
Yan et al. Journal of Cloud Computing (2023) 12:61
https://doi.org/10.1186/s13677-023-00444-4

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Access control scheme based on blockchain
and attribute-based searchable encryption
in cloud environment
Liang Yan1,2, Lina Ge1,2,3*, Zhe Wang1,2,3, Guifen Zhang1,2, Jingya Xu2,4 and Zheng Hu1,2

Abstract

With the rapid development of cloud computing technology, how to achieve secure access to cloud data has
become a current research hotspot. Attribute-based encryption technology provides the feasibility to achieve the
above goal. However, most of the existing solutions have high computational and trust costs. Furthermore, the fair-
ness of access authorization and the security of data search can be difficult to guarantee. To address these issues,
we propose a novel access control scheme based on blockchain and attribute-based searchable encryption in
cloud environment. The proposed scheme achieves fine-grained access control with low computation consump-
tion by implementing proxy encryption and decryption, while supporting policy hiding and attribute revocation.
The encrypted file is stored in the IPFS and the metadata ciphertext is stored on the blockchain, which ensures data
integrity and confidentiality. Simultaneously, the scheme enables the secure search of ciphertext keyword in an open
and transparent blockchain environment. Additionally, an audit contract is designed to constrain user access behavior
to dynamically manage access authorization. Security analysis proves that our scheme is resistant to chosen-plaintext
attacks and keyword-guessing attacks. Theoretical analysis and experimental results show that our scheme has high
computational and storage efficiency, which is more advantageous than other schemes.

Keywords Access control, Attribute-based encryption, Blockchain, Secure search, Attribute revocation

Introduction
With the connection of the global mobile Internet and the
rapid development of cloud computing, more and more
communication academia and industry are committed to
shaping a safe and effective resource sharing method in
the cloud environment [1]. Cloud storage technology has

been widely used due to its high performance and low
cost. To ensure the security of private data, data is usually
stored in cloud services in encrypted form. However, the
traditional public key encryption technology has been
unable to meet the current needs of cloud data privacy
protection. In this context, how to achieve access author-
ization and accurate retrieval of encrypted cloud data has
become a new challenge.

Access control (AC) is a key technology to maintain
data security and privacy [2]. The AC provides a solution
to the above problem by constraining user access rights
to ensure legitimate access to sensitive data. Attribute-
based searchable encryption based on ciphertext policy
not only enables fine-grained access control of encrypted
data, but also supports users to retrieve ciphertext based
on keywords. Ciphertext Policy Attribute-Based Encryp-
tion Algorithm (CP-ABE) [3, 4] allows data owners to

*Correspondence:
Lina Ge
66436539@qq.com
1 School of Artificial Intelligence, Guangxi Minzu University,
530006 Nanning, China
2 Key Laboratory of Network Communication Engineering, Guangxi
Minzu University, 530006 Nanning, China
3 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,
Guangxi Minzu University, 530006 Nanning, China
4 School of Electronic Information, Guangxi Minzu University,
530006 Nanning, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00444-4&domain=pdf

Page 2 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

autonomously set data access policies according to a
set of attributes, and associate data access policies with
ciphertexts. When the user’s attribute set satisfies the
access policy, the ciphertext can be decrypted using
the corresponding attribute private key, while the spe-
cific identity of the decryptor remains unknown, which
is suitable for “one-to-many” access scenarios. In recent
years, a large number of studies have applied attribute-
based encryption technology to cloud data access con-
trol to improve the privacy and security of cloud data
[5, 6]. However, the traditional CP-ABE algorithm con-
sumes a lot of computational cost and the security of the
access policy is often ignored because the access policy is
embedded in the ciphertext. In addition, attribute access
expiration and permission change are also urgent issues
to be addressed.

Currently, most access control schemes typically use
a centralized management model, which makes them
susceptible to system-wide failure in the event of a sin-
gle malfunction. Furthermore, traditional solutions rely
on trusted third parties for access decisions, which not
only incur high trust overhead but also unfair service fee
payments. Therefore, designing secure and fair search-
able access control schemes remains a pressing challenge.
Blockchain is a distributed ledger technology character-
ized by decentralization, openness, transparency, tam-
per resistance, and traceability [7]. It supports the secure
storage and transaction of data without the involvement
of third parties, and users no longer have to worry about
the high trust and security risks posed by third parties.
This means that blockchain technology can be used to
replace traditional third parties for access authoriza-
tion management, enabling a fair and trusted distributed
access control framework.

Based on the analysis of the above problems, we com-
bine blockchain technology with attribute-based searcha-
ble encryption technology to propose a novel distributed
data-sharing scheme. This scheme focuses on achieving
fine-grained searchable access to encrypted cloud data
while taking into account low computational cost, policy
privacy, attribute revocation and dynamic authorization.

The main contributions of this study are as follows:

(1) A distributed fine-grained access control scheme is
developed by combining blockchain and attribute-
based searchable encryption. The scheme stores the
data ciphertext in the distributed IPFS (Inter Plan-
etary File System), and facilitates the secure distri-
bution of metadata ciphertext via blockchain smart
contract, thus avoiding the high trust cost and low
security of storage caused by third-party interven-
tion in traditional access systems.

(2) An improved attribute-based searchable encryp-
tion algorithm based on policy hiding is designed
to prevent the leakage of user privacy attributes.
Proxy encryption and decryption are introduced
to reduce the user’s computational consumption.
Simultaneously, the algorithm supports attribute
revocation and decryption verification.

(3) The proposed scheme realizes the secure search of
encrypted keywords on the blockchain. At the same
time, we design a smart contract with a search audit
function to dynamically manage access rights based
on user access behavior and accessibility period to
prevent illegal access.

(4) Security analysis, performance comparison, and
simulation experiments indicate that the proposed
scheme is both feasible and advantageous.

Related work
Access control is an important security mechanism to
protect sensitive information and system resources [8].
Blockchain as an underlying technological architec-
ture that features trust, low cost, and high value. Many
researchers have tried to combine access control and
blockchain technology to make up for the drawbacks
of traditional centralized access control. The existing
blockchain access control schemes are mainly based on
on-chain storage and execution of permission verifica-
tion. Reference [9] proposes an access control scheme to
facilitate the deletion, update, and access of lightweight
IoT devices on the blockchain, however, this scheme is
not suitable for large file sharing. Reference [10] employs
blockchain technology to enable the secure sharing of
vehicle information. Although the scheme in question
calculates the reputation value of a vehicle based on the
weight model to prevent unauthorized sharing, it does
not account for privacy. Reference [11] proposes a block-
chain data access control scheme based on digital cer-
tificates. This scheme designs an identity authentication
protocol that does not require verification of third-party
signatures, and proposes to use signature technology to
protect the sensitive information of contracts and the
user’s identity information, but does not consider the
secure storage of data. Focusing on a situation where the
traditional IoT data sharing model is heavily reliant on a
third party, reference [12] employs blockchain technol-
ogy to design a trustless sharing model. However, this
scheme does achieve fine-grained control using symmet-
ric encryption. References [13–15] realize user attribute
matching access control in a non-encrypted state, and
deploy an access policy in the smart contract. Owing to
the openness and transparency of the blockchain, a user

Page 3 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

may send the access policy and attributes to a smart con-
tract, thus compromising privacy.

