
Xiu et al. Journal of Cloud Computing (2023) 12:75
https://doi.org/10.1186/s13677-023-00440-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

MRLCC: an adaptive cloud task scheduling
method based on meta reinforcement learning
Xi Xiu1, Jialun Li1, Yujie Long1 and Weigang Wu1* 

Abstract 

Task scheduling is a complex problem in cloud computing, and attracts many researchers’ interests. Recently, many
deep reinforcement learning (DRL)-based methods have been proposed to learn the scheduling policy through
interacting with the environment. However, most DRL methods focus on a specific environment, which may lead to
a weak adaptability to new environments because they have low sample efficiency and require full retraining to learn
updated policies for new environments. To overcome the weakness and reduce the time consumption of adapting
to new environment, we propose a task scheduling method based on meta reinforcement learning called MRLCC.
Through comparing MRLCC and baseline algorithms on the performance of shortening makespan in different envi-
ronments, we can find that MRLCC is able to adapt to different environments quickly and has a high sample efficiency.
Besides, the experimental results demonstrate that MRLCC can maintain a high utilization rate over all baseline algo-
rithms after a few steps of gradient update.

Keywords  Meta reinforcement learning, Deep reinforcement learning, Task scheduling, Resource management

Introduction
Cloud computing has become a dominating paradigm for
large scale information systems [1]. Cloud data centers
consist of physical and virtual infrastructure resources
which include server, network system and different
resources. Cloud computing becomes an admired tech-
nology around the world because it offers a huge amount
of storage and resource to different companies and
organizations which can access these resources through
proper management, rule and security. Some of the main
characteristics of cloud computing are virtualization,
large network access, automatic system and scalability
[2]. In recent years, the development of cloud computing
is remarkable. It has been used in several different fields,
such as finance, health care, industrial manufacturing [3].
Many applications of cloud computing require the rapid

increase of computing resources to satisfy the require-
ments of the clients. An easy solution for the problem
is increasing the supply of resources. However, the eco-
nomic cost is so large that it is not practical. Other solu-
tions are proposed, such as improving the strategies of
tasks scheduling to use resources as much as possible [4],
executing the online and off-line tasks simultaneously to
utilize the spare resources [5] and applying load balanc-
ing approaches to improve the utilization rate [1].

Many heuristic algorithms have been proposed to
solve the problems mentioned above. For example, first
fit [6], sample packing strategies [7], fair scheduling [8]
and so on. There are also many complex meta-heuristic
algorithms, like genetic algorithm [9], ant colony algo-
rithm [10]. The performance of the above heuristic algo-
rithms depends on not only the patterns of the resource
demands, but also manual tests and adjustment. This
means that it cannot adapt quickly if the environment
changes.

However, the fast development in machine learning,
particularly in reinforcement learning combining with
deep neural network, offers new opportunities to tackle

*Correspondence:
Weigang Wu
wuweig@mail.sysu.edu.cn
1 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00440-8&domain=pdf

Page 2 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

the problem. For example, DeepRM [11] uses deep rein-
forcement learning to schedule tasks by representing the
states as images, GoSu [12] applies graph convolution
network to task scheduling, and Peng et al. [13] solved
the problem of task scheduling using Q-learning. The
training process of reinforcement learning depends on
the large amount of data collected through interacting
with the environment. Also, if the environment changes
or some unexpected perturbations happen, the trained
model may fail because of the weak adaptability. There-
fore, it has low sample efficiency and needs full retraining
to learn an updated policy for the new environment, and
this process is time-consuming.

Meta learning is a promising method to address the
aforementioned issues by taking advantage of the previ-
ous experiences across a range of learning tasks to signifi-
cantly accelerate learning efficiency of new tasks [14]. For
the reinforcement learning problem, meta reinforcement
learning (MRL) [15] aims to learn policies from new envi-
ronments within a small number of interactions with the
environment by adjusting the previous meta model. The
learning process of meta reinforcement learning consists
of two “loops” of learning, the “outer loop” uses the expe-
rience over many tasks to gradually adjust the parameters
of meta policy. The “inner loop” adapts fast to specific
tasks through a small number of gradient updates.

There has been many researches related to meta rein-
forcement learning. For example, Pong et al. [16] pro-
posed a hybrid offline meta-RL algorithm, which uses
offline data to train an adaptive policy, and can adapt to
a variety of new tasks at meta-test process. Dynamic-
PMPO-CMA [17] integrates meta-learning with
dynamic-PPO-CMA to train robots to learn multi-task
policy. Meta-MAPPO [18] applies meta reinforcement
learning to routing problem of packet networks to opti-
mize the network performances under fixed and time-
varying traffic demands. Kim et al. [19] proposed a novel
meta-multiagent policy gradient theorem that directly
accounts for the non-stationary policy dynamics inherent
to multiagent learning settings based on meta reinforce-
ment learning. However, there are few researches related
to meta-RL of task scheduling in cloud. The most men-
tioned methods are applied in path planning of robots.
So we combined meta learning with scheduling problems
in this paper. And the meta learning process has large
computing cost, we use the first-order approximation to
reduce the cost.

The advantages of using meta reinforcement learning
can be summarized as follows: First, the learning process
of meta reinforcement learning is faster than reinforce-
ment learning. Second, the training data can be reused in
the process of training, which means that it is not neces-
sary to get as much data as the reinforcement learning.

