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Abstract 

With the increasing rise of distributed system technologies, one of the most pressing problems facing the digital 
world is ensuring the security of sensitive and confidential data during transport and storage, which is also regarded 
as one of the most critical difficulties facing cloud computing. Numerous techniques exist for enhancing data security 
in the cloud computing storage environment. Encryption is the most important method of data protection. Con-
sequently, several accessible encryption strategies are utilized to provide security, integrity, and authorized access 
by employing modern cryptographic algorithms. Cloud computing is an innovative paradigm widely accepted as a 
platform for storing and analysing user data. The cloud is accessible via the internet, exposing the data to external and 
internal threats. Cloud Service Providers (CSPs) must now implement a secure architecture to detect cloud intrusions 
and safeguard client data from hackers and attackers. This paper combines Stochastic Gradient Descent long short-
term memory (SGD-LSTM) and Blow Fish encryption to detect and prevent unauthorized cloud access. User registra-
tion, intrusion detection, and intrusion prevention are the three phases of the planned system. The SGD-LSTM classi-
fier predicts cloud data access and prevents unauthorized cloud access. In the data access phase, cloud data access 
is managed by authenticating the authorized user with the Blowfish encryption algorithm. Comparing the proposed 
classifier to existing classifiers demonstrates that it detects abnormal access accurately. The experimental outcomes 
enhanced data security, which can be utilized to protect cloud computing applications. The experimental results of 
the suggested SGD-LSTM algorithm indicated a high level of protection, as well as a considerable improvement in 
security and execution speed when compared to algorithms that are often used in cloud computing.
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Introduction
To a new computer paradigm known as cloud comput-
ing, many services are available on demand and at a 
minimal cost. Cloud computing’s main objective is to 
offer quick, simple data and compute data storage. Cloud 
computing and other contemporary computer designs 
provide a wide range of immediately available proper-
ties. The main idea of cloud computing is to offer specific, 
quick functions for data processing and storing in a cloud 
architecture [1]. The computing industry is adept at con-
trolling the dangers and hazards that the environment of 
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cloud computing poses. One method for improving cloud 
computing security is to use cryptography, which is the 
main element of cloud security. Furthermore, it is a tech-
nique for converting the user’s letter into a cipher text, 
a coded phrase only the intended receiver can decipher 
and expose the concealed message. Secrecy is achieved 
throughout the transmission of data or communications. 
A mathematical method for handling authentication, 
such as encryption, and data integrity, is known as cryp-
tology. It is conceivable to provide these security services 
since cryptography offers a variety of reliable possibilities 
[2]. Private data signified by cryptography (Hybrid Algo-
rithms, Symmetric Methods, and Asymmetric Algo-
rithms) is encrypted and decrypted using encryption 
protocols, digital signatures, and hashing algorithms 
of numerous well-known encryption algorithms [3]. 
For each of these current techniques, there are security 
issues. These techniques also take a long time to gener-
ate cryptographic keys, retrieve keys, encrypt data, and 
decrypt data.

A new cloud computing paradigm integrates high-level 
IT services alongside low-level resources abstractly. As 
a result, the user can quickly access numerous applica-
tions using an abstract cloud. The cloud-based outsourc-
ing information storage and delivery service is one of the 
most likely uses. Some examples of these cloud storage 
services are Azure from Microsoft, Simple Storage Ser-
vice, and CDNs like Cloud Front from Amazon Web 
Services. A third-party information center, a provider of 
cloud-based services, serves a significant role as an infor-
mation management entity in a cloud storage system 
(CSP). The CSP can investigate data items kept in cloud 
storage without the consent of the data owners because 
it is the authority controlling the data items stored in the 
system. Unfortunately, most commercial cloud storage 
systems we are aware of offer essential storage services 
with plaintext data content storage. Even when the data 
owners do not want to disclose anything, there is a pri-
vacy issue involving the outsourced data due to either the 
CSP’s malfunction or abuse for illegal profit. Some sen-
sitive information, including medical records, financial 
graphs, or company reports, should be protected against 
exposure to unauthorized parties, according to the per-
spective of the data owners. As a result, the literature is 
paying more attention to the security and privacy con-
cerns with this CSP and the potential illicit users. In other 
words, additional mechanisms like cryptographic meth-
ods are required, and data access management should be 
included in the hands of the CSP. By using cryptographic 
techniques, the information owner can encrypt the con-
tent of their data before outsourcing rather than leaving it 
in plaintext. The CSP could not recover encrypted items 
from a plaintext query without the decryption keys, so 

standard encryption would not be appropriate for cloud 
info retrieval systems.

Cloud storage for multimedia data reduces users’ need 
for local storage space and privacy breaches. Still, it 
also introduces search issues, makes it easier for clients 
to share files, and causes data security issues [4, 5]. The 
rapid advancement of the Internet, cloud storage, and 
other technologies and the expanding use of multimedia 
collection technology worsen these problems. Speech 
info must be encrypted before being sent to the cloud 
because it comprises sensitive information. It is challeng-
ing to extract encrypted speech because of the significant 
modifications in encrypted speech characteristics and 
the ongoing expansion of speech information. Conse-
quently, various research organizations and academics 
have become interested in researching encrypted speech 
retrieval devices.