Access control schemes featuring attribute-based
encryption and cloud storage have been proposed to
strengthen the security of data access and alleviate the
storage bottleneck of blockchains. The CP-ABE algorithm
enables superior data security and fine-grained access
control for external storage. In the scheme proposed by
[16–18], shared data are encrypted with CP-ABE and
stored in the cloud service. The security of a cloud ser-
vice directly affects the security of data, which creates a
risk of user data loss. In [19], a distributed storage IPFS
is used to implement a data-sharing scheme based on
blockchain and secret sharing. This scheme stores plain-
text data in the IPFS system. An obvious drawback is
that when an address stored in the IPFS is leaked, any
unauthorized user can obtain the corresponding plain-
text data. References [20, 21] all use proxy computing
to reduce the computational overhead of CP-ABE and
ensure the traceability of the secret key. However, they
do not consider the privacy of access policies. Since the
access policy is embedded in ciphertext in plaintext form,
it can be exploited by attackers to infer private attrib-
utes. Reference [22] proposes a smart grid data sharing
scheme based on policy hiding to prevent the exposure of
the access structure, and introduces proxy decryption to
reduce the user decryption overhead. Reference [23] pro-
poses an attribute-based encryption scheme for keyword
searches based on policy hiding to prevent keyword-
guessing attacks. Reference [24] proposes a cloud storage
scheme with attribute policy hiding based on the “AND”
gate access structure, which implements obfuscated
attributes into the original access policy for user authen-
tication. However, [22–24] are not blockchain-based, and
ignore the security threats caused by third parties. Ref-
erence [25] proposes a policy-hiding blockchain access
control scheme based on CP-ABE. The scheme uses
polynomials to express the access structure. Data users
can perform attribute policy matching locally and verify
using homomorphic encryption. But this scheme needs
to consume a lot of computing resources.

In order to realize the searchability of ciphertext, ref-
erences [26, 27] propose an attribute-based encryption
scheme based on keyword search. They store encrypted
data on cloud services, and perform search verifica-
tion on keywords on cloud services to ensure that the
obtained ciphertext matches. In practical applications,
attributes may be revoked due to permissions changes
and other factors. To this end, references [28–30] pro-
pose data-sharing schemes that support attribute revoca-
tion. Reference[28] proposes a multi-authority searchable
access scheme for cloud data. Although this scheme uses
multiple authorizations to help keep user information

confidential, it also easily leads to security bottlenecks.
Reference [31] improves on the basis of reference [29]
and implements policy hiding. However, in the above
solution, the user’s search behavior is uncontrollable, and
there may be a phenomenon of unfair payment of search
service fees. Reference [32] uses blockchain technology
to solve the above problems, but this scheme does not
support policy hiding.

Based on the above analysis, this study proposes a
secure access control scheme based on blockchain and
attribute-based searchable encryption in cloud environ-
ment. The scheme stores encrypted files with IPFS, which
alleviates the storage pressure of blockchain and the sin-
gle point of failure problem of traditional storage model.
At the same time, the scheme supports attribute policy
hiding and attribute revocation, which improves the
security and flexibility of access. Proxy encryption and
decryption are also introduced to reduce user computa-
tion consumption. In addition, the solution implements a
secure search of encrypted keywords on the blockchain,
while monitoring user access behavior and time limits
through smart contracts to prevent unauthorized access.

Preliminaries
In this section, we describe the relevant background
and basic information pertaining to this scheme. Table 1
introduces some of the notation used throughout this
scheme.

Table 1 Notations in this paper

Symbol Description

� safe parameter

PK system public key

MK system master key

SK user private key

W keyword

ck symmetric key

S user attribute set

U system attribute set

CT key ciphertext

CT1 proxy encrypted ciphertext

CT2 proxy decrypted ciphertext

SK
′ intermediate key

P access policy

�i hiding access policy

FID file identification

HD file storage address

Iw keyword index

Tw keyword trapdoor

E(M) encrypted file

Page 4 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

Blockchain
Blockchain was first used as the underlying support-
ing technology for Bitcoin. In essence, it is a distributed
shared database that serves as a revolutionary low-
cost credit technology solution, and is widely used in
resource sharing, data traceability, and access control
[33, 34]. Ethereum, a decentralized application plat-
form based on the blockchain, provides an Ethereum
virtual machine (EVM) [35] environment to support
the operation of scripting languages. Users can write
and deploy smart contracts and decentralized applica-
tions in Ethereum using programming languages such
as Solidity and JavaScript to create more possibilities
for blockchains [36, 37]. Smart contracts are codes
written in accordance with transaction rules [38, 39].
Once generated, smart contracts cannot be tampered
with, and run permanently on the blockchain. EVM
creates a secure operating environment. An Ethereum
account consists of a pair of public and private keys,
and may be classified as an externally owned account or
a contract account. An externally owned account is an
account that is not associated with the contract, and is
controlled by the user’s account private key. A contract
account is an account associated with the contract code
generated upon deployment of a contract.

Smart contracts are deployed on the blockchain and
users can interact with them by calling the correspond-
ing address or interface in the contract [40]. Com-
pared to that traditional contracts, the code of smart
contracts features legal benefits and can execute auto-
matically when the relevant conditions are met without
interruptions in the execution process. Simultaneously,
smart contracts can conduct secure transactions in a
blockchain environment without a third-party arbi-
ter. Before contract execution, all parties must submit
the preset funds. Regardless of whether the contract is
breached, it is implemented according to the manda-
tory automatic execution result.

Attribute‑based searchable encryption
This section describes the basics of ciphertext policy
attribute-based searchable encryption.

Bilinear mapping
Suppose p is a large prime number, G and GT are two
multiplicative cyclic groups of order p, and there is a
bilinear mapping e : G × G −→ GT that satisfies the
following properties:

• Bilinear: For any g1, g2 ∈ G , and u, v ∈ Zp , we have
e(gu1 , g

v
2) = e(gv1 , g

u
2) = e(g1, g2)

uv.

• Non-degeneracy: There exists g , h ∈ G such that
e(g , h) = 1.

• Computability: For any a, b ∈ G , there is an efficient
computation e(a, b) .

Access structure
This scheme uses the access control tree as the
access structure. Assuming a system attribute set
U = {att1, att2, att3, att4} and access policy P = ((att1 OR
att2) AND att3 AND att4). ϒ is defined as an access tree
used to describe access policy P. The leaf nodes of ϒ rep-
resent corresponding attributes, whereas the other nodes
use the threshold to represent the “AND” and “OR” gates.
Suppose that c represents the number of child nodes
of node x. Let V represents the threshold of x, where
V ∈ [1, c] . When V = c , the threshold gate is an “AND”
gate, and when V = 1 , the threshold gate is an “OR” gate.
The value of each leaf node relates to user attributes and
thresholds. If the user attribute set satisfies the access pol-
icy, then the secret value of the root node can be obtained
by recursive calculation. In this case, the user attributes
satisfy the access policy P in either of the following cases:
(att1 AND att3 AND att4) or (att2 AND att3 AND att4).

