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Abstract 

Containers as a service (CaaS) are a kind of services that permits the organization to handle the containers more effec-
tively. Containers are lightweight, require less computing resources, portable, and facilitate better support for micros-
ervices. In the CaaS model, containers are deployed in virtual machines, and the virtual machine runs on the physical 
machine. The objective of this paper is to estimate the resource required by a VM to execute a number of containers. 
VM sizing is a directorial process where the system administrators have to optimize the allocated resources within the 
permitted virtualized space. In this work, the VM sizing is carried out using the Deep Convolutional Long Short Term 
Memory Network (Deep-ConvLSTM), where the weights are updated by Fractional Pelican Optimization (FPO) Algo-
rithm. Here, the FPO is configured by hybridizing the concept of Fractional Calculus (FC) within the updated location 
of the Pelican Optimization Algorithm (POA). Moreover, the task grouping is done with Deep Embedded Clustering 
(DEC), where the grouping is established with respect to the various task parameters, such as task length, submission 
rate, scheduling class, priority, resource usage, task latency, and Task Rejection Rate (TRR). In addition, the performance 
analysis of VM sizing is done by taking 100, 200, 300, and 400 tasks. We got the best resource utilization of 0.104 with 
300 tasks, a response time of 262ms with 100 tasks, and a TRR of 0.156 with 100 tasks and makespan of 0.5788 with 
100 tasks.

Keywords Cloud computing, Container as a service, Long short term memory, Pelican optimization algorithm, 
Fractional calculus, Deep embedded clustering, Convolutional LSTM network

Introduction
With the progressive development in Information Tech-
nology (IT), a new substitute has emerged in the form 
of cloud computing for the conventional computing 
methods to provide services to clients without any con-
straint on location or time, thereby enabling access to a 
pool of distributed computing resources to the users  [1, 

2]. Cloud computing provides various benefits in terms 
of reducing operational expenses and funds. It develops 
an environment based on networks that allow the distri-
bution of resources and computations irrespective of the 
user’s location [3]. Recently, several firms are migrating to 
cloud computing applications due to the high efficiency, 
Quality of Service (QoS), accessibility, and reduced cost. 
Moreover, the pool of resources offers high scalability 
and flexibility because of the dispersed nature of storage 
and computational resources [4].

Services in the cloud are provided based on three ser-
vice models such Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service(SaaS). 
In the IaaS service model, web portals and the Appli-
cation Program Interface (API) provide the hardware 
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necessary for storage and computation. The PaaS is a 
platform-oriented model where application-oriented ser-
vices, like database services and scripting environments, 
are provided, and the SaaS offers app-based services [5]. 
In addition to the three classical models mentioned 
above, a new model known as Container as a Service 
(CaaS) has been devised, making cloud computing more 
powerful and efficient in terms of resource utilization. 
Virtualization using container have gained high accept-
ance due to the lightweight solution offered, which per-
mits the bunching of data and applications in a simple 
and performance-directed way that makes them suitable 
to be executed on various cloud frameworks [6]. A CaaS 
model comprises containers that are packed with appli-
cations. The Virtual Machines (VMs) run the containers, 
and each VM is hosted in Physical Machines (PMs)  [7]. 
CaaS model lies in between the IaaS and PaaS [8]. Con-
tainer refers to the virtualization technology operated 
at the system level, which can be positioned on PMs or 
VMs. The prime purpose of using CaaS is to provide an 
isolated atmosphere for the application execution. The 
container can share Operating System (OS) kernel com-
pared to a VM, which requires all the resources available 
in the OS. Hence, it is a lightweight model requiring min-
imum time and resources [8, 9].

The inefficient utilization of resources can occur when 
more resources are allocated than necessary. These 
results in a workload executed by many PMs than that 
required  [10]. The consumption of energy in CaaS can 
be reduced by considering the Dynamic Voltage and Fre-
quency Scaling (DVFS), VM consolidation, or both. But 
the efforts would be meaningless without considering the 
customization of the VM sizes to enhance support of the 
deployed containers [8]. VM sizing can be defined as the 
measure of the total quantity of resources that have to be 
assigned to a VM. VM sizing is done with the objective 
of ensuring that the VM capacity is proportionate to the 
workload assigned to a VM [11]. The number of resources 
required by a VM wills be estimated by the Cloud Service 
Provider (CSP), which collects and analyses data associ-
ated with the VM. The CSP considers the applications 
that are executed in a VM as a black box [10]. Recently, 
Deep learning (DL) techniques using Recursive Neu-
ral Networks (RNN), Convolutional Neural Networks 
(CNN), etc., have a high ability to detect hidden infor-
mation from the training data, and this can be utilized to 
analyze the data using black box approach [12].

The major aim of this research is the modeling of a VM 
sizing scheme with task grouping. Here, the VM sizing is 
done using Deep-ConvLSTM, where its weight is trained 
with an invented FPO algorithm. Moreover, the FPO 
algorithm is modeled by applying the FC concept in the 
updated POA location. Furthermore, the task grouping is 

carried out using DEC, which is done based on the task 
parameters, such as task length, submission rate, sched-
uling class, priority, resource usage, task latency, and task 
rejection rate. In the VM sizing, horizontal and vertical 
sizing are applied to each task group. The significant con-
tributions of this research are:

• FPO assisted Deep-ConvLSTM for VM sizing: The 
VM sizing is carried out using Deep-ConvLSTM, 
which is trained with the invented FPO algorithm. 
Here, the devised FPO algorithm is modeled by 
including the concept of FC with the updated con-
dition of POA such that the optimal location is 
updated. Thereby better prediction performance is 
attained.

• The proposed approach is validated with Google’s 
cluster trace data set, which indicates that it outper-
forms the other techniques, such as VM size selection 
technique, Hurst exponent +Markov transition based 
VM scaling, Inter-Cloud Load Balancer (ICLB), VM 
size IaaS multi-tenant public cloud [6], Online Multi-
Resource Feed-forward Neural Network (OM-FNN), 
Deep-ConvLSTM_Gradient Descendant (GD), and 
Deep-ConvLSTM ADAM for virtual machine sizing 
in CaaS cloud.

The rest of the paper is structured as follows; Section 
“Literature survey and motivation” portrays the literature 
survey of VM sizing techniques in the cloud, the cloud 
system model is explained in Section “System model”, 
Section “Proposed task grouping and optimized deep 
learning based VM sizing for hosting CaaS” indicates the 
proposed methodology for hosting CaaS, and Section 
“Results and discussion” portrays the results and discus-
sion of devised model. Section “Discussion” presents the 
numerical results and finally in Section “Conclusion”, we 
conclude the paper with some future directions.

