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Abstract 

With the rapid development of cloud computing technology, how to achieve secure access to cloud data has 
become a current research hotspot. Attribute-based encryption technology provides the feasibility to achieve the 
above goal. However, most of the existing solutions have high computational and trust costs. Furthermore, the fair-
ness of access authorization and the security of data search can be difficult to guarantee. To address these issues, 
we propose a novel access control scheme based on blockchain and attribute-based searchable encryption in 
cloud environment. The proposed scheme achieves fine-grained access control with low computation consump-
tion by implementing proxy encryption and decryption, while supporting policy hiding and attribute revocation. 
The encrypted file is stored in the IPFS and the metadata ciphertext is stored on the blockchain, which ensures data 
integrity and confidentiality. Simultaneously, the scheme enables the secure search of ciphertext keyword in an open 
and transparent blockchain environment. Additionally, an audit contract is designed to constrain user access behavior 
to dynamically manage access authorization. Security analysis proves that our scheme is resistant to chosen-plaintext 
attacks and keyword-guessing attacks. Theoretical analysis and experimental results show that our scheme has high 
computational and storage efficiency, which is more advantageous than other schemes.
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Introduction
With the connection of the global mobile Internet and the 
rapid development of cloud computing, more and more 
communication academia and industry are committed to 
shaping a safe and effective resource sharing method in 
the cloud environment [1]. Cloud storage technology has 

been widely used due to its high performance and low 
cost. To ensure the security of private data, data is usually 
stored in cloud services in encrypted form. However, the 
traditional public key encryption technology has been 
unable to meet the current needs of cloud data privacy 
protection. In this context, how to achieve access author-
ization and accurate retrieval of encrypted cloud data has 
become a new challenge.

Access control (AC) is a key technology to maintain 
data security and privacy [2]. The AC provides a solution 
to the above problem by constraining user access rights 
to ensure legitimate access to sensitive data. Attribute-
based searchable encryption based on ciphertext policy 
not only enables fine-grained access control of encrypted 
data, but also supports users to retrieve ciphertext based 
on keywords. Ciphertext Policy Attribute-Based Encryp-
tion Algorithm (CP-ABE) [3, 4] allows data owners to 
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autonomously set data access policies according to a 
set of attributes, and associate data access policies with 
ciphertexts. When the user’s attribute set satisfies the 
access policy, the ciphertext can be decrypted using 
the corresponding attribute private key, while the spe-
cific identity of the decryptor remains unknown, which 
is suitable for “one-to-many” access scenarios. In recent 
years, a large number of studies have applied attribute-
based encryption technology to cloud data access con-
trol to improve the privacy and security of cloud data 
[5, 6]. However, the traditional CP-ABE algorithm con-
sumes a lot of computational cost and the security of the 
access policy is often ignored because the access policy is 
embedded in the ciphertext. In addition, attribute access 
expiration and permission change are also urgent issues 
to be addressed.

Currently, most access control schemes typically use 
a centralized management model, which makes them 
susceptible to system-wide failure in the event of a sin-
gle malfunction. Furthermore, traditional solutions rely 
on trusted third parties for access decisions, which not 
only incur high trust overhead but also unfair service fee 
payments. Therefore, designing secure and fair search-
able access control schemes remains a pressing challenge. 
Blockchain is a distributed ledger technology character-
ized by decentralization, openness, transparency, tam-
per resistance, and traceability [7]. It supports the secure 
storage and transaction of data without the involvement 
of third parties, and users no longer have to worry about 
the high trust and security risks posed by third parties. 
This means that blockchain technology can be used to 
replace traditional third parties for access authoriza-
tion management, enabling a fair and trusted distributed 
access control framework.

Based on the analysis of the above problems, we com-
bine blockchain technology with attribute-based searcha-
ble encryption technology to propose a novel distributed 
data-sharing scheme. This scheme focuses on achieving 
fine-grained searchable access to encrypted cloud data 
while taking into account low computational cost, policy 
privacy, attribute revocation and dynamic authorization.

The main contributions of this study are as follows: 

(1) A distributed fine-grained access control scheme is 
developed by combining blockchain and attribute-
based searchable encryption. The scheme stores the 
data ciphertext in the distributed IPFS (Inter Plan-
etary File System), and facilitates the secure distri-
bution of metadata ciphertext via blockchain smart 
contract, thus avoiding the high trust cost and low 
security of storage caused by third-party interven-
tion in traditional access systems.

(2) An improved attribute-based searchable encryp-
tion algorithm based on policy hiding is designed 
to prevent the leakage of user privacy attributes. 
Proxy encryption and decryption are introduced 
to reduce the user’s computational consumption. 
Simultaneously, the algorithm supports attribute 
revocation and decryption verification.

(3) The proposed scheme realizes the secure search of 
encrypted keywords on the blockchain. At the same 
time, we design a smart contract with a search audit 
function to dynamically manage access rights based 
on user access behavior and accessibility period to 
prevent illegal access.

(4) Security analysis, performance comparison, and 
simulation experiments indicate that the proposed 
scheme is both feasible and advantageous.

Related work
Access control is an important security mechanism to 
protect sensitive information and system resources [8]. 
Blockchain as an underlying technological architec-
ture that features trust, low cost, and high value. Many 
researchers have tried to combine access control and 
blockchain technology to make up for the drawbacks 
of traditional centralized access control. The existing 
blockchain access control schemes are mainly based on 
on-chain storage and execution of permission verifica-
tion. Reference [9] proposes an access control scheme to 
facilitate the deletion, update, and access of lightweight 
IoT devices on the blockchain, however, this scheme is 
not suitable for large file sharing. Reference [10] employs 
blockchain technology to enable the secure sharing of 
vehicle information. Although the scheme in question 
calculates the reputation value of a vehicle based on the 
weight model to prevent unauthorized sharing, it does 
not account for privacy. Reference [11] proposes a block-
chain data access control scheme based on digital cer-
tificates. This scheme designs an identity authentication 
protocol that does not require verification of third-party 
signatures, and proposes to use signature technology to 
protect the sensitive information of contracts and the 
user’s identity information, but does not consider the 
secure storage of data. Focusing on a situation where the 
traditional IoT data sharing model is heavily reliant on a 
third party, reference [12] employs blockchain technol-
ogy to design a trustless sharing model. However, this 
scheme does achieve fine-grained control using symmet-
ric encryption. References [13–15] realize user attribute 
matching access control in a non-encrypted state, and 
deploy an access policy in the smart contract. Owing to 
the openness and transparency of the blockchain, a user 
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may send the access policy and attributes to a smart con-
tract, thus compromising privacy.