DBDH assumption
Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion: Given a bilinear mapping e : G × G −→ GT of
order p, the challenger randomly selects a, b, c ∈ Zp .
Setting T ∈ GT , with (Q = (g , ga, gb, gc),T) as
the input, the attacker guesses. If it is judged that
T = e(g , g)abc , output 1. Otherwise, T is a random
element in GT , output 0. The advantage of defin-
ing an algorithm Ŵ to solve this problem is as follows:
ε = Pr Ŵ(Q, e(g , g)abc) = 1 − Pr[Ŵ(Q,T ∈ GT) = 1] .

Definition 1 If no attacker can solve the DBDH prob-
lem with a non-negligible advantage ε in polynomial
time, the DBDH assumption holds.

DL problem
Discrete Logarithm (DL) problem: Let G be a multi-
plicative cyclic group of order p, and g be a generator
of G. For ∀f ∈ G , there exists an exponent t such that
f = gt(modp) holds. Then, it is difficult to solve the dis-
crete logarithm t according to the values of f, g, and p.

IPFS
IPFS is a distributed storage system with decentralized
cloud computing capabilities [41]. Compared with tradi-
tional centralized storage systems, IPFS does not have a

Page 5 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

single point of failure, and the nodes do not trust each
other, which provides higher security and access effi-
ciency. With the development of cloud computing, it has
become a trend for IPFS to replace traditional local stor-
age technology [42, 43]. When a file is uploaded to the
IPFS, it is split into multiple blocks for storage, and the
system returns a unique hash value. The user does not
need to know the storage path, and the unique hash value
can determine data tampering. To download a file from
the IPFS, the user can retrieve it through a hash address.

System model
This scheme uses blockchain technology, attribute-
based searchable encryption, and IPFS to propose a fine-
grained access control scheme with a hidden policy and
distributed storage. Figure 1 illustrates the system model
of the proposed scheme.

System composition
The primary interacting entities involve the data owner,
data user, IPFS, blockchain, and proxy server.

Data Owner (DO): DO is the publisher of data. Its
main responsibilities are to develop attribute sets, set pri-
vate keys and access time periods for accessing users, and
set access policies and keyword indexes for shared data.
It also uploads the file cipher to IPFS and the metadata
cipher to the smart contract.

Data User (DU): DU requests cryptographic metadata
ciphertext and storage address from the smart contract
according to the search token, and the address obtains
the ciphertext file from IPFS. When the attribute set of
DU satisfies the access policy, it can be accessed through
the attribute private key to decrypt the ciphertext.

IPFS: IPFS is mainly responsible for the distributed
storage of ciphertext data uploaded by DO and returning
the ciphertext according to the hash storage address.

Blockchain (BC): The blockchain is responsible for the
distribution of the user’s private key and ciphertext, and
for making appropriate audit decisions based on user
access behavior. Simultaneously authenticate user attrib-
utes and perform keyword searches.

Proxy encryption server (ES): Mainly responsible for
proxy encryption calculation.

Proxy decryption server (DS): Mainly responsible for
proxy decryption calculation.

Algorithm description
The formal description of the proposed algorithm is as
follows:
Setup

(

1�
)

−→ (PK ,MK) : The system initialization
algorithm is performed by DO. The algorithm takes a
parameter � as input, and outputs the system public key
PK and the system master private key MK. Publish the PK
and keep the MK secret.
ProEnc(PK ,P) −→ CT1 : ES executes the proxy encryp-

tion algorithm, takes the system public key PK and the
access policy P as input, and outputs the proxy encrypted
ciphertext CT1.
Encrypt(PK , ck ,W ,CT1) −→ (CT ,�i, Iw) : The encryp-

tion algorithm takes the public key PK, the symmetric
key ck, the keyword W and the proxy encrypted cipher-
text CT1 as input, and outputs the key ciphertext CT, the
hidden policy �i and the keyword index Iw.
KeyGen(PK ,MK , S) −→ SK : The attribute private

key generation algorithm takes the public key PK, the

Fig. 1 System model

Page 6 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

master private key MK and the user attribute set S as
input, and outputs the attribute private key SK.
Token

(

PK , SK ,W ′) −→
(

�i
′,Tw

)

 : DU executes the
token generation algorithm. The algorithm takes the
public key PK, the attribute private key SK, and the
query key W ′ as input, and outputs the token

{

�i
′,Tw

}

.
Search(Iw ,Tw) −→ (0, 1) : The search algorithm takes

the keyword index Iw and the search trapdoor Tw as
input. If the keyword match, the blockchain returns the
ciphertext CT and the storage address HD to the user.
ProDec

(

SK ′,CT
)

−→ CT2 : The proxy decryp-
tion algorithm takes the intermediate key SK ′ and
the ciphertext CT as input, and outputs the proxy
decrypted ciphertext CT2 . Then, the DS returns CT2 to
the DU.
Decrypt(d,CT2) −→ ck ′ : The user takes the secret

parameter d and the proxy decrypted ciphertext CT2 as
input, and outputs the symmetric key ck ′.
Revocation

(

S
)

−→
(

AKi, Si,Cy

)

 : The attribute revoca-
tion algorithm takes a revocation attribute set S as input.
Obtain the updated public key component AKi , attribute
private key component Si and ciphertext component Cy
are obtained.

Security model
We give the definition of the security of the target scheme
under the chosen plaintext attack. The security of the algo-
rithm is proven through a game between the challenger and
the attacker. The game consists of the following process:

• Initialization: The attacker selects a target challenge
policy P∗ and sends it to challenger.

• Parameter setting: The challenger runs the initial
algorithm to obtain the public key and private key,
and sends the public key to the attacker.

• Phase 1: The attacker selects attribute set S and
sends it to the challenger to request the correspond-
ing private key. The challenger runs the private key
generation algorithm to generate the private key, and
sends it to the attacker.

• Challenge: The attacker randomly selects two mes-
sages (M0 , M1) of equal length and a keyword W ∗ to
send to the challenger. The challenger then randomly
selects µ ∈ {0, 1} , executes the encryption algorithm
to encrypt Mµ and W ∗ . Finally, the challenge cipher-
text CTµ is obtained and returned to the attacker.

• Phase 2: Equivalent to Phase 1. The attacker can per-
form Phase 1 multiple times to test the attack.

• Guess: The attacker guesses µ′ ∈ {0, 1} ; if µ′ = µ , the
attacker wins the game, and the winning advantage is
ε =

∣

∣Pr
[

µ′ = µ
]∣

∣− 1
2
.

Definition 2 The attribute-based encryption algorithm
is considered secure if the attacker’s advantage in winning
the game described above is negligible in polynomial time.

Scheme construction
The goal of this study is to implement a secure access
control scheme based on an improved attribute-based
searchable algorithm and blockchain technology. In this
section, we elaborate on the structure of the attribute-
based searchable algorithm and the design of the smart
contract.

Algorithm design
Figure 2 illustrates the workflow of the proposed algo-
rithm. The proposed scheme consists of the following six
phases: system initialization, data encryption, key gener-
ation, search, data decryption, and attribute revocation.

