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Abstract 

With the development of cloud-edge collaborative computing, cloud computing has become crucial in data analysis 
and data processing. OpenStack and Docker are important components of cloud computing, and the integration of 
the two has always attracted widespread attention in industry. The scheduling mechanism adopted by the existing 
fusion solution uses a uniform resource weight for all containers, and the computing nodes resources on the cloud 
platform is unbalanced under differentiated resource requirements of the containers. Therefore, considering different 
network communication qualities, a load-balancing Docker scheduling mechanism based on OpenStack is proposed 
to meet the needs of various resources (CPU, memory, disk, and bandwidth) of containers. This mechanism uses the 
precise limitation strategy for container resources and a centralized strategy for container resources as the scheduling 
basis, and it generates exclusive weights for containers through a filtering stage, a weighing stage based on weight 
adaptation, and a non-uniform memory access (NUMA) lean stage. The experimental results show that, compared 
with Nova-docker and Yun, the proposed mechanism reduces the resource load imbalance within a node by 57.35% 
and 59.00% on average, and the average imbalance between nodes is reduced by 53.53% and 50.90%. This mecha-
nism can also achieve better load balancing without regard to bandwidth.
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Introduction
With the great increase in data traffic, cloud-edge col-
laborative [1] computing can effectively address network 
congestion and transmission delay, thereby improving 
performance. In cloud-edge collaborative computing, 
scheduling optimization can also be used to reduce the 
overall computing service delay and improve service reli-
ability [2]. Cloud computing [1, 3] plays a critical role in 
cloud-edge collaborative computing. It undertakes com-
puting-intensive tasks and takes advantage of its superior 
computing power and high efficiency to reduce reducing 
computing power costs.

Virtualization technology and cloud computing tech-
nology [4] are the two core technologies in the field of 
cloud computing. In recent years, lightweight virtualiza-
tion technology, represented by Docker, has become a 
research hotspot because of its advantages such as faster 
deployment and delivery, lower performance expenses, 
and higher resource utilization compared with traditional 
virtualization technology [4, 5]. Cloud platform technol-
ogy can integrate different virtualization technologies 
to achieve the unified provisioning and elastic scaling of 
resources. Currently, OpenStack has become the stand-
ard for Infrastructure as a Service (IaaS) with its excellent 
open-source, flexible, and scalable performance [6]. The 
convergence of OpenStack and Docker is inevitable for 
the development of collaborative computing. OpenStack 
can provide fine-grained, large-scale container manage-
ment capabilities for Docker, while Docker can enrich the 
OpenStack ecosystem and optimize the overall perfor-
mance of cloud platforms [7].
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In view of the advantages of the integration of Open-
Stack and Docker, performing Docker scheduling based 
on OpenStack to achieve cloud platform resource load 
balancing has become an urgent problem to be solved. 
Load balancing is an essential mechanism in Docker 
scheduling. An efficient load balancing mechanism can 
improve the reliability and scalability of cloud comput-
ing systems, enhance service availability, optimize cloud 
platform resource utilization, and improve service qual-
ity [8, 9]. Representative works include: Nova-docker 
[10], which is oriented toward the CPU, memory, and 
disk resource requirements in the container. It adopts 
the filtering and weighing scheduling mechanism of the 
Nova component in OpenStack for the virtual machine. 
In the filtering stage, the nodes that meet the resource 
requirements of the container are selected among all 
the computing nodes of OpenStack as candidate nodes. 
In the weighing stage, the optimal computing node is 
selected for the container by calculating the weight of 
each candidate node. Yun [11] is oriented toward the 
CPU, memory, disk, and bandwidth resource require-
ments in the container. It uses a container scheduling 
mechanism based on resource utilization awareness 
and NUMA awareness to achieve better load balancing 
while improving the container performance compared to 
that obtained with Nova-docker. However, the schedul-
ing mechanisms adopted by Nova-docker and Yun use 
uniform resource weights for all containers, and differ-
ent resource requirements of the containers will lead to 
the unbalanced utilization of cloud platform resources 
[12–14].