Finally, the adaptability of meta reinforcement learning
is better than reinforcement learning, and it can adapt to
changes in the environment.

In this paper, we apply the meta reinforcement learn-
ing on task scheduling in cloud computing, and we pro-
posed the MRL-based method (MRLCC). To evaluate the
performance of MRLCC under dynamic environment,
we construct different task scheduling scenarios with
unique features. Through comparing the performance
of MRLCC and baseline algorithms, MRLCC guarantees
the shortest makespan and highest utilization rate of the
servers among all algorithms. Furthermore, we verify that
MRLCC can adapt to new scenarios more quickly than
heuristic algorithms and is better than a DRL algorithm.

The rest of this paper is organized as follows. The
related work is reviewed in Section “Related work”. Back-
ground knowledge about RL and MRL is presented in
Section “Background”. The detail of MRLCC is elaborated
in Section “Design”. Section “Performance evaluation” is
the performance evaluation of MRLCC and other algo-
rithms. Finally, Section “Conclusion and future work”
concludes the paper.

Related work
The task scheduling problem has attracted many
researchers’ interests. Based on the approaches used in
task scheduling, there are two main kinds of the meth-
ods. One is the conventional approaches including heu-
ristic methods and meta-heuristic algorithms. The other
kind is DRL-based methods.

Conventional approaches
There are many works being done to enhance the con-
ventional approaches. Pradhan et al. [20] proposed a
modified round robin resource allocation algorithm to
satisfy customer demands by reducing the waiting time.
DGLB [21] reduces the energy consuming in data cent-
ers by designing energy-aware and geographical load
balancing schemes for data-center networks. Under this
comprehensive approach, workload and power balancing
schemes are designed across the network, novel smart-
grid features such as energy storage units are incorpo-
rated to cope with renewables, and incentive pricing
mechanisms are adopted in the design. Ghobaei-Arani
et al. [22] proposed a linear programming approach to
web service composition problem, which is called ‘LP-
WSC’, to select the most efficient service per request
in a geographically distributed cloud environment for
improving the quality-of-service criteria. Based on the
concept of the control monitor-analyze-plan-execute
(MAPE) loop, Ghobaei-Arani et al. [23] proposed an
autonomic resource provisioning approach. Megh [24]
models the problem of energy and performance-efficient

Page 3 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75 	

resource management as a Markov decision process, it
uses a novel dimensionality reduction scheme to pro-
ject the combinatorially explosive state-action space
to a polynomial dimensional space with a sparse basis.
Inspired by particle swarm algorithm, Kumar et al. [25]
presented PSO-COGENT algorithm that not only opti-
mizes execution cost and time but also reduces the
energy consumption of cloud data centers. The APSO-
VI algorithm is used to provide nonlinear ideal average
velocity to control the search process to avoid the prema-
turity and divergence problems of PSO. Inspired by the
mechanism of biological evolution, Jin et al. [26] took
genetic algorithms as a mechanism based on optimal res-
ervation selection to optimize the dispatch probability. It
performs well on reducing response time and optimiz-
ing the energy consumption in the cloud system. Medara
et al. [27] used a nature-inspired meta-heuristic approach
called WWO through shutting down unemployed hosts
to maintain a balance between performance and energy
consumption in a cloud environment. WWO can effi-
ciently search near-optimal solutions in multi-dimen-
sional optimization problems. The weakness of these
methods is that they rely heavily on expert knowledge or
mathematical models.

DRL‑based methods
The DRL-based methods have been used in cloud comput-
ing widely. QEEC [28] divides the scheduling process into
two phases, the first phase implemented M/M/S to con-
struct queueing model, the second phase uses a Q-learning
based scheduler to assign tasks to virtual machines. This
method can minimize task response time and maximize
each server’s CPU utilization. RLTS [29] works on reduc-
ing time consumption on task scheduling by using deep Q
network. The reward function is related to the makespan
after finishing action a at state s and transitioning to the
next state s’. Besides, Yan et al. [30], Cheng et al. [31] and
Cheng et al. [32] used deep Q-learning network to achieve
high quality of service (QoS) by setting the reward function
related to cost, response time and execution time of the
job. Wei et al. [33] created a scheduler to make appropriate
decisions to assign jobs without any prior knowledge using
deep Q learning. Huang et al. [34] combined the adversarial
imitation learning and deep Q learning together for cloud
job scheduling, imitation learning provides an expert policy
to guide the agent to find a near-optimal scheduling action.
MADRL [35] is a multiagent deep reinforcement learning
scheme, it uses actor-critic method to significantly reduce
the computation delay and improve the channel access suc-
cess rate in mobile-edge computing. Guo et al. [36] pro-
posed DeepRM_Plus based on DeepRM, the method used
a convolutional neural network to capture the resource
management model and utilized imitation learning to

accelerate convergence in the training process. Liu et al.
[37] focused on saving the power consumption and energy
usage, so they comprised a LSTM based workload pre-
dictor and a model-free RL based power manager in the
local tier of the framework to predict workloads which can
achieve the best trade-off between latency and power con-
sumption. Moreover, Xu et al. [38] applied a Deep Neural
Network (DNN) to approximate the action-value function,
and formally formulate the resource allocation problem
as a convex optimization problem. The simulation results
show it can achieve significant power savings. However,
the training process of DRL relies on a huge amount of
data and the training process is time-consuming. Besides,
when facing with new scenario, the trained policy needs to
retrain to adapt to the new environment and the previous
policy may be lost during the training process, which leads
to low sample efficiency.