Literature survey and motivation
Literature survey
The challenges of conventional VM sizing techniques in 
the cloud are explained below. In [8], Piraghaj, S.F. et al., 
modeled the VM size selection technique for performing 
the VM sizing. The method achieved minimal energy uti-
lization by decreasing the wastage of resources. However, 
it failed to reflect on predicting workload for estimating 
the actual container utilization. Lu, C.T. et al., [13] intro-
duced the Hurst exponent and Markov transition-based 
VM scaling based on empirical cloud information to 
reflect the predicting overload. Moreover, this approach 
successfully enhanced the host availability by increasing 
the usage of inactive resources. Though, it was unsuccess-
ful in aggregating more data to enhance the strengthening 
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of the transition matrix to improve accuracy. To pro-
gress the accuracy, Sotiriadis S. et  al.  [14] modeled the 
Inter-Cloud Load Balancer (ICLB) for configuring the 
VM. Here, the devised scheme successfully eradicates 
the downtime without affecting the flow of informa-
tion. However, it failed to tune the method for defining 
thresholds based on real-time data utilization. Guo, Y. 
et al. [15] modeled the Shadow algorithm for performing 
the VM auto-scaling for devising the VM scaling scheme 
based on real-time data utilization. This method attained 
high scalability, which enabled the handling of a larger 
cloud, but it did not find any ways to scale the resources 
to minimize the count of tear-downs and VM boots. To 
diminish the tear-down and VM boots count, Alsadie 
D., et al. [16] designed the Dynamic Resource Allocation 
to minimize the energy usage in cloud computing. This 
method successfully minimized the energy utilization in 
cloud data centers. However, it produced a high overhead 
with the increased number of VMs. To diminish the com-
putational overhead, Derdus, K.M. et al., [17] introduced 
the VM right-sizing IaaS multitenant public cloud for siz-
ing the VM in cloud data centers. This method efficiently 
reduced the operating costs required by the CSP. How-
ever, it failed to use a VM allocation algorithm for esti-
mating the peak resources needed before allocating them. 
To estimate the peak resources, Kenga, D.M. et  al.,  [10] 
designed the VM sizing in IaaS multitenant public cloud 
for performing the VM sizing and predicting the resource 
usage. This method effectively predicted the resource uti-
lization for multitenant IaaS cloud, but it was unsuccess-
ful in seeing the deep learning approaches and various 
other cloud infrastructures to improve the performance. 
For attaining a superior outcome based on a deep learn-
ing scheme, Saxena, D. and Singh, A.K., [18] invented the 
Online Multi-Resource Feed-forward Neural Network 
(OM-FNN) for performing the autoscaling and VM allo-
cation in the cloud data center. It instantaneously esti-
mated numerous resource usage in reduced space and 
time complexity. Though, the developed approach failed 
to minimize the percentage of power saved with the rise 
in data center size.

Sareh Fotuhi Piraghaj, in her research  [19], empha-
sizes different resource management strategies in the 
CaaS cloud system. She has used a clustering-based 
approach for task grouping and a virtual machine sizing 
technique for efficient resource utilization in CaaS. Jia-
lei Liu et  al.  [20] explore the cloud resource utilization 
using container consolidation. The proposed approach 
considers usage prediction to achieve the objective, such 
as reducing the number of running virtual machines, 
migrating containers, and reducing energy consumption 
while satisfying SLA. Vasiliki Liagkou et al. [21] presented 
a CaaS model where container clustering is done and 

deployed in a virtual machine. They proposed a hedonic 
model for pricing that analyzes the provider’s price and 
the correlation between different requirements. Weiwen 
Zhang et al. [22] try to improve resource utilization in the 
CaaS cloud by achieving load balancing and minimizing 
migration. They have investigated container migration 
and placement techniques for developing the constrained 
optimization problem. The proposed BACP algorithm for 
placement and ATCM algorithm for migration solve the 
optimization problem. An optimal container migration 
model has been presented in [23] by considering latency, 
downtime, and dependencies in the edge cloud environ-
ment. Table 1 present the detailed review on VM sizing 
techniques.

Motivation
VM sizing is a method to optimize the allocation of 
resources within the allotted spaces. Efficient VM siz-
ing plays an important role in improving the overall 
performance of a CaaS cloud system. Generally, a physi-
cal machine consumes more resources than a virtual 
machine. To increase the overall system performance and 
resource utilization, containers with the packed applica-
tion need to be placed in a virtual machine that requires 
fewer resources than a physical machine [7]. Hence, it is 
essential to allocate resources for a VM so that the con-
tainer is executed without any wastage of resources. The 
ability to run multiple operating systems (OS) at the same 
time while utilizing different components of the hard-
ware is the primary advantage of using virtual machines 
(VM). However, in the absence of virtual machines (VM), 
processing several operating systems would require sepa-
rate physical units. In addition, the virtual machine has 
a low overhead, the ability to scale, and a high degree of 
flexibility and is used for disaster recovery. Considering 
all of these benefits motivates us to model the research in 
virtual machine sizing that is being implemented in CaaS 
cloud systems.

Research challenges
The different challenges encountered by the prevailing 
techniques of VM sizing are listed below.

• The rejection rate was increased due to the lack of 
correlation analysis while placing the VM.

• The accurate estimation of the resources required by 
the VMs was difficult due to the failure in the mem-
ory and network activity.

• The ICLB system did not consider the exploration of 
past resource utilization by the VM to forecast the 
resource usage in adapting the placement algorithms.
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• The OM-FNN was unsuccessful in scheduling the 
predicted tasks on VMs when making decisions 
about the management of resources.

• In some methods, defining an optimum setting 
is a major challenge due to the different usage of 
resources.

System model
Consider the CaaS cloud model shown in Fig. 1, with u 
number of PMs is represented as B = {B1,B2, ..,Bv , ..,Bu} . 
Here, each PM is comprises of a set of VMs, and is rep-
resented as V. The uth PM Bu contains x number of 
VM, and is represented as V = {V1,V2, ..,Vw , ..,Vx} . 
Moreover, each PM contains distinct containers, and 
is indicated as L, where L = {L1, L2, .., Ls, .., Lt} . Moreo-
ver, the task executes in sth container is represented as 
U = {U1,U2, ..,Us, ..,Uz} , where z specifies the overall 
task count.

CaaS cloud model
The CaaS cloud model is presented in Fig. 2, where host 
OS present on top of the infrastructure, and the hypervi-
sor is running in host OS. There are multiple VMs hosted 
in a single host machine and more than one containers 
can be deployed in a single virtual machine. All virtual 
machines are completely isolated from each other but 
containers in a particular VM shares same operating sys-
tem [24, 25].

Proposed task grouping and optimized deep 
learning based VM sizing for hosting CaaS
Cloud computing is a novel archetype that provides 
access to services and resources available on the inter-
net over distributed platforms. The main objective of this 
work is to implement an efficient VM sizing technique 
based on Task grouping and optimized deep learning for 
hosting CaaS [8]. The method is implemented using the 
following steps. Initially, the incoming task is acquired 
from the dataset. Once the incoming tasks are acquired, 
tasks are grouped using the Deep Embedding clustering 
(DEC) algorithm [26], based on the task parameters, such 
as task length, submission rate, scheduling class, prior-
ity, resource usage, and task latency, and task rejection 
rate. The task groups thus formed are denoted by G1, G2, 
and G3. After task grouping, VM sizing is established by 
using the Deep Convolutional LSTM Network (Deep-
ConvLSTM) [27, 28] based on the task parameters of the 
groups. The Deep-ConvLSTM is tuned with the intro-
duced Fractional Pelican Optimization (FPO) Algorithm. 
The introduced FPO algorithm is developed by modify-
ing the Pelican Optimization Algorithm (POA)  [29] in 
accordance with the Fractional calculus (FC)  [30]. Once 
the VM requirement is determined, horizontal and verti-
cal sizing of the VM is performed, where horizontal siz-
ing refers to the number of containers and vertical sizing 
denotes the number of CPUs required. Finally, the scal-
ing setup is reconfigured. Figure 3, depicts the schematic 
representation of the developed VM sizing technique 

Table 1 Review of published work on virtual machine sizing and configuration

Author(s) Method Objective Remark

S.F. Piraghaj et al. [8] Machine Learning Modeled the VM size selection tech-
nique

It failed to reflect on predicting work-
load for estimating the actual container 
utilization.