This paper mainly aim at addressing the lack of load 
balancing in the scheduling mechanism in Nova-docker 
and Yun, a Load-Balancing Scheduling Mechanism 
(LBSM) is proposed for the differentiated resource 
requirements of containers. Balancing the CPU, mem-
ory, and disk resource requirements for containers can 
provide users with high-quality computing and storage 
services. At the same time, the network serves as the 
hub connecting all computing and storage resources in 
the OpenStack cloud platform, and implementing load 
balancing for the CPU, memory, disk, and bandwidth 
requirements of containers can further reduce network 
congestion and improve communication quality [15, 16]. 
Therefore, the LBSM schedules a container consider-
ing the container’s CPU, memory, disk, and bandwidth 
resource requirements. The following are the main con-
tributions of this study:

• We accurately limit the container disk resources to 
ensure the accuracy of the cloud platform resource 
scheduling and avoid resource competition between 
containers.

• An adaptive weight algorithm is proposed to gener-
ate proprietary resource weights for the differentiated 
resource requirements of containers.

• Aiming at load balancing, we optimize OpenStack 
and Docker integration and brings no additional time 
consumption.

Related work
At present, load balancing mechanism mainly applies in 
the fields of cloud-edge collaborative computing, virtual 
machines and container scheduling. In this section, we 
provide an overview of the existing load balancing sched-
uling mechanisms and the difference between the load 
balance mechanisms in OpenStack and Kubernetes.

References [2, 17], and [18] mainly introduce load bal-
ancing in cloud-edge collaborative scheduling. To reduce 
the computing service delay of an in-vehicle network, 
reference [2] proposes a task differentiation and sched-
uling algorithm, develops a collaborative computing 
method, and builds a cloud-edge collaborative comput-
ing framework. Reference [17] designs an intelligent air 
quality monitoring system combining cloud and edge 
computing based on container virtualization. In the 
intelligent air quality monitoring system, OpenStack 
provides virtualization services, and the edge provides 
service applications. The method of reference [18] mainly 
makes optimization decisions for edge computing off-
loading based on the real-time state of the network and 
the attributes of tasks to address the load imbalance of 
servers between autonomous edge subnets. References 
[2] and [17] perform little research on load balancing 
in cloud-edge collaborative computing. Reference [18] 
mainly studies the load balancing of edge computing in a 
cloud-edge collaborative computing system, and the load 
balancing in cloud computing is less complex.

References [9, 19], and [20] mainly introduce load 
balancing in virtual machines. Reference [9] proposes 
a multi-objective load balancing mechanism based on 
machine learning for determining the placement of vir-
tual machines in cloud data centers. It comprehensively 
considers three resource types, CPU, memory, and 
bandwidth, to achieve load balancing within each host 
of the cloud data center and among the hosts. For the 
load balancing problem between virtual machines and 
physical hosts in the cloud environment, reference [19] 
first uses the K-means algorithm based on Bayesian 
optimization and the artificial neural network (ANN) 
algorithm to divide the virtual machines into low 
load collections and overloaded collections. Then, it 
schedules user tasks to a collection of low-load virtual 
machines for load balancing. Reference [20] proposes 
a dynamic load balancing algorithm based on deep 
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reinforcement learning (DRL) under the constraints 
of a service level agreement (SLA), which effectively 
reduces the load imbalance and task rejection rate of 
virtual machines. These works are all based on achiev-
ing better load balancing in virtual machines, and there 
is less research on Docker scheduling based on cloud 
computing.

References [14] and [21] mainly introduce load bal-
ancing in container scheduling. Reference [14] proposes 
a Docker cluster scheduling strategy based on a genetic 
algorithm, which takes the load of the CPU, memory, 
hard disk I/O, and network traffic into consideration and 
effectively improves the load balancing performance of 
the cluster and the efficiency of multi-task concurrent 
scheduling. However, the model for predicting the load 
values of container tasks needs to manually set the ini-
tial parameters of the task, which increases the difficulty 
of practical application of container scheduling. Refer-
ence [21] proposes an intelligent container scheduler 
and improves it from the perspective of load balancing, 
latency, etc., but this work only discusses some suitable 
techniques.