Phase 1: System initialization. Setup
(

1�
)

⟶ (PK ,MK) .
Let G be a multiplicative cyclic group of order prime
p and g to be a generating element of G. There exists
a bilinear mapping e : G × G −→ GT with a safe
parameter � as the group size. Then, set two hash func-
tions H1 : {0, 1}∗ −→ G and H2 : {0, 1}∗ −→ Zp .
Simultaneously, we define the Lagrangian coefficient �

i,S (x) =
∏

j∈S,i �=j

(

x − j
)

/
(

i − j
)

 , where i ∈ Zp , S is the
set of elements in Zp . The initialization algorithm takes
the security parameter � as input, and randomly selects
α,β ∈ Zp . For each attribute ai ∈ U , randomly select
vi ∈ Zp , where U is the system attribute set. Finally, DO
executes the initialization algorithm and obtains the sys-
tem public key PK and master private key MK:

Phase 2: Data encryption. In the encryption phase,
DO first encrypts the file M using AES and obtains the
encrypted ciphertext Eck(M) , where ck is the symmetric
key. Then upload the ciphertext to the IPFS for distributed
cloud storage, and obtain the storage hash address HD.
ProEnc(PK ,P) −→ CT1 . The DO formulates the

access policy P according to the system attribute set
U, and sends it to the ES. The ES obtains access tree ϒ
according to policy P. Set a polynomial qx for each node
x in the tree in a top-down order, starting from the
root node R. The degree dx of the highest term of each
node’s polynomial satisfies dx = tx − 1 , where tx is the
threshold of x. Starting from root node R, the algorithm
randomly selects a number k1 ∈ Zp as the secret num-
ber, and sets qR(0) = k1 . It then randomly selects other
coefficients dR of qR to fully define the polynomial. For

(1)

PK =
{

g , gα , gβ , e
(

g , g
)α
,
{

AKi = gvi | ∀ai ∈ U
}}

,

MK = {α,β , {vi | ∀ai ∈ U}}.

Page 7 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

other nodes x in ϒ , we have qx(0) = qparent(x)(index(x)) ,
where index(x) represents the index of node x under
parent node parent(x) . Randomly selected coefficients
of dx are used to get the full polynomial qx . Letting Y be
the attribute set of leaf nodes in the access tree ϒ , the
proxy encryption ciphertext can be obtained by the fol-
lowing calculation:

Encrypt(PK , ck ,W ,CT1) −→ (CT ,�i, Iw) . This algo-
rithm is performed by the DO. After obtaining CT1 ,
DO randomly selects a number k2 ∈ Zp and calculates:
C = ck · e

(

g , g
)αk2 , C0 = gk2 , C1 = gβk2 · C1

′ = gβk2+k1 ,
C2 = gH2(ck) , Cy = Cy

′ . Finally, it outputs the key
ciphertext:

After that, DO sets the keyword W for the ciphertext, ran-
domly selects σ ∈ Zp , and calculates the keyword index:

(2)CT1 =
{

C1
′ = gk1 ,

{

Cy
′ = gviqy(0) | ∀ai = att

(

y
)

∈ Y
}

}

.

(3)CT =
{

C ,C0,C1,C2,
{

Cy

}

att(y)∈Y

}

.

(4)Iw =
{

I1 = g
βσ

H2(W) , I2 = gασ , I3 = gσ
}

.

In order to prevent the security threat caused by the
disclosure of privacy attributes in the access policy. For
each att(i) ∈ P , DO calculates �i = e

(

H1(att(i)), g
α
)

to hide the policy attribute. Then, DO creates the
identity FID for the encrypted file and uploads
{FID,CT ,HD, Iw ,�i} to the blockchain.

Phase 3: Private key generation. KeyGen(PK ,MK , S) ⟶ SK .
The key generation algorithm is performed by the DO.
DU sends the attribute set S to DO, and submits an access
application. DO selects a random number r ∈ Zp and exe-
cutes the following algorithm to generate the attribute pri-
vate key:

Phase 4: Search. Token
(

PK , SK ,W ′) −→
(

�i
′,Tw

)

 . If
DU wants to get the ciphertext data, then DU needs to
generate a search token. DU randomly chooses π ∈ Zp
and computes the search trapdoor Tw based on the
query keyword W ′:

(5)SK =

{

S1 = gα+βr , S2 = gr ,

∀ai ∈ S : Si = g
r
vi , S3,i = H1(ai)

α

}

.

(6)
Tw =

{

T1 = grπH2(W
′),T2 = g (α+βr)π ,T3 = gπ

}

.

Fig. 2 The workflow of the proposed algorithm

Page 8 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

For each attribute ai ∈ S , DU calculates �i
′ = e

(

g , S3,i
)

 .
Eventually, DU sends the access token

{

�i
′,Tw

}

 to the
blockchain to perform the search query.
Search(Iw ,Tw) −→ (0, 1) . After receiving the search

request, the BC needs to determine whether the user’s
access behavior is legal. Then verify �i = �i

′ . If the equa-
tion holds, it means that the user attribute set satisfies the
access policy. After that, BC executes the keyword search
algorithm:

Correctness verification:

If the search verification passes, return {CT ,HD} to the
user. Otherwise output 0.

Phase 5: Data decryption. ProDec
(

SK ′,CT
)

−→ CT2 .
The proxy decryption algorithm is executed by the proxy
decryption server DS. DU randomly selects d ∈ Zp , calcu-
lates the intermediate key:

Then, send
{

SK ′,CT
}

 to DS. Proxy decryption is per-
formed in a state where the user’s private key informa-
tion is non-public, and the process is recursive. Given
that the root node in access tree ϒ is R, for each child
node y in set Y, we set p(y) to be the set of all nodes in
the path from y to R. For node x in the access tree, let
Sx be the set of sibling nodes (including itself). We
have:

�
y =

∏

x∈p(y),x �=R

�
i,S (0) , where i = index(x) ,

S =
{

index(z) | z ∈ Sx
}

 . If the user’s attribute set satis-
fies the access policy, according to SK ′ , for the root
node R in the access tree ϒ , compute

Otherwise, FR =⊥ . If FR can be calculated, DS per-
forms the next calculation:

(7)e(I1,T1)e(I2,T3) = e(T2, I3).

e(I1,T1)e(I2,T3) = e(g
βσ

H2(W) , grπH2(W
′))e

(

gασ , gπ
)

= e
(

g , g
)(α+βr)πσ

e(T2, I3) = e
(

g (α+βr)π , gσ
)

= e
(

g , g
)(α+βr)πσ

(8)SK ′ =

{

S1
′ = S

1
d
1 , S2

′ = S
1
d
2 ,

{

Si
′ = S

1
d
i

}

∀ai∈S

}

.

(9)

FR =
∏

y∈Y ,i=att(y)

e
(

Cy, Si
′)

�
y

=
∏

y∈Y ,i=att(y)

e
(

gviqy(0), g
r
dvi

)

�
y

= e
(

g , g
)

rqR(0)

d

= e
(

g , g
)

rk1
d .

Then, secretly send CT2 = {D,C ,C2} to DU.
Decrypt(d,CT2) −→ ck ′ . The DU obtains the cipher-

text file E(M) from the IPFS system according to the
storage address HD, and performs the final decryption
operation:

To verify the correctness of decryption, DU computes
C2 = gH2(ck

′) . If the equation holds, DU decrypts the
ciphertext using ck to obtain the plaintext file M.