Speech perceptual hashing technology is used in 
conventional encrypted speech detection methods to 
retrieve the perceptual components of speech [6–8]. The 
core of the retrieval process is the extraction of speech 
features, and the achievement of function expression 
directly impacts the outcomes of following retriev-
als. Since the speech features used by these perceptive 
hashing-based encrypted voice retrieval algorithms were 
already developed, redesigning the speech feature neces-
sitates extensive research and testing. CNN is the most 
complex network structure for deep learning. CNN has 
succeeded in various artificial intelligence fields thanks 
to its strong generalization abilities and local informa-
tion mining. Compared to CNN and CNN, LSTM can 
procedure the period sequence and simulate changes in 
the time sequence. The LSTM neural network, ideally 
predicated on the LSTM neural network, can handle the 
apparent data redundancy brought on by longer trans-
mitting delays. The speech encryption mechanism is a 
vital component of the encrypted speech retrieval sys-
tem that protects voice privacy in the cloud. Advanced 
Encryption Standard (AES), Multimedia data encryption 
using RSA, and Data Encryption Standard (DES), have 
replaced older encryption techniques like Rivset-Shamir-
Adleman. Furthermore, hyperchaotic systems with initial 
parameter sensitivity, randomness, and ergodicity are 
frequently used for multimedia data encryption [9, 10].

Long-short-term memory (SGD-LSTM) based on 
stochastic gradient descent with BlowFish encryption. 
The three steps of the suggested model are the phases 
of intrusion prevention, intrusion detection, and user 
registration. The SGD-LSTM classifier forecasts cloud 
data access to weed out unauthorized cloud access. The 
Blowfish encryption algorithm is also used to verify the 
authenticated person during the data access process to 
restrict data in the cloud environment. It is empirically 
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shown that the recommended classifier correctly detects 
abnormal access by comparing it to the present classi-
fiers. The experimental findings improved data security 
that can be utilized to safeguard cloud computing appli-
cations. Compared to widely used existing cloud com-
puting methodologies, the practical consequences of the 
projected SGD-LSTM procedure exhibited a high level of 
safety and an apparent increase in safety and execution 
speed.

The following sections make up the remaining text: The 
analysis of linked studies is provided in Section II. The 
projected procedure has been provided in Unit III. The 
experimental validation of the encrypted voice recovery 
approach and a comparison to other methods are shown 
in Section IV. In Section V, the findings and future stud-
ies are covered.

Related work
Wei Song et al. [11] described a full-text retrieval Bloom-
based tree index in a cloud service provider. It took a lot 
of work to isolate each word from the emails due to the 
abundance of data on the cloud. The user’s privacy was 
protected, and utilizing index word membership entro-
pies, it was found that the query and the encrypted data 
were identical. The difficulty of full-text recovery in cloud 
computing was overcome, and users’ privacy was pro-
tected. But the filter-based tree index failed to increase 
the data security to the desired level.

Laurence T. Yang et al. [12] suggested a cryptography-
based cloud-based security system. They contrasted the 
findings of their experiments to their concept of the RSA 
method for offering secure public-key cryptography tech-
niques. RSA technology has been frequently employed 
in cloud computing for possible data protection. The dif-
ficulties of successfully factoring huge integers contrib-
ute to the RSA algorithm’s security. Cloud computing 
allowed for the implementation of the General Number 
Field Sieve (GNFS) method, which at the time, was the 
most excellent and effective way of dividing numbers 
with more than 110 digits. They investigated the GNFS 
algorithm on the cloud while focusing on RSA security 
research. They notably presented current research on 
resolving various and sparse linear systems over General 
Field (GF), one of the GNFS algorithm’s most time-con-
suming components.

Chris J. Mitchell et al. [13] investigate the vulnerability 
of the two-key triple DES. This technique provides 80-bit 
security, which is not possible in standard systems. The 
frequently changing keys have also been criticized as an 
extreme security measure. The author has proposed that 
the security margin of the two-key triple DES can be 
increased by replacing it with a three-key system because 
it is currently at its lowest possible level.

Tang et al. [14] investigated group activity motion-level 
features with different coherence restrictions to present 
a novel Coherence Constrained Graph LSTM (CCG-
LSTM) for collection activity acknowledgment. Create an 
improved encryption technique that uses a three-layered 
dynamic approach to give moving targets dynamic defini-
tions. This technique, which has the advantage of a partial 
critical update and a lower level of complexity, depends 
on network coding and DES. The implementation results 
showed that the proposed technique’s running time is 
significantly less than the triple DES method.

Aarushi et  al. [15] created a new RSA-based security 
technique considering four prime numbers. Instead of 
transmitting public keys directly, their method leverages 
the utilization of two positive integer values. It applies 
that the user would be provided these two public keys. 
This method offers a substantial gain in speed compared 
to the CRT-based RSA-based decryption approach.

Yu et al. [16] suggested a new encryption technique con-
structed on the learning parity with noise problem using 
single-bit and multi-bit strong values. They switched from 
using only one public essential encryption technique to 
a multi-bit one. This technique accurately resolves the 
decryption error issue and provides security against selec-
tive plaintext attacks. In addition, the minimum range of 
ciphertext and computational overhead is also enhanced 
by applying this technique to provide high-level security.

Tyagi M et  al. [17] proposed Secure Management of 
Hybrid Cloud-Edge Environments. The researchers of 
this work have proposed a hybrid model. The inter-mod-
ule communication security in this work was accom-
plished by monitoring all system operations. Digital 
certificates with timestamp capturing have been used 
for tracking. A hybrid encryption model that uses sym-
metric and asymmetric keys has been used to secure 
the environment. The message-digest algorithm and the 
PK infrastructure are the digital signature’s foundation. 
AES (a symmetric-key algorithm), RSA-1024 (public-key 
cryptography with a 1024-bit key), and SHA-1 are the 
three encryption techniques used (a cryptographic hash 
function that generates a 160-bit message digest).