Background
Reinforcement learning
The purpose of RL [39] is to train an agent, which will get
a maximize cumulative reward through interacting with
the environment. A learning task is modeled as a Markov
decision process (MDP) [40] as shown in Fig. 1, which is
defined by a tuple (S,A,P,P0,R, γ) . The agent could col-
lect state information (s) from the environment, where s
belongs to state space S, then the agent follows the state-
transition probabilities matrix (P) to select an action a
belonging to an action set (A) . P0 is the initial state distri-
bution, which will be used at the first step. After each step,
the agent will receive a reward as rt at time t, which is cal-
culated by the reward function (R) . The cumulative reward
is calculated by adding the product of each-step reward
and the discount factor (γ ∈ [0, 1]) . During the process of
RL, we can sample a trajectory according a policy π(a | s) ,
where a ∈ A and s ∈ S. The trajectory is represented as τπ =
( s0, a0, r0, s1, a1, r1, ...).

When the policy π(a | s) is parameterized by neural net-
work parameters θ as the Fig. 2, the state value function of a
state st is calculated by

where Pτ (τ | θ) is the probability distribution of sam-
pled trajectories based on π(a | s; θ) . In this way, the
goal of RL is to find optimal parameters to maximize the
expected total rewards J = s0∼P0

vπ (s0).

Meta reinforcement learning
The goal of meta learning is to enable an agent to
quickly acquire a policy for a new test task using
only a small amount of experience in the test setting.

(1)vπ (st) = Eτ∼pτ (τ |θ)

[

∑

k=t

γ k−t rk

]

,

Page 4 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

Specifically, the task here is not as same as the defini-
tion in cloud computing. As for the meta reinforcement
learning, each learning task corresponds to a differ-
ent MDP with different reward functions in the learn-
ing process, but the different learning tasks have the
approximate states and action spaces. To accomplish
this goal, the model is trained during a meta learn-
ing phase on a set of tasks, then the trained model can
quickly adapt to new test tasks using only a small num-
ber of examples or trials. Meta learning has been used
in a variety of machine learning tasks, such as classifi-
cation, regression, and reinforcement learning [41, 42].
There are lots of methods, which present different ideas
in different aspects of MRL. For example, MAML [15]
presented a formulation of model-agnostic meta learn-
ing, which will be introduced later.

We take policy-based reinforcement learning as an
example to simply introduce the process of meta rein-
forcement learning. For each task Ti , the objective
function is denoted as JTi(θ) . During the process of
training for each task Ti , the parameters are updated by

α is the learning rate for the task Ti , θ is the network
parameters of meta policy. Each task uses θ as initial net-
work parameters to train reinforcement learning model,
so we can get θ1 , θ2 , ..., θi . The learning process for the
meta learning, follows the equation

where β is the learning rate for meta learning. The train-
ing process of meta reinforcement learning is shown in
Fig. 3.

Design
Task scheduling scenario
The structure of the scheduling system can be decom-
posed into three parts [43], job pool, resource cluster,
and the scheduler. The job pool is used to cache differ-
ent tasks from different types of users. The tasks are tem-
porarily stored in the task queue until the servers have

(2)θi ← θ + α∇θ JTi(θ).

(3)θ ← θ + βETi∼ρ(T)

[

∇θ JTi(θi)
]

.

Fig. 1  The markov decision process

Fig. 2  The deep reinforcement learning

Page 5 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75 	

enough resource to finish the tasks. The task is denoted
by required resources res and execution time t. We
assume that the resource demands and execution time
of each task are known before scheduling. And we also
assume that the problems like breaking down of servers
and information loss don’t happen in the platform. The
server cluster is deemed as the resource cluster, which is
responsible for executing the tasks in the job pool rea-
sonably using remaining resources, usually the resources
include CPU and memory. In this paper, we mainly
consider the task scheduling problem about CPU. The
scheduler is an important part of the cloud platform, it
consists of multiple components, such as the job monitor,

resource monitor, scheduling policy model and SLA. SLA
is a mutually agreed agreement defined between service
providers and users to guarantee the performance and
availability of the service under cost. The state informa-
tion of tasks and servers is collected by job monitor and
resource monitor. The scheduling policy model uses the
collected information to make scheduling decisions. The
scheduling policy is modeled by a neural network, which
takes the state information as input and outputs the
scheduling decision executed by the scheduler. The archi-
tecture of the system is shown in Fig. 4.

The systems architecture is constructed based on the
DRL-based cloud platform, and the difference is that the

Fig. 3  Training process of meta reinforcement learning

Fig. 4  The structure of the scheduling system

Page 6 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

network parameters θ have to be downloaded from the
server. Then the agent applies the parameters to train a
policy to schedule jobs, and parameters θ are updated fol-
lowing the reinforcement learning method in the cloud.
After finishing the update process in different scenarios,
the meta parameters θ have to be updated using the new
parameters in those scenarios. The new parameters in
different scenarios are uploaded to the server where meta
parameters are stored, and the meta parameters θ are
updated using the uploaded parameters to accomplish
the outer loop of meta learning as the Eq. (2).