Phase 6: Attribute revocation. Revocation
(

S
)

⟶

(

AKi , Si ,Cy

)

 .
Assuming that there is a revocation attribute set S . For
each ai ∈ S , the DO randomly selects vi ∈ Zp , calcu-
lates vki = vi/vi . The DO updates the public key of ai as
AKi =

(

gvi
)vki . Then send vki to authorized users. The

attribute revocation algorithm is accomplished through the
following two steps:

• After gaining vki , legitimate users update the private
key element corresponding to the attribute ai ∈ S :
Si = S

vk−1
i

i ;
• For ∀ai = att

(

y
)

∈ S , DO updates the ciphertext
component: Cy = C

vki
y . Afterwards, under the pre-

written smart contract logic rules, the updated
ciphertext is re-uploaded to the blockchain, and the
access deadline of the revoked user is updated.

Smart contract design
In our scheme, the smart contract is primarily responsible
for the storage and distribution of metadata ciphertexts.
We created and deployed a smart contract on the Ethereum
platform using solidity language. This section focuses on
the following four functional module algorithms:
Storage(AddressDO, FID,CT ,HD, Iw ,�i) . This inter-

face can only be called by DO. The function stores meta-
data related to the ciphertext, with the execution logic
shown in Algorithm 1. First, it needs to verify whether
DO is the caller of the method, where msg.sender refers
to the current caller. Second, returns false if the FID
already exists. Then, it forms a structure mapping:
FID −→ (CT ,HD, Iw ,�i) , which is stored in the smart

(10)

D =
FR · e

(

S1
′,C0

)

e
(

S2
′,C1

)

=
e
(

g , g
)

rk1
d · e(g

α+βr
d , gk2)

e
(

g
r
d , gβk2+k1

)

= e
(

g , g
)

αk2
d .

(11)ck ′ =
C

Dd
=

ck · e
(

g , g
)αk2

e
(

g , g
)αk2

.

Page 9 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

contract. A transaction is eventually formed and broad-
cast in the blockchain.
SetUsk(AddressDO,AddressDU ,E(SK), deadline) . This

function interface can only be called by DO. The execu-
tion logic is described in Algorithm 2. The DO encrypts
the SK with the user’s Ethereum account public key, and
sets a valid access period for the user, uploading them
into the smart contract. It generates a structure mapping:
AddressDU −→ (E(SK), deadline) , and forms a storage
transaction.
GetUsk(AddressDU) . This function interface can only

be called by DU. The execution logic is shown in Algo-
rithm 3. If the user information exists, the correspond-
ing E(SK) and deadline will be obtained according to
the user’s Ethereum address. Otherwise, an exception
will be thrown. Subsequently, DU decrypts E(SK) with
its own Ethereum account private key. If the user’s
attribute set satisfies the access policy, the ciphertext
can be decrypted by the attribute private key.
Search(AddressDU , token) . This function interface can

only be called by DU. The algorithm takes the user address
and search token as input to realize dynamic management
of user access rights. The execution logic is shown in Algo-
rithm 4. It is necessary to obtain the current access time
nowTime and user access log. The access log contains the
number of violations lockNum, lock time lockTime, and last
successful access time lastTime. If the current time is less
than the user’s access deadline and the user’s access lock time
is less than the current time, then analyzes the user’s access
behavior. If the user’s continuous access interval is less than
the specified threshold, it is determined as an illegal behavior
and the user’s access rights are locked through the following
penalty mechanism: lockTime = nowTime + 2lockNum−1 .
Conversely, if the user’s access behavior is legal, the latest
access time of the user is recorded. Finally, BC verifies the
user attributes and executes the keyword search algorithm,
returning {CT ,HD} to the user.

Algorithm 1 Storage

Algorithm 2 SetUsk

Algorithm 3 GetUsk

Algorithm 4 Search

To simplify the description, we take Fig. 3 as
an example. Assuming interval = 10 . When
nowTime − lastTime < 10 , it is judged as ille-
gal access behavior and access is locked according

Page 10 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

to the penalty mechanism. Finally, the locking time
and the number of locking times are updated. When
nowTime − lastTime ≥ 10 , it is judged as legal access,
and the time of the last successful access is updated to the
current access time.

Analysis and evaluation
This section presents an analysis and evaluation of the
proposed scheme from four aspects: security, functional-
ity, communication and experimentation.

Security proof

Theorem 1 The proposed scheme supports against cho-
sen-plaintext attacks under the DBDH assumption.

Proof
The challenger selects a bilinear mapping e ∶ G × G ⟶ GT ,
given a challenge tuple

(

g , ga, gb, gc,T
)

 , where
a, b, c ∈ Zp, g ∈ G,T ∈ GT . Then play the following game
with the attacker:

• Initialization: The attacker selects a target challenge
policy P∗ and sends it to challenger.

• Parameter setting: The challenger randomly selects
α,β , x′ ∈ Zp , set α = ab+ x′ . For each attribute
ai ∈ U , it randomly selects vi ∈ Zp . Calculate the sys-
tem public key:

(12)PK =

{

g , gab+x′ , gβ , e
(

g , g
)ab+x′

,
{

AKi = gvi |∀ai ∈ U
}

}

.

 The PK is sent to the attacker.
• Phase 1: The attacker selects an attribute set S and sends

it to the challenger to initiate a private key request. The
challenger chooses a random number r′ ∈ Zp and lets
r = r′ − b . Then return SK to the attacker:

• Challenge: The attacker randomly selects two mes-
sages of equal length (M0,M1) , a keyword W ∗ , and
sends them to the challenger. The challenger ran-
domly selects µ ∈ {0, 1} and k1 ∈ Zp to generate:
C ′
1 = gk1 , C ′

y = gviqy(0) , where ai = att
(

y
)

∈ Y . After
getting CT ∗

1 =
{

C ′
1,C

′
y

}

 , the challenger performs
the encryption algorithm to obtain the ciphertext:

 Then randomly select σ ∈ Zp and compute:
I1 = g

βσ

H2(W
∗) , I2 = g (ab+x′)σ , I3 = gσ . Return

{CT ∗, I1, I2, I3} to the attacker.
• Phase 2: Equivalent to Phase 1.
• Guess: The attacker guesses µ′ ∈ {0, 1} . If µ′ = µ ,

then T = e
(

g , g
)abc , and the challenger outputs 1.

The attacker’s advantage at this time is:

 If µ′ �= µ , then T = R , R is a random number in GT ,
and the challenger outputs 0. The attacker’s advan-
tage at this time is:

(13)

SK =

{

S1 = gab+x′+β(r′−b), S2 = gr
′−b,

∀ai ∈ S : Si = g
r′−b
vi

}

.

(14)CT ∗
=

{

C = M
�
⋅ T ⋅ e(g , g)x

�c ,C0 = gc ,

C1 = g�c+k1 ,C2 = gH2(M�
),Cy = C �

y

}

.

(15)
Pr

[

Γ

(

g , ga, gb, gc ,T = e
(

g , g
)abc

)

= 1

]

=
1

2
+ �.