References [22] introduces Kubernetes scheduling 
mechanism. Kubernetes scheduling includes filter-
ing phase and optimization phase. The filtering phase 
traverses all working nodes and filters them by filtering 
rules. In the optimization stage, the optimal strategy is 
used to calculate the score of all candidate nodes, and 
the node with the highest score is selected for schedul-
ing. However, Kubernetes’ default scheduling policy 
only considers CPU and memory, and is scored based on 

mono-criterion criterion, which fails to improve resource 
utilization and load balancing.

It can be seen that there are few researches on load 
balancing in the integration of OpenStack and Docker. 
The load balancing mechanism mentioned above take 
CPU, memory, disk, and bandwidth into account. An 
efficient load balancing mechanism can improve the ser-
vice processing capability of cloud computing system, 
solve network congestion problems to provide better 
access quality for users, and improve resource utilization. 
Therefore, our work is necessary.

LBSM
An efficient load balancing scheduling mechanism can 
achieve high availability of cloud computing systems 
and optimize the service quality of cloud platform users. 
However, the scheduling mechanism adopted by the 
existing OpenStack and Docker fusion solutions use a 
uniform resource weight for all containers, which cannot 
meet the resource load balancing requirements of cloud 
platform computing nodes under differentiated resource 
requirements of containers. The LBSM is shown in Fig. 1.

The LBSM is based on the precise limitation strategy 
for container resources and a centralized strategy for 
container resources when it is oriented toward various 
resource demand scenarios of containers. The precise 
limit strategy for container resources aims to precisely 
limit the usage of the corresponding resources of the 
container to avoid resource preemption between con-
tainers. The container resource centralization strategy 
considers CPU and memory centrally to avoid frequent 

Fig. 1 LBSM
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switching of the CPU and memory and remote memory 
access across NUMA nodes during container operation.

The scheduling process of the LBSM is divided into 
three stages: the filtering stage, the weighing stage, and 
the NUMA lean stage. First, through the filtering stage, 
the nodes whose remaining resources do not meet the 
container resource request specification are filtered. The 
goal of this stage is to select nodes that meet the con-
tainer resource request specifications from among all 
the Docker computing nodes of OpenStack as candidate 
computing nodes to avoid nodes that cannot deploy con-
tainers due to insufficient resources. Then, the optimal 
computing node is selected for the container from among 
all candidate computing nodes through the weigh-
ing stage based on weight adaptation, and the optimal 
NUMA node is selected from among all NUMA nodes 
of the optimal computing node through the NUMA lean 
stage. The goal of these two stages is to generate exclu-
sive weights for containers when facing differentiated 
resource requirements of containers, deploy containers 
to optimal computing nodes, and occupy resources that 
are allocated to them by optimal NUMA nodes.

LBSM implements resource load balance within a node 
and between nodes, considering CPU, memory, disk, and 
bandwidth. LBSM implements resource load balancing 
within a node. If the CPU utilization reaches 90% and 
the memory utilization reaches only 20%, computing 
node will cannot deploy new containers due to insuf-
ficient CPU resources, even though memory resources 
are sufficient. As a result, computing node wastes mem-
ory resources. In addition, the container running on the 
computing node cannot achieve good performance due 
to high CPU load. LBSM implements resource load bal-
ancing between nodes. If the CPU utilization of com-
puting node 1 reaches 85% and the CPU utilization of 
computing node 2 reaches only 15%, computing node 1 
will undertake a large number of computing-intensive 
tasks, resulting in high CPU load. In this way, the sta-
bility of OpenStack cloud platform and the availability 
of user service cannot be guaranteed. LBSM can pro-
vide high quality computing and storage services for 
computing-intensive and memory-consuming contain-
ers when it is oriented toward CPU, memory, and disk 
resource requirements. LBSM can meet the container’s 
high requirements on network communication qual-
ity and reduce network congestion when it is oriented 
toward CPU, memory, disk, and bandwidth resource 
requirements.

Basis of scheduling
Precise limitation strategy for container resources
The precise limitation strategy for container resources is 
used as the basis for scheduling by the LBSM. A precise 

resource limit can ensure the accuracy of resource sched-
uling in the cloud platform and avoid resource com-
petition among containers, thus improving the quality 
of service. In the filtering stage, the LBSM determines 
whether the remaining computing node resources can 
meet the request specifications of the container’s corre-
sponding CPU, memory, disk, and bandwidth resources. 
Therefore, the precise limitation strategy for container 
resources will precisely limit the utilization of corre-
sponding container resources according to the con-
tainer request specifications for CPU, memory, disk, and 
bandwidth resources to ensure the accuracy of resource 
scheduling in the filtering phase.