Model
In this section, we detail the state, action, reward of rein-
forcement learning in the training process of MRLCC.

States: The state of the cluster is defined as St at time
t, the task and server are recorded as j, m respectively.
We express the environment state of the system as a
one-dimensional vector, which includes the resource
usage of the server at the moment t as mu and the serv-
er’s resource capacity as mc . For task j, the resource
demand is represented as jr , execution time of task j is
je , and the task’s waiting time is jw . The resource usage
of the server and the resource demand are represented
as the occupancy rate of the resource. So the value of
the two characteristics ranges from 0 to 1. For a clus-
ter including N servers, the state St can be defined as
St =

[

Sm1 , Sm2 , ...SmN , Sj] = [mu
1 ,m

c
1, ...m

u
N ,m

c
N , j

r , je, jw
]

.
Actions: The job monitor pays attention to the job pool,

when the task in the queue is ready, the scheduler is acti-
vated to make decisions using the reinforcement learn-
ing algorithm. The scheduling action of the scheduler
can be expressed as a finite number of discrete numbers.
For example, if the scheduling action is i, it means that
the task should be scheduled to server i. Also, we con-
sider that the policy should take all situations in account,
especially in some cases, the scheduler may take no
action that means the scheduling policy thinks it is better
to scheduling nothing. Then the task is put back to the
queue to wait next time step. Therefore, we use action
None to represent the action to delay the job to next time
step. The state of a task is either scheduled to a server,
or assigned to wait next step. The space is defined as
A = {a | a ∈ {None, 1, 2, . . . ,N }} , where N is the Nth
servers.

Rewards: The scheduling goal is to improve the over-
all resource utilization of all machines, besides we expect
the scheduler could fast finish the scheduling process.
So the reward function consider the resource utilization
U and the amount of scheduled tasks Num at the time
t. The resource utilization Ut at time t is represented by
the average of all servers’ resource utilization, which is
shown as:

where Ui
t is the ith server’s resource utilization and N is

the number of servers.
However, the amount of scheduled tasks is not used

directly as a part of the reward function, we combine the
time t with it to be a part of the reward. This part is simi-
lar to the concept of handling capacity, which is the num-
ber of scheduled tasks per unit time.

In order to avoid the scheduler prefers to schedule the
short tasks, we use cost to be a part of the reward func-
tion to stimulate the scheduler to schedule the long tasks
if the requests could be satisfied. The cost of the task is
shown as:

where Executionj and Requirej are the execution time and
required resources of task j respectively. So, the reward
function could be expressed as:

we have tested many combinations of the coefficient,
then �,µ, ν are set to 0.4, 0.4, 0.2. Besides, when the
action is None, ν is set to 0 and �,µ are both 0.5 to make
U and Through have same weight.

Training algorithm of MRLCC
The process of MRLCC consists of two parts, as we men-
tioned before, the one part is to train a policy for a specific
scenario which is the “inner loop”, the another is to improve
the meta policy, this is the “outer loop”. For the specific
scenario training, we apply policy gradient method as the
training method of reinforcement learning algorithm.
Policy gradient method is one of the major reinforcement
learning methods, compared with value-based algorithm
like Q-learning [44], it works on the policy directly through
sampling trajectories from the environment iteratively [45].
The policy is parameterized by parameters θ , it is a map-
ping between the environment state and the action, and
the state vectors are input of the policy network. It trains
a probability distribution through policy sampling and
enhances the probability of selecting actions that lead to
high returns. In other words, it directly strengthens the
probability of selecting good behaviors and weakens the
probability of selecting bad behaviors via rewards. θ rep-
resents the parameters of meta policy, it is initialized
randomly. For each scenario i, the initial parameters of
the policy network θ i is copied from the meta policy, this

(4)Ut =

∑N
i=1U

i
t

N
,

(5)Throught =
Numt

t
.

(6)Costj = Executionj × Requirej ,

(7)r(t) = �Ut + µThrought + νCostj ,

Page 7 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75 	

means that θ i = θ at the beginning of training, which is the
step 5 in Algorithm 1. The reward function has been intro-
duced in the last part, for a trajectory τ sampled using the
policy parameters θ , the cumulative return is expressed as

The expected total reward J mentioned in reinforcement
learning is recorded as R̄θ , the expectation of the col-
lected N trajectories. Then the gradient of the expecta-
tion R̄θ is expressed as

As we can see, the gradient is related to the probability
of the choice, we use the gradient to finish the process of
gradient ascent, as the Eq. (2). After the training process,
the policy is updated to be suitable for the specific sce-
nario i and the parameters of the policy is updated as θ ′

i.
Next, we will introduce the “outer loop” of MRLCC.

We apply the training process of policy gradient on all
scenarios, and we can get several different policy net-
works [ θ ′

1 , θ
′

2 , ..., θ ′

M ], they are used to update the meta
policy parameters. Then, we conduct the gradient ascent
to maximize the expectation of all scenarios, the expecta-
tion is expressed as follows.

