
Qian et al. Journal of Cloud Computing (2023) 12:67
https://doi.org/10.1186/s13677-023-00445-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Load balancing scheduling mechanism
for OpenStack and Docker integration
Jiarui Qian1, Yong Wang2, Xiaoxue Wang1, Peng Zhang2 and Xiaofeng Wang1,3*

Abstract

With the development of cloud-edge collaborative computing, cloud computing has become crucial in data analysis
and data processing. OpenStack and Docker are important components of cloud computing, and the integration of
the two has always attracted widespread attention in industry. The scheduling mechanism adopted by the existing
fusion solution uses a uniform resource weight for all containers, and the computing nodes resources on the cloud
platform is unbalanced under differentiated resource requirements of the containers. Therefore, considering different
network communication qualities, a load-balancing Docker scheduling mechanism based on OpenStack is proposed
to meet the needs of various resources (CPU, memory, disk, and bandwidth) of containers. This mechanism uses the
precise limitation strategy for container resources and a centralized strategy for container resources as the scheduling
basis, and it generates exclusive weights for containers through a filtering stage, a weighing stage based on weight
adaptation, and a non-uniform memory access (NUMA) lean stage. The experimental results show that, compared
with Nova-docker and Yun, the proposed mechanism reduces the resource load imbalance within a node by 57.35%
and 59.00% on average, and the average imbalance between nodes is reduced by 53.53% and 50.90%. This mecha-
nism can also achieve better load balancing without regard to bandwidth.

Keywords Cloud computing, OpenStack, Docker, Scheduling mechanism, Load balancing, Collaborative computing

Introduction
With the great increase in data traffic, cloud-edge col-
laborative [1] computing can effectively address network
congestion and transmission delay, thereby improving
performance. In cloud-edge collaborative computing,
scheduling optimization can also be used to reduce the
overall computing service delay and improve service reli-
ability [2]. Cloud computing [1, 3] plays a critical role in
cloud-edge collaborative computing. It undertakes com-
puting-intensive tasks and takes advantage of its superior
computing power and high efficiency to reduce reducing
computing power costs.

Virtualization technology and cloud computing tech-
nology [4] are the two core technologies in the field of
cloud computing. In recent years, lightweight virtualiza-
tion technology, represented by Docker, has become a
research hotspot because of its advantages such as faster
deployment and delivery, lower performance expenses,
and higher resource utilization compared with traditional
virtualization technology [4, 5]. Cloud platform technol-
ogy can integrate different virtualization technologies
to achieve the unified provisioning and elastic scaling of
resources. Currently, OpenStack has become the stand-
ard for Infrastructure as a Service (IaaS) with its excellent
open-source, flexible, and scalable performance [6]. The
convergence of OpenStack and Docker is inevitable for
the development of collaborative computing. OpenStack
can provide fine-grained, large-scale container manage-
ment capabilities for Docker, while Docker can enrich the
OpenStack ecosystem and optimize the overall perfor-
mance of cloud platforms [7].

*Correspondence:
Xiaofeng Wang
wangxf@jiangnan.edu.cn
1 School of Artificial Intelligence and Computer Science, Jiangnan
University, Wuxi, China
2 China Key System & Integrated Circuit Co., Ltd., Wuxi, China
3 Peng Cheng Laboratory, Shenzhen, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00445-3&domain=pdf

Page 2 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

In view of the advantages of the integration of Open-
Stack and Docker, performing Docker scheduling based
on OpenStack to achieve cloud platform resource load
balancing has become an urgent problem to be solved.
Load balancing is an essential mechanism in Docker
scheduling. An efficient load balancing mechanism can
improve the reliability and scalability of cloud comput-
ing systems, enhance service availability, optimize cloud
platform resource utilization, and improve service qual-
ity [8, 9]. Representative works include: Nova-docker
[10], which is oriented toward the CPU, memory, and
disk resource requirements in the container. It adopts
the filtering and weighing scheduling mechanism of the
Nova component in OpenStack for the virtual machine.
In the filtering stage, the nodes that meet the resource
requirements of the container are selected among all
the computing nodes of OpenStack as candidate nodes.
In the weighing stage, the optimal computing node is
selected for the container by calculating the weight of
each candidate node. Yun [11] is oriented toward the
CPU, memory, disk, and bandwidth resource require-
ments in the container. It uses a container scheduling
mechanism based on resource utilization awareness
and NUMA awareness to achieve better load balancing
while improving the container performance compared to
that obtained with Nova-docker. However, the schedul-
ing mechanisms adopted by Nova-docker and Yun use
uniform resource weights for all containers, and differ-
ent resource requirements of the containers will lead to
the unbalanced utilization of cloud platform resources
[12–14].