Lu, C.T. et al. [13] Markov Transition Hurst exponent and Markov transition-
based VM scaling

Failed to aggregate more data to 
enhance the strengthening of the transi-
tion matrix to improve accuracy

Sotiriadis S. et al. [14] Elastic Search cluster Inter-Cloud Load Balancer (ICLB) for 
configuring the VM

It failed to tune the method for defining 
thresholds based on real-time data 
utilization.

Guo, Y. et al. [15] Shadow routing based approach Modeled the Shadow algorithm for 
performing the VM auto-scaling

It did not find any ways to scale the 
resources to minimize the count of tear-
downs and VM boots

Alsadie D., et al. [16] Clustering, Machine Learning This method successfully minimized 
the energy utilization in cloud data 
centers.

It produced a high overhead with the 
increased number of VMs.

Derdus, K.M. et al., [17] Neural networks, Machine Learning Introduced the VM right-sizing IaaS 
multitenant public cloud for sizing 
the VM

It failed to use a VM allocation algorithm 
for estimating the peak resources 
needed before allocating them.

Kenga, D.M. et al., [10] Partition Selection Approach VM sizing in IaaS multitenant public 
cloud and resource usage prediction.

It was unsuccessful in seeing the deep 
learning approaches

Saxena, D. and Singh, A.K., [18] Machine Learning Online Multi-Resource Feed-forward 
Neural Network (OM-FNN).

Failed to minimize the percentage of 
power saved with the rise in data center 
size.
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Fig. 1 CaaS Cloud System Model

Fig. 2 Container as a Service Model
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based on Task grouping and optimized deep learning for 
hosting CaaS.

Incoming tasks
The number of incoming task to the system is mathemat-
ically derived as,

where, G indicates the total number of incoming tasks. 
Here, the incoming task G is given to the input of task 
grouping.

Task grouping using DEC
The incoming task is directed to the task grouping pro-
cess in the task grouping. Here, the processing is car-
ried out using DEC, where the grouping is done based 
on certain task parameters, such as task length, submis-
sion rate, scheduling class, priority, resource usage, task 
latency, and task rejection rate. In this research, the task 
grouping process groups the entire incoming task into 
three groups, such as D1 , D2 , and D3 , based on the task 
parameters. The explanation for DEC is explained in the 
coming sub-section.

(1)G = {G1,G2, ...,Gv}

Deep embedded clustering
DEC [26] comprises two phases, such as pretraining and 
clustering process for performing the task grouping. 
The pretraining process is performed to train the low 
dimensional embedded illustrations through the auto-
encoder. The second phase is the clustering phase where 
the decoder is initially discarded and then the encoder is 
trained to optimize the joining of embedded illustration 
as well as clustering centers. For each iteration, the soft 
clustering assignment bmh is calculated with respect to 
the student’s t-distribution. Here, bmh shows the assess-
ment amongst embedded data point pm and centre αh . 
Let us assume the cluster centre as {α1,α2, ...,αn} , latent 
feature as p , then the student’s t-distribution computes 
the similarity amongst cluster centre αh and data points 
pm , which is expressed as,

where, Student’s t-distribution freedom degree is indi-
cated as 1. The probability of allocating data points pm to 
cluster αh is indicated as bmh , argmaxhbmh is represented 
as assigned cluster. Moreover, the clustering algorithm 

(2)bmh =
1+ � pm − αh �2

−1

n 1+ � pm − αn �2
−1

Fig. 3 Schematic representation of the developed VM sizing technique based on Task grouping and optimized deep learning for hosting CaaS
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continually modifies the clusters based on the learning of 
high confidence assignments. To learn from the assign-
ment of high confidence, an auxiliary target distribution 
amh is denoted as,

Moreover, the KL-divergence among bmh and amh learns 
the higher confidence soft cluster assignment, then the 
clustering loss is portrayed as,

where, the cluster center is indicated as m, n specifies the 
cluster count, dh and dn specifies the soft cluster frequen-
cies. Moreover, the task grouping is done by considering 
several task parameters, such as task length, submis-
sion rate, scheduling class, priority, resource usage, task 
latency and task rejection rate, which are explained as 
below.

Task parameters
The task parameters used for performing the task grouping 
based on DEC is explained in this section. Thus, the task 
parameters are task length, submission rate, scheduling 
class, priority, resource usage, task latency, and task rejec-
tion rate, which are given below.

Task Length: Task length is the time taken for executing 
the task in a machine, which is represented as Tl.

Submission Rate: Submission rate is defined as how 
much times the task have been submitted to the data 
center. The submission rate is indicated as Sr.

Scheduling Class: The sensitive to latency is referred 
to as task/job. Here, the scheduling class is indicated by 
an integer among 0 and 3. The scheduling class ‘0’ depicts 
the non-production task. The higher scheduling class is the 
greatest latency sensitive task. Moreover, the scheduling 
class is indicated as Sc.

Priority: The priority of task is decided based on the 
importance of task. The maximum preference is given to 
the higher priority task when compared with low priority 
task. Moreover, the priority is an integer, which lies among 
0 to 10, and is portrayed as P.

Resource usage: The average resource usage RU of task 
is derived based on memory, CPU and disk during the 
observed time, which is indicated as,

where, c indicates the task usage count in observable 
period. The resource usage is depicted as RU.

(3)amh =
b2mh/dh

∑

n b
2
mh/dn

(4)KL(S � Q) =
∑

m

∑

h

amh log
amh

bmh

(5)RU =

∑c
w=1 r(U ,w)

c

Task latency: Task latency is the proportion of over-
all waiting time of task to the total task count, which is 
derived as,

where, Wt depicts the overall waiting time of task and nt 
denotes the overall task count. Then, the task latency is 
depicted as Tl.

Task Rejection Rate (TRR): It describes the ratio of 
rejected task since they cannot be ordered within the 
time limit [31], which is described as,

where, rt signifies the failure task count and nt denotes 
the overall task. Moreover, the TRR is specified as Tr.

Furthermore, the task grouping is done based on the 
used task parameters, which is given by,

Based on the task parameters, the task grouping is 
done based on DEC. Once the grouping is done, then 
the partitioned task groups are indicated as D1 , D2 , and 
D3 . After the completion of task grouping, then the VM 
sizing is done with Deep-ConvLSTM based on the task 
parameters. Here, the evaluated task parameters are used 
to determine the amount of task for configuring the vir-
tual machines.