It aims to get a policy which can adapt fast to perform
well among all scenarios, but it is unexpected to overfit.
However, the gradient of the expectation is hard to calcu-
late, because the computation cost is too large to imple-
ment. So we use the first-order approximation to replace
the second-order derivatives [46], the process can be sim-
plified as

g is the simplified gradient, M is the number of training
scenarios, and α is the learning rate for the process of

(8)Rθ =

T
∑

t=0

γ T−t rt .

(9)

∇R̄θ =
∑

τ

R(τ)∇pθ (τ)

=
∑

τ

R(τ)pθ (τ)∇ log(pθ (τ))

≈
1

N

N
∑

n=1

R(τn)∇ log(pθ (τ
n))

=
1

N

N
∑

n=1

T
∑

t=1

R(τn)∇ log(pθ)(a
n
t | snt).

(10)ETi∼ρ(T)JTi

(

θ
′

i

)

.

(11)g =
1

M

M
∑

i=1

[(

θ
′

i − θ

)

/α

]

.

gradient ascent in the “inner loop”. The overall design of
the algorithm is presented in Algorithm 1.

We first set a batch of learning scenarios for the train-
ing of the specific environment. After finishing the train-
ing, we update the meta-policy parameters θ by using
gradient ascent mentioned in the Eq. (3). β is the learning
rate of the meta-policy updating process, and the process
of getting the gradient is a little different from the defini-
tion of the goal of meta policy.

Algorithm 1 Meta Reinforcement Learning of MRLCC

Performance evaluation
This section presents the experimental results of the pro-
posed method. First, the hyperparameters of the algo-
rithm and simulation environment are introduced. Next,
we evaluate the performance of the algorithm by com-
paring it with the policy gradient applied on all scenarios
and several heuristic algorithms.

Experimental settings
The algorithm is implemented via Pytorch 1.12.1. The
policy network is set as a three-layer fully connected
neural network, with 256, 128, 64 units at each layer. The
activation function and optimization method are Tanh
and Adam respectively. And the last activation func-
tion is Softmax. The learning rate α , β for the training
of “inner loop” and “outer loop” are both set as 3 ×10−4 ,
and the discount factor for “inner loop” training is set as
0.99. In total, we summarize the hyperparameter setting
in Table 1.

We design two experiments to evaluate the perfor-
mance on different scenarios. The first experiment sim-
ulates the scenarios where the scheduler faces a new
scenario. The new scenario is different from the scenarios
used in the training process. Then in the second experi-
ment, we change the resource capacity of the servers to
show the influence of the resource capacity on the per-
formance of different algorithms. We use K-means to
classify the data of online service, and the purpose of this
action is to find the different patterns behind the utiliza-
tion of resource. The clustered online data is used to sim-
ulate different scenarios where different kinds of online

Page 8 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

services are deployed. Besides, the data of offline ser-
vice is also clustered to get different types of task. Then
we combine different types of online service and offline
service to generate different scheduling scenarios for the
process of training the model. We compare the algorithm
with six baseline algorithms:

First Fit: The scheduler will schedule the task to the
first server which meets the requirement encoun-
tered in the traversal.
Random: The scheduler will randomly choose a fea-
sible scheduling action from all choices.
Shortest First: The scheduler will preferentially
schedule the tasks whose execution time is shortest.
Mincost First: This algorithm will take the product of
task’s execution time and resource requirement as
the criterion of prioritizing.
Round Robin: The servers are ordered as a cyclic
manner, and a mark is allocated to the first server.
The task is scheduled to the server with the mark,
when scheduling is finished, the mark is passed to
next server according the cyclic order.
Policy Gradient-Based (PG-based) DRL: We use
policy gradient method to pre-train one policy using
all training data, and then use the parameters of the
policy network as the initial parameters to update on
the testing data. The parameters are updated accord-
ing to Eq. (2).

Simulation environment
We develop a simulative cloud environment as the
model in Section “Background” which consists of 10
servers. The CPU cores of each server are 10. Besides,
we consider the servers not only just deal with offline
tasks, but also support online service. The online ser-
vice provides the user with constant connection to the
Internet or other facilities, which occupies the resources

Table 1  The neural network and training hyperparameters

Hyperparameter Value

lay1 256

lay2 128

lay3 64

activation function1,2 Tanh

activation function3 Softmax

optimization method Adam

learning rate α 3×10
−4

learning rate β 3×10
−4

discount factor γ 0.99

Fig. 5  Evaluation results with new scenarios

Page 9 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75 	

of servers in an irregular pattern. But the online service
occupies the resources of the servers continuously with
low utilization rate, usually the average is under 20% ,
which results in wasting of computing resource. So the
experiment simulates the scheduling environment to
solve the task scheduling problem in a scenario mixing
online service with offline service. So that, we have to
consider the influence of online service when the offline
tasks are scheduled.