Access control schemes featuring attribute-based 
encryption and cloud storage have been proposed to 
strengthen the security of data access and alleviate the 
storage bottleneck of blockchains. The CP-ABE algorithm 
enables superior data security and fine-grained access 
control for external storage. In the scheme proposed by 
[16–18], shared data are encrypted with CP-ABE and 
stored in the cloud service. The security of a cloud ser-
vice directly affects the security of data, which creates a 
risk of user data loss. In [19], a distributed storage IPFS 
is used to implement a data-sharing scheme based on 
blockchain and secret sharing. This scheme stores plain-
text data in the IPFS system. An obvious drawback is 
that when an address stored in the IPFS is leaked, any 
unauthorized user can obtain the corresponding plain-
text data. References [20, 21] all use proxy computing 
to reduce the computational overhead of CP-ABE and 
ensure the traceability of the secret key. However, they 
do not consider the privacy of access policies. Since the 
access policy is embedded in ciphertext in plaintext form, 
it can be exploited by attackers to infer private attrib-
utes. Reference [22] proposes a smart grid data sharing 
scheme based on policy hiding to prevent the exposure of 
the access structure, and introduces proxy decryption to 
reduce the user decryption overhead. Reference [23] pro-
poses an attribute-based encryption scheme for keyword 
searches based on policy hiding to prevent keyword-
guessing attacks. Reference [24] proposes a cloud storage 
scheme with attribute policy hiding based on the “AND” 
gate access structure, which implements obfuscated 
attributes into the original access policy for user authen-
tication. However, [22–24] are not blockchain-based, and 
ignore the security threats caused by third parties. Ref-
erence [25] proposes a policy-hiding blockchain access 
control scheme based on CP-ABE. The scheme uses 
polynomials to express the access structure. Data users 
can perform attribute policy matching locally and verify 
using homomorphic encryption. But this scheme needs 
to consume a lot of computing resources.

In order to realize the searchability of ciphertext, ref-
erences [26, 27] propose an attribute-based encryption 
scheme based on keyword search. They store encrypted 
data on cloud services, and perform search verifica-
tion on keywords on cloud services to ensure that the 
obtained ciphertext matches. In practical applications, 
attributes may be revoked due to permissions changes 
and other factors. To this end, references [28–30] pro-
pose data-sharing schemes that support attribute revoca-
tion. Reference[28] proposes a multi-authority searchable 
access scheme for cloud data. Although this scheme uses 
multiple authorizations to help keep user information 

confidential, it also easily leads to security bottlenecks. 
Reference [31] improves on the basis of reference [29] 
and implements policy hiding. However, in the above 
solution, the user’s search behavior is uncontrollable, and 
there may be a phenomenon of unfair payment of search 
service fees. Reference [32] uses blockchain technology 
to solve the above problems, but this scheme does not 
support policy hiding.

Based on the above analysis, this study proposes a 
secure access control scheme based on blockchain and 
attribute-based searchable encryption in cloud environ-
ment. The scheme stores encrypted files with IPFS, which 
alleviates the storage pressure of blockchain and the sin-
gle point of failure problem of traditional storage model. 
At the same time, the scheme supports attribute policy 
hiding and attribute revocation, which improves the 
security and flexibility of access. Proxy encryption and 
decryption are also introduced to reduce user computa-
tion consumption. In addition, the solution implements a 
secure search of encrypted keywords on the blockchain, 
while monitoring user access behavior and time limits 
through smart contracts to prevent unauthorized access.

Preliminaries
In this section, we describe the relevant background 
and basic information pertaining to this scheme. Table 1 
introduces some of the notation used throughout this 
scheme.

Table 1 Notations in this paper

Symbol Description

� safe parameter

PK system public key

MK system master key

SK user private key

W keyword

ck symmetric key

S user attribute set

U system attribute set

CT key ciphertext

CT1 proxy encrypted ciphertext

CT2 proxy decrypted ciphertext

SK
′ intermediate key

P access policy

�i hiding access policy

FID file identification

HD file storage address

Iw keyword index

Tw keyword trapdoor

E(M) encrypted file
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Blockchain
Blockchain was first used as the underlying support-
ing technology for Bitcoin. In essence, it is a distributed 
shared database that serves as a revolutionary low-
cost credit technology solution, and is widely used in 
resource sharing, data traceability, and access control 
[33, 34]. Ethereum, a decentralized application plat-
form based on the blockchain, provides an Ethereum 
virtual machine (EVM) [35] environment to support 
the operation of scripting languages. Users can write 
and deploy smart contracts and decentralized applica-
tions in Ethereum using programming languages such 
as Solidity and JavaScript to create more possibilities 
for blockchains [36, 37]. Smart contracts are codes 
written in accordance with transaction rules [38, 39]. 
Once generated, smart contracts cannot be tampered 
with, and run permanently on the blockchain. EVM 
creates a secure operating environment. An Ethereum 
account consists of a pair of public and private keys, 
and may be classified as an externally owned account or 
a contract account. An externally owned account is an 
account that is not associated with the contract, and is 
controlled by the user’s account private key. A contract 
account is an account associated with the contract code 
generated upon deployment of a contract.

Smart contracts are deployed on the blockchain and 
users can interact with them by calling the correspond-
ing address or interface in the contract [40]. Com-
pared to that traditional contracts, the code of smart 
contracts features legal benefits and can execute auto-
matically when the relevant conditions are met without 
interruptions in the execution process. Simultaneously, 
smart contracts can conduct secure transactions in a 
blockchain environment without a third-party arbi-
ter. Before contract execution, all parties must submit 
the preset funds. Regardless of whether the contract is 
breached, it is implemented according to the manda-
tory automatic execution result.

Attribute‑based searchable encryption
This section describes the basics of ciphertext policy 
attribute-based searchable encryption.

Bilinear mapping
Suppose p is a large prime number, G and GT  are two 
multiplicative cyclic groups of order p, and there is a 
bilinear mapping e : G × G −→ GT  that satisfies the 
following properties:

• Bilinear: For any g1, g2 ∈ G , and u, v ∈ Zp , we have 
e(gu1 , g

v
2 ) = e(gv1 , g

u
2 ) = e(g1, g2)

uv.

• Non-degeneracy: There exists g , h ∈ G such that 
e(g , h)  = 1.

• Computability: For any a, b ∈ G , there is an efficient 
computation e(a, b) .

Access structure
This scheme uses the access control tree as the 
access structure. Assuming a system attribute set 
U = {att1, att2, att3, att4} and access policy P = ((att1 OR 
att2 ) AND att3 AND att4 ). ϒ is defined as an access tree 
used to describe access policy P. The leaf nodes of ϒ rep-
resent corresponding attributes, whereas the other nodes 
use the threshold to represent the “AND” and “OR” gates. 
Suppose that c represents the number of child nodes 
of node x. Let V represents the threshold of x, where 
V ∈ [1, c] . When V = c , the threshold gate is an “AND” 
gate, and when V = 1 , the threshold gate is an “OR” gate. 
The value of each leaf node relates to user attributes and 
thresholds. If the user attribute set satisfies the access pol-
icy, then the secret value of the root node can be obtained 
by recursive calculation. In this case, the user attributes 
satisfy the access policy P in either of the following cases: 
( att1 AND att3 AND att4 ) or ( att2 AND att3 AND att4).

DBDH assumption
Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion: Given a bilinear mapping e : G × G −→ GT of 
order p, the challenger randomly selects a, b, c ∈ Zp . 
Setting T ∈ GT , with (Q = (g , ga, gb, gc),T ) as 
the input, the attacker guesses. If it is judged that 
T = e(g , g)abc , output 1. Otherwise, T is a random 
element in GT , output 0. The advantage of defin-
ing an algorithm Ŵ to solve this problem is as follows: 
ε = Pr Ŵ(Q, e(g , g)abc) = 1 − Pr[Ŵ(Q,T ∈ GT ) = 1] .

Definition 1 If no attacker can solve the DBDH prob-
lem with a non-negligible advantage ε in polynomial 
time, the DBDH assumption holds.