Tieyu Zhao et  al. [18] suggested a novel data encryp-
tion technique with DNA (Deoxyribonucleic Acid) as it 
is an emerging field to enhance data security for cloud 
environments. A 1024-bit secret key was generated 
here, allowing the system to withstand multiple security 
attacks. The Media Access Control (MAC) addresses, 
DNA bases, American Standard Code for Information 
Interchange (ASCII) values, and rules like decimal encod-
ing and complementary rules were used to construct the 
secret key. Theoretical analysis, as well as experimental 
results, proved the efficiency of this scheme over a few 
popular existing methods.
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According to Aieh et al. [19], a contemporary innovation, 
cloud computing is a computerized service that clients use 
online. The information grouping indicates that the structure 
as it is achieved achieves security. This system’s CSP chooses 
the renowned server using the Markov chain technique, 
Levy’s flight, and the cuckoo strategy. After receiving server 
approval, the client encrypts its information using the Elliptic 
Curve Integrated Encryption Scheme (ECIES) before trans-
ferring it to the CSP for storage. After conducting a second 
encryption using the Advanced Encryption Standard (AES) 
on the cloud side, the CSP saves the data. The categorization 
is delivered on both sides via this dual encryption. This sys-
tem combines server-determination access, authentication, 
and encryption technologies to achieve integrity and privacy 
while maintaining efficient computing.

Tieyu Zhao et al. [20] recommended a new encryption 
and decryption technique. They stared into a brand-new 
double variational encoding-based image encryption 
technique (DRPE). Therefore, the RSA public-key method 
was suggested. The system’s main feature was that it 
adhered to the One-Time Pad (OTP) cryptography fea-
ture, which meant that every encryption process gener-
ated a new decryption key (even for the same plaintext). 
The system’s extra features, such as its fingerprint key, 
could only be obtained legally, and only then was actual 
decryption possible. Otherwise, the decoding would pro-
duce jittery images. The suggested method could be used 
to determine whether the attackers faked the ciphertext. 
Combining the Public-key approach and the Asymmet-
ric Cryptosystem’s basic consensus further secured the 
system (ACS). The simulation results demonstrated how 
robust the encryption method was against recent attacks.

The DNA encryption system developed by Aich et  al. 
[21] produces and distributes a private key utilizing Diffie-
Hellman technology, which is subsequently encoded in a 
DNA sequence. The short text is transcribed into DNA 
sequences, then prefixes are added, and binary polymeri-
zation occurs. The primary code is then produced using 
the transcript in the subsequent DNA hybridization pro-
cedure. The codes table was modified in this section.

Cimi Thomas et  al. [22] established a DNA-based 
safety scheme in which binary information is treated as 
DNA. This symmetrical structure is based on DNA. This 
method uses an encryption block size of 128 bits or 64 
nucleotides. This coding system, which uses the same 
16-round Cryptographic structure as DES and AES and 
provides the procedure with access to random DNA, is 
yet to be appropriate for any applications.

Proposed system
With the rise of data servers, cloud computing has 
evolved into a potential adversary capable of a) funda-
mentally altering the entire data technology culture, b) 

deploying programs, and c) managing upgrades. How-
ever, data privacy remains the most dangerous to cloud 
security. Data loss, information theft, or data omission 
in the cloud infrastructure are the main security threats 
that raise the alarm. Because the sophistication of these 
attacks will only increase, it is crucial to evolve defense 
technology to match the dangers they pose. This study 
offers an  Integrated Intrusion Detection and Preven-
tion System (IDPS) for cloud data based on SGD-LSTM 
and signatures access control policy to safeguard and 
protect client information from hackers and intrusions. 
Integrated Intrusion Detection and Prevention Systems 
(IDPS) are used to detect and prevent unauthorized 
access, attacks, and other security threats to computer 
systems and networks. In cloud computing, IDPS can 
play a critical role in ensuring the security of cloud envi-
ronments. IDPS can help identify potential security 
threats in real-time in cloud computing environments. 
This includes detecting malicious activity from users, 
applications, and networks. IDPS can be used to secure 
cloud networks and detect any suspicious network activ-
ity. This can help prevent unauthorized access to cloud 
resources and data. IDPS can be used to enforce security 
policies in cloud computing environments. This includes 
ensuring compliance with regulatory requirements and 
preventing unauthorized access to sensitive data [23]. 
IDPS can help protect cloud environments from mal-
ware attacks. This includes detecting and preventing the 
spread of viruses, Trojans, and other malicious software. 
IDPS can be used to prevent intrusions into cloud envi-
ronments. This includes detecting and blocking unau-
thorized access attempts, such as brute force attacks, 
password guessing, and SQL injection attacks. IDPS can 
help respond to security incidents in cloud computing 
environments. This includes identifying the source of 
the incident, containing the damage, and restoring the 
system to its normal state. It is critical to apply a compe-
tent design approach to construct a system that provides 
precise and accurate outputs. The three phases of the 
proposed method are intrusion detection, authentica-
tion, and registration. These stages are discussed further 
below. Figure 1 demonstrates how these phases progress 
and shows how each block functions Fig. 2.