Result analysis
In the first experiment, we generate the scenarios for
training using the online service data and offline ser-
vice data from Azure [47] and Tencent respectively.
The data of online service is clustered to 5 kinds based
on the fluctuation of the utilization rate, and the tasks
of offline service are also divided into 5 types based on
the characteristics of the tasks. The amplitude of fluctua-
tion represents different patterns of online service, and

Fig. 6  Evaluation results with different number of CPU

Page 10 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

the minimum amplitude is about 2% and the maximal
amplitude is about 20%. The offline tasks are clustered
according to the length of execution time and number of
required CPU, the execution time ranges from a few sec-
onds to tens of seconds and number of CPU varies from
0.1 to about 4.0. Then the 5 kinds of online service and
5 kinds of offline service are combined randomly, so we
can get 25 scenarios to simulate the different application
preferences. We pick up 20 sets as training data sets and
we randomly pick 3 sets from the left 5 sets as the test-
ing data sets to evaluate the performance of MRLCC. So
that, during training of the algorithm, we set the meta
batch sizes M as 20. Then in the training process of the
”inner loop”, we sample 20 trajectories for a scenario to
train the policy model for the specific tasks. After train-
ing, we evaluate MRLCC and the PG-based DRL method
by running up to 20 policy gradient updates, the number
of sample trajectory is also set as 20. The task number
of the scheduling process is set as 2000, we evaluate the
performance through comparing the makespan of fin-
ishing the scheduling. Figure 5 shows the performance
of MRLCC and baseline algorithm for the 3 testing
scenarios.

Through the Fig. 5, we can point out that MRLCC
could obtain the lowest makespan after 20 gradient
update steps. In the scenario 1, after 2 steps of gradi-
ent update, MRLCC could consistently perform best
than all baseline algorithms. Besides, the PG-based
DRL algorithm cannot adapt to new scenarios as fast as
MRLCC in scenario 1 and scenario 2, which indicates
that MRLCC has better ability of adaptation. Although
the performance of PG-based DRL and MRLCC is
similar in scenario 3, after 16 steps of gradient update,
MRLCC can perform better than PG-based DRL.
Among all algorithms, Round Robin has the worst per-
formance in shortening makespan. Because the work-
loads are used repetitively in each step of gradient
update, heuristic-methods cannot change as the deep
reinforcement learning due to the specific policy. Espe-
cially, in scenario 2, Shortest First and First Fit have the
same makespan, so there are six lines in the Fig. 5(b).

The black line represents the performance of Shortest
First and First Fit.

The second experiment aims to show the influ-
ence of resource capacity on the performance of dif-
ferent algorithms. We change the resource capacity
of the servers to 12 and 15 respectively, and we apply
the trained model to the rest two scenarios. The per-
formance of MRLCC and other algorithms is shown
in Fig. 6. Although MRLCC and PG-based DRL don’t
perform well at the beginning of the testing process,
after a few gradient updates, MRLCC outperforms all
algorithms and gets the lowest makespan. Moreover,
MRLCC shows a better ability of adaptation than PG-
based DRL. It is obvious that the makespan of MRLCC
is shorter than PG-based DRL from the beginning of
the test process.

In addition, to prove that MRLCC also improves
the utilization rate of the servers, we summarize the
average utilization rate of all algorithms on different
testing datasets. The average utilization rate is the
average utilization rate of all servers during the sched-
uling process. Compared to the baseline algorithms,
MRLCC always gets the highest utilization rate of all
testing datasets, which means that MRLCC not only
can shorten the makespan of the task scheduling, but
also improves the utilization rate of the servers clus-
ters (Table 2).

Conclusion and future work
This paper proposes a MRL-based approach MRLCC,
which can be applied to solve the problem of task
scheduling in cloud. The learning ability of MRLCC is
better than the five baseline algorithms, proving that
MRLCC can adapt to new scenarios quickly within a
few number of gradient updates. The comparison of
latency and average utilization rate among MRLCC and
other algorithm demonstrates MRLCC can get a better
performance on the two aspects.

In future, we will consider to increase the features of
the tasks in resource requirement, while CPU is the only

Table 2  The utilization of MRLCC and baseline algorithms in average utilization

Dataset MRLCC PG-based DRL Heuristic Algorithm

20 steps 20 steps FirstFit Random Shortest Mincost Round Robin

Scenario 1 0.7973 0.7891 0.7752 0.7820 0.7793 0.7692 0.7483

Scenario 2 0.8031 0.7997 0.7955 0.7981 0.7945 0.7925 0.7732

Scenario 3 0.8234 0.8175 0.8031 0.8093 0.8035 0.7972 0.7634

CPU=12 0.7719 0.7682 0.7632 0.7592 0.7521 0.7491 0.7094

CPU=15 0.8479 0.8456 0.8415 0.8439 0.8394 0.8408 0.8103

Page 11 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75 	

factor which is taken into account in this paper. Moreo-
ver, the training algorithm of MRLCC can be improved in
several aspects. For example, we can apply other methods
to accelerate the process of convergence, and MRLCC
can be modified to adapt the DAG task scheduling, which
is a common situation of cloud computing.

Authors’ contributions
Xi Xiu wrote the main manuscript text. Weigang Wu provide guidence of this
paper. All authors reviewed the manuscript. The author(s) read and approved
the final manuscript.

Funding
This research is partially supported by Guangdong Provincial Natural Science
Foundation of China (2018B030312002), and National Natural Science Founda-
tion of China (U1801266, U1811461).