This paper mainly aim at addressing the lack of load
balancing in the scheduling mechanism in Nova-docker
and Yun, a Load-Balancing Scheduling Mechanism
(LBSM) is proposed for the differentiated resource
requirements of containers. Balancing the CPU, mem-
ory, and disk resource requirements for containers can
provide users with high-quality computing and storage
services. At the same time, the network serves as the
hub connecting all computing and storage resources in
the OpenStack cloud platform, and implementing load
balancing for the CPU, memory, disk, and bandwidth
requirements of containers can further reduce network
congestion and improve communication quality [15, 16].
Therefore, the LBSM schedules a container consider-
ing the container’s CPU, memory, disk, and bandwidth
resource requirements. The following are the main con-
tributions of this study:

• We accurately limit the container disk resources to
ensure the accuracy of the cloud platform resource
scheduling and avoid resource competition between
containers.

• An adaptive weight algorithm is proposed to gener-
ate proprietary resource weights for the differentiated
resource requirements of containers.

• Aiming at load balancing, we optimize OpenStack
and Docker integration and brings no additional time
consumption.

Related work
At present, load balancing mechanism mainly applies in
the fields of cloud-edge collaborative computing, virtual
machines and container scheduling. In this section, we
provide an overview of the existing load balancing sched-
uling mechanisms and the difference between the load
balance mechanisms in OpenStack and Kubernetes.

References [2, 17], and [18] mainly introduce load bal-
ancing in cloud-edge collaborative scheduling. To reduce
the computing service delay of an in-vehicle network,
reference [2] proposes a task differentiation and sched-
uling algorithm, develops a collaborative computing
method, and builds a cloud-edge collaborative comput-
ing framework. Reference [17] designs an intelligent air
quality monitoring system combining cloud and edge
computing based on container virtualization. In the
intelligent air quality monitoring system, OpenStack
provides virtualization services, and the edge provides
service applications. The method of reference [18] mainly
makes optimization decisions for edge computing off-
loading based on the real-time state of the network and
the attributes of tasks to address the load imbalance of
servers between autonomous edge subnets. References
[2] and [17] perform little research on load balancing
in cloud-edge collaborative computing. Reference [18]
mainly studies the load balancing of edge computing in a
cloud-edge collaborative computing system, and the load
balancing in cloud computing is less complex.

References [9, 19], and [20] mainly introduce load
balancing in virtual machines. Reference [9] proposes
a multi-objective load balancing mechanism based on
machine learning for determining the placement of vir-
tual machines in cloud data centers. It comprehensively
considers three resource types, CPU, memory, and
bandwidth, to achieve load balancing within each host
of the cloud data center and among the hosts. For the
load balancing problem between virtual machines and
physical hosts in the cloud environment, reference [19]
first uses the K-means algorithm based on Bayesian
optimization and the artificial neural network (ANN)
algorithm to divide the virtual machines into low
load collections and overloaded collections. Then, it
schedules user tasks to a collection of low-load virtual
machines for load balancing. Reference [20] proposes
a dynamic load balancing algorithm based on deep

Page 3 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

reinforcement learning (DRL) under the constraints
of a service level agreement (SLA), which effectively
reduces the load imbalance and task rejection rate of
virtual machines. These works are all based on achiev-
ing better load balancing in virtual machines, and there
is less research on Docker scheduling based on cloud
computing.

References [14] and [21] mainly introduce load bal-
ancing in container scheduling. Reference [14] proposes
a Docker cluster scheduling strategy based on a genetic
algorithm, which takes the load of the CPU, memory,
hard disk I/O, and network traffic into consideration and
effectively improves the load balancing performance of
the cluster and the efficiency of multi-task concurrent
scheduling. However, the model for predicting the load
values of container tasks needs to manually set the ini-
tial parameters of the task, which increases the difficulty
of practical application of container scheduling. Refer-
ence [21] proposes an intelligent container scheduler
and improves it from the perspective of load balancing,
latency, etc., but this work only discusses some suitable
techniques.

References [22] introduces Kubernetes scheduling
mechanism. Kubernetes scheduling includes filter-
ing phase and optimization phase. The filtering phase
traverses all working nodes and filters them by filtering
rules. In the optimization stage, the optimal strategy is
used to calculate the score of all candidate nodes, and
the node with the highest score is selected for schedul-
ing. However, Kubernetes’ default scheduling policy
only considers CPU and memory, and is scored based on

mono-criterion criterion, which fails to improve resource
utilization and load balancing.

It can be seen that there are few researches on load
balancing in the integration of OpenStack and Docker.
The load balancing mechanism mentioned above take
CPU, memory, disk, and bandwidth into account. An
efficient load balancing mechanism can improve the ser-
vice processing capability of cloud computing system,
solve network congestion problems to provide better
access quality for users, and improve resource utilization.
Therefore, our work is necessary.

LBSM
An efficient load balancing scheduling mechanism can
achieve high availability of cloud computing systems
and optimize the service quality of cloud platform users.
However, the scheduling mechanism adopted by the
existing OpenStack and Docker fusion solutions use a
uniform resource weight for all containers, which cannot
meet the resource load balancing requirements of cloud
platform computing nodes under differentiated resource
requirements of containers. The LBSM is shown in Fig. 1.