DL problem
Discrete Logarithm (DL) problem: Let G be a multi-
plicative cyclic group of order p, and g be a generator 
of G. For ∀f ∈ G , there exists an exponent t such that 
f = gt(modp) holds. Then, it is difficult to solve the dis-
crete logarithm t according to the values of f, g, and p.

IPFS
IPFS is a distributed storage system with decentralized 
cloud computing capabilities [41]. Compared with tradi-
tional centralized storage systems, IPFS does not have a 
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single point of failure, and the nodes do not trust each 
other, which provides higher security and access effi-
ciency. With the development of cloud computing, it has 
become a trend for IPFS to replace traditional local stor-
age technology [42, 43]. When a file is uploaded to the 
IPFS, it is split into multiple blocks for storage, and the 
system returns a unique hash value. The user does not 
need to know the storage path, and the unique hash value 
can determine data tampering. To download a file from 
the IPFS, the user can retrieve it through a hash address.

System model
This scheme uses blockchain technology, attribute-
based searchable encryption, and IPFS to propose a fine-
grained access control scheme with a hidden policy and 
distributed storage. Figure 1 illustrates the system model 
of the proposed scheme.

System composition
The primary interacting entities involve the data owner, 
data user, IPFS, blockchain, and proxy server.

Data Owner (DO): DO is the publisher of data. Its 
main responsibilities are to develop attribute sets, set pri-
vate keys and access time periods for accessing users, and 
set access policies and keyword indexes for shared data. 
It also uploads the file cipher to IPFS and the metadata 
cipher to the smart contract.

Data User (DU): DU requests cryptographic metadata 
ciphertext and storage address from the smart contract 
according to the search token, and the address obtains 
the ciphertext file from IPFS. When the attribute set of 
DU satisfies the access policy, it can be accessed through 
the attribute private key to decrypt the ciphertext.

IPFS: IPFS is mainly responsible for the distributed 
storage of ciphertext data uploaded by DO and returning 
the ciphertext according to the hash storage address.

Blockchain (BC): The blockchain is responsible for the 
distribution of the user’s private key and ciphertext, and 
for making appropriate audit decisions based on user 
access behavior. Simultaneously authenticate user attrib-
utes and perform keyword searches.

Proxy encryption server (ES): Mainly responsible for 
proxy encryption calculation.

Proxy decryption server (DS): Mainly responsible for 
proxy decryption calculation.

Algorithm description
The formal description of the proposed algorithm is as 
follows:
Setup

(

1�
)

−→ (PK ,MK ) : The system initialization 
algorithm is performed by DO. The algorithm takes a 
parameter � as input, and outputs the system public key 
PK and the system master private key MK. Publish the PK 
and keep the MK secret.
ProEnc(PK ,P) −→ CT1 : ES executes the proxy encryp-

tion algorithm, takes the system public key PK and the 
access policy P as input, and outputs the proxy encrypted 
ciphertext CT1.
Encrypt(PK , ck ,W ,CT1) −→ (CT ,�i, Iw) : The encryp-

tion algorithm takes the public key PK, the symmetric 
key ck, the keyword W and the proxy encrypted cipher-
text CT1 as input, and outputs the key ciphertext CT, the 
hidden policy �i and the keyword index Iw.
KeyGen(PK ,MK , S) −→ SK  : The attribute private 

key generation algorithm takes the public key PK, the 

Fig. 1 System model



Page 6 of 16Yan et al. Journal of Cloud Computing           (2023) 12:61 

master private key MK and the user attribute set S as 
input, and outputs the attribute private key SK.
Token

(

PK , SK ,W ′) −→
(

�i
′,Tw

)

 : DU executes the 
token generation algorithm. The algorithm takes the 
public key PK, the attribute private key SK, and the 
query key W ′ as input, and outputs the token 

{

�i
′,Tw

}

.
Search(Iw ,Tw) −→ (0, 1) : The search algorithm takes 

the keyword index Iw and the search trapdoor Tw as 
input. If the keyword match, the blockchain returns the 
ciphertext CT and the storage address HD to the user.
ProDec

(

SK ′,CT
)

−→ CT2 : The proxy decryp-
tion algorithm takes the intermediate key SK ′ and 
the ciphertext CT as input, and outputs the proxy 
decrypted ciphertext CT2 . Then, the DS returns CT2 to 
the DU.
Decrypt(d,CT2) −→ ck ′ : The user takes the secret 

parameter d and the proxy decrypted ciphertext CT2 as 
input, and outputs the symmetric key ck ′.
Revocation

(

S
)

−→
(

AKi, Si,Cy

)

 : The attribute revoca-
tion algorithm takes a revocation attribute set S as input. 
Obtain the updated public key component AKi , attribute 
private key component Si and ciphertext component Cy 
are obtained.

Security model
We give the definition of the security of the target scheme 
under the chosen plaintext attack. The security of the algo-
rithm is proven through a game between the challenger and 
the attacker. The game consists of the following process:

• Initialization: The attacker selects a target challenge 
policy P∗ and sends it to challenger.

• Parameter setting: The challenger runs the initial 
algorithm to obtain the public key and private key, 
and sends the public key to the attacker.

• Phase 1: The attacker selects attribute set S and 
sends it to the challenger to request the correspond-
ing private key. The challenger runs the private key 
generation algorithm to generate the private key, and 
sends it to the attacker.

• Challenge: The attacker randomly selects two mes-
sages ( M0 , M1 ) of equal length and a keyword W ∗ to 
send to the challenger. The challenger then randomly 
selects µ ∈ {0, 1} , executes the encryption algorithm 
to encrypt Mµ and W ∗ . Finally, the challenge cipher-
text CTµ is obtained and returned to the attacker.

• Phase 2: Equivalent to Phase 1. The attacker can per-
form Phase 1 multiple times to test the attack.

• Guess: The attacker guesses µ′ ∈ {0, 1} ; if µ′ = µ , the 
attacker wins the game, and the winning advantage is 
ε =

∣

∣Pr
[

µ′ = µ
]∣

∣− 1
2
.

Definition 2 The attribute-based encryption algorithm 
is considered secure if the attacker’s advantage in winning 
the game described above is negligible in polynomial time.

Scheme construction
The goal of this study is to implement a secure access 
control scheme based on an improved attribute-based 
searchable algorithm and blockchain technology. In this 
section, we elaborate on the structure of the attribute-
based searchable algorithm and the design of the smart 
contract.

Algorithm design
Figure  2 illustrates the workflow of the proposed algo-
rithm. The proposed scheme consists of the following six 
phases: system initialization, data encryption, key gener-
ation, search, data decryption, and attribute revocation.