VM sizing using Deep‑ConvLSTM
VM sizing is a method that computes the resource allo-
cation for VM within a physical machine. The resources 
include CPU, memory allocation and so on. This sec-
tion explains the process of VM sizing using Deep-Con-
vLSTM by considering the task parameters as input. In 
task grouping, the task groups, such as D1 , D2 , and D3 are 
obtained based on the task parameters, and is processed 
under the horizontal sizing and vertical sizing using 
Deep-ConvLSTM in order to obtain the quantity of con-
tainer and quantity of CPU size. Moreover, in each group, 
VM sizing is done using Deep-ConvLSTM based on the 
group parameters. Figure 4 shows the process of VM siz-
ing using Deep-ConvLSTM.

From Fig. 3, in VM sizing, the horizontal and vertical 
sizing is applies on each groups. Here, the horizontal siz-
ing is carried out to predict the number of containers, 
whereas the vertical sizing is performed to predict the 
number of CPU size. Moreover, the architecture of Deep-
ConvLSTM is explained in the below section.

(6)Tl =
Wt

nt

(7)Tr =
rt

nt

(8)
Fmin =

1

7
[Tl + Sr + Sc + (1− P)]+ RU + Tl + Tr
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Structure of Deep‑ConvLSTM
The Deep-ConvLSTM [27, 28] is comprised of the com-
bination of recurrent layers of LSTM and convolutional 
layers. The Deep-ConvLSTM is designed to train the rep-
resentation of sparse features for modeling the temporal 
dependencies among every activation of feature illustra-
tion. Here, the convolutional layer behaves as a feature 
extractor in representing the extracted feature into fea-
ture maps. Likewise, the recurrent layer is employed to 
model the temporal dynamics of mapped features. The 
structure of Deep-ConvLSTM is given in Fig. 5. In Deep-
ConvLSTM, the convolution layer does not perform the 
pooling operation. Here, the group parameters are sub-
jected to the input layer that contains the convolutional 
layer, which excavates the spatial illustration of input 
parameters. Here, the convolutional layer computes 
properly only when the kernel and input fully overlap. 
Thus, the feature map length is computed by,

where, Wc signifies the kernel length in layer c . The conv 
layers utilizes the rectified linear units (ReLUs) to calcu-
late the feature maps, whose non-linear function is por-
trayed as,

where, yif (�) designates the feature map in layer 1, χ be 
the non-linear function, Qi specifies the feature map 
count, Wi denotes the kernel length, ei be the bias vector. 
Thus, the output produced by the Deep-ConvLSTM is 
predicted container by performing the horizontal sizing 
and CPU size by performing the vertical sizing. Moreo-
ver, the outcome of Deep-ConvLSTM is indicated as Gk.

(9)H (c+1) = Hc −Wc + 1

(10)h
(i+1)
t

(�) = �

⎛⎜⎜⎝
ei
t
+

Qi�
f =1

⎡⎢⎢⎣

Wi�
W=1

�
ki
tf
(W )yi

f
(� −W )

�⎤⎥⎥⎦

⎞⎟⎟⎠

Fig. 4 VM sizing using Deep-ConvLSTM

Fig. 5 Structure of Deep-ConvLSTM
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Training of Deep‑ConvLSTM using devised FPO
This section portrays the training process of Deep-Con-
vLSTM using devised FPO. Here, the newly invented 
FPO is the integration of FC [30] and POA [29]. POA is 
a swarm-based optimization approach that mimics the 
hunting tactics of Pelicans. The pelican has long beak 
along with its throat, which is used to intake the prey. 
The pelicans like to live in a group, and they prefer to eat 
fishes, turtles, frogs and sea foods. While hunting, the 
pelicans work together for catching the food. Moreo-
ver, the pelicans search their food at various locations. 
In addition, the pelicans dive from at a distance of 10 to 
20m after recognizing the location of prey in order to 
catch the fish. In some cases, the prey may descent from 
it, and then they spread their wings at the posterior of 
water to pull the fish so that they can get the food eas-
ily. Furthermore, excess amount of water inhales into the 
beak bag while catching the food, and then the excess 
water can be drained by extending their neck outward 
before swallowing the food. This strategy is used for the 
POA, which provides the better optimization outcome, 
but the convergence rate of this scheme was low. The FC 
is the generalization of the integer order calculus (IOC), 
which useful in solving complex or real order problems. 
Engineers are interested in the Laplace and Fourier clas-
sical transforms, which are useful for solving FC differ-
ential equations as well as for simplifying procedures like 
convolution. The FC is integrated with optimization algo-
rithms for effective performance. In order to improve the 
convergence rate and effective computation, the theory 
of FC is applied on the exploration behavior of POA such 
that the better outcome is attained. Thus, the devised 
FPO acquired the better convergence rate, less compu-
tational complexity and high processing speed. Thus, 
the algorithmic processes of invented FPO algorithm are 
explained as below. 

1 Initialization In POA  [29], the pelicans are consid-
ered as members of population, which are initialized 
in the initialization step. Moreover, each member in 
the population is considered as a candidate solution. 
Here, the population members are arbitrarily initial-
ized based on the lower and upper bound issues, 
which is given by, 

 where, dk ,l specifies the lth variable value represented 
by kth candidate solution, Z specifies the popula-
tion member count, χ specifies the problem variable 
count, M indicates the random variable, wi specifies 
the lth lower bound, and rl indicates the lth upper 
bound.

(11)
dk ,l = wl +M(rl − wl ), k = 1, 2, ...,Z l = 1, 2, ...,�

2 Fitness Computation The importance of fitness 
computation is to predict the optimal solution. In 
this research, the number of containers and CPU size 
is predicted using Deep-ConvLSTM, which is trained 
by FPO in order to attain the optimal outcome. 
Moreover, the optimal outcome is attained based 
on the fitness function using Mean squared Error 
(MSE). In addition, the least value of MSE is consid-
ered as an optimal solution, and is portrayed as, 

 where, j specifies the overall sample count, Gk speci-
fies the predicted outcome of Deep-ConvLSTM and G∗

k 
indicates the expected outcome. In addition, the hunting 
tactics of pelicans includes exploration as well as exploi-
tation phase. In the exploration phase, the pelicans are 
moving towards the prey, whereas in the exploitation 
phase, the pelicans are flying on the surface of water.

3 Exploration Phase In this step, the pelicans are 
searching the food by scanning the water surface, 
and then it moves nearer to the food after finding the 
prey location. In POA, the prey location is created 
arbitrarily in the search space, which progresses the 
exploration rate of optimization algorithm. Then, the 
mathematical derivation for moving the prey towards 
the food source is given by, 

 where, dp1k ,l specifies the new position of kth pelican 
in lth dimension in phase 1, N indicates the random 
integer, Jl be the prey position in lth dimension and Bj 
specifies the objective function. In this research, con-
dition (1) from equation (13) is considered for find-
ing the optimal location, which is given below. When 
Bj < Bk , then the updated expression becomes, 

  Subtract dk ,l(o) on both sides, 

 In order to upsurge the prediction performance of 
devised scheme, the concept of FC is applied on the 
updated location of POA. From FC, 

  

(12)Bj =
1

j

j
∑

k=1

[

G∗
k − Gk

]2

(13)

d
p1

k ,l
=

{
dk ,l(o) +M

(
Jl − N .dk ,l(o)

)
, Bj < Bk

dk ,l(o) +M.
(
dk ,l(o) − Jl

)
, otherwise.