The LBSM is based on the precise limitation strategy
for container resources and a centralized strategy for
container resources when it is oriented toward various
resource demand scenarios of containers. The precise
limit strategy for container resources aims to precisely
limit the usage of the corresponding resources of the
container to avoid resource preemption between con-
tainers. The container resource centralization strategy
considers CPU and memory centrally to avoid frequent

Fig. 1 LBSM

Page 4 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

switching of the CPU and memory and remote memory
access across NUMA nodes during container operation.

The scheduling process of the LBSM is divided into
three stages: the filtering stage, the weighing stage, and
the NUMA lean stage. First, through the filtering stage,
the nodes whose remaining resources do not meet the
container resource request specification are filtered. The
goal of this stage is to select nodes that meet the con-
tainer resource request specifications from among all
the Docker computing nodes of OpenStack as candidate
computing nodes to avoid nodes that cannot deploy con-
tainers due to insufficient resources. Then, the optimal
computing node is selected for the container from among
all candidate computing nodes through the weigh-
ing stage based on weight adaptation, and the optimal
NUMA node is selected from among all NUMA nodes
of the optimal computing node through the NUMA lean
stage. The goal of these two stages is to generate exclu-
sive weights for containers when facing differentiated
resource requirements of containers, deploy containers
to optimal computing nodes, and occupy resources that
are allocated to them by optimal NUMA nodes.

LBSM implements resource load balance within a node
and between nodes, considering CPU, memory, disk, and
bandwidth. LBSM implements resource load balancing
within a node. If the CPU utilization reaches 90% and
the memory utilization reaches only 20%, computing
node will cannot deploy new containers due to insuf-
ficient CPU resources, even though memory resources
are sufficient. As a result, computing node wastes mem-
ory resources. In addition, the container running on the
computing node cannot achieve good performance due
to high CPU load. LBSM implements resource load bal-
ancing between nodes. If the CPU utilization of com-
puting node 1 reaches 85% and the CPU utilization of
computing node 2 reaches only 15%, computing node 1
will undertake a large number of computing-intensive
tasks, resulting in high CPU load. In this way, the sta-
bility of OpenStack cloud platform and the availability
of user service cannot be guaranteed. LBSM can pro-
vide high quality computing and storage services for
computing-intensive and memory-consuming contain-
ers when it is oriented toward CPU, memory, and disk
resource requirements. LBSM can meet the container’s
high requirements on network communication qual-
ity and reduce network congestion when it is oriented
toward CPU, memory, disk, and bandwidth resource
requirements.

Basis of scheduling
Precise limitation strategy for container resources
The precise limitation strategy for container resources is
used as the basis for scheduling by the LBSM. A precise

resource limit can ensure the accuracy of resource sched-
uling in the cloud platform and avoid resource com-
petition among containers, thus improving the quality
of service. In the filtering stage, the LBSM determines
whether the remaining computing node resources can
meet the request specifications of the container’s corre-
sponding CPU, memory, disk, and bandwidth resources.
Therefore, the precise limitation strategy for container
resources will precisely limit the utilization of corre-
sponding container resources according to the con-
tainer request specifications for CPU, memory, disk, and
bandwidth resources to ensure the accuracy of resource
scheduling in the filtering phase.

The LBSM encapsulates the CPU and memory resource
limit API interfaces officially provided by Docker, and
it implements precise limits on the container CPU and
memory resources. The container disk resource limit
can be implemented based on the devicemapper storage
driver by calling the disk limit API interface officially pro-
vided by Docker. However, loop-lvm is only suitable for
the test environment and has poor performance. Direct-
lvm is suitable for the production environment, but its
configuration is complicated. Additionally, the default
basic device size of devicemapper is 10 GB. If the disk
request size of the container is less than 10 GB when cre-
ating a container, the container will not be successfully
created. In view of the deficiencies in the precise limita-
tion of container disk resources, the LBSM changes the
storage driver to overlay2. The LBSM implements precise
restrictions on container disk resources through the fol-
lowing steps:

Docker uses Union File System technology to obtain a
layered stack of container images. The precise container
resource restriction strategy uses overlay2 as the Docker
storage driver to implement the Union File System tech-
nology, and it uses the feature that the files in the con-
tainer exist in the “container layer” to convert restrictions
on container disk resources to restrictions on the “con-
tainer layer”.

Centralized strategy for container resources
Due to its high aggregate memory bandwidth and good
system scalability [23, 24], NUMA is currently the most
common physical server architecture and has become the
mainstream in the fields of high-performance comput-
ing and cloud computing. As shown in Fig. 2, the NUMA
architecture divides the CPU and memory resources
of the system into multiple independent NUMA nodes.
Each NUMA node consists of a socket and its adjacent
memory nodes. In each socket, multiple logical CPUs
share the same integrated memory controller (IMC), and
the IMC is connected to its local memory node. Different

Page 5 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

sockets are interconnected through links (such as Intel’s
Quick Path Interconnect, QPI).