Phase 1: System initialization. Setup
(

1�
)

⟶ (PK ,MK ) . 
Let G be a multiplicative cyclic group of order prime 
p and g to be a generating element of G. There exists 
a bilinear mapping e : G × G −→ GT with a safe 
parameter � as the group size. Then, set two hash func-
tions H1 : {0, 1}∗ −→ G and H2 : {0, 1}∗ −→ Zp . 
Simultaneously, we define the Lagrangian coefficient �

i,S (x) =
∏

j∈S,i �=j

(

x − j
)

/
(

i − j
)

 , where i ∈ Zp , S is the 
set of elements in Zp . The initialization algorithm takes 
the security parameter � as input, and randomly selects 
α,β ∈ Zp . For each attribute ai ∈ U , randomly select 
vi ∈ Zp , where U is the system attribute set. Finally, DO 
executes the initialization algorithm and obtains the sys-
tem public key PK and master private key MK:

Phase 2: Data encryption. In the encryption phase, 
DO first encrypts the file M using AES and obtains the 
encrypted ciphertext Eck(M) , where ck is the symmetric 
key. Then upload the ciphertext to the IPFS for distributed 
cloud storage, and obtain the storage hash address HD.
ProEnc(PK ,P) −→ CT1 . The DO formulates the 

access policy P according to the system attribute set 
U, and sends it to the ES. The ES obtains access tree ϒ 
according to policy P. Set a polynomial qx for each node 
x in the tree in a top-down order, starting from the 
root node R. The degree dx of the highest term of each 
node’s polynomial satisfies dx = tx − 1 , where tx is the 
threshold of x. Starting from root node R, the algorithm 
randomly selects a number k1 ∈ Zp as the secret num-
ber, and sets qR(0) = k1 . It then randomly selects other 
coefficients dR of qR to fully define the polynomial. For 

(1)

PK =
{

g , gα , gβ , e
(

g , g
)α
,
{

AKi = gvi | ∀ai ∈ U
}}

,

MK = {α,β , {vi | ∀ai ∈ U}}.
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other nodes x in ϒ , we have qx(0) = qparent(x)(index(x)) , 
where index(x) represents the index of node x under 
parent node parent(x) . Randomly selected coefficients 
of dx are used to get the full polynomial qx . Letting Y be 
the attribute set of leaf nodes in the access tree ϒ , the 
proxy encryption ciphertext can be obtained by the fol-
lowing calculation:

Encrypt(PK , ck ,W ,CT1) −→ (CT ,�i, Iw) . This algo-
rithm is performed by the DO. After obtaining CT1 , 
DO randomly selects a number k2 ∈ Zp and calculates: 
C = ck · e

(

g , g
)αk2 , C0 = gk2 , C1 = gβk2 · C1

′ = gβk2+k1 , 
C2 = gH2(ck) , Cy = Cy

′ . Finally, it outputs the key 
ciphertext:

After that, DO sets the keyword W for the ciphertext, ran-
domly selects σ ∈ Zp , and calculates the keyword index:

(2)CT1 =
{

C1
′ = gk1 ,

{

Cy
′ = gviqy(0) | ∀ai = att

(

y
)

∈ Y
}

}

.

(3)CT =
{

C ,C0,C1,C2,
{

Cy

}

att(y)∈Y

}

.

(4)Iw =
{

I1 = g
βσ

H2(W ) , I2 = gασ , I3 = gσ
}

.

In order to prevent the security threat caused by the 
disclosure of privacy attributes in the access policy. For 
each att(i) ∈ P , DO calculates �i = e

(

H1(att(i)), g
α
)

 
to hide the policy attribute. Then, DO creates the 
identity FID for the encrypted file and uploads 
{FID,CT ,HD, Iw ,�i} to the blockchain.

Phase 3: Private key generation. KeyGen(PK ,MK , S) ⟶ SK . 
The key generation algorithm is performed by the DO. 
DU sends the attribute set S to DO, and submits an access 
application. DO selects a random number r ∈ Zp and exe-
cutes the following algorithm to generate the attribute pri-
vate key:

Phase 4: Search. Token
(

PK , SK ,W ′) −→
(

�i
′,Tw

)

 . If 
DU wants to get the ciphertext data, then DU needs to 
generate a search token. DU randomly chooses π ∈ Zp 
and computes the search trapdoor Tw based on the 
query keyword W ′:

(5)SK =

{

S1 = gα+βr , S2 = gr ,

∀ai ∈ S : Si = g
r
vi , S3,i = H1(ai)

α

}

.

(6)
Tw =

{

T1 = grπH2(W
′),T2 = g (α+βr)π ,T3 = gπ

}

.

Fig. 2 The workflow of the proposed algorithm
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For each attribute ai ∈ S , DU calculates �i
′ = e

(

g , S3,i
)

 . 
Eventually, DU sends the access token 

{

�i
′,Tw

}

 to the 
blockchain to perform the search query.
Search(Iw ,Tw) −→ (0, 1) . After receiving the search 

request, the BC needs to determine whether the user’s 
access behavior is legal. Then verify �i = �i

′ . If the equa-
tion holds, it means that the user attribute set satisfies the 
access policy. After that, BC executes the keyword search 
algorithm:

Correctness verification:

If the search verification passes, return {CT ,HD} to the 
user. Otherwise output 0.

Phase 5: Data decryption. ProDec
(

SK ′,CT
)

−→ CT2 . 
The proxy decryption algorithm is executed by the proxy 
decryption server DS. DU randomly selects d ∈ Zp , calcu-
lates the intermediate key:

Then, send 
{

SK ′,CT
}

 to DS. Proxy decryption is per-
formed in a state where the user’s private key informa-
tion is non-public, and the process is recursive. Given 
that the root node in access tree ϒ is R, for each child 
node y in set Y, we set p(y) to be the set of all nodes in 
the path from y to R. For node x in the access tree, let 
Sx be the set of sibling nodes (including itself ). We 
have: 

�
y =

∏

x∈p(y),x �=R

�
i,S (0) , where i = index(x) , 

S =
{

index(z) | z ∈ Sx
}

 . If the user’s attribute set satis-
fies the access policy, according to SK ′ , for the root 
node R in the access tree ϒ , compute

Otherwise, FR =⊥ . If FR can be calculated, DS per-
forms the next calculation:

(7)e(I1,T1)e(I2,T3) = e(T2, I3).

e(I1,T1)e(I2,T3) = e(g
βσ

H2(W ) , grπH2(W
′))e

(

gασ , gπ
)

= e
(

g , g
)(α+βr)πσ

e(T2, I3) = e
(

g (α+βr)π , gσ
)

= e
(

g , g
)(α+βr)πσ

(8)SK ′ =

{

S1
′ = S

1
d
1 , S2

′ = S
1
d
2 ,

{

Si
′ = S

1
d
i

}

∀ai∈S

}

.

(9)

FR =
∏

y∈Y ,i=att(y)

e
(

Cy, Si
′)

�
y

=
∏

y∈Y ,i=att(y)

e
(

gviqy(0), g
r
dvi

)

�
y

= e
(

g , g
)

rqR(0)

d

= e
(

g , g
)

rk1
d .

Then, secretly send CT2 = {D,C ,C2} to DU.
Decrypt(d,CT2) −→ ck ′ . The DU obtains the cipher-

text file E(M) from the IPFS system according to the 
storage address HD, and performs the final decryption 
operation:

To verify the correctness of decryption, DU computes 
C2 = gH2(ck

′) . If the equation holds, DU decrypts the 
ciphertext using ck to obtain the plaintext file M.