The LBSM encapsulates the CPU and memory resource 
limit API interfaces officially provided by Docker, and 
it implements precise limits on the container CPU and 
memory resources. The container disk resource limit 
can be implemented based on the devicemapper storage 
driver by calling the disk limit API interface officially pro-
vided by Docker. However, loop-lvm is only suitable for 
the test environment and has poor performance. Direct-
lvm is suitable for the production environment, but its 
configuration is complicated. Additionally, the default 
basic device size of devicemapper is 10 GB. If the disk 
request size of the container is less than 10 GB when cre-
ating a container, the container will not be successfully 
created. In view of the deficiencies in the precise limita-
tion of container disk resources, the LBSM changes the 
storage driver to overlay2. The LBSM implements precise 
restrictions on container disk resources through the fol-
lowing steps:

Docker uses Union File System technology to obtain a 
layered stack of container images. The precise container 
resource restriction strategy uses overlay2 as the Docker 
storage driver to implement the Union File System tech-
nology, and it uses the feature that the files in the con-
tainer exist in the “container layer” to convert restrictions 
on container disk resources to restrictions on the “con-
tainer layer”.

Centralized strategy for container resources
Due to its high aggregate memory bandwidth and good 
system scalability [23, 24], NUMA is currently the most 
common physical server architecture and has become the 
mainstream in the fields of high-performance comput-
ing and cloud computing. As shown in Fig. 2, the NUMA 
architecture divides the CPU and memory resources 
of the system into multiple independent NUMA nodes. 
Each NUMA node consists of a socket and its adjacent 
memory nodes. In each socket, multiple logical CPUs 
share the same integrated memory controller (IMC), and 
the IMC is connected to its local memory node. Different 
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sockets are interconnected through links (such as Intel’s 
Quick Path Interconnect, QPI).

Therefore, the LBSM is based on the NUMA architec-
ture and introduces a container resource centralization 
strategy. Concentrating the logical CPU and memory of 
the container on the same NUMA node avoids frequent 
switching of the CPU and memory and remote memory 
access across NUMA nodes during the running process 
of the container.

Scheduling process
Filtering stage
In the filtering stage, five filters for CPU, memory, disk, 
bandwidth, and NUMA are introduced for the CPU, 
memory, disk and bandwidth resource requirements 
of the containers to filter all computing nodes in Open-
Stack. The CPU, memory, and disk filters are filtered by 
the remaining amount of the corresponding resources 
on the computing node. For example, if the remaining 
amount of CPU resources on the current computing node 
is less than that in the container CPU resource request 
specification, then the node will be filtered directly. The 
bandwidth filter uses the real-time bandwidth utilization 
of the current computing node as the filtering criterion, 
and if the bandwidth utilization of the computing node 
exceeds the set threshold (defined as 90% in this paper), 
the node will be filtered directly. The LBSM adopts 
a centralized strategy for container resources, which 

concentrates both the CPU and memory of the container 
into the same NUMA node. Therefore, the NUMA filter 
is introduced, and if the current computing node does 
not have a NUMA node that satisfies the container’s CPU 
and memory resource requests, the node will be filtered 
directly. Eventually, the nodes that have passed all the fil-
ters will be taken as the candidate nodes in the weight-
based adaptive weighing phase.

Weighing phase based on weight adaptation
For the CPU, memory, disk, and bandwidth resource 
requirements of containers, four scales of CPU, mem-
ory, disk, and bandwidth are introduced in the weighing 
phase. As shown in Fig. 3, for the differentiated resource 
requirements of containers, the LBSM comprehensively 
considers the resource requirement characteristics of the 
containers and the resource characteristics of the com-
puting nodes in the weighing stage. Through node weigh-
ing and weight adaptation, the computing node with the 
highest weight score is selected from among all the can-
didate computing nodes obtained in the filtering stage as 
the optimal computing node.