Therefore, the LBSM is based on the NUMA architec-
ture and introduces a container resource centralization
strategy. Concentrating the logical CPU and memory of
the container on the same NUMA node avoids frequent
switching of the CPU and memory and remote memory
access across NUMA nodes during the running process
of the container.

Scheduling process
Filtering stage
In the filtering stage, five filters for CPU, memory, disk,
bandwidth, and NUMA are introduced for the CPU,
memory, disk and bandwidth resource requirements
of the containers to filter all computing nodes in Open-
Stack. The CPU, memory, and disk filters are filtered by
the remaining amount of the corresponding resources
on the computing node. For example, if the remaining
amount of CPU resources on the current computing node
is less than that in the container CPU resource request
specification, then the node will be filtered directly. The
bandwidth filter uses the real-time bandwidth utilization
of the current computing node as the filtering criterion,
and if the bandwidth utilization of the computing node
exceeds the set threshold (defined as 90% in this paper),
the node will be filtered directly. The LBSM adopts
a centralized strategy for container resources, which

concentrates both the CPU and memory of the container
into the same NUMA node. Therefore, the NUMA filter
is introduced, and if the current computing node does
not have a NUMA node that satisfies the container’s CPU
and memory resource requests, the node will be filtered
directly. Eventually, the nodes that have passed all the fil-
ters will be taken as the candidate nodes in the weight-
based adaptive weighing phase.

Weighing phase based on weight adaptation
For the CPU, memory, disk, and bandwidth resource
requirements of containers, four scales of CPU, mem-
ory, disk, and bandwidth are introduced in the weighing
phase. As shown in Fig. 3, for the differentiated resource
requirements of containers, the LBSM comprehensively
considers the resource requirement characteristics of the
containers and the resource characteristics of the com-
puting nodes in the weighing stage. Through node weigh-
ing and weight adaptation, the computing node with the
highest weight score is selected from among all the can-
didate computing nodes obtained in the filtering stage as
the optimal computing node.

1) Node weighing: Node weighing is performed
based on the real-time resource utilization informa-
tion and information on the amount of remaining
resources of each computing node. The amount of
remaining resources of all candidate computing nodes
is Rt = {r1t , r

2
t , . . . , r

m
t } , and the real-time utilization

Fig. 2 Centralized strategy for container resources

Page 6 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

of resources t is Ut = {u1t ,u
2
t , . . . ,u

m
t } , where m repre-

sents the total number of candidate computing nodes.
Then, the scores of all candidate computing nodes
Xt = {x1t , x

2
t , . . . , x

m
t } against resource t can be calculated

by Eq. (1).

The score yit of candidate computation node i normal-
ized against resource t can be calculated by Eq. (2), where
xmax
t and xmin

t respectively denote the maximum and
minimum values of Xt.

2) Adaptive Weight: For the differentiated resource
requirements of containers, proprietary resource weights
are generated for containers based on the total resource
information of each computing node in OpenStack and
the container resource request specifications. If the total
number of resources t of all computing nodes in Open-
Stack is At = {a1t , a

2
t , . . . , a

c
t } and the request specifica-

tion of container j for resource t is djt , then the weight wj
t

of container j against resource t can be calculated by Eq.
(3), where c represents the total number of all computing

(1)

xit =
rit , t ∈ {cpu,memory, disk}

1− uit , t ∈ bandwidth
, i ∈ {1, 2, . . . ,m}

(2)yit =
xit − xmin

t

xmax
t − xmin

t

, i ∈ {1, 2, . . . ,m}

nodes in OpenStack and n represents the number of
resource types.

Then, the weight score S = {s1, s2, . . . , sm} of all can-
didate computing nodes can be calculated by Eq. (4).
Finally, the candidate computing node e with the high-
est weight score will be the optimal computing node for
deployment container j.

NUMA lean stage
The NUMA lean stage mainly consists of two stages: the
NUMA filtering stage and the NUMA weighing stage, as
shown in Fig. 4. The NUMA filtering stage uses a central-
ized strategy for container resources as the scheduling
basis to filter all NUMA nodes on the optimal comput-
ing node. Only when the remaining CPU and memory
resources of the current NUMA node are greater than
the request specifications of the corresponding resources
of the container will the NUMA node be used as a

(3)tmp
j
t =

d
j
t

∑c
i=1 a

i
t

,w
j
t =

tmp
j
t

∑n
t=1 tmp

j
t

(4)si =

n
∑

t=1

(

w
j
t × yit

)

, i ∈ {1, 2, . . . ,m}

Fig. 3 Weighing phase based on weight adaptation

Page 7 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

candidate NUMA node and enter the NUMA weighing
module.