Availability of data and materials
The data set of Azure used in this paper is publically available at Github, and
the links have been included in the paper. The data set of Tencent is not
public.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 18 October 2022 Accepted: 11 April 2023

References
	1.	 Ullah A, Nawi NM, Ouhame S (2022) Recent advancement in VM task

allocation system for cloud computing: review from 2015 to 2021. Artif
Intell Rev 55:1–45

	2.	 Ferrer AJ, Marquès JM, Jorba J (2019) Towards the decentralised cloud:
Survey on approaches and challenges for mobile, ad hoc, and edge
computing. ACM Comput Surv (CSUR) 51(6):1–36

	3.	 Nazir R, Ahmed Z, Ahmad Z, Shaikh N, Laghari A, Kumar K (2020) Cloud
computing applications: a review. EAI Endorsed Trans Cloud Syst 6(17):e5

	4.	 Vinothina V, Rajagopal S et al (2022) Review on mapping of tasks
to resources in cloud computing. Int J Cloud Appl Comput (IJCAC)
12(1):1–17

	5.	 Zheng B, Pan L, Liu S (2021) Market-oriented online bi-objective service
scheduling for pleasingly parallel jobs with variable resources in cloud
environments. J Syst Softw 176:110934

	6.	 Song W, Xiao Z, Chen Q, Luo H (2014) Adaptive resource provisioning for
the cloud using online bin packing. IEEE Trans Comput 63(11):2647–2660.
https://​doi.​org/​10.​1109/​TC.​2013.​148

	7.	 Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella A (2014) Multi-
resource packing for cluster schedulers. ACM SIGCOMM Comput Com-
mun Rev 44(4):455–466

	8.	 Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S, Stoica I (2011)
Dominant resource fairness: Fair allocation of multiple resource types.
In: Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11). USENIX Association, Boston

	9.	 Xie Y, Sheng Y, Qiu M, Gui F (2022) An adaptive decoding biased random
key genetic algorithm for cloud workflow scheduling. Eng Appl Artif
Intell 112(104):879

	10.	 Ajmal MS, Iqbal Z, Khan FZ, Ahmad M, Ahmad I, Gupta BB (2021) Hybrid
ant genetic algorithm for efficient task scheduling in cloud data centers.
Comput Electr Eng 95(107):419

	11.	 Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management
with deep reinforcement learning. In: Proceedings of the 15th ACM
workshop on hot topics in networks. Association for Computing Machin-
ery, New York, pp 50–56

	12.	 Lee H, Cho S, Jang Y, Lee J, Woo H (2021) A global dag task scheduler
using deep reinforcement learning and graph convolution network. IEEE
Access 9:158548–158561

	13.	 Peng Z, Cui D, Zuo J, Li Q, Xu B, Lin W (2015) Random task scheduling
scheme based on reinforcement learning in cloud computing. Clust
Comput 18(4):1595–1607

	14.	 Sohn S, Woo H, Choi J, Lee H (2020) Meta reinforcement learning with
autonomous inference of subtask dependencies. arXiv preprint arXiv:​
2001.​00248

	15.	 Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast
adaptation of deep networks. In: Proceedings of the International confer-
ence on machine learning, PMLR, pp 1126–1135

	16.	 Pong VH, Nair AV, Smith LM, Huang C, Levine S (2022) Offline meta-
reinforcement learning with online self-supervision. In: International
Conference on Machine Learning, PMLR, pp 17811–17829

	17.	 Wen S, Wen Z, Zhang D, Zhang H, Wang T (2021) A multi-robot path-plan-
ning algorithm for autonomous navigation using meta-reinforcement
learning based on transfer learning. Appl Soft Comput 110:107605

	18.	 Chen L, Hu B, Guan ZH, Zhao L, Shen X (2021) Multiagent meta-reinforce-
ment learning for adaptive multipath routing optimization. IEEE Trans
Neural Netw Learn Syst 33(10):5374–5386

	19.	 Kim DK, Liu M, Riemer MD, Sun C, Abdulhai M, Habibi G, Lopez-Cot S,
Tesauro G, How J (2021) A policy gradient algorithm for learning to learn
in multiagent reinforcement learning. In: International Conference on
Machine Learning, PMLR, pp 5541–5550

	20.	 Pradhan P, Behera PK, Ray B (2016) Modified round robin algorithm for
resource allocation in cloud computing. Procedia Comput Sci 85:878–890

	21.	 Chen T, Marques AG, Giannakis GB (2016) Dglb: Distributed stochastic
geographical load balancing over cloud networks. IEEE Trans Parallel
Distrib Syst 28(7):1866–1880

	22.	 Ghobaei-Arani M, Souri A (2019) Lp-wsc: a linear programming approach
for web service composition in geographically distributed cloud environ-
ments. J Supercomput 75(5):2603–2628

	23.	 Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2016) An autonomic
approach for resource provisioning of cloud services. Clust Comput
19:1017–1036

	24.	 Basu D, Wang X, Hong Y, Chen H, Bressan S (2019) Learn-as-you-go with
megh: Efficient live migration of virtual machines. IEEE Trans Parallel
Distrib Syst 30(8):1786–1801. https://​doi.​org/​10.​1109/​TPDS.​2019.​28936​48

	25.	 Kumar M, Sharma SC (2018) Pso-cogent: Cost and energy efficient sched-
uling in cloud environment with deadline constraint. Sustain Comput
Inform Syst 19:147–164

	26.	 Jin HZ, Yang L, Hao O (2015) Scheduling strategy based on genetic
algorithm for cloud computer energy optimization. In: Proceedings of the
2015 IEEE International Conference on Communication Problem-Solving
(ICCP), IEEE, pp 516–519

