meta policy.

Algorithm 1 Meta Reinforcement Learning of MRLCC

Performance evaluation
This section presents the experimental results of the pro-
posed method. First, the hyperparameters of the algo-
rithm and simulation environment are introduced. Next, 
we evaluate the performance of the algorithm by com-
paring it with the policy gradient applied on all scenarios 
and several heuristic algorithms.

Experimental settings
The algorithm is implemented via Pytorch 1.12.1. The 
policy network is set as a three-layer fully connected 
neural network, with 256, 128, 64 units at each layer. The 
activation function and optimization method are Tanh 
and Adam respectively. And the last activation func-
tion is Softmax. The learning rate α , β for the training 
of “inner loop” and “outer loop” are both set as 3 ×10−4 , 
and the discount factor for “inner loop” training is set as 
0.99. In total, we summarize the hyperparameter setting 
in Table 1.

We design two experiments to evaluate the perfor-
mance on different scenarios. The first experiment sim-
ulates the scenarios where the scheduler faces a new 
scenario. The new scenario is different from the scenarios 
used in the training process. Then in the second experi-
ment, we change the resource capacity of the servers to 
show the influence of the resource capacity on the per-
formance of different algorithms. We use K-means to 
classify the data of online service, and the purpose of this 
action is to find the different patterns behind the utiliza-
tion of resource. The clustered online data is used to sim-
ulate different scenarios where different kinds of online 
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services are deployed. Besides, the data of offline ser-
vice is also clustered to get different types of task. Then 
we combine different types of online service and offline 
service to generate different scheduling scenarios for the 
process of training the model. We compare the algorithm 
with six baseline algorithms:

First Fit: The scheduler will schedule the task to the 
first server which meets the requirement encoun-
tered in the traversal.
Random: The scheduler will randomly choose a fea-
sible scheduling action from all choices.
Shortest First: The scheduler will preferentially 
schedule the tasks whose execution time is shortest.
Mincost First: This algorithm will take the product of 
task’s execution time and resource requirement as 
the criterion of prioritizing.
Round Robin: The servers are ordered as a cyclic 
manner, and a mark is allocated to the first server. 
The task is scheduled to the server with the mark, 
when scheduling is finished, the mark is passed to 
next server according the cyclic order.
Policy Gradient-Based (PG-based) DRL: We use 
policy gradient method to pre-train one policy using 
all training data, and then use the parameters of the 
policy network as the initial parameters to update on 
the testing data. The parameters are updated accord-
ing to Eq. (2).

Simulation environment
We develop a simulative cloud environment as the 
model in Section “Background” which consists of 10 
servers. The CPU cores of each server are 10. Besides, 
we consider the servers not only just deal with offline 
tasks, but also support online service. The online ser-
vice provides the user with constant connection to the 
Internet or other facilities, which occupies the resources 

Table 1  The neural network and training hyperparameters

Hyperparameter Value

lay1 256

lay2 128

lay3 64

activation function1,2 Tanh

activation function3 Softmax

optimization method Adam

learning rate α 3×10
−4

learning rate β 3×10
−4

discount factor γ 0.99

Fig. 5  Evaluation results with new scenarios
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of servers in an irregular pattern. But the online service 
occupies the resources of the servers continuously with 
low utilization rate, usually the average is under 20% , 
which results in wasting of computing resource. So the 
experiment simulates the scheduling environment to 
solve the task scheduling problem in a scenario mixing 
online service with offline service. So that, we have to 
consider the influence of online service when the offline 
tasks are scheduled.

Result analysis
In the first experiment, we generate the scenarios for 
training using the online service data and offline ser-
vice data from Azure [47] and Tencent respectively. 
The data of online service is clustered to 5 kinds based 
on the fluctuation of the utilization rate, and the tasks 
of offline service are also divided into 5 types based on 
the characteristics of the tasks. The amplitude of fluctua-
tion represents different patterns of online service, and 