The NUMA weighting stage assigns a score to NUMA
nodes based on the remaining CPU and memory and the
similarity between the container and the current NUMA
node. The CPU surplus of all candidate NUMA nodes
is Rcpu = {r1cpu, r

2
cpu, . . . , r

q
cpu} and the amount of mem-

ory remaining is Rmem = {r1mem, r
2
mem, . . . , r

q
mem} , where

q represents the total number of candidate NUMA
nodes. The request specification of container j for CPU
resources is djcpu , the request specification of memory
resources is djmem , and the resource unit of the container
is the same as that of the NUMA nodes (e.g., the con-
tainer memory unit and the NUMA node memory unit
are both in MB). We use Eqs. (5) and (6) to normalize
the resource request specification of the container and
the resource residual of the NUMA nodes to the same
metric, respectively.

(5)

D
j
cpu =

d
j
cpu

∑q
k=1

rkcpu + d
j
cpu

,D
j
mem =

d
j
mem

∑q
k=1

rkmem + d
j
mem

D
j
cpu denotes the CPU resource request specification

of the normalized container j, Dj
mem denotes the memory

resource request specification of the normalized con-
tainer j, Rk

cpu denotes the CPU resources remaining in the
normalized NUMA node k, and Rk

mem denotes the mem-
ory resources remaining in the normalized NUMA node
k. Then, the value of the similarity SIMj

k between con-
tainer j and NUMA node k can be calculated by Eq. (7).
Equation (7) uses cosine similarity to measure similarity,
which makes the weight interval small.

Then, the scores G = {g1, g2, . . . , gq} of all candidate
NUMA nodes can be calculated by Eq. (8). Finally, the
candidate NUMA node with the highest score will be

(6)

Rk
cpu =

rkcpu
∑q

k=1
rkcpu + d

j
cpu

,Rk
mem =

rkmem
∑q

k=1
rkmem + d

j
mem

(7)

SIM
j
k =

D
j
cpu × Rk

cpu + D
j
mem × Rk

mem
√

(

D
j
cpu

)2

+

(

D
j
mem

)2

×

√

(

Rk
cpu

)2

+
(

Rk
mem

)2

Fig. 4 NUMA lean stage

Page 8 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

chosen as the optimal NUMA node for deployment con-
tainer j.

Experimental results and analysis
To verify the effectiveness of the LBSM, an experimental
environment was built based on OpenStack Mitaka, con-
taining one control node, one network node, and three
Docker computing nodes. The operating system of the
control and network nodes is CentOS 7.2, the operating
system of each computing node is CentOS 7.8, and the
Docker version is 17.06.0-ce. The information for each
Docker computing node is shown in Table 1.

Verification of precise limits on container disk resources
This experiment mainly verifies that the LBSM can
meet precise limitations on container disk resources.
This experiment uses Nova-docker, Yun, and the LBSM
to deploy containers with disk request specifications of
1 GB, 2 GB, 4 GB, 8 GB, 12 GB, 16 GB, and 20 GB. All
containers aim to create a test file with a size of 30GB to
check the actual disk usage of each container. The experi-
mental results are shown in Table 2.

As can be seen from Table 2, Nova-docker cannot
implement precise limits on container disk resources. For
containers with disk request specifications greater than
10GB, Yun can implement precise resource limits. But
when the disk request specification is less than 10GB, the
container cannot be created successfully. The LBSM uses
the overlay2 storage driver, which can successfully create
containers with different disk request specifications and
accurately limit disk resources.

Verification of load balancing
We measure the resource load balance of OpenStack
computing nodes in terms of both the intranode and
internode resource load imbalance [9]. Equations (9) and
(10) use the coefficient of variance (CV) theory to calcu-
late the amount of load imbalance. In probability theory,

(8)gk = Rk
cpu + Rk

mem + SIM
j
k , k ∈ {1, 2, . . . , q}

variance is often used to measure the degree of deviation
between a random variable and the mean.

1) Intranode resource load imbalance. The intranode
resource load imbalance in OpenStack is denoted as
Lintra and is calculated by Eq. (9), where t represents the
resource type, n represents the number of resource types,
uit represents the utilization of resource t of computing
node i, cli represents the load imbalance of computing
node i, and c represents the total number of comput-
ing nodes in OpenStack. The smaller Lintra is, the more
balanced the utilization of resources in each dimension
within the node in OpenStack.

2) Internode resource load imbalance. The internode
resource load imbalance in OpenStack is expressed as
Linter and calculated by Eq. (10), where rlt denotes the
load imbalance of resources t. The smaller Linter is, the
more balanced the utilization of resources in each dimen-
sion among the nodes in OpenStack.

In this experiment, we constructed 9 container resource
request specifications, as shown in Table 3, for the CPU,
memory, and disk resource requirements of containers
and the CPU, memory, disk, and bandwidth resource
requirements of containers. It should be noted that Yun
uses devicemapper as the storage driver for Docker, and
the default disk size that Docker can use is 107.4 GB. To
ensure that Nova-docker, Yun, and the LBSM are all com-
pared based on the experimental environment shown in
Table 1, we set Nova-docker, Yun, and the LBSM using
overlay2 as the storage driver for Docker; the disk space
available for Docker was 120 GB.