1) Node weighing: Node weighing is performed 
based on the real-time resource utilization informa-
tion and information on the amount of remaining 
resources of each computing node. The amount of 
remaining resources of all candidate computing nodes 
is Rt = {r1t , r

2
t , . . . , r

m
t } , and the real-time utilization 

Fig. 2 Centralized strategy for container resources
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of resources t is Ut = {u1t ,u
2
t , . . . ,u

m
t } , where m repre-

sents the total number of candidate computing nodes. 
Then, the scores of all candidate computing nodes 
Xt = {x1t , x

2
t , . . . , x

m
t } against resource t can be calculated 

by Eq. (1).

The score yit of candidate computation node i normal-
ized against resource t can be calculated by Eq. (2), where 
xmax
t  and xmin

t  respectively denote the maximum and 
minimum values of Xt.

2) Adaptive Weight: For the differentiated resource 
requirements of containers, proprietary resource weights 
are generated for containers based on the total resource 
information of each computing node in OpenStack and 
the container resource request specifications. If the total 
number of resources t of all computing nodes in Open-
Stack is At = {a1t , a

2
t , . . . , a

c
t } and the request specifica-

tion of container j for resource t is djt , then the weight wj
t 

of container j against resource t can be calculated by Eq. 
(3), where c represents the total number of all computing 

(1)

xit =
rit , t ∈ {cpu,memory, disk}

1− uit , t ∈ bandwidth
, i ∈ {1, 2, . . . ,m}

(2)yit =
xit − xmin

t

xmax
t − xmin

t

, i ∈ {1, 2, . . . ,m}

nodes in OpenStack and n represents the number of 
resource types.

Then, the weight score S = {s1, s2, . . . , sm} of all can-
didate computing nodes can be calculated by Eq. (4). 
Finally, the candidate computing node e with the high-
est weight score will be the optimal computing node for 
deployment container j.

NUMA lean stage
The NUMA lean stage mainly consists of two stages: the 
NUMA filtering stage and the NUMA weighing stage, as 
shown in Fig. 4. The NUMA filtering stage uses a central-
ized strategy for container resources as the scheduling 
basis to filter all NUMA nodes on the optimal comput-
ing node. Only when the remaining CPU and memory 
resources of the current NUMA node are greater than 
the request specifications of the corresponding resources 
of the container will the NUMA node be used as a 

(3)tmp
j
t =

d
j
t

∑c
i=1 a

i
t

,w
j
t =

tmp
j
t

∑n
t=1 tmp

j
t

(4)si =

n
∑

t=1

(

w
j
t × yit

)

, i ∈ {1, 2, . . . ,m}

Fig. 3 Weighing phase based on weight adaptation



Page 7 of 12Qian et al. Journal of Cloud Computing           (2023) 12:67  

candidate NUMA node and enter the NUMA weighing 
module.

The NUMA weighting stage assigns a score to NUMA 
nodes based on the remaining CPU and memory and the 
similarity between the container and the current NUMA 
node. The CPU surplus of all candidate NUMA nodes 
is Rcpu = {r1cpu, r

2
cpu, . . . , r

q
cpu} and the amount of mem-

ory remaining is Rmem = {r1mem, r
2
mem, . . . , r

q
mem} , where 

q represents the total number of candidate NUMA 
nodes. The request specification of container j for CPU 
resources is djcpu , the request specification of memory 
resources is djmem , and the resource unit of the container 
is the same as that of the NUMA nodes (e.g., the con-
tainer memory unit and the NUMA node memory unit 
are both in MB). We use Eqs. (5) and (6) to normalize 
the resource request specification of the container and 
the resource residual of the NUMA nodes to the same 
metric, respectively.

(5)

D
j
cpu =

d
j
cpu

∑q
k=1

rkcpu + d
j
cpu

,D
j
mem =

d
j
mem

∑q
k=1

rkmem + d
j
mem

D
j
cpu denotes the CPU resource request specification 

of the normalized container j, Dj
mem denotes the memory 

resource request specification of the normalized con-
tainer j, Rk

cpu denotes the CPU resources remaining in the 
normalized NUMA node k, and Rk

mem denotes the mem-
ory resources remaining in the normalized NUMA node 
k. Then, the value of the similarity SIMj

k between con-
tainer j and NUMA node k can be calculated by Eq. (7). 
Equation (7) uses cosine similarity to measure similarity, 
which makes the weight interval small.