Phase 6: Attribute revocation. Revocation
(

S
)

⟶

(

AKi , Si ,Cy

)

 . 
Assuming that there is a revocation attribute set S . For 
each ai ∈ S , the DO randomly selects vi ∈ Zp , calcu-
lates vki = vi/vi . The DO updates the public key of ai as 
AKi =

(

gvi
)vki . Then send vki to authorized users. The 

attribute revocation algorithm is accomplished through the 
following two steps:

• After gaining vki , legitimate users update the private 
key element corresponding to the attribute ai ∈ S : 
Si = S

vk−1
i

i ;
• For ∀ai = att

(

y
)

∈ S , DO updates the ciphertext 
component: Cy = C

vki
y  . Afterwards, under the pre-

written smart contract logic rules, the updated 
ciphertext is re-uploaded to the blockchain, and the 
access deadline of the revoked user is updated.

Smart contract design
In our scheme, the smart contract is primarily responsible 
for the storage and distribution of metadata ciphertexts. 
We created and deployed a smart contract on the Ethereum 
platform using solidity language. This section focuses on 
the following four functional module algorithms:
Storage(AddressDO, FID,CT ,HD, Iw ,�i) . This inter-

face can only be called by DO. The function stores meta-
data related to the ciphertext, with the execution logic 
shown in Algorithm  1. First, it needs to verify whether 
DO is the caller of the method, where msg.sender refers 
to the current caller. Second, returns false if the FID 
already exists. Then, it forms a structure mapping: 
FID −→ (CT ,HD, Iw ,�i) , which is stored in the smart 

(10)

D =
FR · e

(

S1
′,C0

)

e
(

S2
′,C1

)

=
e
(

g , g
)

rk1
d · e(g

α+βr
d , gk2)

e
(

g
r
d , gβk2+k1

)

= e
(

g , g
)

αk2
d .

(11)ck ′ =
C

Dd
=

ck · e
(

g , g
)αk2

e
(

g , g
)αk2

.
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contract. A transaction is eventually formed and broad-
cast in the blockchain.
SetUsk(AddressDO,AddressDU ,E(SK ), deadline) . This 

function interface can only be called by DO. The execu-
tion logic is described in Algorithm  2. The DO encrypts 
the SK with the user’s Ethereum account public key, and 
sets a valid access period for the user, uploading them 
into the smart contract. It generates a structure mapping: 
AddressDU −→ (E(SK ), deadline) , and forms a storage 
transaction.
GetUsk(AddressDU ) . This function interface can only 

be called by DU. The execution logic is shown in Algo-
rithm 3. If the user information exists, the correspond-
ing E(SK) and deadline will be obtained according to 
the user’s Ethereum address. Otherwise, an exception 
will be thrown. Subsequently, DU decrypts E(SK) with 
its own Ethereum account private key. If the user’s 
attribute set satisfies the access policy, the ciphertext 
can be decrypted by the attribute private key.
Search(AddressDU , token) . This function interface can 

only be called by DU. The algorithm takes the user address 
and search token as input to realize dynamic management 
of user access rights. The execution logic is shown in Algo-
rithm  4. It is necessary to obtain the current access time 
nowTime and user access log. The access log contains the 
number of violations lockNum, lock time lockTime, and last 
successful access time lastTime. If the current time is less 
than the user’s access deadline and the user’s access lock time 
is less than the current time, then analyzes the user’s access 
behavior. If the user’s continuous access interval is less than 
the specified threshold, it is determined as an illegal behavior 
and the user’s access rights are locked through the following 
penalty mechanism: lockTime = nowTime + 2lockNum−1 . 
Conversely, if the user’s access behavior is legal, the latest 
access time of the user is recorded. Finally, BC verifies the 
user attributes and executes the keyword search algorithm, 
returning {CT ,HD} to the user.

Algorithm 1 Storage

 

Algorithm 2 SetUsk

Algorithm 3 GetUsk

Algorithm 4 Search

To simplify the description, we take Fig.  3 as 
an example. Assuming interval = 10 . When 
nowTime − lastTime < 10 , it is judged as ille-
gal access behavior and access is locked according 
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to the penalty mechanism. Finally, the locking time 
and the number of locking times are updated. When 
nowTime − lastTime ≥ 10 , it is judged as legal access, 
and the time of the last successful access is updated to the 
current access time.

Analysis and evaluation
This section presents an analysis and evaluation of the 
proposed scheme from four aspects: security, functional-
ity, communication and experimentation.

Security proof

Theorem 1 The proposed scheme supports against cho-
sen-plaintext attacks under the DBDH assumption.

Proof
The challenger selects a bilinear mapping e ∶ G × G ⟶ GT , 
given a challenge tuple 

(

g , ga, gb, gc,T
)

 , where 
a, b, c ∈ Zp, g ∈ G,T ∈ GT . Then play the following game 
with the attacker:

• Initialization: The attacker selects a target challenge 
policy P∗ and sends it to challenger.

• Parameter setting: The challenger randomly selects 
α,β , x′ ∈ Zp , set α = ab+ x′ . For each attribute 
ai ∈ U  , it randomly selects vi ∈ Zp . Calculate the sys-
tem public key: 

(12)PK =

{

g , gab+x′ , gβ , e
(

g , g
)ab+x′

,
{

AKi = gvi |∀ai ∈ U
}

}

.

  The PK is sent to the attacker.
• Phase 1: The attacker selects an attribute set S and sends 

it to the challenger to initiate a private key request. The 
challenger chooses a random number r′ ∈ Zp and lets 
r = r′ − b . Then return SK to the attacker: 

• Challenge: The attacker randomly selects two mes-
sages of equal length (M0,M1) , a keyword W ∗ , and 
sends them to the challenger. The challenger ran-
domly selects µ ∈ {0, 1} and k1 ∈ Zp to generate: 
C ′
1 = gk1 , C ′

y = gviqy(0) , where ai = att
(

y
)

∈ Y  . After 
getting CT ∗

1 =
{

C ′
1,C

′
y

}

 , the challenger performs 
the encryption algorithm to obtain the ciphertext: 

  Then randomly select σ ∈ Zp and compute: 
I1 = g

βσ

H2(W
∗) , I2 = g (ab+x′)σ , I3 = gσ . Return 

{CT ∗, I1, I2, I3} to the attacker.
• Phase 2: Equivalent to Phase 1.
• Guess: The attacker guesses µ′ ∈ {0, 1} . If µ′ = µ , 

then T = e
(

g , g
)abc , and the challenger outputs 1. 

The attacker’s advantage at this time is: 

  If µ′ �= µ , then T = R , R is a random number in GT , 
and the challenger outputs 0. The attacker’s advan-
tage at this time is: 

(13)

SK =

{

S1 = gab+x′+β(r′−b), S2 = gr
′−b,

∀ai ∈ S : Si = g
r′−b
vi

}

.

(14)CT ∗
=

{

C = M
�
⋅ T ⋅ e(g , g)x

�c ,C0 = gc ,

C1 = g�c+k1 ,C2 = gH2(M�
),Cy = C �

y

}

.

(15)
Pr

[

Γ

(

g , ga, gb, gc ,T = e
(

g , g
)abc

)

= 1

]

=
1

2
+ �.

Fig. 3 Audit case for user access
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In summary, the total advantage of an attacker in solving 
the DBDH problem is:

Since ε/2 < ε , the attacker’s advantage in winning the 
game is negligible. Therefore, our scheme realizes the 
security under the chosen-plaintext attack.  

Theorem  2 The proposed scheme can prevent keyword 
guessing attacks in random oracles when given a one-way 
hash function H2.