As shown in Table 4, we used Nova-docker, Yun,
and the LBSM to deploy containers on three Docker

(9)

cli =

√

√

√

√

1

n

n
∑

t=1

(

uit −
1

n

n
∑

t=1

uit

)2

, Lintra =
1

c

c
∑

i=1

cli

(10)

rlt =

√

√

√

√

1

c

c
∑

i=1

(

uit −
1

c

c
∑

i=1

uit

)2

, Linter =
1

n

n
∑

t=1

rlt

Table 1 Docker computing node information

node number logical CPU memory (GB) disk (GB) bandwidth
(Gigabits)

NUMA node
number

NUMA node
logical CPU

NUMA node
memory
(MB)

1 24 31.2 120 1 0 12 7738

1 12 24173

2 24 15.4 120 1 0 12 7739

1 12 8045

3 24 15.4 120 1 0 12 7739

1 12 8045

Page 9 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

computing nodes. For the CPU, memory, and disk
resource requirements of the containers, A1∼ A5 were
based on the container resource request specifications
in C1∼C4. For the CPU, memory, disk, and bandwidth
resource requirements of containers, B1∼ B5 were based
on the container resource request specifications in C5∼
C9.

As shown in Fig. 5, for the CPU, memory, and disk
resource requirements of the containers, compared with
Nova-docker and Yun, the LBSM performs well in terms
of both intranode resource load imbalance and internode

resource load imbalance. Compared to Nova-docker, the
LBSM reduces the load imbalance of resources within a
node by an average of 55.09%, with the highest reduction
of 72.27% in the A1 group test and the lowest reduction
of 41.88% in the A2 group test. Compared with Yun, the
LBSM reduces the load imbalance of resources within a
node by 50.68% on average, with the greatest reduction
of 59.09% in the A5 group test and the smallest reduction
of 43.56% in the A2 group test. Compared with Nova-
docker, the LBSM reduces the resource load imbalance
between nodes by 56.92% on average, with the largest

Table 2 Verification of precise disk resource limits

scheduling mechanism disk request specification (GB) test file specification (GB) actual disk usage
specification (GB)

Nova-docker 1 30 31

2 30 31

4 30 31

8 30 31

12 30 31

16 30 31

20 30 31

Yun 1 30 Creation failure

2 30 Creation failure

4 30 Creation failure

8 30 Creation failure

12 30 12

16 30 16

20 30 20

LBSM 1 30 1

2 30 2

4 30 4

8 30 8

12 30 12

16 30 16

20 30 20

Table 3 Container resource request specifications

resource requirement of containers container number container resource request specification

CPU memory (MB) disk (GB) bandwidth
(Mbps)

CPU, memory, disk C1 4 1024 5 0

C2 1 4096 5 0

C3 1 1024 20 0

C4 2 2048 10 0

CPU, memory, disk, bandwidth C5 4 1024 5 45

C6 1 4096 5 45

C7 1 1024 20 45

C8 1 1024 5 180

C9 2 2048 10 90

Page 10 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

reduction of 66.99% in the A1 group test and the small-
est reduction of 46.49% in the A3 group test. Compared
with Yun, the LBSM achieves an average reduction of
40.79% in resource load imbalance between nodes, with
the greatest reduction of 51.55% in the A5 group test and
the smallest reduction of 30.38% in the A3 group test.

As shown in Fig. 6, for the CPU, memory, disk, and
bandwidth resource requirements of containers, the
LBSM also achieves better resource load balancing in
terms of intranode and internode resource load imbal-
ance than Nova-docker and Yun. Compared with
Nova-docker, the LBSM achieves an average reduc-
tion of 57.35% in intranode resource load imbalance,
with the greatest reduction of 73.98% in the B4 group
and the smallest reduction of 38.77% in the B2 group.

Table 4 Load balancing test group

test number container deployment order

A1 C1×6→ C2×4→ C3×4→ C4×4

A2 C1×4→ C2×6→ C3×4→ C4×4

A3 C1×4→ C2×4→ C3×6→ C4×4

A4 C1×4→ C2×4→ C3×4→ C4×6

A5 C1×5→ C2×5→ C3×5→ C4×3

B1 C5×6→ C6×3→ C7×3→ C8×3→ C9×3

B2 C5×3→ C6×6→ C7×3→ C8×3→ C9×3

B3 C5×3→ C6×3→ C7×6→ C8×3→ C9×3

B4 C5×3→ C6×3→ C7×3→ C8×6→ C9×3

B5 C5×4→ C6×4→ C7×4→ C8×4→ C9×2

Fig. 5 Load balancing test results for three resources requested by containers

Fig. 6 Load balancing test results for four resources requested by containers

Page 11 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

Compared to Yun, the LBSM reduces the load imbalance
of resources within a node by 59.00% on average, with
the greatest reduction of 81.26% in the B4 group and the
smallest reduction of 50.29% in the B2 group. Compared
to Nova-docker, the LBSM achieves an average reduction
of 53.53% in resource load imbalance between nodes,
with the greatest reduction of 70.24% in the B1 group test
and the smallest reduction of 34.46% in the B5 group test.
Compared with Yun, the LBSM reduces the internode
resource load imbalance by 50.90% on average, with the
greatest reduction of 63.70% in the B2 group test and the
smallest reduction of 39.16% in the B5 group test.