Then, the scores G = {g1, g2, . . . , gq} of all candidate 
NUMA nodes can be calculated by Eq. (8). Finally, the 
candidate NUMA node with the highest score will be 

(6)

Rk
cpu =

rkcpu
∑q

k=1
rkcpu + d

j
cpu

,Rk
mem =

rkmem
∑q

k=1
rkmem + d

j
mem

(7)

SIM
j
k =

D
j
cpu × Rk

cpu + D
j
mem × Rk

mem
√

(

D
j
cpu

)2

+

(

D
j
mem

)2

×

√

(

Rk
cpu

)2

+
(

Rk
mem

)2

Fig. 4 NUMA lean stage
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chosen as the optimal NUMA node for deployment con-
tainer j.

Experimental results and analysis
To verify the effectiveness of the LBSM, an experimental 
environment was built based on OpenStack Mitaka, con-
taining one control node, one network node, and three 
Docker computing nodes. The operating system of the 
control and network nodes is CentOS 7.2, the operating 
system of each computing node is CentOS 7.8, and the 
Docker version is 17.06.0-ce. The information for each 
Docker computing node is shown in Table 1.

Verification of precise limits on container disk resources
This experiment mainly verifies that the LBSM can 
meet precise limitations on container disk resources. 
This experiment uses Nova-docker, Yun, and the LBSM 
to deploy containers with disk request specifications of 
1 GB, 2 GB, 4 GB, 8 GB, 12 GB, 16 GB, and 20 GB. All 
containers aim to create a test file with a size of 30GB to 
check the actual disk usage of each container. The experi-
mental results are shown in Table 2.

As can be seen from Table  2, Nova-docker cannot 
implement precise limits on container disk resources. For 
containers with disk request specifications greater than 
10GB, Yun can implement precise resource limits. But 
when the disk request specification is less than 10GB, the 
container cannot be created successfully. The LBSM uses 
the overlay2 storage driver, which can successfully create 
containers with different disk request specifications and 
accurately limit disk resources.

Verification of load balancing
We measure the resource load balance of OpenStack 
computing nodes in terms of both the intranode and 
internode resource load imbalance [9]. Equations (9) and 
(10) use the coefficient of variance (CV) theory to calcu-
late the amount of load imbalance. In probability theory, 

(8)gk = Rk
cpu + Rk

mem + SIM
j
k , k ∈ {1, 2, . . . , q}

variance is often used to measure the degree of deviation 
between a random variable and the mean.

1) Intranode resource load imbalance. The intranode 
resource load imbalance in OpenStack is denoted as 
Lintra and is calculated by Eq. (9), where t represents the 
resource type, n represents the number of resource types, 
uit represents the utilization of resource t of computing 
node i, cli represents the load imbalance of computing 
node i, and c represents the total number of comput-
ing nodes in OpenStack. The smaller Lintra is, the more 
balanced the utilization of resources in each dimension 
within the node in OpenStack.

2) Internode resource load imbalance. The internode 
resource load imbalance in OpenStack is expressed as 
Linter and calculated by Eq. (10), where rlt denotes the 
load imbalance of resources t. The smaller Linter is, the 
more balanced the utilization of resources in each dimen-
sion among the nodes in OpenStack.

In this experiment, we constructed 9 container resource 
request specifications, as shown in Table 3, for the CPU, 
memory, and disk resource requirements of containers 
and the CPU, memory, disk, and bandwidth resource 
requirements of containers. It should be noted that Yun 
uses devicemapper as the storage driver for Docker, and 
the default disk size that Docker can use is 107.4 GB. To 
ensure that Nova-docker, Yun, and the LBSM are all com-
pared based on the experimental environment shown in 
Table  1, we set Nova-docker, Yun, and the LBSM using 
overlay2 as the storage driver for Docker; the disk space 
available for Docker was 120 GB.