	27.	 Medara R, Singh RS et al (2021) Energy-aware workflow task scheduling
in clouds with virtual machine consolidation using discrete water wave
optimization. Simul Model Pract Theory 110:102323

	28.	 Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based
dynamic task scheduling for energy-efficient cloud computing. Futur
Gener Comput Syst 108:361–371

	29.	 Dong T, Xue F, Xiao C, Li J (2020) Task scheduling based on deep
reinforcement learning in a cloud manufacturing environment. Concurr
Comput Pract Experience 32(11):5654

	30.	 Yan J, Huang Y, Gupta A, Gupta A, Liu C, Li J, Cheng L (2022) Energy-aware
systems for real-time job scheduling in cloud data centers: A deep rein-
forcement learning approach. Comput Electr Eng 99:107688

	31.	 Cheng F, Huang Y, Tanpure B, Sawalani P, Cheng L, Liu C (2022a) Cost-
aware job scheduling for cloud instances using deep reinforcement
learning. Clust Comput 25:1–13

	32.	 Cheng L, Kalapgar A, Jain A, Wang Y, Qin Y, Li Y, Liu C (2022) Cost-aware
real-time job scheduling for hybrid cloud using deep reinforcement
learning. Neural Comput & Applic 34(21):18579–18593

	33.	 Wei Y, Pan L, Liu S, Wu L, Meng X (2018) Drl-scheduling: An intelligent
qos-aware job scheduling framework for applications in clouds. IEEE
Access 6:55112–55125. https://​doi.​org/​10.​1109/​ACCESS.​2018.​28726​74

https://doi.org/10.1109/TC.2013.148
http://arxiv.org/abs/2001.00248
http://arxiv.org/abs/2001.00248
https://doi.org/10.1109/TPDS.2019.2893648
https://doi.org/10.1109/ACCESS.2018.2872674

Page 12 of 12Xiu et al. Journal of Cloud Computing (2023) 12:75

	34.	 Huang Y, Cheng L, Xue L, Liu C, Li Y, Li J, Ward T (2021) Deep adversarial
imitation reinforcement learning for qos-aware cloud job scheduling.
IEEE Syst J 16(3):4232–4242

	35.	 Cao Z, Zhou P, Li R, Huang S, Wu D (2020) Multiagent deep reinforcement
learning for joint multichannel access and task offloading of mobile-edge
computing in industry 4.0. IEEE Internet Things J 7(7):6201–6213

	36.	 Guo W, Tian W, Ye Y, Xu L, Wu K (2020) Cloud resource scheduling with
deep reinforcement learning and imitation learning. IEEE Internet Things
J 8(5):3576–3586

	37.	 Liu N, Li Z, Xu J, Xu Z, Lin S, Qiu Q, Tang J, Wang Y (2017) A hierarchical
framework of cloud resource allocation and power management using
deep reinforcement learning. In: Proceedings of the IEEE 37th interna-
tional conference on distributed computing systems (ICDCS), IEEE, pp
372–382

	38.	 Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement
learning based framework for power-efficient resource allocation in
cloud rans. In: 2017 IEEE International Conference on Communications
(ICC), IEEE, pp 1–6

	39.	 Li Y (2017) Deep reinforcement learning: An overview. arXiv preprint
arXiv:​1701.​07274

	40.	 Sigaud O, Buffet O (2013) Markov decision processes in artificial intel-
ligence. John Wiley & Sons

	41.	 Fakoor R, Chaudhari P, Soatto S, Smola AJ (2019) Meta-q-learning. arXiv
preprint arXiv:​1910.​00125

	42.	 Huang L, Zhang L, Yang S, Qian LP, Wu Y (2020) Meta-learning based
dynamic computation task offloading for mobile edge computing
networks. IEEE Commun Lett 25(5):1568–1572

	43.	 Lin J, Peng Z, Cui D (2018) Deep reinforcement learning for multi-
resource cloud job scheduling. In: Proceedings of the International
conference on neural information processing, Springer, pp 289–302

	44.	 Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3):279–292
	45.	 Ye Y, Ren X, Wang J, Xu L, Guo W, Huang W, Tian W (2018) A new approach

for resource scheduling with deep reinforcement learning. arXiv preprint
arXiv:​1806.​08122

	46.	 Nichol A, Achiam J, Schulman J (2018) On first-order meta-learning
algorithms. arXiv preprint arXiv:​1803.​02999

	47.	 Romero F, Chaudhry GI, Goiri Í, Gopa P, Batum P, Yadwadkar NJ, et al
(2021) Faa$T: A transparent auto-scaling cache for serverless applications.
Proceedings of the ACM Symposium on Cloud Computing. Association
for Computing Machinery, New York, 122–137

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1910.00125
http://arxiv.org/abs/1806.08122
http://arxiv.org/abs/1803.02999

	MRLCC: an adaptive cloud task scheduling method based on meta reinforcement learning
	Abstract
	Introduction
	Related work
	Conventional approaches
	DRL-based methods

	Background
	Reinforcement learning
	Meta reinforcement learning

	Design
	Task scheduling scenario
	Model
	Training algorithm of MRLCC

	Performance evaluation
	Experimental settings
	Simulation environment
	Result analysis

	Conclusion and future work
	References