Registration phase
Data access is restricted by registration by permitting only 
authorized users. The users registered their data to the 
cloud for admission during this phase. Users must request 
administrator consent to utilize a system. As a result, the 
user can send a request message to the cloud server with 
a signature, that is a unique Number (uId) and passwords 
upass  

(

uId ,upass
)
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where Cloudserver stands for the cloud server and 
R_REQ{•} for the registration request [24]. Following 

(1)user
R_REQ(uId ,upass)

−−−−−−−−−−−−−→ Cloudserver
receipt of the user’s registration request, the cloud server 
determines the hash code for the user’s password.

Figure  1 displays the block diagram for the suggested 
SGD-LSTM technique. The proposed system’s process 

Fig. 1 Architecture of the proposed SGD-LSTM method

Fig. 2 The hidden layer of LSTM
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is illustrated in detail in the figure. The user first goes 
through the registration step, when login credentials are 
created and registered for uploading data packets. The 
user is directed to the intrusion detection phase, where 
data pre-processing and access occur after registering with 
their credentials [25]. The data pre-processing module 
does data conversion, data normalization, and Data saniti-
zation. The pre-processed data is categorized and accessed 
using the SGD-LSTM and BEA algorithms. The intrusion 
protection phase is the final stage of the suggested model, 
and it involves user authentication via user login and iden-
tity verification status. Suppose the entered data is coor-
dinated with the registered information [26]. In that case, 
the user is confirmed to be a legitimate user, and if the data 
is mismatched, the user claims to be an invalid user.

Data pre‑processing
Massive volumes of unneeded, duplicated, and outlier val-
ues are present in the collected data. Due to the existence 
of outliers, learning algorithms do not yield better results. 
Pre-processing increases the prediction accuracy of the 
system by removing duplicate data and irrelevant or noisy 
information from user data. The four pre-processing 
phases are data cleansing, numerical conversion, normali-
zation, and sanitization. The four pre-processing stages 
include data cleaning, sanitization, normalization, and 
numerical transformation. Consider the data provided as

The input data are denoted by (Fd)i , while the number 
of information points is denoted by Fdk.

(a)The process of eliminating outliers from data, replac-
ing missing numbers, cleaning up noisy data, and repairing 
inconsistent data is known as data sanitization. The dataset 
is being cleaned up by removing duplicate and noisy data. 
(b) Numerical Conversion: The algorithms for learning can 
only operate on numbers [27]. The features in the obtained 
dataset are in string format, such as protocol type. Numer-
ical data is created from the textual values.

(c) Normalization: Scaling the feature values into pre-
cise confidence intervals is done in this stage. The bias in 
the raw data is eliminated, which is the main advantage of 
this stage. Every feature value is positioned within a pre-
determined range based on Z-score normalization.

where Y (Fd)i stands for the data’s standard deviation and 
σX(Fd)i for the X(Fd)i data’s mean. Pre-processing is char-
acterised by,

(2)(Fd) = {Fd1, Fd2, Fd3, . . . . . . , Fdk}

(3)N (Fd) =
X(Fd)i − Y (Fd)i

σX(Fd)i

(4)(Fd)i
preprocessing

−−−−−−−−−−−→ P(Pd)i

In Eq. (4), P(Fd)i denotes the pre-processed data.

Stochastic gradient descent
The stochastic gradient descent (SGD) technique is a 
subtype of descent-based approach that finds ideal values 
by utilizing the gradient of functions. Numerous applica-
tions have used the SGD technique for cost optimization. 
Optimization issues involving the function f(x), where x 
is a constant vector, can be solved using SGD techniques 
[28]. An example of an optimization issue is as follows:

The SGD algorithm’s fundamental form is as follows,

If wn must be estimated, the value that reduces the 
objective function. The optimization model STR(w) i’s gra-
dient or derivative with respect to wn . The size of the fall 
is determined by � , a user-defined quantity. Another name 
for it is the learning rate. Because n represents the num-
ber of iterations stages, the default value for � is frequently 
set to 1 n or another, decreasing functionality concerning 
n. With a big � , the process could become unstable, while 
a small � would cause prolonged steps and a long conver-
gence time [29]. While SGD and gradient descent are simi-
lar, SGD uses a part of the data vector randomly selected at 
each iteration stage to estimate the gradient of the optimi-
zation problem. STR(w) The optimization process is sped 
up by predicting the gradient at each successive iteration, 
and calculation costs are significantly decreased. Due to 
this feature, the SGD is ideally suited for costly simulations 
and functions that are difficult to differentiate. The SGD 
works well for local optimization since it can get stuck at a 
local minimum [30]. We provide a method that repeatedly 
runs the process N times, memorizing the local minima 
discovered and the parameter range travelled. To avoid 
unnecessary searches, the algorithms want to ensure that 
each time it starts over with a different random area that 
has yet to be explored. The best point is chosen from the 
local minima group after N applications of the procedure.

Algorithm  1 displays the suggested algorithm. The 
strategy enhances an objective outcome S STR(w) as 
a factor of the design requirements w by altering the 
standard SGD. The most significant number of itera-
tions, called N, is used to determine the starting point 
for the optimization procedure. After each iteration 
step, a set of solutions and the route are stored in vec-
tor W (lines 4–8). The process is restarted or repeated 
via lines 4–16 until the maximal number of iterations 
has been reached, or the other end condition is satis-
fied. Before choosing the next random point, it checks 
to see if it has been searched. The optimized design aim 

(5)
MinimizeSTR(w)where(w) = Wn,Ws, Ln, Ls,Vth . . .