Fig. 3 Audit case for user access

Page 11 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

In summary, the total advantage of an attacker in solving
the DBDH problem is:

Since ε/2 < ε , the attacker’s advantage in winning the
game is negligible. Therefore, our scheme realizes the
security under the chosen-plaintext attack.

Theorem 2 The proposed scheme can prevent keyword
guessing attacks in random oracles when given a one-way
hash function H2.

Proof
If the attacker cannot correctly distinguish between gx·H2(W0)
and gx·H2(W1) in the security game, this scheme can ensure
the keyword security. The game process is as follows:

• Initialization: The challenger randomly selects
α,β ∈ Zp , and a hash function: H2 : {0, 1}∗ −→ Zp .
Then, execute the Setup algorithm and publish the
PK.

• Parameter setting: The challenger randomly selects
r ∈ Zp and calculates S1 = gα+βr , S2 = gr.

• Phase 1: The attacker selects a keyword W ∗ and
sends it to the challenger to apply for a search token.
The challenger randomly selects π ∈ Zp , calculates:
T1 = grπH2(W

∗) , T2 = g (α+βr)π , T3 = gπ , and returns
T ∗ = {T1,T2,T3} to the attacker.

• Challenge: The attacker gives two keywords W0 , W1 .
The challenger randomly selects a bit µ ∈ {0, 1} , cal-
culates: T1 = grπH2(Wµ) , T2 = g (α+βr)π , T3 = gπ , and
sends them to the attacker.

• Phase 2: Similar to Phase 1 when the keywords W0
and W1 are not queried.

• Guess: The attacker guesses µ′ ∈ {0, 1} . If µ′ = µ , the
attacker wins the game.

Assuming that the attacker can win the game with a non-
negligible advantage ε in the guessing stage, this means
that the attacker can solve the discrete logarithm prob-
lem, which is contrary to the fact. Moreover, since H2
is a one-way hash function, attackers cannot obtain Wµ
according to H2

(

Wµ

)

.
Theorem 3 Our scheme supports policy hiding to ensure
the security of user privacy attributes.

(16)Pr
[

Ŵ

(

g , ga, gb, gc,T = R
)

= 1

]

=
1

2
.

(17)
1

2
Pr

[

µ′ = µ
]

+
1

2
Pr

[

µ′ �= µ
]

−
1

2
=

ε

2
.

Proof
In this scheme, attributes in the original access policy are
hidden in the leaf nodes in the threshold access tree. It is
difficult for the attacker to calculate the value k1 of the
root node. In addition, the data owner hashes the attrib-
utes in the access policy and then uses e(H1(att(i)), g

α) to
hide the set of policy attributes. At the same time, if and
only if authorized users can get from SK, and calculate
e(H1(att(i))

α , g) . Since α is a private parameter and the
hash function is unidirectional, thus the attacker cannot
recover attributes and reconstruct the access policy. To
sum up, our scheme can effectively hide the access policy
and ensure the privacy of user attributes.

Theorem 4 Our solution supports contract dynamic
audit and strengthens user access authorization
management.

Proof
After the user initiates a query request to the smart
contract, the contract will verify whether the user is
within the specified access time limit. The access time
limit of users with different attributes is not necessar-
ily the same. Authorization decisions are made based
on user access logs and real-time access behaviors. If
the time interval of the user’s continuous access is less
than a certain threshold, it will be determined as ille-
gal access, and the access will be locked according to
the penalty mechanism. There is a positive correlation
between the number of illegal access times and the lock-
out time. Meanwhile, the user’s access log is updated
with each access, and the access log cannot be changed
due to the immutability of the blockchain. Finally, it
verifies whether the user attributes meet the access
policy according to the user access token, and performs
the keyword-matching search. Therefore, this scheme
can realize dynamic audit of user access and strengthen
authorization management. To a certain extent, it
helps to realize smart contract security.

Theorem 5 Our scheme can reduce the cost of trust and
ensure the storage security of ciphertext data.

Proof
In this scheme, users get the metadata cipher text
from the blockchain and no third party is involved in
the whole process of authorization. The decentralized
nature of the blockchain can create a fair and trustwor-
thy transaction environment for two untrusted parties

Page 12 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

and reduce the cost of trust in the system. Encrypted
files are divided into multiple blocks and stored in
IPFS, and metadata ciphertext is stored in the block-
chain. Users do not need to worry about security risks
and single-point failures caused by semi-honest third-
party storage. In addition, even if the attacker obtains
the ciphertext data through illegal means, it is still
impossible to decrypt it without the corresponding
attribute private key.

Functional analysis
In Table 2, we compare the functional characteristics of
the proposed scheme and schemes [24, 25, 28, 29, 31,
32]. It can be seen that most schemes only support some
functions. For example, schemes [28, 29, 32] support

attribute revocation and keyword search, but not policy
hiding. Schemes [24, 25, 31] support policy hiding, but
not attribute revocation. In addition, only this scheme
and scheme [32] support proxy decryption calculation,
and only schemes [25, 32] apply blockchain technology.
None of the comparison schemes support user behavior
auditing. Taken together, our scheme is the most com-
prehensive and flexible, effectively meeting the needs of
practical applications.

Communication analysis
From the communication point of view, we compare
the storage cost of the proposed scheme with schemes
[24, 28, 29], as shown in Table 3. |G|, |GT | represent the
size of the elements in G and GT , respectively. n1 refers
to the size of the attribute set in the ciphertext, n2

Table 2 Functional comparison

Schemes Fine grained Policy hiding Attribute
revocation

Keyword
search

Proxy decrypt Blockchain Dynamic
audit

[24]
√ √

× × × × ×
[25]

√ √
× × ×

√
×

[28]
√

×
√ √

× × ×

[29]
√

×
√ √

× × ×

[31]
√ √

×
√

× × ×
[32]

√
×

√ √ √ √
×

Ours
√ √ √ √ √ √ √

Table 3 Communication cost comparison

Schemes [24] [28] [29] Ours

Ciphertext size (2n1 + 1)|G| + |GT | (2n1 + 1)|G| + |GT | (2n1 + 1)|G| + |GT | (n1 + 3)|G| + |GT |
Index size − (n1 + 2)|G| + |GT | − 3|G|
Private key size (2n2 + 1)|G| (3n2 + 4)|G| (2n2 + 2)|G| (2n2 + 2)|G|

Token size − 2|G| (2n2 + 1)|G| 3|G| + |GT |
Attribute revocation − 3n3|G| 2n3|G| 3n3|G|

Table 4 Computational cost comparison

Schemes [24] [28] [29] Ours

Encrypt (2n1 + 2)E + n1H (4n1 + 5)E + P + H (2n1 + 2)E + (n1 + 1)H n1P + 7E + (n1 + 2)H

KeyGen (2n2 + 1)E + n2H (5n2 + 8)E (2n2 + 2)E + n2H (2n2 + 2)E + n2H

Token − (n2 + 2)E + H (2n2 + 1)E + H 3E + H + n2P

Search − n2E + 2P n2E + P 3P

Decrypt n2E + P (2n2 + 1)P + n2E − 2E + H

Revocation − 3n3E 2n3E 3n3E

Page 13 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

refers to the size of the user attribute set, and n3 refers
to the size of the revocation attribute set. It can be seen
from the table that the proposed scheme is better than
other schemes in the storage cost of key ciphertext and
keyword index. The attribute private key storage cost
of this scheme is close to that of schemes [24, 28, 29],
but this scheme supports policy hiding. In contrast, our
scheme provides higher security. In addition, although
the attribute revocation storage cost of this scheme is
higher than that of scheme [29], this scheme is superior
to scheme [29] in other aspects.