As shown in Table  4, we used Nova-docker, Yun, 
and the LBSM to deploy containers on three Docker 

(9)

cli =

√

√

√

√

1

n

n
∑

t=1

(

uit −
1

n

n
∑

t=1

uit

)2

, Lintra =
1

c

c
∑

i=1

cli

(10)

rlt =

√

√

√

√

1

c

c
∑

i=1

(

uit −
1

c

c
∑

i=1

uit

)2

, Linter =
1

n

n
∑

t=1

rlt

Table 1 Docker computing node information

node number logical CPU memory (GB) disk (GB) bandwidth 
(Gigabits)

NUMA node 
number

NUMA node 
logical CPU

NUMA node 
memory 
(MB)

1 24 31.2 120 1 0 12 7738

1 12 24173

2 24 15.4 120 1 0 12 7739

1 12 8045

3 24 15.4 120 1 0 12 7739

1 12 8045
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computing nodes. For the CPU, memory, and disk 
resource requirements of the containers, A1∼ A5 were 
based on the container resource request specifications 
in C1∼C4. For the CPU, memory, disk, and bandwidth 
resource requirements of containers, B1∼ B5 were based 
on the container resource request specifications in C5∼
C9.

As shown in Fig.  5, for the CPU, memory, and disk 
resource requirements of the containers, compared with 
Nova-docker and Yun, the LBSM performs well in terms 
of both intranode resource load imbalance and internode 

resource load imbalance. Compared to Nova-docker, the 
LBSM reduces the load imbalance of resources within a 
node by an average of 55.09%, with the highest reduction 
of 72.27% in the A1 group test and the lowest reduction 
of 41.88% in the A2 group test. Compared with Yun, the 
LBSM reduces the load imbalance of resources within a 
node by 50.68% on average, with the greatest reduction 
of 59.09% in the A5 group test and the smallest reduction 
of 43.56% in the A2 group test. Compared with Nova-
docker, the LBSM reduces the resource load imbalance 
between nodes by 56.92% on average, with the largest 

Table 2 Verification of precise disk resource limits

scheduling mechanism disk request specification (GB) test file specification (GB) actual disk usage 
specification (GB)

Nova-docker 1 30 31

2 30 31

4 30 31

8 30 31

12 30 31

16 30 31

20 30 31

Yun 1 30 Creation failure

2 30 Creation failure

4 30 Creation failure

8 30 Creation failure

12 30 12

16 30 16

20 30 20

LBSM 1 30 1

2 30 2

4 30 4

8 30 8

12 30 12

16 30 16

20 30 20

Table 3 Container resource request specifications

resource requirement of containers container number container resource request specification

CPU memory (MB) disk (GB) bandwidth 
(Mbps)

CPU, memory, disk C1 4 1024 5 0

C2 1 4096 5 0

C3 1 1024 20 0

C4 2 2048 10 0

CPU, memory, disk, bandwidth C5 4 1024 5 45

C6 1 4096 5 45

C7 1 1024 20 45

C8 1 1024 5 180

C9 2 2048 10 90
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reduction of 66.99% in the A1 group test and the small-
est reduction of 46.49% in the A3 group test. Compared 
with Yun, the LBSM achieves an average reduction of 
40.79% in resource load imbalance between nodes, with 
the greatest reduction of 51.55% in the A5 group test and 
the smallest reduction of 30.38% in the A3 group test.

As shown in Fig.  6, for the CPU, memory, disk, and 
bandwidth resource requirements of containers, the 
LBSM also achieves better resource load balancing in 
terms of intranode and internode resource load imbal-
ance than Nova-docker and Yun. Compared with 
Nova-docker, the LBSM achieves an average reduc-
tion of 57.35% in intranode resource load imbalance, 
with the greatest reduction of 73.98% in the B4 group 
and the smallest reduction of 38.77% in the B2 group. 