(6)wn+1 = wn − �n∇STR(wn)
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is selected from the vector w’s minimal set of values at 
the algorithm’s conclusion. By keeping track of the col-
lection of random points in this algorithm, we increase 
efficiency by limiting the range of parameters chosen to 
only those whose pathways have not yet been travelled 
[31]. The optimization process can go more swiftly by 
removing unnecessary searches, search queries that 
would yield discarded results, and inquiries that would 
return already-stored optima.

Algorithm  1 Algorithm for stochastic gradient 
descent

LSTM
RNN is the architecture of deep learning that is used 
for sequential data. Deep knowledge also has other 
architectures. LSTM is one of the many models of 
RNN, and it is distinguished from the others by its hid-
den layer containing three gates and cell memory. First, 
let’s assume we are dealing with the long-term memory 
model (LSTM) output as  x1…  x2…  xt. At each t-step, 
data will be stored in the cell’s memory [32]. Three 
gates from LSTM’s hidden layer, as depicted in Fig.  4: 
forget gates, input gates, and output gates.

This hidden layer’s first task is determining how 
much information from the preceding hidden layer 
will be stored in LSTM cells’ internal memory. Using 
this mathematical method, one could get the following 
answer at the forget gate:

In this example,  Wh stands for without gate weight. 
The memory of the cell will retain how much of the 
new input text. Using the following formula, the Ct 
value will be calculated at the input gate:

where the  Rx and  Rh values represent the weights for the 
input gate, following the acquisition of new data, we will 
use the following formula to bring the cell memory  Ct up 
to date:

Px and  Ph represent the cell’s memory weight [33]. 
That leaves figuring out how much of the cell memory 
 Ct data will be used to generate an output for layer t, 
which is calculated using the formula below:

where the  Qx and  Qh values represent the weight of the 
output gate.

Login phase
In general, login refers to credentials that aid in user 
authentication. Any user can send a login request to the 
cloud to gain access to its data by providing the cloud 
with their unique ID uId and password upass.

L_REQ{•} Here, the login request is indicated. User 
authentication is done after the user is asked to log in.

(7)α(t) = σ(Wxxt +Whht−1)

(8)β(t) = σ(Rxxt + Rhht−1)

(9)Ct = Ct−1α(t)+ β(t).tanh(pxxt + phht−1)

(10)ht = α(Qxxt + Qhht−1).tanh(ct)

(11)user
L_REQ{uID ,upass}

−−−−−−−−−−−−−→ Cloudserver
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User authentication phase
During the user authentication stage, the system checks 
to see if the user is a legitimate user. After receiving the 
user’s login request, the cloud requests a code from the 
user. The user follows that by sending a code to the cloud 
server.

If the user sends a correct hash code, the server author-
izes the request and confirms that the user can access the 
cloud information. This method is described as,

Luser stands for "valid user" and Iuser for "invalid user" 
in this context. Cloud users only utilize the produced 
hash code once at a time [34]. Every time a user accesses 
the data, they generate a new hash code and password, 
preventing unauthorized individuals from accessing that 
user’s data.

Data security using the blowfish encryption algorithm
A BEA is used to encrypt the information input after 
registration. The Blowfish Algorithm is a symmetric 
key cryptography algorithm (BEA). The 64-bit block’s 
key length is 32–448 parts. There are four 32-bit 
S-boxes and a P-array available. The S-boxes can rec-
ognize 8-bit data while transmitting 32-bit yield. The 
key expansion and encryption phases are the two main 
stages of the BEA. To encrypt data, a 16-round FSTEL 
network is utilized. There are key-dependent substitu-
tions and primary dependency permutations in every 
round. The only functionality in XOR and BA is the 
addition of 32-bit words. In Fig.  3, the BEA structure 
is shown.

Public key encryption phase
The data owner uses an elliptic algorithm to create a key 
for authorized access during this stage. The records and 
index are then encrypted with Blowfish.

Step 1: Conception of Keys ECC’s starting point is the 
information provided below.

(12)
Cloudserver

ask code
−−−−−−−−→ user

send code
−−−−−−−−−→ Cloudserver

(13)

H
(

upass
)

matched
→

(

Cloudserver
Confirms

−−−−−−−−→ Luser

)

(14)

H
(

upass
)

Not matched
→

(

CS
Confirms

−−−−−−−−→ Iuser

)

(15)E : x2 = y3 + ay+ b

Here, a and b are numbers that satisfy condition (2), r is a 
prime number, and r includes a point at infinity.

d is a random number between 1 and n – 1. r is for the 
curve’s point, d is for the private key, and P is for the pub-
lic key.

Step 2: preserving personal data The Blowfish algo-
rithm is used to address privacy concerns. It is a symmet-
ric block cipher that works well for data encryption and 
preservation.

Algorithm 2: Blowfish encryption algorithm

Algorithm  2 represents the Blowfish encryption algo-
rithm through the algorithm Function, which is deter-
mined below.

Partition XL into 8-bit parts: i,j, k,l

(16)4a3 + 27b �= 0modr

(17)P = d∗r

(18)fn(XL) =
((

S0, i + S1, jmod232
)

XORS2, k
)

+ S3, lmod 232
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S [0]: 243f6a88 S [9]: 38d01877

S [1]: 85a368d3 S [10]: be5466cf

S [2]: 13198a2e S [11]: 34e90c6c

S [3]: 03,707,244 S [12]: c0ac24b7

S [4]: a4093822 S [13]: c97c50dd

S [5]: 279f31d0 S [14]: 3f87d5b5

S [6]: 082efa98 S [15]: b5470517

S [7]: ec4e6c89 S [16]: 9296d5d9

S [8]: 452821e6 S [17]: 8879fb1b

Step 3: Cloud Storage For the benefit of the informa-
tion owner, the searchable index I and the system file 
collection C are kept in the cloud [35]. Since receiving 
the user’s query request, the index locates the pertinent 
encrypted data and makes it accessible to users. When 
an authorised user wants to learn concerning the cloud 
data, they create a query request and send it to the cloud 
server. After obtaining the encrypted text, the cloud 
server processed the request and used the cloud’s index 

to generate paired results. The authorised user then 
decrypts the database tools on the cloud server.