Experimental analysis
Table 4 gives a comparison of our scheme and schemes
[24, 28, 29] in terms of computational cost. We mainly
compare the computational cost of the six algorithms:
Encrypt, KeyGen, Token, Search, Decrypt and Revoca-
tion. In the table, E represents the time of exponential
operation, P represents the time of linear pairing, and
H represents the time of hash computation. For a more
intuitive presentation, we conducted simulation exper-
iments on the operation of each algorithm. The experi-
mental environment uses a host: Intel(R) Core(TM)
i7-9700 CPU @ 3.00GHz, 32.0 GB RAM, Ubuntu
20.04.1. The target algorithm is implemented using
Python and the bilinear pairwise encryption library
PBC. Using the Truffle framework and Ganache to
build a blockchain Ethereum development environ-
ment, the contract language uses Solidity. The experi-
ment was repeated 100 times, and the average value
was used as the evaluation standard.

As can be seen from Fig. 4, the encryption time of
each scheme increases with the number of attributes.
Since our scheme supports proxy encryption, the time
consumption in the encryption phase is lower than
other schemes. Figure 5 compares the computational

cost of this scheme and other schemes during the key
generation phase. It can be observed that the genera-
tion time of the attribute private key increases line-
arly with the increase in number of attributes. This is
because the calculation of the user’s attribute private
key is related to the corresponding attributes, each of
which is a part of the private key. Among them, scheme
[28] has the highest computational cost. Figure 6 shows
that the time cost of this scheme is the lowest during
the token generation stage. Scheme [24] does not sup-
port keyword search, and schemes [28, 29] do not sup-
port policy hiding. Therefore, the advantages of this
scheme are more obvious. The comparison of compu-
tational consumption in the search phase is shown in
Fig. 7, the search time of the proposed scheme is main-
tained in a steady state, while the search cost of the
schemes [28, 29] is positively correlated with the attrib-
ute base size. Figure 8 compares the time consumption

Fig. 4 Time consumption of Encrypt

Fig. 5 Time consumption of KeyGen

Fig. 6 Time consumption of Token

Page 14 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

of each scheme in the decryption stage. Since this solu-
tion supports proxy decryption, the user decryption
time is stable at about 1.5ms. Compared with schemes
[24, 28], our scheme has the lowest decryption cost.
According to Fig. 9, the time cost of our scheme is
higher than that of the scheme [29] in the attribute rev-
ocation phase, but this does not affect the overall per-
formance of this scheme.

Figure 10 illustrates the arbitration results of the
Smart Contract for the authorization of persistent ille-
gal access behavior by malicious users. The experiment
simulated different access behaviors of ten accounts
within the access period. Use positive and negative
values to represent legal and illegal access behaviors,
respectively. It can be observed that a user’s access
lock time increases exponentially with illegal behav-
ior, which minimizes the impact of continuous illegal
access or attacks on contract security.

Conclusion
In this paper, we propose a data security access con-
trol scheme based on blockchain and attribute-based
searchable encryption in the cloud computing envi-
ronment. This solution realizes fine-grained access
and secure search of cloud data on the premise of
supporting policy hiding and attribute revocation. At
the same time, proxy encryption and decryption are
introduced to reduce the computing cost of users.
Combined with blockchain technology, it ensures the
secure distribution of metadata ciphertext and keys,
as well as a fair search for keywords. In addition, the
smart contract is used to realize dynamic monitoring
of user access behavior. Security analysis, performance
comparison, communication analysis and computing
analysis show that this scheme provides higher storage
and computing performance while ensuring data secu-
rity and user access fairness. It can be better applied to

Fig. 7 Time consumption of Search

Fig. 8 Time consumption of Decrypt

Fig. 9 Time consumption of Revocation

Fig. 10 Behavioral audit test

Page 15 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

practical application scenarios such as smart grid and
smart healthcare.

In future research, we will mainly focus on how to
improve the efficiency of user access and multi-keyword
search on the blockchain.

Authors’ contributions
Liang Yan, Lina Ge, Zhe Wang, Guifen Zhang, Jingya Xu and Zheng Hu
conceived and designed the study. Liang Yan completed the algorithm experi-
ments and wrote the paper. Lina Ge guided the experimental design and
data analysis. Zhe Wang participated in the revision of the paper. All authors
reviewed and edited the manuscript. All authors read and approved the final
manuscript.

Funding
This work was supported by the National Natural Science Foundation of China
under Grant 61862007, and Guangxi Natural Science Foundation under Grant
2020GXNSFBA297103.

Availability of data and materials
The supporting data may be provided by corresponding author on request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 15 October 2022 Accepted: 14 April 2023

References
 1. Nayudu PP, Sekhar KR (2018) Cloud environment: A review on dynamic

resource allocation schemes. Int J Appl Eng Res 13(6):4568–4575
 2. Sandhu RS, Samarati P (1994) Access control: principle and practice. IEEE

Commun Mag 32(9):40–48
 3. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based

encryption. In: 2007 IEEE symposium on security and privacy (SP’07); IEEE,
CA. pp 321–334

 4. Nayudu PP, Sekhar KR (2023) Dynamic time and location information in
ciphertext-policy attribute-based encryption with multi-authorization.
Intell Autom Soft Comput 35(3):3801-3813

 5. Nayudu PP, Sekhar KR (2022) Accountable specific attribute-based
encryption scheme for cloud access control. IntJ Syst Assur Eng Manag
1–10

 6. Nayudu PP, Sekhar KR (2021) Enhancement of attribute - based encryp-
tion schemes through machine learning techniques: research challenges
and opportunities. J Jilin University 40:1–18

 7. Yuan Y, Wang FY et al (2016) Blockchain: the state of the art and future
trends. Acta Autom Sin 42(4):481–494

 8. Zhu N, Cai F, He J, Zhang Y, Li W, Li Z (2019) Management of access privi-
leges for dynamic access control. Cluster Comput 22(4):8899–8917

 9. Wang P, Yue Y, Sun W, Liu J (2019) An attribute-based distributed access
control for blockchain-enabled iot. In: 2019 International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, Barcelona, pp 1–6

 10. Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2018) Block-
chain for secure and efficient data sharing in vehicular edge computing
and networks. IEEE Internet Things J 6(3):4660–4670

 11. Liu B, Xiao L, Long J, Tang M, Hosam O (2020) Secure digital certifi-
cate-based data access control scheme in blockchain. IEEE Access
8:91751–91760

 12. Yu J, Zhang H, Li S, Mao L, Ji P (2019) Data sharing model for inter-
net of things based on blockchain. J Chin Mini-Micro Comput Syst
40(11):2324–2329

 13. Al Breiki H, Al Qassem L, Salah K, Rehman MHU, Sevtinovic D (2019)
Decentralized access control for iot data using blockchain and trusted
oracles. In: 2019 IEEE International Conference on Industrial Internet (ICII).
IEEE, Orlando, pp 248–257