(14)
dk ,l(o+ 1) =dk ,l(o)+M

(

Jl − N .dk ,l(o)
)

=dk ,l(o)+M.Jl −M.N .dk ,l(o)

=dk ,l(o)(1−M.N )+M.Jl

(15)dk ,l (o + 1) − dk ,l (o) = dk ,l (o)(1 −M.N ) +M.Jl − dk ,l (o)

(16)
Rε

[

dk ,l(o+ 1)
]

= dk ,l(o)(1−M.N − 1)+M.Jl
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 where, dk ,l(o+ 1) depicts the location of kth solution 
in lth dimension at iteration 0+ 1 , dk ,l(o− 1) depicts 
the location of kth solution in lth dimension at itera-
tion o− 1 , dk ,l(o− 2) depicts the location of kth solu-
tion in lth dimension at iteration o− 2 , dk ,l(o− 3) 
depicts the location of kth solution in lth dimension 
at iteration o− 3 , Jl denotes the position of prey in 
lth dimension, M signifies the random variable and N 
indicates the parameter, which is equal to 1 or 2.

4 Exploitation Phase In this step, the pelicans spread 
their wings when it comes nearer to the surface of 
water such that the fish move upwards, then the peli-
cans gathered their food in the mouth. In this tactic, 
large amount of food is gotten by the pelicans. Then, 
the hunting aspects of pelicans are referred to as, 

 where, dp2k ,l signifies the new location of kth pelican in lth 
dimension in phase 2, T indicates the maximum itera-
tion count, a specifies the iteration counter and 

(

1− a
T

)

 
depicts the nearest radius of dk ,l . Moreover, the effective 
updated solution is utilized to remove or accept the new 
position of pelicans, and is articulated as, 

 where, Dp2
k  shows the new location of kth pelican, 

and Bp2
k  indicates the objective function of phase 2.

5 Re‑evaluation of Feasibility Here, the feasibility is eval-
uated based on the fitness function. The fitness func-
tion is computed for all iteration. If the predicted fitness 
is better than the previous one, then the devised FPO 
replaces the older solution with newer one such that the 
optimal location is updated at all iteration.

6 Termination The steps from (i) to (v) is repeated till 
the optimal solution is attained. Moreover, the pseu-
docode of invented FPO algorithm is explained in 
Algorithm 1. Here, the optimal predicted solution is 
attained using Deep-ConvLSTM-based FPO, where 
the FPO is configured by the joining of POA and FC, 
such that the better solution is acquired.

(17)dk ,l(o + 1) − �.dk ,l(o) −
1

2
dk ,l(o − 1) −

1

6
(1 − �)dk ,l(o − 2) −

1

24
�(1 − �)(2 − �)dk ,l(o − 3) = dk ,l(o)(−M.N ) +M.Jl

(18)

dk ,l(o + 1) =dk ,l(o)(−M.N ) +M.Jl + �.dk ,l(o) +
1

2
dk ,l(o − 1)

+
1

6
(1 − �)dk ,l(o − 2) +

1

24
�(1 − �)(2 − �)dk ,l(o − 3)

(19)d
p2

k ,l
(o + 1) = dk ,j(o) + E.

(
1 −

a

T

)
.(2.M − 1).dk ,l(o)

(20)Dk =

{

D
p2
k , B

p2
k < Bk

Dk , otherwise.

Algorithm 1 FPO Algorithm

Scaling setup and reconfigure
After the completion of VM sizing, then the scaling 
setup and reconfiguration process is initialized based 
on the number of containers and number of CPU size 
such that the overall system is reconfigured.

Results and discussion
The results and discussion of devised Deep-ConvLSTM_
FPO is deliberated in this section. Moreover, the utilized 
dataset, metrics and implementation tool is explained in 
this section.

The devised Deep-ConvLSTM_FPO scheme is imple-
mented in Java with CloudSim tool having PC with Win-
dows 10 OS and intel i3 core processor. The dataset used 
for the Deep-ConvLSTM_FPO scheme is Google trace 
dataset [32]. The Google trace dataset contains various 
fields, such as job ID, task index, cache memory usage, 
machine ID, average CPU usage rate, maximum CPU 
usage and so on. The performance metrics used for devised 
task grouping and VM sizing are task capacity, task rejec-
tion rate, and resource utilization. Response time is the 
time taken to give the first response.

Performance analysis
The performance of the devised Deep-ConvLSTM_FPO 
is evaluated with various population sizes by varying the 
iteration, and the results are discussed in this section. 
Here, the evaluation is carried out by adjusting the task 
sizes, such as 100, 200, 300, and 400.
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Performance assessment based on task size 100
Table  2 shows the performance analysis of the Deep-
ConvLSTM_FPO scheme based on the resource utiliza-
tion, response time, TRR, and Makespan using the task 
size as 100. Here, the analysis is done based on varying 
the iterations as 5, 10, 15, and 20, and the performance 
is maximum at iteration=20. The FPO is configured by 
combining POA and FC to achieve better performance.

Performance assessment based on task size 200
The performance analysis of the Deep-ConvLSTM_FPO 
scheme based on the resource utilization, response time, 
TRR, and makespan using the task size of 200 is shown 
in Table 3. The iteration considered for the evaluation is 
5, 10, 15, and 20, and the proposed model’s population 
size is 5, 10, 15, and 20. The performance of the Deep-
ConvLSTM_FPO scheme is improved when increasing 
the number of iterations.

Performance assessment based on task size 300
Table  4 presents the analysis of the Deep-ConvLSTM_
FPO scheme based on resource utilization, response 
time, TRR, and makespan using task size 300. Consider-
ing the task size 300, the maximum performance offered 
by the Deep-ConvLSTM_FPO is 0.0936 for resource 

utilization, 472 ms for response time, 0.3088 for Task 
Rejection Rate, and 0.6368 for makespan.

Performance assessment based on task size 400
The analysis of the Deep-ConvLSTM_FPO scheme based 
on the resource utilization, response time, TRR, and 
makespan using the task size 400 is depicted in Table 5. 
From this table, it is clear that the proposed Deep-Con-
vLSTM_FPO offers maximum results when considering 
the iteration is 20 and the population size is 20.

Comparative methods
The various traditional techniques used for compar-
ing the performance of Deep-ConvLSTM_FPO scheme 
are VM size selection technique  [8], Hurst exponent 
+Markov transition based VM scaling  [13], ICLB  [14], 
VM size IaaS multi-tenant public cloud  [17], OM-
FNN [18], Deep-ConvLSTM GD, and Deep-ConvLSTM 
ADAM.