Result and discussion
Decryption time, Encryption, accuracy, f-score, f-score, 
precision, recall, f-score, accuracy, and RMSE are evalu-
ated to determine how resilient the suggested coding 
scheme is. This is accepted to validate the recommended 
procedure. The proposed method was compared to other 
genetic data encryption and existing encrypted with 
symmetric keys approaches in terms of decryption time, 
precision, recall, decryption time, accuracy, and root 
mean squared error based on the scope of the plain text 
and the time essential for Encryption and decryption.

Experimental setup
Java programming is used to implement the sug-
gested full-text retrieval approach. On a server running 

Fig. 3 Structure of BEA



Page 10 of 17Suganya and Sasipraba  Journal of Cloud Computing           (2023) 12:74 

Windows 7 with a 64-bit 2.9 GHz CPU and 4 GB of pri-
mary RAM, we conducted the experiments.

Dataset description
Our experiments were built on the Enron Email Data-
set, containing 200,399 interactions from 158 people. 
We use the Enron email dataset, a real-world dataset, 
as our corpus. We take a subset of emails from the 
Enron dataset. This dataset is suitable because it can 
represent businesses that occasionally want to search 
through encrypted emails that are stored on a remote 
server. Before testing, we pre-processed the dataset 
by creating keywords and permutations. We specifi-
cally cleaned up the corpus using the Porter stemming 
algorithm, removed content-unrelated words with a 
spelling checker, and generated an inverted index for 
the top 1500 most popular keywords for keyword gen-
eration. The permutation was created using the prefix 
method.

Evaluation parameters of the proposed algorithm
SGD-LSTM network using ’7’ quality metrics: precision, 
recall, F-Score, accuracy, encryption time, decryption 
time, and RMSE. These metrics are calculated using the 
four crucial parameters, true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN), as 
follows:

Precision: It represents the fraction of data packet sta-
tus correctly recognized as intruder packets concerning 
all packets detected as intruder packets. Precision is a 
measure of the correctness of the retrieved data. It is the 
ratio of the true positives to the total number of positive 
instances, where true positives are the number of correct 
results that were retrieved. In the context of cloud data 
storage and retrieval, precision is important because it 
ensures that the retrieved data is relevant and accurate, 
reducing the risk of errors or inconsistencies in data anal-
ysis or decision making.

Recall: It is the correctly detected segment of intruder 
packets. Recall is a measure of the completeness of the 
retrieved data. It is the ratio of the true positives to the 
total number of positive instances in the dataset. Recall 
is important in cloud data storage and retrieval because 
it ensures that all relevant data is retrieved, reducing the 
risk of missing critical information.

(19)Precision =
TP

TP + FP

(20)Recall =
TP

TP + FN

F-Score: It is the sensitivity and precision’s harmonic 
mean.

Accuracy: It is the rate of data packets status that is 
correctly predicted. Accuracy is a measure of the over-
all correctness of the retrieved data. It is the ratio of the 
true positives and true negatives to the total number 
of instances in the dataset. In cloud data storage and 
retrieval, accuracy is important because it ensures that 
the retrieved data is both relevant and complete, reduc-
ing the risk of errors or inconsistencies in data analysis 
or decision making. precision, recall, and accuracy are 
important metrics in influencing the aim of cloud data 
storage and retrieval in a cloud computing environment. 
These metrics ensure that the retrieved data is both rel-
evant and accurate, reducing the risk of errors or incon-
sistencies in data analysis or decision making.

Encryption time: The quantity of time it takes to 
alter plain text into cipher text can be used to quantify 
encryption time. The quality of the encryption algo-
rithm is inversely correlated with the encoding time; if 
the method requires less encryption time, it will be more 
effective. There are two ways to quantify this variable:

• Based on the input size, analyze the encryption time 
(20, 40, 60, 80, 100, and 120 KB).

• Based on the input’s variable character count, we 
determine how long encryption and decryption will 
take.

The results revealed that although deciphering the pro-
cess takes less time than decrypting it, it is still feasible 
that the time required for encryption may increase lin-
early simply as the number of letters or file size grows. 
It demonstrates how much less computationally complex 
the suggested job is.

The proposed method encrypts plain text more quickly 
than the symmetrical algorithm, a different genetic algo-
rithm. Deoxyribonucleic acid (DNA), Rivest-Shamir-
Adleman (RSA), Data Encryption Standard (DES), 
Advanced Encryption Standard (AES), and RC4-DNA 
(DNA).

Decryption time: The Decrypting Time shows how 
long it takes to decrypt text inputs and reveal their origi-
nal contents. The time required by the decrypting algo-
rithm is known as its time complexity. The following 

(21)F − Score = 2 ∗
precision ∗ recall

precision+ recall

(22)Accuracy =
TP + TN

TP + TN + FP + FN
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formula can be used to determine the amount of time 
spent decrypting:

Comparing the suggested method to other encryption 
methods, the proposed way is faster to decode. There-
fore, the presented approach can be used and is success-
ful for safe communication.