Proof
If the attacker cannot correctly distinguish between gx·H2(W0) 
and gx·H2(W1) in the security game, this scheme can ensure 
the keyword security. The game process is as follows:

• Initialization: The challenger randomly selects 
α,β ∈ Zp , and a hash function: H2 : {0, 1}∗ −→ Zp . 
Then, execute the Setup algorithm and publish the 
PK.

• Parameter setting: The challenger randomly selects 
r ∈ Zp and calculates S1 = gα+βr , S2 = gr.

• Phase 1: The attacker selects a keyword W ∗ and 
sends it to the challenger to apply for a search token. 
The challenger randomly selects π ∈ Zp , calculates: 
T1 = grπH2(W

∗) , T2 = g (α+βr)π , T3 = gπ , and returns 
T ∗ = {T1,T2,T3} to the attacker.

• Challenge: The attacker gives two keywords W0 , W1 . 
The challenger randomly selects a bit µ ∈ {0, 1} , cal-
culates: T1 = grπH2(Wµ) , T2 = g (α+βr)π , T3 = gπ , and 
sends them to the attacker.

• Phase 2: Similar to Phase 1 when the keywords W0 
and W1 are not queried.

• Guess: The attacker guesses µ′ ∈ {0, 1} . If µ′ = µ , the 
attacker wins the game.

Assuming that the attacker can win the game with a non-
negligible advantage ε in the guessing stage, this means 
that the attacker can solve the discrete logarithm prob-
lem, which is contrary to the fact. Moreover, since H2 
is a one-way hash function, attackers cannot obtain Wµ 
according to H2

(

Wµ

)

.
Theorem 3 Our scheme supports policy hiding to ensure 
the security of user privacy attributes.

(16)Pr
[

Ŵ

(

g , ga, gb, gc,T = R
)

= 1

]

=
1

2
.

(17)
1

2
Pr

[

µ′ = µ
]

+
1

2
Pr

[

µ′ �= µ
]

−
1

2
=

ε

2
.

Proof
In this scheme, attributes in the original access policy are 
hidden in the leaf nodes in the threshold access tree. It is 
difficult for the attacker to calculate the value k1 of the 
root node. In addition, the data owner hashes the attrib-
utes in the access policy and then uses e(H1(att(i)), g

α) to 
hide the set of policy attributes. At the same time, if and 
only if authorized users can get from SK, and calculate 
e(H1(att(i))

α , g) . Since α is a private parameter and the 
hash function is unidirectional, thus the attacker cannot 
recover attributes and reconstruct the access policy. To 
sum up, our scheme can effectively hide the access policy 
and ensure the privacy of user attributes.

Theorem  4 Our solution supports contract dynamic 
audit and strengthens user access authorization 
management.

Proof
After the user initiates a query request to the smart 
contract, the contract will verify whether the user is 
within the specified access time limit. The access time 
limit of users with different attributes is not necessar-
ily the same. Authorization decisions are made based 
on user access logs and real-time access behaviors. If 
the time interval of the user’s continuous access is less 
than a certain threshold, it will be determined as ille-
gal access, and the access will be locked according to 
the penalty mechanism. There is a positive correlation 
between the number of illegal access times and the lock-
out time. Meanwhile, the user’s access log is updated 
with each access, and the access log cannot be changed 
due to the immutability of the blockchain. Finally, it 
verifies whether the user attributes meet the access 
policy according to the user access token, and performs 
the keyword-matching search. Therefore, this scheme 
can realize dynamic audit of user access and strengthen 
authorization management. To a certain extent, it 
helps to realize smart contract security.

Theorem 5 Our scheme can reduce the cost of trust and 
ensure the storage security of ciphertext data.

Proof
In this scheme, users get the metadata cipher text 
from the blockchain and no third party is involved in 
the whole process of authorization. The decentralized 
nature of the blockchain can create a fair and trustwor-
thy transaction environment for two untrusted parties 
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and reduce the cost of trust in the system. Encrypted 
files are divided into multiple blocks and stored in 
IPFS, and metadata ciphertext is stored in the block-
chain. Users do not need to worry about security risks 
and single-point failures caused by semi-honest third-
party storage. In addition, even if the attacker obtains 
the ciphertext data through illegal means, it is still 
impossible to decrypt it without the corresponding 
attribute private key.

Functional analysis
In Table 2, we compare the functional characteristics of 
the proposed scheme and schemes [24, 25, 28, 29, 31, 
32]. It can be seen that most schemes only support some 
functions. For example, schemes [28, 29, 32] support 

attribute revocation and keyword search, but not policy 
hiding. Schemes [24, 25, 31] support policy hiding, but 
not attribute revocation. In addition, only this scheme 
and scheme [32] support proxy decryption calculation, 
and only schemes [25, 32] apply blockchain technology. 
None of the comparison schemes support user behavior 
auditing. Taken together, our scheme is the most com-
prehensive and flexible, effectively meeting the needs of 
practical applications.

Communication analysis
From the communication point of view, we compare 
the storage cost of the proposed scheme with schemes 
[24, 28, 29], as shown in Table 3. |G|, |GT | represent the 
size of the elements in G and GT  , respectively. n1 refers 
to the size of the attribute set in the ciphertext, n2 

Table 2 Functional comparison

Schemes Fine grained Policy hiding Attribute 
revocation

Keyword 
search

Proxy decrypt Blockchain Dynamic 
audit

[24]
√ √

× × × × ×
[25]

√ √
× × ×

√
×

[28]
√

×
√ √

× × ×

[29]
√

×
√ √

× × ×

[31]
√ √

×
√

× × ×
[32]

√
×

√ √ √ √
×

Ours
√ √ √ √ √ √ √

Table 3 Communication cost comparison

Schemes [24] [28] [29] Ours

Ciphertext size (2n1 + 1)|G| + |GT | (2n1 + 1)|G| + |GT | (2n1 + 1)|G| + |GT | (n1 + 3)|G| + |GT |
Index size − (n1 + 2)|G| + |GT | − 3|G|
Private key size (2n2 + 1)|G| (3n2 + 4)|G| (2n2 + 2)|G| (2n2 + 2)|G|

Token size − 2|G| (2n2 + 1)|G| 3|G| + |GT |
Attribute revocation − 3n3|G| 2n3|G| 3n3|G|

Table 4 Computational cost comparison

Schemes [24] [28] [29] Ours

Encrypt (2n1 + 2)E + n1H (4n1 + 5)E + P + H (2n1 + 2)E + (n1 + 1)H n1P + 7E + (n1 + 2)H

KeyGen (2n2 + 1)E + n2H (5n2 + 8)E (2n2 + 2)E + n2H (2n2 + 2)E + n2H

Token − (n2 + 2)E + H (2n2 + 1)E + H 3E + H + n2P

Search − n2E + 2P n2E + P 3P

Decrypt n2E + P (2n2 + 1)P + n2E − 2E + H

Revocation − 3n3E 2n3E 3n3E
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refers to the size of the user attribute set, and n3 refers 
to the size of the revocation attribute set. It can be seen 
from the table that the proposed scheme is better than 
other schemes in the storage cost of key ciphertext and 
keyword index. The attribute private key storage cost 
of this scheme is close to that of schemes [24, 28, 29], 
but this scheme supports policy hiding. In contrast, our 
scheme provides higher security. In addition, although 
the attribute revocation storage cost of this scheme is 
higher than that of scheme [29], this scheme is superior 
to scheme [29] in other aspects.