Table 4 Load balancing test group

test number container deployment order

A1 C1×6→ C2×4→ C3×4→ C4×4

A2 C1×4→ C2×6→ C3×4→ C4×4

A3 C1×4→ C2×4→ C3×6→ C4×4

A4 C1×4→ C2×4→ C3×4→ C4×6

A5 C1×5→ C2×5→ C3×5→ C4×3

B1 C5×6→ C6×3→ C7×3→ C8×3→ C9×3

B2 C5×3→ C6×6→ C7×3→ C8×3→ C9×3

B3 C5×3→ C6×3→ C7×6→ C8×3→ C9×3

B4 C5×3→ C6×3→ C7×3→ C8×6→ C9×3

B5 C5×4→ C6×4→ C7×4→ C8×4→ C9×2

Fig. 5 Load balancing test results for three resources requested by containers

Fig. 6 Load balancing test results for four resources requested by containers
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Compared to Yun, the LBSM reduces the load imbalance 
of resources within a node by 59.00% on average, with 
the greatest reduction of 81.26% in the B4 group and the 
smallest reduction of 50.29% in the B2 group. Compared 
to Nova-docker, the LBSM achieves an average reduction 
of 53.53% in resource load imbalance between nodes, 
with the greatest reduction of 70.24% in the B1 group test 
and the smallest reduction of 34.46% in the B5 group test. 
Compared with Yun, the LBSM reduces the internode 
resource load imbalance by 50.90% on average, with the 
greatest reduction of 63.70% in the B2 group test and the 
smallest reduction of 39.16% in the B5 group test.

Verification of container deployment time consumption
To compare the time consumption of Nova-docker, Yun, 
and the LBSM for deploying containers, we test the time 
required for Nova-docker, Yun, and the LBSM to deploy 
containers C1∼ C4 in Table  3 to meet the CPU, memory, 
and disk resource requirements of the containers. A total 
of four sets of tests are performed. The deployment time 
of a container is the difference between the update time 
of the container and the request creation time of the con-
tainer. To avoid the effects of chance on the experimental 
results, each group of tests is conducted three times. That 
is, each container specification is deployed three times, and 
the average value of the three deployment times is taken 
as the deployment time of the container for that resource 
request specification. The experimental results are shown 
in Fig.  7(a). For the CPU, memory, disk, and bandwidth 
resource requirements of the containers, we test the time 
required for Nova-docker, Yun, and the LBSM to deploy 
the five containers numbered C5∼ C9 in Table 3. A total of 
five sets of tests are performed. The results of the experi-
ments are shown in Fig. 7(b). For the CPU, memory, and 
disk resource requirements of the containers, Nova-docker 

takes 8.42 seconds to deploy containers on average. Yun 
takes 1.42 seconds and LBSM takes 1.58 seconds on aver-
age. For the CPU, memory, disk, and bandwidth resource 
requirements of the containers, Nova-docker takes 8.07 
seconds to deploy containers on average. Yun takes 1.6 
seconds and LBSM takes 1.27 seconds on average. Nova-
docker takes more time to deploy the containers, while Yun 
as well as LBSM take less than 2 seconds to deploy contain-
ers. That is, the LBSM achieves better load balancing with-
out increasing the container scheduling time consumption.

Conclusion and future work
Considering the convergence of OpenStack and Docker, 
this paper proposes a load-balancing scheduling mecha-
nism for differentiated container resource demands. The 
scheduling mechanism is based on the precise container 
resource limitation strategy and a centralized strategy 
for container resources. The candidate computing nodes 
are first selected from among all computing nodes in 
OpenStack through a filtering phase. Then, the optimal 
computing node is selected for the container through a 
weight-based adaptive weighing phase. Finally, the opti-
mal NUMA node is selected for the container through 
a NUMA leaning phase. The experiments show that, in 
contrast to the scheduling mechanisms adopted by Nova-
docker and Yun, the scheduling mechanism proposed in 
this paper can achieve the precise limitation of container 
resources and effectively reduce the resource load imbal-
ance degree within a node and among computing nodes 
in OpenStack. At the same time, this scheduling mecha-
nism does not increase the time consumption.

The LBSM schedules containers based on their initial 
resource request specifications. However, users do not 
know the exact resource specifications required by the 
application and containers do not run at full capacity. 

Fig. 7 Time consumption test results for deploying containers of different specifications
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This method of allocating computing node resources 
leads to resource waste. And the alternatives of docker 
are also available which is highly used nowadays such 
as CoreOS Rocket, RKT. The next step will be to apply 
LBSM to OpenStack and other alternatives of Docker 
integration. Then, we will establish a Docker container 
scheduling model based on the OpenStack cloud plat-
form and to study how to improve system resource uti-
lization and reduce energy consumption while achieving 
load balancing of OpenStack computing node resources.
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