Fig. 6  Evaluation results with different number of CPU
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the minimum amplitude is about 2% and the maximal 
amplitude is about 20%. The offline tasks are clustered 
according to the length of execution time and number of 
required CPU, the execution time ranges from a few sec-
onds to tens of seconds and number of CPU varies from 
0.1 to about 4.0. Then the 5 kinds of online service and 
5 kinds of offline service are combined randomly, so we 
can get 25 scenarios to simulate the different application 
preferences. We pick up 20 sets as training data sets and 
we randomly pick 3 sets from the left 5 sets as the test-
ing data sets to evaluate the performance of MRLCC. So 
that, during training of the algorithm, we set the meta 
batch sizes M as 20. Then in the training process of the 
”inner loop”, we sample 20 trajectories for a scenario to 
train the policy model for the specific tasks. After train-
ing, we evaluate MRLCC and the PG-based DRL method 
by running up to 20 policy gradient updates, the number 
of sample trajectory is also set as 20. The task number 
of the scheduling process is set as 2000, we evaluate the 
performance through comparing the makespan of fin-
ishing the scheduling. Figure  5 shows the performance 
of MRLCC and baseline algorithm for the 3 testing 
scenarios.

Through the Fig.  5, we can point out that MRLCC 
could obtain the lowest makespan after 20 gradient 
update steps. In the scenario 1, after 2 steps of gradi-
ent update, MRLCC could consistently perform best 
than all baseline algorithms. Besides, the PG-based 
DRL algorithm cannot adapt to new scenarios as fast as 
MRLCC in scenario 1 and scenario 2, which indicates 
that MRLCC has better ability of adaptation. Although 
the performance of PG-based DRL and MRLCC is 
similar in scenario 3, after 16 steps of gradient update, 
MRLCC can perform better than PG-based DRL. 
Among all algorithms, Round Robin has the worst per-
formance in shortening makespan. Because the work-
loads are used repetitively in each step of gradient 
update, heuristic-methods cannot change as the deep 
reinforcement learning due to the specific policy. Espe-
cially, in scenario 2, Shortest First and First Fit have the 
same makespan, so there are six lines in the Fig.  5(b). 

The black line represents the performance of Shortest 
First and First Fit.

The second experiment aims to show the influ-
ence of resource capacity on the performance of dif-
ferent algorithms. We change the resource capacity 
of the servers to 12 and 15 respectively, and we apply 
the trained model to the rest two scenarios. The per-
formance of MRLCC and other algorithms is shown 
in Fig.  6.  Although MRLCC and PG-based DRL don’t 
perform well at the beginning of the testing process, 
after a few gradient updates, MRLCC outperforms all 
algorithms and gets the lowest makespan. Moreover, 
MRLCC shows a better ability of adaptation than PG-
based DRL. It is obvious that the makespan of MRLCC 
is shorter than PG-based DRL from the beginning of 
the test process.

In addition, to prove that MRLCC also improves 
the utilization rate of the servers, we summarize the 
average utilization rate of all algorithms on different 
testing datasets. The average utilization rate is the 
average utilization rate of all servers during the sched-
uling process. Compared to the baseline algorithms, 
MRLCC always gets the highest utilization rate of all 
testing datasets, which means that MRLCC not only 
can shorten the makespan of the task scheduling, but 
also improves the utilization rate of the servers clus-
ters (Table 2).

Conclusion and future work
This paper proposes a MRL-based approach MRLCC, 
which can be applied to solve the problem of task 
scheduling in cloud. The learning ability of MRLCC is 
better than the five baseline algorithms, proving that 
MRLCC can adapt to new scenarios quickly within a 
few number of gradient updates. The comparison of 
latency and average utilization rate among MRLCC and 
other algorithm demonstrates MRLCC can get a better 
performance on the two aspects.

In future, we will consider to increase the features of 
the tasks in resource requirement, while CPU is the only 

Table 2  The utilization of MRLCC and baseline algorithms in average utilization

Dataset MRLCC PG-based DRL Heuristic Algorithm

20 steps 20 steps FirstFit Random Shortest Mincost Round Robin

Scenario 1 0.7973 0.7891 0.7752 0.7820 0.7793 0.7692 0.7483

Scenario 2 0.8031 0.7997 0.7955 0.7981 0.7945 0.7925 0.7732

Scenario 3 0.8234 0.8175 0.8031 0.8093 0.8035 0.7972 0.7634

CPU=12 0.7719 0.7682 0.7632 0.7592 0.7521 0.7491 0.7094

CPU=15 0.8479 0.8456 0.8415 0.8439 0.8394 0.8408 0.8103
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factor which is taken into account in this paper. Moreo-
ver, the training algorithm of MRLCC can be improved in 
several aspects. For example, we can apply other methods 
to accelerate the process of convergence, and MRLCC 
can be modified to adapt the DAG task scheduling, which 
is a common situation of cloud computing.
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