Comparative analysis
The comparison of Deep-ConvLSTM_FPO scheme with 
existing methods is analyzed by adjusting the task sizes, 
such as 100, 200, 300 and 400.

Table 2 Performance Assessment of Deep-ConvLSTM_FPO with Task Size 100

Number of 
Iteration

Deep‑ConvLSTM_FPO with 
Population Size 5

Deep‑ConvLSTM_FPO with 
Population Size 10

Deep‑ConvLSTM_FPO with 
Population Size 15

Deep‑ConvLSTM_FPO 
with Population Size 
20

Resource Utilization
5 0.0275 0.0258 0.0226 0.0207

10 0.0365 0.0326 0.0308 0.0287

15 0.0375 0.0358 0.0326 0.0316

20 0.0355 0.0315 0.0287 0.0258

Response Time
5 277 275 272 270

10 269 265 262 260

15 263 260 258 254

20 262 259 256 253

Task Rejection Rate
5 0.1565 0.1477 0.1368 0.1257

10 0.1659 0.1579 0.1479 0.1379

15 0.1875 0.1755 0.1654 0.1579

20 0.1987 0.1868 0.1766 0.1654

Makespan
5 0.6368 0.6258 0.6079 0.5975

10 0.6146 0.6077 0.5877 0.5765

15 0.5968 0.5868 0.5654 0.5534

20 0.5789 0.5679 0.5468 0.5357
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Table 3 Performance Assessment of Deep-ConvLSTM_FPO with Task Size 200

Number of 
Iteration

Deep‑ConvLSTM_FPO with 
Population Size 5

Deep‑ConvLSTM_FPO with 
Population Size 10

Deep‑ConvLSTM_FPO with 
Population Size 15

Deep‑ConvLSTM_FPO 
with Population Size 
20

Resource Utilization
5 0.0654 0.0636 0.0588 0.0547

10 0.0733 0.0715 0.0677 0.0636

15 0.0714 0.0687 0.0636 0.0598

20 0.0721 0.0699 0.0647 0.0615

Response Time
5 540 538 534 531

10 449 446 443 440

15 442 440 439 436

20 427 422 419 416

Task Rejection Rate
5 0.2054 0.1979 0.1876 0.1757

10 0.2241 0.2168 0.2088 0.1977

15 0.2385 0.2258 0.2157 0.2076

20 0.2486 0.2368 0.2279 0.2168

Makespan
5 0.5656 0.5543 0.5368 0.5146

10 0.5866 0.5754 0.5543 0.5368

15 0.6077 0.5865 0.5754 0.5543

20 0.6357 0.6268 0.6157 0.6075

Table 4 Performance Assessment of Deep-ConvLSTM_FPO with Task Size 300

Number of 
Iteration

Deep‑ConvLSTM_FPO with 
Population Size 5

Deep‑ConvLSTM_FPO with 
Population Size 10

Deep‑ConvLSTM_FPO with 
Population Size 15

Deep‑ConvLSTM_FPO 
with Population Size 
20

Resource Utilization
5 0.0987 0.0958 0.0925 0.0908

10 0.1025 0.0995 0.0976 0.0943

15 0.1025 0.0987 0.0965 0.0937

20 0.1041 0.0999 0.0975 0.0936

Response Time
5 650 649 646 643

10 527 525 522 520

15 511 508 503 501

20 482 478 475 472

Task Rejection Rate
5 0.3254 0.3168 0.3088 0.2987

10 0.3303 0.3268 0.3168 0.3077

15 0.3401 0.3368 0.3268 0.3168

20 0.3387 0.3258 0.3168 0.3088

Makespan
5 0.6088 0.5968 0.5765 0.5645

10 0.6257 0.6146 0.6079 0.5975

15 0.6579 0.6466 0.6257 0.6146

20 0.6755 0.6644 0.6457 0.6368
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Comparative analysis based on task size 100
Table 6, shows the analysis of the Deep-ConvLSTM_FPO 
scheme based on the resource utilization, response time, 
TRR, and Makespan using the task size as 100. Here, the 
analysis is done based on varying the iterations as 5, 10, 
15, and 20, and the maximum performance is observed 
with 20 iterations. The performance of the Deep-ConvL-
STM_FPO acquired better outcomes because of the bet-
ter convergence rate, less computational complexity, and 
high processing speed of the devised FPO.

Comparative analysis based on task size 200
The analysis of the Deep-ConvLSTM_FPO scheme based 
on the resource utilization, response time, TRR, and 
Makespan using the task size of 200 is shown in Table 7. 
The iteration considered for the evaluation is 5, 10, 15, 
and 20. The performance of all the models is improved 
when increasing the iterations, which the Deep-ConvL-
STM_FPO attains maximum results than other conven-
tional methods.

Comparative analysis based on task size 300
Table 8, presents the analysis of Deep-ConvLSTM_FPO 
scheme based on resource utilization, response time, 
TRR, and Makespan using the task size 300. Considering 
the task size 300, the maximum performance offered by 

the Deep-ConvLSTM_FPO is 0.1041 for resource utiliza-
tion, 482ms for response time, and 0.3387 for Task Rejec-
tion Rate.

Comparative analysis based on task size 400
The analysis of the Deep-ConvLSTM_FPO scheme based 
on the resource utilization, response time, TRR, Makes-
pan using the task size 400 is depicted in Table 9. From 
this table, it is clear that the proposed Deep-ConvL-
STM_FPO offers maximum results than other existing 
methods, such as VM size selection technique, Hurst 
exponent+Markov transition , ICLB, OM-FNN, VM size 
IaaS multi-tenant public cloud, Deep-ConvLSTM GD, 
and Deep-ConvLSTM ADAM.

Performance assessment based on makespan
We also compared the proposed method with all existing 
methods by considering makespan. Compared to existing 
approaches, the time it takes to complete a set of tasks 
utilizing the proposed Deep-ConvLSTM FPO is signifi-
cantly shorter. The performance of the proposed model 
using makespan is shown in Fig. 6.

Discussion
Table  10 shows the comparative discussion of the pro-
posed Deep-ConvLSTM_FPO for task grouping and 