Verification of container deployment time consumption
To compare the time consumption of Nova-docker, Yun,
and the LBSM for deploying containers, we test the time
required for Nova-docker, Yun, and the LBSM to deploy
containers C1∼ C4 in Table 3 to meet the CPU, memory,
and disk resource requirements of the containers. A total
of four sets of tests are performed. The deployment time
of a container is the difference between the update time
of the container and the request creation time of the con-
tainer. To avoid the effects of chance on the experimental
results, each group of tests is conducted three times. That
is, each container specification is deployed three times, and
the average value of the three deployment times is taken
as the deployment time of the container for that resource
request specification. The experimental results are shown
in Fig. 7(a). For the CPU, memory, disk, and bandwidth
resource requirements of the containers, we test the time
required for Nova-docker, Yun, and the LBSM to deploy
the five containers numbered C5∼ C9 in Table 3. A total of
five sets of tests are performed. The results of the experi-
ments are shown in Fig. 7(b). For the CPU, memory, and
disk resource requirements of the containers, Nova-docker

takes 8.42 seconds to deploy containers on average. Yun
takes 1.42 seconds and LBSM takes 1.58 seconds on aver-
age. For the CPU, memory, disk, and bandwidth resource
requirements of the containers, Nova-docker takes 8.07
seconds to deploy containers on average. Yun takes 1.6
seconds and LBSM takes 1.27 seconds on average. Nova-
docker takes more time to deploy the containers, while Yun
as well as LBSM take less than 2 seconds to deploy contain-
ers. That is, the LBSM achieves better load balancing with-
out increasing the container scheduling time consumption.

Conclusion and future work
Considering the convergence of OpenStack and Docker,
this paper proposes a load-balancing scheduling mecha-
nism for differentiated container resource demands. The
scheduling mechanism is based on the precise container
resource limitation strategy and a centralized strategy
for container resources. The candidate computing nodes
are first selected from among all computing nodes in
OpenStack through a filtering phase. Then, the optimal
computing node is selected for the container through a
weight-based adaptive weighing phase. Finally, the opti-
mal NUMA node is selected for the container through
a NUMA leaning phase. The experiments show that, in
contrast to the scheduling mechanisms adopted by Nova-
docker and Yun, the scheduling mechanism proposed in
this paper can achieve the precise limitation of container
resources and effectively reduce the resource load imbal-
ance degree within a node and among computing nodes
in OpenStack. At the same time, this scheduling mecha-
nism does not increase the time consumption.

The LBSM schedules containers based on their initial
resource request specifications. However, users do not
know the exact resource specifications required by the
application and containers do not run at full capacity.

Fig. 7 Time consumption test results for deploying containers of different specifications

Page 12 of 12Qian et al. Journal of Cloud Computing (2023) 12:67

This method of allocating computing node resources
leads to resource waste. And the alternatives of docker
are also available which is highly used nowadays such
as CoreOS Rocket, RKT. The next step will be to apply
LBSM to OpenStack and other alternatives of Docker
integration. Then, we will establish a Docker container
scheduling model based on the OpenStack cloud plat-
form and to study how to improve system resource uti-
lization and reduce energy consumption while achieving
load balancing of OpenStack computing node resources.

Abbreviations
NUMA Non-uniform memory access
IaaS Infrastructure as a Service
LBSM Load-Balancing Scheduling Mechanism
ANN Artificial neural network
DRL Deep reinforcement learning
SLA Service level agreement
IMC Integrated memory controller
QPI Quick Path Interconnect
CV Coefficient of variance

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful com-
ments and valuable suggestions.

Authors’ contributions
Jiarui Qian and Xiaoxue Wang completed most of the writing of this manu-
script and conducted the experiment. Yong Wang and Peng Zhang found the
target problem from his working experience. Xiaofeng Wang took part in the
discussion of the solution and gave many useful suggestions. All authors have
read and approved the manuscript.

Funding
The work is supported by the National Natural Science Foundation of China
(Grant Nos.62172191 and 61972182).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
The work has not been published elsewhere nor is it currently under review
for publication elsewhere.

Consent for publication
Informed consent was obtained from all individual participants included in
the study.

Competing interests
The authors declare that they have no competing interests.