 14. Maesa DDF, Mori P, Ricci L (2019) A blockchain based approach for
the definition of auditable access control systems. Comput Secur
84:93–119

 15. Li R, Song T, Mei B, Li H, Cheng X, Sun L (2018) Blockchain for large-scale
internet of things data storage and protection. IEEE Trans Serv Comput
12(5):762–771

 16. Sandor VKA, Lin Y, Li X, Lin F, Zhang S (2019) Efficient decentralized multi-
authority attribute based encryption for mobile cloud data storage. J
Netw Comput Appl 129:25–36

 17. Chen N, Li J, Zhang Y, Guo Y (2020) Efficient cp-abe scheme with shared
decryption in cloud storage. IEEE Trans Comput 71(1):175–184

 18. Fan K, Pan Q, Zhang K, Bai Y, Sun S, Li H, Yang Y (2020) A secure and
verifiable data sharing scheme based on blockchain in vehicular social
networks. IEEE Trans Veh Technol 69(6):5826–5835

 19. Naz M, Al-zahrani FA, Khalid R, Javaid N, Qamar AM, Afzal MK, Shafiq M
(2019) A secure data sharing platform using blockchain and interplan-
etary file system. Sustainability 11(24):7054

 20. De SJ, Ruj S (2017) Efficient decentralized attribute based access control
for mobile clouds. IEEE Trans Cloud Comput 8(1):124–137

 21. Li H, Pei L, Liao D, Chen S, Zhang M, Xu D (2020) Fadb: A fine-grained
access control scheme for vanet data based on blockchain. IEEE Access
8:85190–85203

 22. Hur J (2013) Attribute-based secure data sharing with hidden policies in
smart grid. IEEE Trans Parallel Distrib Syst 24(11):2171–2180

 23. Cao L, Kang Y, Wu Q, Wu R, Guo X, Feng T (2020) Searchable encryption
cloud storage with dynamic data update to support efficient policy hid-
ing. China Commun 17(6):153–163

 24. Huang C, Wei S, Fu A (2019) An efficient privacy-preserving attribute-
based encryption with hidden policy for cloud storage. J Circ and Syst
Comput 28(11):1950186

 25. Gao S, Piao G, Zhu J, Ma X, Ma J (2020) Trustaccess: A trustworthy secure
ciphertext-policy and attribute hiding access control scheme based on
blockchain. IEEE Trans Veh Technol 69(6):5784–5798

 26. Yang Y (2015) Attribute-based data retrieval with semantic keyword
search for e-health cloud. J Cloud Comput Adv Syst Appl 4(1):1–6

 27. Qiu S, Liu J, Shi Y, Zhang R (2017) Hidden policy ciphertext-policy
attribute-based encryption with keyword search against keyword guess-
ing attack. Sci China Inf Sci 60(5):1–12

 28. Miao Y, Deng RH, Liu X, Choo KKR, Wu H, Li H (2019) Multi-authority
attribute-based keyword search over encrypted cloud data. IEEE Trans
Dependable Secure Comput 18(4):1667–1680

 29. Yin H, Qin Z, Zhang J, Deng H, Li F, Li K (2020) A fine-grained authorized
keyword secure search scheme with efficient search permission update
in cloud computing. J Parallel Distrib Comput 135:56–69

 30. Tu S, Waqas M, Huang F, Abbas G, Abbas ZH (2021) A revocable and
outsourced multi-authority attribute-based encryption scheme in fog
computing. Comput Netw 195:108196

 31. Yin H, Li Y, Li F, Deng H, Zhang W, Li K (2022) An efficient and access
policy-hiding keyword search and data sharing scheme in cloud-assisted
iot. J Syst Archit 102533

 32. Liu S, Yu J, Xiao Y, Wan Z, Wang S, Yan B (2020) Bc-sabe: Blockchain-aided
searchable attribute-based encryption for cloud-iot. IEEE Internet Things
J 7(9):7851–7867

 33. Li W, Wu J, Cao J, Chen N, Zhang Q, Buyya R (2021) Blockchain-based
trust management in cloud computing systems: a taxonomy, review and
future directions. J Cloud Comput Adv Syst Appl 10(1):1–34

 34. Onyema EM, Dalal S, Romero CAT, Seth B, Young P, Wajid MA (2022)
Design of intrusion detection system based on cyborg intelligence for
security of cloud network traffic of smart cities. J Cloud Comput Adv Syst
Appl 11(1):1–20

 35. Ma F, Fu Y, Ren M, Wang M, Jiang Y, Zhang K, Li H, Shi X (2019) Evm*: from
offline detection to online reinforcement for ethereum virtual machine. In:
2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER): 24-27 February. IEEE, Harbin, pp 554–558

 36. Kumar A, Abhishek K, Bhushan B, Chakraborty C (2021) Secure access
control for manufacturing sector with application of ethereum block-
chain. Peer Peer Netw Appl 14(5):3058–3074

Page 16 of 16Yan et al. Journal of Cloud Computing (2023) 12:61

 37. Wohrer M, Zdun U (2018) Smart contracts: security patterns in the
ethereum ecosystem and solidity. In: 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, Campobasso, pp
2–8

 38. Wang S, Yuan Y, Wang X, Li J, Qin R, Wang FY (2018) An overview of smart
contract: architecture, applications, and future trends. In: 2018 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE, Changshu, pp 108–113

 39. Zou W, Lo D, Kochhar PS, Le XBD, Xia X, Feng Y, Chen Z, Xu B (2019) Smart
contract development: Challenges and opportunities. IEEE Trans Software
Eng 47(10):2084–2106

 40. Oliva GA, Hassan AE, Jiang ZMJ (2020) An exploratory study of smart
contracts in the ethereum blockchain platform. Empir Softw Eng
25(3):1864–1904

 41. Psaras Y, Dias D (2020) The interplanetary file system and the filecoin
network. In: 2020 50th Annual IEEE-IFIP International Conference on
Dependable Systems and Networks-Supplemental Volume (DSN-S). IEEE,
Valencia, pp 80–80

 42. Li F, Liu K, Zhang L, Huang S, Wu Q (2021) Ehrchain: a blockchain-based
ehr system using attribute-based and homomorphic cryptosystem. IEEE
Trans Serv Comput 15(5):2755-2765

 43. Zheng Q, Li Y, Chen P, Dong X (2018) An innovative ipfs-based storage
model for blockchain. In: 2018 IEEE/WIC/ACM international conference
on web intelligence (WI): 03-06 December 2018. IEEE, Santiago, pp
704–708

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Access control scheme based on blockchain and attribute-based searchable encryption in cloud environment
	Abstract
	Introduction
	Related work
	Preliminaries
	Blockchain
	Attribute-based searchable encryption
	Bilinear mapping
	Access structure
	DBDH assumption
	DL problem

	IPFS

	System model
	System composition
	Algorithm description
	Security model

	Scheme construction
	Algorithm design
	Smart contract design

	Analysis and evaluation
	Security proof
	Functional analysis
	Communication analysis
	Experimental analysis

	Conclusion
	References