Table 5 Performance Assessment of Deep-ConvLSTM_FPO with Task Size 400

Number of 
Iteration

Deep‑ConvLSTM_FPO with 
Population Size 5

Deep‑ConvLSTM_FPO with 
Population Size 10

Deep‑ConvLSTM_FPO with 
Population Size 15

Deep‑ConvLSTM_FPO 
with Population Size 
20

Resource Utilization
5 0.1279 0.1198 0.1165 0.1147

10 0.1325 0.1301 0.1287 0.1257

15 0.1479 0.1458 0.1425 0.1401

20 0.1488 0.1465 0.1436 0.1418

Response Time
5 634 630 627 624

10 697 694 691 688

15 619 617 615 612

20 693 690 688 683

Task Rejection Rate
5 0.3855 0.3755 0.3654 0.3579

10 0.3959 0.3865 0.3765 0.3666

15 0.4014 0.3977 0.3865 0.3765

20 0.4113 0.4077 0.3968 0.3865

Makespan
5 0.6257 0.6146 0.5976 0.5865

10 0.6579 0.6643 0.6543 0.6468

15 0.6977 0.6865 0.6757 0.6643

20 0.7157 0.7087 0.6977 0.6864



Page 14 of 18Patra et al. Journal of Cloud Computing           (2023) 12:65 

Table 6 Comparative Assessment of Deep-ConvLSTM_FPO Scheme With Task Size 100

Number of 
Iteration

VM size 
selection 
technique

Hurst 
exponent+Markov 
transition

ICLB OM‑FNN VM size IaaS multi‑
tenant public cloud

Deep‑
ConvLSTM 
GD

Deep‑
ConvLSTM 
ADAM

Proposed Deep‑
ConvLSTM_FPO

Resource Utilization
5 0.0397 0.0381 0.0325 0.0291 0.0289 0.0286 0.0283 0.0275

10 0.0567 0.0407 0.0406 0.0387 0.0377 0.0374 0.0370 0.0365

15 0.0498 0.0454 0.0454 0.0408 0.0400 0.0387 0.0381 0.0375

20 0.0451 0.0430 0.0405 0.0399 0.0397 0.0380 0.0369 0.0355

Response Time
5 18188 13184 12420 8456 6225 892 567 277

10 17784 14780 11985 8578 6193 945 599 269

15 17801 15798 11980 8635 6118 987 634 263

20 17758 16755 11982 8743 6129 1034 678 262

Task Rejection Rate
5 0.2055 0.1978 0.1848 0.1808 0.1785 0.1765 0.1728 0.1565

10 0.2214 0.2055 0.1985 0.1848 0.1794 0.1764 0.1737 0.1659

15 0.2413 0.2254 0.2054 0.2016 0.1990 0.1958 0.1937 0.1875

20 0.2855 0.2541 0.2325 0.2257 0.2143 0.2137 0.2110 0.1987

Makespan
5 0.7876 0.7578 0.7145 0.6965 0.6876 0.6754 0.6543 0.6367

10 0.7976 0.7755 0.7356 0.7154 0.7078 0.6865 0.6754 0.6145

15 0.8156 0.7987 0.7467 0.7357 0.7267 0.7076 0.6875 0.5967

20 0.8478 0.8257 0.7765 0.7578 0.7476 0.7245 0.7087 0.5788

Table 7 Comparative Assessment of Deep-ConvLSTM_FPO Scheme With Task Size 200

Number of 
Iteration

VM size 
selection 
technique

Hurst 
exponent+Markov 
transition

ICLB OM‑FNN VM size IaaS multi‑
tenant public cloud

Deep‑
ConvLSTM 
GD

Deep‑
ConvLSTM 
ADAM

Proposed Deep‑
ConvLSTM_FPO

Resource Utilization
5 0.0733 0.0726 0.0725 0.0708 0.0683 0.0674 0.0669 0.0654

10 0.0792 0.0777 0.0764 0.0760 0.0758 0.0756 0.0749 0.0733

15 0.0944 0.0794 0.0779 0.0764 0.0757 0.0747 0.0737 0.0714

20 0.1040 0.0916 0.0893 0.0826 0.0793 0.0765 0.0758 0.0721

Response Time
5 34856 28852 23345 15678 11846 921 621 540

10 36799 30796 25355 15710 12805 956 658 449

15 35340 31337 23719 15846 11891 999 692 442

20 36451 32448 24747 15937 11815 1025 734 427

Task Rejection Rate
5 0.2999 0.2945 0.2914 0.2901 0.2895 0.2755 0.2698 0.2054

10 0.3587 0.3413 0.3321 0.3157 0.3026 0.2968 0.2877 0.2241

15 0.3699 0.3585 0.3486 0.3268 0.3143 0.3077 0.2976 0.2385

20 0.3413 0.3399 0.3325 0.3326 0.3326 0.3269 0.3179 0.2486

Makespan
5 0.6867 0.6467 0.6076 0.5976 0.5865 0.5778 0.5725 0.5656

10 0.7076 0.6578 0.6145 0.6096 0.6076 0.5967 0.5935 0.5865

15 0.7156 0.6765 0.6567 0.6467 0.6356 0.6256 0.6156 0.6076

20 0.7267 0.6976 0.6677 0.6576 0.6478 0.6436 0.6400 0.6356
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Table 8 Comparative Assessment of Deep-ConvLSTM_FPO Scheme With Task Size 300