Received: 23 December 2022 Accepted: 16 April 2023

References
 1. Ren J, Yu G, He Y, Li GY (2019) Collaborative cloud and edge computing

for latency minimization. IEEE Trans Veh Technol 68(5):5031–5044
 2. Li M, Gao J, Zhao L, Shen X (2020) Deep reinforcement learning for

collaborative edge computing in vehicular networks. IEEE Trans Cogn
Commun Netw 6(4):1122–1135

 3. Ren J, He Y, Yu G, Li GY (2019) Joint communication and computation
resource allocation for cloud-edge collaborative system. In: 2019 IEEE Wire-
less Communications and Networking Conference (WCNC), IEEE, pp 1–6

 4. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P (2017) Elasticity in cloud com-
puting: state of the art and research challenges. IEEE Trans Serv Comput
11(2):430–447

 5. Fan W, Han Z, Li P, Zhou J, Fan J, Wang R (2019) A live migration
algorithm for containers based on resource locality. J Sig Process Syst
91(10):1077–1089

 6. Benomar Z, Longo F, Merlino G, Puliafito A (2021) Cloud-based network
virtualization in iot with openstack. ACM Trans Internet Technol (TOIT)
22(1):1–26

 7. Shih WC, Yang CT, Ranjan R, Chiang CI (2021) Implementation and evalu-
ation of a container management platform on docker: Hadoop deploy-
ment as an example. Clust Comput 24(4):3421–3430

 8. Annie Poornima Princess G, Radhamani A (2021) A hybrid meta-heuristic
for optimal load balancing in cloud computing. J Grid Comput 19(2):1–22

 9. Ghasemi A, Toroghi Haghighat A (2020) A multi-objective load balancing
algorithm for virtual machine placement in cloud data centers based on
machine learning. Computing 102(9):2049–2072

 10. Yang S, Wang X, An L, Zhang G (2019) Yun: a high-performance container
management service based on openstack. In: 2019 IEEE Fourth Interna-
tional Conference on Data Science in Cyberspace (DSC), IEEE, pp 202–209

 11. Yang S, Wang X, Wang X, An L, Zhang G (2020) High-performance
docker integration scheme based on openstack. World Wide Web
23(4):2593–2632

 12. Mao Y, Oak J, Pompili A, Beer D, Han T, Hu P (2017) Draps: Dynamic and
resource-aware placement scheme for docker containers in a heteroge-
neous cluster. In: 2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC), IEEE, pp 1–8

 13. Ben Alla H, Ben Alla S, Ezzati A, Touhafi A (2021) A novel multiclass prior-
ity algorithm for task scheduling in cloud computing. J Supercomput
77(10):11514–11555

 14. Lin W, Wang Z (2018) Docker cluster scheduling strategy based on
genetic algorithm. J South China Univ Technol (Nat Sci Ed) 46(3):127–13

 15. Shen B, Li Q, Jiang Y, Wang Y et al (2020) Research on load balancing in
data center networks. J Softw 31(7):2221–2244

 16. Chen G, Zhang W (2019) Elab: end-host-based congestion aware load
balancing for data center network. J Commun 40(03):196–205

 17. Kristiani E, Yang CT, Huang CY, Wang YT, Ko PC (2021) The implementa-
tion of a cloud-edge computing architecture using openstack and
kubernetes for air quality monitoring application. Mob Netw Appl
26(3):1070–1092

 18. Li Y, Qi F, Wang Z, Yu X, Shao S (2020) Distributed edge computing
offloading algorithm based on deep reinforcement learning. IEEE Access
8:85204–85215

 19. Negi S, Rauthan MMS, Vaisla KS, Panwar N (2021) Cmodlb: an efficient
load balancing approach in cloud computing environment. J Supercom-
put 77(8):8787–8839

 20. Tong Z, Deng X, Chen H, Mei J (2021) Ddmts: A novel dynamic load
balancing scheduling scheme under sla constraints in cloud computing.
J Parallel Distrib Comput 149:138–148

 21. Pérez de Prado R, García-Galán S, Muñoz-Expósito JE, Marchewka A, Ruiz-
Reyes N (2020) Smart containers schedulers for microservices provision in
cloud-fog-iot networks. challenges and opportunities. Sensors 20(6):1714

 22. Menouer T (2021) Kcss: Kubernetes container scheduling strategy. J
Supercomput 77(5):4267–4293

 23. Cheng Y, Chen W, Wang Z, Yu X (2015) Performance-monitoring-based
traffic-aware virtual machine deployment on numa systems. IEEE Syst J
11(2):973–982

 24. Wu T, Chen X, Liu K, Xiao C, Liu Z, Zhuge Q, Sha EHM (2020) Hydrafs:
an efficient numa-aware in-memory file system. Clust Comput
23(2):705–724

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Load balancing scheduling mechanism for OpenStack and Docker integration
	Abstract
	Introduction
	Related work
	LBSM
	Basis of scheduling
	Precise limitation strategy for container resources
	Centralized strategy for container resources

	Scheduling process
	Filtering stage
	Weighing phase based on weight adaptation
	NUMA lean stage

	Experimental results and analysis
	Verification of precise limits on container disk resources
	Verification of load balancing
	Verification of container deployment time consumption

	Conclusion and future work
	Acknowledgements
	References