(23)Timeconsumed = endtime − starttime

Encryption time analysis
The encryption time of the SGD-LSTM methodol-
ogy is compared to that of other methods in Table  1 
and Fig.  4. The data demonstrate that the proposed 
method outperformed the different strategies in every 
way. For instance, with 20 nodes, the SGD-LSTM tech-
nique encrypts data in 3.652  ms, while other existing 
methods such as RSA, DES, AES, DNA, and RC4-DNA 

Table 1 Encryption time analysis for SGD-LSTM method with existing systems

No of Nodes (msec) RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 13.749 10.294 9.465 7.346 5.845 3.652

40 13.294 10.321 9.642 8.765 6.543 4.876

60 13.983 10.387 9.132 8.132 6.895 4.172

80 14.293 10.854 9.875 8.453 6.567 4.765

100 13.554 11.743 11.167 8.876 5.934 4.115

120 14.854 11.345 10.187 9.143 7.132 5.364

Table 2 Decryption time analysis for the SGD-LSTM method with existing systems

No of Nodes (msec) RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 10.763 9.632 7.543 6.345 4.156 2.125

40 11.542 9.321 7.652 6.123 4.276 2.325

60 11.621 9.487 7.145 5.765 4.854 2.638

80 11.984 9.865 8.346 6.954 5.123 3.143

100 12.321 10.543 9.567 7.321 5.654 3.453

120 12.876 10.672 8.862 7.432 5.876 3.654

Fig. 4 Encryption time analysis for SGD-LSTM method with existing systems
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take 13.749  ms, 10.294  ms, 9.465  ms, 7.346  ms, and 
5.845  ms, respectively. Similarly, the SGD-LSTM 
method’s encryption time for 120 nodes is 5.364  ms, 
compared to 14.854 ms, 11.345 s, 10.187 ms, 9.143 ms, 
and 7.132 ms for other existing techniques.

Decryption time analysis
The decryption time contrast of the SGD-LSTM 
methods with existing methods is characterized in 
Table  2 and Fig.  5. The data demonstrate that the 
proposed method outperformed the other techniques 

in every way. The SGD-LSTM process, for exam-
ple, took only 2.125  s to decrypt the data with 20 
nodes. In contrast, other existing methods, such as 
RSA, DES, AES, DNA, and RC4-DNA, took 10.763 s, 
9.632  s, 7.543  s, 6.345  s, and 4.156  s, respectively. 
Correspondingly, for 120 nodes, the SGD-LSTM 
method decrypts in 3.654  s, while other existing 
techniques such as RSA, DES, AES, DNA, and RC4-
DNA decrypt in 12.876  s, 10.672  s, 8.862  s, 7.432  s, 
and 5.876 s, respectively.

Fig. 5 Decryption time analysis for SGD-LSTM method with existing systems

Fig. 6 Precision analysis of the SGD-LSTM method with existing systems
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Precision analysis
A precision comparison of the SGD-LSTM strategy 
with other methods is shown in Fig. 6 and Table 3. The 
graph depicts how the cloud method has improved 
performance and precision. SGD-LSTM, for instance, 
has a precision value of 90.15% with 20 nodes, whereas 
RSA, DES, AES, DNA, and RC4-DNA have preci-
sion values of 71.12%, 82.54%, 76.32%, 86.43%, and 
74.23%, respectively. However, the SGD-LSTM model 

performed best with a variable number of nodes. Simi-
larly, under 120 nodes, the precision value of SGD-
LSTM is 95.25%, whereas it is 73.87%, 85.87%, 81.34%, 
89.74%, and 76.84% for the RSA, DES, AES, DNA, and 
RC4-DNA models, respectively.

Accuracy analysis
In Fig.  7 and Table  4, the accuracy of the SGD-
LSTM method is contrasted with that of other earlier 

Table 3 Precision analysis for the SGD-LSTM method using existing systems

No of Nodes RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 71.12 82.54 76.32 86.43 74.23 90.15

40 71.65 83.65 77.67 87.87 74.67 91.64

60 72.72 83.17 78.98 88.34 74.82 92.43

80 72.32 84.56 79.15 88.56 75.45 93.26

100 73.65 85.64 80.43 89.62 75.67 94.36

120 73.87 85.87 81.34 89.74 76.84 95.25

Table 4 SGD-LSTM method accuracy analysis with existing systems

No of Nodes RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 79.32 66.43 76.24 70.43 86.95 93.34

40 80.53 67.32 76.66 71.45 87.65 94.75

60 81.45 67.13 77.65 72.87 88.32 95.16

80 82.76 68.56 77.26 73.96 89.65 96.53

100 83.42 69.25 78.78 74.12 90.37 97.72

120 85.66 69.74 78.91 75.83 91.45 98.45

Fig. 7 SGD-LSTM method accuracy analysis with existing systems
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methods. According to the graph, the cloud technique 
has improved performance and accuracy. SGD-LSTM, 
for example, has an accuracy of 93.34% with 20 nodes, 
whereas RSA, DES, AES, DNA, and RC4-DNA have an 
accuracy of 79.32%, 66.43%, 76.24%, 70.43%, and 86.95%, 
respectively. The SGD-LSTM model, on the other hand, 
has shown excellent performance with various nodes. 
Similarly, under 120 nodes, SGD-LSTM has an accu-
racy value of 98.45%, whereas RSA, DES, AES, DNA, 
and RC4-DNA have accuracy values of 85.66%, 69.74%, 
78.91%, 75.83%, and 91.45% respectively.