Number of 
Iteration

VM size 
selection 
technique

Hurst 
exponent+Markov 
transition

ICLB OM‑FNN VM size IaaS multi‑
tenant public cloud

Deep‑
ConvLSTM 
GD

Deep‑
ConvLSTM 
ADAM

Proposed Deep‑
ConvLSTM_FPO

Resource Utilization
5 0.1428 0.1223 0.1095 0.1058 0.1040 0.0997 0.0993 0.0987

10 0.1338 0.1286 0.1220 0.1187 0.1133 0.1120 0.1101 0.1025

15 0.1233 0.1195 0.1175 0.1164 0.1158 0.1137 0.1117 0.1025

20 0.1495 0.1217 0.1185 0.1181 0.1179 0.1147 0.1127 0.1041

Response Time
5 51830 42142 34677 20456 17531 981 734 650

10 51791 43258 34657 20583 17500 1021 786 527

15 51872 45125 34719 20725 17493 1089 848 511

20 52590 47853 35405 20892 17849 1156 891 482

Task Rejection Rate
5 0.4013 0.3954 0.3658 0.3569 0.3414 0.3368 0.3318 0.3254

10 0.4125 0.3999 0.3714 0.3688 0.3515 0.3486 0.3458 0.3303

15 0.4185 0.4014 0.3799 0.3627 0.3699 0.3647 0.3618 0.3401

20 0.4014 0.3985 0.3854 0.3800 0.3479 0.3447 0.3418 0.3387

Makespan
5 0.7689 0.7245 0.6865 0.6578 0.6367 0.6257 0.6145 0.6087

10 0.7866 0.7367 0.7076 0.6867 0.6578 0.6468 0.6367 0.6256

15 0.8087 0.7578 0.7146 0.6967 0.6798 0.6678 0.6624 0.6578

20 0.8256 0.7790 0.7468 0.7156 0.6865 0.6846 0.6825 0.6755

Table 9 Comparative Assessment of Deep-ConvLSTM_FPO Scheme With Task Size 400

Number of 
Iteration

VM size 
selection 
technique

Hurst 
exponent+Markov 
transition

ICLB OM‑FNN VM size IaaS multi‑
tenant public cloud

Deep‑
ConvLSTM 
GD

Deep‑
ConvLSTM 
ADAM

Proposed Deep‑
ConvLSTM_FPO

Resource Utilization
5 0.1522 0.1460 0.1347 0.1331 0.1328 0.1312 0.1301 0.1279

10 0.1842 0.1675 0.1525 0.1494 0.1476 0.1437 0.1401 0.1325

15 0.1798 0.1714 0.1568 0.1537 0.1519 0.1501 0.1500 0.1479

20 0.1963 0.1748 0.1619 0.1595 0.1568 0.1537 0.1517 0.1488

Response Time
5 68881 58878 46085 40123 23119 15457 981 634

10 68910 61906 46115 40475 23292 15843 1036 697

15 68765 62762 45951 40734 23171 16284 1091 619

20 68984 63981 46207 40982 23250 16790 1158 693

Task Rejection Rate
5 0.4585 0.4413 0.4326 0.4235 0.4126 0.4087 0.4037 0.3855

10 0.4659 0.4585 0.4488 0.4458 0.4325 0.4268 0.4179 0.3959

15 0.4854 0.4785 0.4585 0.4529 0.4458 0.4379 0.4268 0.4014

20 0.4986 0.4876 0.4785 0.4654 0.4587 0.4479 0.4368 0.4113

Makespan
5 0.8765 0.8578 0.8236 0.7967 0.7865 0.6654 0.6467 0.6256

10 0.8578 0.8467 0.7976 0.7867 0.7755 0.6976 0.6654 0.6578

15 0.8367 0.8076 0.7765 0.7654 0.7578 0.7367 0.7245 0.6976

20 0.8087 0.7865 0.7578 0.7467 0.7367 0.7268 0.7226 0.7156
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VM sizing. Here, the proposed method is evaluated with 
four different task sizes, such as 100, 200, 300, and 400. 
Moreover, the assessment is done by considering dif-
ferent metrics, such as resource utilization, response 
time, and TRR. From Table  10, it is observed that the 

developed method attained better values than the com-
parative methods. In this research, the proposed scheme 
achieved better performance than other approaches due 
to the accuracy of task grouping. The grouping of tasks is 
done based on several effective task parameters, such as 

Fig. 6 Observed Makespan Using Different Approaches

Table 10 Comparative Discussion

Metrics VM size 
selection 
technique

Hurst 
exponent+Markov 
transition

ICLB OM‑FNN VM size IaaS multi‑
tenant public 
cloud

Deep‑
ConvLSTM 
GD

Deep‑
ConvLSTM 
ADAM

Proposed Deep‑
ConvLSTM_FPO

100 Tasks
Resource Utilization 0.0451 0.0430 0.0405 0.0399 0.0397 0.0380 0.0369 0.0355

Response Time (ms) 17758 16755 11982 8743 6129 1034 678 262

TRR 0.2855 0.2541 0.2325 0.2257 0.2143 0.2137 0.2110 0.1987

Makespan 0.8478 0.8257 0.7765 0.7578 0.7476 0.7245 0.7087 0.5788

200 Tasks
Resource Utilization 0.1040 0.0916 0.0893 0.0826 0.0793 0.0765 0.0758 0.0721

Response Time(ms) 36451 32448 24747 15937 11815 1025 734 427

TRR 0.3413 0.3399 0.3325 0.3326 0.3326 0.3269 0.3179 0.2486

Makespan 0.7267 0.6976 0.6677 0.6576 0.6478 0.6436 0.6400 0.6356

300 Tasks
Resource Utilization 0.1495 0.1217 0.1185 0.1181 0.1179 0.1147 0.1127 0.1041

Response Time(ms) 52590 47853 35405 20892 17849 1156 891 482

TRR 0.4014 0.3985 0.3854 0.3800 0.3479 0.3447 0.3418 0.3387

Makespan 0.8256 0.7790 0.7468 0.7156 0.6865 0.6846 0.6825 0.6755

400 Tasks
Resource Utilization 0.1963 0.1748 0.1619 0.1595 0.1568 0.1537 0.1517 0.1488

Response Time(ms) 68984 63981 46207 40982 23250 16790 1158 693

TRR 0.4986 0.4876 0.4785 0.4654 0.4587 0.4479 0.4368 0.4113

Makespan 0.8087 0.7865 0.7578 0.7467 0.7367 0.7268 0.7226 0.7156
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task length, submission rate, scheduling class, priority, 
resource usage, task latency, and TRR. An efficient VM 
sizing can increase resource utilization, reduce response 
time, and minimize TRR.

Threat to validity
Even though we made every effort to ensure that our 
experiment was carried out correctly, there is still a 
chance that it was flawed in a number of different ways. 
When interpreting or immediately applying the find-
ings or conclusions presented in this study, future efforts 
should consider these limitations and account for them.

The extent to which inferences made about the dis-
covered ideas are accurate is known as construct valid-
ity. One danger that fits into this category is that we tend 
to group multiple ideas under the umbrella of a single 
term. The problem of construct validity arises whenever 
insufficient measurement of the variables is employed. 
The construct of the experiment, its design, and its trust-
worthiness can threaten the results. A semantic mistake 
in the firewall policy or an incorrect packet delivery on 
the networks might negatively impact the results. To 
mitigate the impact of the threat, we decided to experi-
ment with some guidelines that were actually released 
publicly.

The term “internal validity” describes the extent to 
which findings about the connection between exam-
ined resources and data gathered may be categorized as 
casual. The term “maturation”, which refers to a negative 
effect, such as tiredness, on participants while participat-
ing in an experiment, poses a threat to the study’s inter-
nal validity. During the execution of Deep-ConvLSTM, 
it was our responsibility to carry out operations that 
needed us to perform the same actions many more than 
once. For example, we had to cluster the data set into 
three groups and acquire the input data.

The extent to which conclusions that are only true 
on an internal level can be generalized is known as the 
study of external validity. The phrase “interaction of 
context and therapy” is a good illustration of this type 
of danger. The setting to which the results should be 
applied is not the same as our Deep-ConvLSTM uses. 
Hence the two settings cannot be compared. As a result, 
the community being addressed (cloud engineers, cloud 
customers, researchers, and cloud architects) has vary-
ing expertise compared to the field that the sources that 
were reviewed originated from. To protect ourselves 
against this danger, we have modified our search key-
words to include the term “cloud computing,” expect-
ing that this will make the search results better for the 
intended audience.

Conclusion
This paper devises the newly modeled task grouping and 
VM sizing approach, Deep-ConvLSTM FPO. Here, the 
devised FPO algorithm is modeled by incorporating FC 
with POA, which is used to train the weights of Deep-
ConvLSTM by considering MSE as a fitness value. In this 
research, the VM sizing is carried out with Deep-ConvL-
STM by applying it separately to each group obtained by 
the task grouping. Moreover, horizontal sizing and ver-
tical sizing are applied to each group, where horizontal 
sizing is performed to predict the number of containers. 
In contrast, vertical sizing is performed to predict CPU 
sizes. The task grouping is done by DEC, which consid-
ers several task parameters, such as task length, submis-
sion rate, scheduling class, priority, resource usage, task 
latency, and TRR. Furthermore, the devised scheme 
reconfigures the entire system after completing the hori-
zontal and vertical sizing. In addition, the performance 
of VM sizing is done based on the metrics such as utili-
zation, response time, TRR, and makespan of 0.035, 262 
ms, and 0.198, and 0.5788 correspondingly. In the future, 
the performance can be further enhanced by introducing 
an excess quantity of task parameters. Also, dynamic task 
scheduling will be considered in the further extension of 
the proposed method.
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