Experimental analysis
Table 4 gives a comparison of our scheme and schemes 
[24, 28, 29] in terms of computational cost. We mainly 
compare the computational cost of the six algorithms: 
Encrypt, KeyGen, Token, Search, Decrypt and Revoca-
tion. In the table, E represents the time of exponential 
operation, P represents the time of linear pairing, and 
H represents the time of hash computation. For a more 
intuitive presentation, we conducted simulation exper-
iments on the operation of each algorithm. The experi-
mental environment uses a host: Intel(R) Core(TM) 
i7-9700 CPU @ 3.00GHz, 32.0 GB RAM, Ubuntu 
20.04.1. The target algorithm is implemented using 
Python and the bilinear pairwise encryption library 
PBC. Using the Truffle framework and Ganache to 
build a blockchain Ethereum development environ-
ment, the contract language uses Solidity. The experi-
ment was repeated 100 times, and the average value 
was used as the evaluation standard.

As can be seen from Fig.  4, the encryption time of 
each scheme increases with the number of attributes. 
Since our scheme supports proxy encryption, the time 
consumption in the encryption phase is lower than 
other schemes. Figure  5 compares the computational 

cost of this scheme and other schemes during the key 
generation phase. It can be observed that the genera-
tion time of the attribute private key increases line-
arly with the increase in number of attributes. This is 
because the calculation of the user’s attribute private 
key is related to the corresponding attributes, each of 
which is a part of the private key. Among them, scheme 
[28] has the highest computational cost. Figure 6 shows 
that the time cost of this scheme is the lowest during 
the token generation stage. Scheme [24] does not sup-
port keyword search, and schemes [28, 29] do not sup-
port policy hiding. Therefore, the advantages of this 
scheme are more obvious. The comparison of compu-
tational consumption in the search phase is shown in 
Fig. 7, the search time of the proposed scheme is main-
tained in a steady state, while the search cost of the 
schemes [28, 29] is positively correlated with the attrib-
ute base size. Figure 8 compares the time consumption 

Fig. 4 Time consumption of Encrypt

Fig. 5 Time consumption of KeyGen

Fig. 6 Time consumption of Token
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of each scheme in the decryption stage. Since this solu-
tion supports proxy decryption, the user decryption 
time is stable at about 1.5ms. Compared with schemes 
[24, 28], our scheme has the lowest decryption cost. 
According to Fig.  9, the time cost of our scheme is 
higher than that of the scheme [29] in the attribute rev-
ocation phase, but this does not affect the overall per-
formance of this scheme.

Figure  10 illustrates the arbitration results of the 
Smart Contract for the authorization of persistent ille-
gal access behavior by malicious users. The experiment 
simulated different access behaviors of ten accounts 
within the access period. Use positive and negative 
values to represent legal and illegal access behaviors, 
respectively. It can be observed that a user’s access 
lock time increases exponentially with illegal behav-
ior, which minimizes the impact of continuous illegal 
access or attacks on contract security.

Conclusion
In this paper, we propose a data security access con-
trol scheme based on blockchain and attribute-based 
searchable encryption in the cloud computing envi-
ronment. This solution realizes fine-grained access 
and secure search of cloud data on the premise of 
supporting policy hiding and attribute revocation. At 
the same time, proxy encryption and decryption are 
introduced to reduce the computing cost of users. 
Combined with blockchain technology, it ensures the 
secure distribution of metadata ciphertext and keys, 
as well as a fair search for keywords. In addition, the 
smart contract is used to realize dynamic monitoring 
of user access behavior. Security analysis, performance 
comparison, communication analysis and computing 
analysis show that this scheme provides higher storage 
and computing performance while ensuring data secu-
rity and user access fairness. It can be better applied to 

Fig. 7 Time consumption of Search

Fig. 8 Time consumption of Decrypt

Fig. 9 Time consumption of Revocation

Fig. 10 Behavioral audit test
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practical application scenarios such as smart grid and 
smart healthcare.

In future research, we will mainly focus on how to 
improve the efficiency of user access and multi-keyword 
search on the blockchain.

Authors’ contributions
Liang Yan, Lina Ge, Zhe Wang, Guifen Zhang, Jingya Xu and Zheng Hu 
conceived and designed the study. Liang Yan completed the algorithm experi-
ments and wrote the paper. Lina Ge guided the experimental design and 
data analysis. Zhe Wang participated in the revision of the paper. All authors 
reviewed and edited the manuscript. All authors read and approved the final 
manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
under Grant 61862007, and Guangxi Natural Science Foundation under Grant 
2020GXNSFBA297103.

Availability of data and materials
The supporting data may be provided by corresponding author on request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 15 October 2022   Accepted: 14 April 2023

References
 1. Nayudu PP, Sekhar KR (2018) Cloud environment: A review on dynamic 

resource allocation schemes. Int J Appl Eng Res 13(6):4568–4575
 2. Sandhu RS, Samarati P (1994) Access control: principle and practice. IEEE 

Commun Mag 32(9):40–48
 3. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based 

encryption. In: 2007 IEEE symposium on security and privacy (SP’07); IEEE, 
CA. pp 321–334

 4. Nayudu PP, Sekhar KR (2023) Dynamic time and location information in 
ciphertext-policy attribute-based encryption with multi-authorization. 
Intell Autom Soft Comput 35(3):3801-3813

 5. Nayudu PP, Sekhar KR (2022) Accountable specific attribute-based 
encryption scheme for cloud access control. IntJ Syst Assur Eng Manag 
1–10

 6. Nayudu PP, Sekhar KR (2021) Enhancement of attribute - based encryp-
tion schemes through machine learning techniques: research challenges 
and opportunities. J Jilin University 40:1–18

 7. Yuan Y, Wang FY et al (2016) Blockchain: the state of the art and future 
trends. Acta Autom Sin 42(4):481–494

 8. Zhu N, Cai F, He J, Zhang Y, Li W, Li Z (2019) Management of access privi-
leges for dynamic access control. Cluster Comput 22(4):8899–8917

 9. Wang P, Yue Y, Sun W, Liu J (2019) An attribute-based distributed access 
control for blockchain-enabled iot. In: 2019 International Conference 
on Wireless and Mobile Computing, Networking and Communications 
(WiMob). IEEE, Barcelona, pp 1–6

 10. Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2018) Block-
chain for secure and efficient data sharing in vehicular edge computing 
and networks. IEEE Internet Things J 6(3):4660–4670

 11. Liu B, Xiao L, Long J, Tang M, Hosam O (2020) Secure digital certifi-
cate-based data access control scheme in blockchain. IEEE Access 
8:91751–91760

 12. Yu J, Zhang H, Li S, Mao L, Ji P (2019) Data sharing model for inter-
net of things based on blockchain. J Chin Mini-Micro Comput Syst 
40(11):2324–2329

 13. Al Breiki H, Al Qassem L, Salah K, Rehman MHU, Sevtinovic D (2019) 
Decentralized access control for iot data using blockchain and trusted 
oracles. In: 2019 IEEE International Conference on Industrial Internet (ICII). 
IEEE, Orlando, pp 248–257