Recall analysis
Figure  8 and Table  5 compare the recall of the SGD-
LSTM strategy to that of other methods. The graph 
illustrates that the cloud technique improved recall 
performance. SGD-LSTM, for instance, has a recall 
value of 93.89% with 20 nodes, while the RSA, DES, 
AES, DNA, and RC4-DNA models have recall values 
of 85.13%, 83.48%, 90.12%, 87.54%, and 81.42%, respec-
tively. However, the SGD-LSTM model performed best 

with a variety of nodes. Similarly, under 120 nodes, 
SGD-LSTM has a recall value of 96.54%, whereas 
RSA, DES, AES, DNA, and RC4-DNA have recall val-
ues of 86.76%, 84.93%, 93.76%, 89.93%, and 83.32% 
respectively.

F‑score analysis
In Fig. 9 and Table 6, the SGD-LSTM strategy is com-
pared to other earlier techniques. The graph demon-
strates that the cloud approach improved performance 
as measured by the f-score. For instance, the RSA, 
DES, AES, DNA, and RC4-DNA models have f-scores 
of 87.43%, 75.45%, 81.76%, 78.75%, and 84.92%, respec-
tively. SGD-LSTM, on the other hand, has 20 nodes and 
an f-score of 89.73%. However, the SGD-LSTM model 
performed best with a variety of nodes. Similarly, the 
f-score value of SGD-LSTM under 120 nodes is 93.76%, 
whereas it is 89.54%, 78.21%, 84.86%, 81.14%, and 
86.95% for RSA, DES, AES, DNA, and RC4-DNA mod-
els, respectively.

Fig. 8 Recall time analysis for SGD-LSTM method with existing systems

Table 5 Recall time analysis for SGD-LSTM method with existing systems

No of Nodes RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 85.13 83.48 90.12 87.54 81.42 93.89

40 85.65 83.67 90.43 87.12 81.76 94.32

60 85.74 84.23 91.43 88.46 82.65 94.12

80 85.88 84.36 91.65 88.98 82.74 95.67

100 86.45 84.87 92.67 89.56 82.98 95.87

120 86.76 84.93 93.76 89.93 83.32 96.54
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Fig. 9 F-SCORE analysis for SGD-LSTM method with existing systems

Table 6 F-SCORE analysis for SGD-LSTM method with existing systems

No of Nodes RSA DES AES DNA RC4‑DNA SGD‑LSTM

20 87.43 75.45 81.76 78.75 84.92 89.73

40 87.74 75.13 82.52 79.65 85.45 90.15

60 87.82 76.65 82.63 79.43 85.73 91.42

80 88.12 76.56 83.45 79.87 86.12 92.63

100 88.53 77.53 83.74 80.42 86.87 92.43

120 89.54 78.21 84.86 81.14 86.95 93.76

Fig. 10 RMSE analysis of the SGD-LSTM method with existing systems
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RMSE analysis
Comparative RMSE analyses of the SGD-LSTM strat-
egy with other previous techniques are shown in 
Fig.  10 and Table  7. The graph shows that the cloud 
strategy produced an improved performance with a 
lower RMSE value. The RSA, DES, AES, DNA, and 
RC4-DNA designs all have slightly better RMSEs than 
SGD-LSTM, which has an RMSE of 52.14% with 20 
nodes. The SGD-LSTM design, on the other hand, has 
shown maximum performance across a wide range of 
nodes while maintaining low RMSE values. Similarly, 
the RMSE value of SGD-LSTM under 120 nodes is 
55.63%, whereas it is 76.47%, 70.54%, 66.74%, 63.96%, 
and 59.15% for RSA, DES, AES, DNA, and RC4-DNA 
models, respectively.

Conclusion
The ultimate consumers of the cloud are expanding 
with their use for personal and professional purposes 
due to the enormous increase in data and comput-
ing technology. Their efficient and adaptable comput-
ing and storage solutions tailored to the requirements 
of the applications are the cause of this achievement. 
On-demand, the cloud offers computational and data 
services. Concerning data security and privacy, numer-
ous challenges remain to be overcome. The cloud 
makes data storage more accessible and adaptable, 
but unwanted attacks and operations still exist. Sensi-
tive data could be covertly stored on the cloud server. 
Data security is essential as a result. Here, we combine 
Stochastic Gradient Descent long short-term memory 
(SGD-LSTM) with the Blow Fish encryption technique 
to identify and prevent unauthorized cloud access. The 
proposed system is divided into three phases: intru-
sion detection, user registration, and intrusion pre-
vention. The SGD-LSTM classifier is used to forecast 
cloud data access in instruction to weed out unauthor-
ized cloud access. The Blowfish encryption algorithm 
is also used to verify the authenticated person during 
the data access phase in instruction to limit access to 

information in the cloud environment. Comparing the 
recommended classifier to the current classifiers dem-
onstrates empirically that it accurately detects abnor-
mal access. The experimental results enhanced data 
security, which helps defend cloud computing applica-
tions. The experimental results show that the suggested 
strategy performs better than the current methods in 
terms of encryption time, decryption time,precision, 
recall, f-score, accuracy and RMSE. It also performs 
well in terms of retrieval efficiency and retrieval accu-
racy for SGD-LSTM algorithms.
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Table 7 RMSE analysis of the SGD-LSTM method with existing systems

No of Nodes RSA DES AES DNA RC4‑DNA SGD‑LSTM
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