 14. Maesa DDF, Mori P, Ricci L (2019) A blockchain based approach for 
the definition of auditable access control systems. Comput Secur 
84:93–119

 15. Li R, Song T, Mei B, Li H, Cheng X, Sun L (2018) Blockchain for large-scale 
internet of things data storage and protection. IEEE Trans Serv Comput 
12(5):762–771

 16. Sandor VKA, Lin Y, Li X, Lin F, Zhang S (2019) Efficient decentralized multi-
authority attribute based encryption for mobile cloud data storage. J 
Netw Comput Appl 129:25–36

 17. Chen N, Li J, Zhang Y, Guo Y (2020) Efficient cp-abe scheme with shared 
decryption in cloud storage. IEEE Trans Comput 71(1):175–184

 18. Fan K, Pan Q, Zhang K, Bai Y, Sun S, Li H, Yang Y (2020) A secure and 
verifiable data sharing scheme based on blockchain in vehicular social 
networks. IEEE Trans Veh Technol 69(6):5826–5835

 19. Naz M, Al-zahrani FA, Khalid R, Javaid N, Qamar AM, Afzal MK, Shafiq M 
(2019) A secure data sharing platform using blockchain and interplan-
etary file system. Sustainability 11(24):7054

 20. De SJ, Ruj S (2017) Efficient decentralized attribute based access control 
for mobile clouds. IEEE Trans Cloud Comput 8(1):124–137

 21. Li H, Pei L, Liao D, Chen S, Zhang M, Xu D (2020) Fadb: A fine-grained 
access control scheme for vanet data based on blockchain. IEEE Access 
8:85190–85203

 22. Hur J (2013) Attribute-based secure data sharing with hidden policies in 
smart grid. IEEE Trans Parallel Distrib Syst 24(11):2171–2180

 23. Cao L, Kang Y, Wu Q, Wu R, Guo X, Feng T (2020) Searchable encryption 
cloud storage with dynamic data update to support efficient policy hid-
ing. China Commun 17(6):153–163

 24. Huang C, Wei S, Fu A (2019) An efficient privacy-preserving attribute-
based encryption with hidden policy for cloud storage. J Circ and Syst 
Comput 28(11):1950186

 25. Gao S, Piao G, Zhu J, Ma X, Ma J (2020) Trustaccess: A trustworthy secure 
ciphertext-policy and attribute hiding access control scheme based on 
blockchain. IEEE Trans Veh Technol 69(6):5784–5798

 26. Yang Y (2015) Attribute-based data retrieval with semantic keyword 
search for e-health cloud. J Cloud Comput Adv Syst Appl 4(1):1–6

 27. Qiu S, Liu J, Shi Y, Zhang R (2017) Hidden policy ciphertext-policy 
attribute-based encryption with keyword search against keyword guess-
ing attack. Sci China Inf Sci 60(5):1–12

 28. Miao Y, Deng RH, Liu X, Choo KKR, Wu H, Li H (2019) Multi-authority 
attribute-based keyword search over encrypted cloud data. IEEE Trans 
Dependable Secure Comput 18(4):1667–1680

 29. Yin H, Qin Z, Zhang J, Deng H, Li F, Li K (2020) A fine-grained authorized 
keyword secure search scheme with efficient search permission update 
in cloud computing. J Parallel Distrib Comput 135:56–69

 30. Tu S, Waqas M, Huang F, Abbas G, Abbas ZH (2021) A revocable and 
outsourced multi-authority attribute-based encryption scheme in fog 
computing. Comput Netw 195:108196

 31. Yin H, Li Y, Li F, Deng H, Zhang W, Li K (2022) An efficient and access 
policy-hiding keyword search and data sharing scheme in cloud-assisted 
iot. J Syst Archit 102533

 32. Liu S, Yu J, Xiao Y, Wan Z, Wang S, Yan B (2020) Bc-sabe: Blockchain-aided 
searchable attribute-based encryption for cloud-iot. IEEE Internet Things 
J 7(9):7851–7867

 33. Li W, Wu J, Cao J, Chen N, Zhang Q, Buyya R (2021) Blockchain-based 
trust management in cloud computing systems: a taxonomy, review and 
future directions. J Cloud Comput Adv Syst Appl 10(1):1–34

 34. Onyema EM, Dalal S, Romero CAT, Seth B, Young P, Wajid MA (2022) 
Design of intrusion detection system based on cyborg intelligence for 
security of cloud network traffic of smart cities. J Cloud Comput Adv Syst 
Appl 11(1):1–20

 35. Ma F, Fu Y, Ren M, Wang M, Jiang Y, Zhang K, Li H, Shi X (2019) Evm*: from 
offline detection to online reinforcement for ethereum virtual machine. In: 
2019 IEEE 26th International Conference on Software Analysis, Evolution 
and Reengineering (SANER): 24-27 February. IEEE, Harbin, pp 554–558

 36. Kumar A, Abhishek K, Bhushan B, Chakraborty C (2021) Secure access 
control for manufacturing sector with application of ethereum block-
chain. Peer Peer Netw Appl 14(5):3058–3074



Page 16 of 16Yan et al. Journal of Cloud Computing           (2023) 12:61 

 37. Wohrer M, Zdun U (2018) Smart contracts: security patterns in the 
ethereum ecosystem and solidity. In: 2018 International Workshop on 
Blockchain Oriented Software Engineering (IWBOSE). IEEE, Campobasso, pp 
2–8

 38. Wang S, Yuan Y, Wang X, Li J, Qin R, Wang FY (2018) An overview of smart 
contract: architecture, applications, and future trends. In: 2018 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE, Changshu, pp 108–113

 39. Zou W, Lo D, Kochhar PS, Le XBD, Xia X, Feng Y, Chen Z, Xu B (2019) Smart 
contract development: Challenges and opportunities. IEEE Trans Software 
Eng 47(10):2084–2106

 40. Oliva GA, Hassan AE, Jiang ZMJ (2020) An exploratory study of smart 
contracts in the ethereum blockchain platform. Empir Softw Eng 
25(3):1864–1904

 41. Psaras Y, Dias D (2020) The interplanetary file system and the filecoin 
network. In: 2020 50th Annual IEEE-IFIP International Conference on 
Dependable Systems and Networks-Supplemental Volume (DSN-S). IEEE, 
Valencia, pp 80–80

 42. Li F, Liu K, Zhang L, Huang S, Wu Q (2021) Ehrchain: a blockchain-based 
ehr system using attribute-based and homomorphic cryptosystem. IEEE 
Trans Serv Comput 15(5):2755-2765

 43. Zheng Q, Li Y, Chen P, Dong X (2018) An innovative ipfs-based storage 
model for blockchain. In: 2018 IEEE/WIC/ACM international conference 
on web intelligence (WI): 03-06 December 2018. IEEE, Santiago, pp 
704–708

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Access control scheme based on blockchain and attribute-based searchable encryption in cloud environment
	Abstract 
	Introduction
	Related work
	Preliminaries
	Blockchain
	Attribute-based searchable encryption
	Bilinear mapping
	Access structure
	DBDH assumption
	DL problem

	IPFS

	System model
	System composition
	Algorithm description
	Security model

	Scheme construction
	Algorithm design
	Smart contract design

	Analysis and evaluation
	Security proof
	Functional analysis
	Communication analysis
	Experimental analysis

	Conclusion
	References


