
Meng et al. Journal of Cloud Computing (2023) 12:76
https://doi.org/10.1186/s13677-023-00450-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Task offloading optimization mechanism
based on deep neural network in edge-cloud
environment
Lingkang Meng1, Yingjie Wang1*, Haipeng Wang2, Xiangrong Tong1, Zice Sun1 and Zhipeng Cai3

Abstract

With the rise of edge computing technology and the development of intelligent mobile devices, task offloading in
the edge-cloud environment has become a research hotspot. Task offloading is also a key research issue in Mobile
CrowdSourcing (MCS), where crowd workers collect sensed data through smart devices they carry and offload
to edge-cloud servers or perform computing tasks locally. Current researches mainly focus on reducing resource
consumption in edge-cloud servers, but fails to consider the conflict between resource consumption and service
quality. Therefore, this paper considers the learning generation offloading strategy among multiple Deep Neural
Network(DNN), proposed a Deep Neural Network-based Task Offloading Optimization (DTOO) algorithm to obtain
an approximate optimal task offloading strategy in the edge-cloud servers to solve the conflict between resource
consumption and service quality. In addition, a stack-based offloading strategy is researched. The resource sorting
method allocates computing resources reasonably, thereby reducing the probability of task failure. Compared with
the existing algorithms, the DTOO algorithm could balance the conflict between resource consumption and service
quality in traditional edge-cloud applications on the premise of ensuring a higher task completion rate.

Keywords Edge-cloud, Task offloading, Mobile crowdsourcing, Deep neural network, Resource consumption, Service
quality

Introduction
With the rapid development of Internet of Things (IoT)
[1] and 5G technology [2], edge-cloud has been integrated
into daily applications, MCS, as a new mode of perception
network, data collection [3] and information service, has
become an indispensable part of today’s society [4]. MCS is
a process in which crowd workers form an interactive per-
ception network by carrying mobile devices to a designated
location for information collection and crowdsourcing

platforms. MCS is a process in which crowd workers form
an interactive perception network by carrying mobile
devices to a designated location for information collection
and crowdsourcing platforms. The crowdsourcing platform
publishes tasks and recruits crowd workers to complete the
tasks [5], which provides many conveniences to people’s
lives, such as collecting information, analyzing data [6], and
sharing knowledge [7], so it has received extensive atten-
tion in various fields. Academics at Zurich University [8]
designed an environmental monitoring model that uses a
smartphone carrying a sensor to detect ozone levels. The
Smart City project in Serbia [9] uses sensors provided by
Libelium [10] on public transport equipment to monitor
air quality. In addition, the famous Waze company also
provides commercial map services for people based on the
MCS model. Mobile crowdsourcing has become a research
hotspot in Infocom, Ubicomp, Percom, and Mobicom [11].

*Correspondence:
Yingjie Wang
towangyingjie@163.com
1 School of Computer and Control Engineering, Yantai University, Yantai,
China
2 Institute of Information Fusion, Naval Aviation University, Yantai, China
3 Department of Computer Science, Georgia State University, Atlanta, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00450-6&domain=pdf

Page 2 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

In a typical mobile crowdsourcing system, a complete
cloud-based architecture consists of the cloud plat-
form, task requesters, and crowd workers. First, the task
requester issues the task through the cloud platform.
Then, select appropriate workers to assign tasks through
task assignment [12]. Crowd workers collect data
through their mobile devices and upload it to the cloud
platform. Finally, the platform will evaluate and update
the worker’s reputation value [13–15] based on the qual-
ity of the worker’s uploaded data [16]. With the emer-
gence of technologies such as intelligent driving [17],
task requesters have higher and higher requirements for
real-time data [18, 19], and workers uploading data to
the cloud platform will generate large data delays [20],
and traditional centralized cloud platforms will not be
able to meet this requirement. The emergence of edge-
cloud technology has temporarily solved this problem.

Edge-Cloud refers to the use of an edge-cloud server
that integrates network, computing, storage, and appli-
cation core capabilities on the side close to the mobile
device or data source [21] to provide the nearest com-
puting service nearby. When workers use mobile devices
to upload data, they can directly interact with the near-
est edge node, which greatly reduces data transmission
latency [22]. In the edge-cloud environment, computing
tasks are performed on a powerful edge-cloud server,
which has the advantages of easy installation and small
size [23]. But their load capacity and computing power
are still far inferior to cloud servers. Chen et al. [24] pro-
posed a game theory-based task offloading algorithm,
but this algorithm requires multiple interactions between
crowd workers and edge servers, which consumes a lot
of resources. Huang et al. [25] proposed a task offload-
ing and resource allocation scheme based on a deep
Q-network, but its feature of searching in tables is not
suitable for processing high-dimensional data. Therefore,
the problem of optimizing the task offloading strategy in
edge servers needs to be solved urgently [26]. The main
challenges for task offloading in MCS are as follows.

1. In the practical application of MCS, workers often
choose the nearest edge-cloud server to upload sen-
sory data. If there are a large number of workers near
the edge-cloud server and most workers choose to
offload tasks to the edge-cloud server, the edge-cloud
server may suffer from excessive data processing
capacity. Large and overloaded and leads to paralysis.
Therefore, how to make reasonable task offloading
decisions is an important research content to prevent
excessive load on edge-cloud servers.

2. Although researchers have proposed many schemes
to solve the task distribution problem among mul-
tiple edge-cloud servers, the computing power of

edge-cloud servers is limited. If there are too many
tasks in the task queue, some time-sensitive tasks
may not be solved in time. Therefore, how to reason-
ably allocate the computing resources on the edge-
cloud server is a key factor to improve the success
rate of task allocation.

In response to the above challenges, this paper stud-
ies a task offloading optimization algorithm DTOO for
the MCS, which generates a near-optimal task offload-
ing strategy and solves the conflict between resource
consumption and quality of service. A resource alloca-
tion scheme is designed to improve the success rate of
the task. The main contributions of this paper are sum-
marized as follows.

1. This paper designs a task offloading algorithm
DTOO based on DNN, which can obtain an approxi-
mate excellent offloading strategy through learning
among multiple neural units, so as to solve the con-
flict between edge-cloud server resource consump-
tion and service quality.

2. This paper proposes a stack-based resource sort-
ing scheme, which matches different computing
resources according to the timeliness level of tasks,
thereby improving the success rate of tasks.

3. The proposed DNN-based task offloading scheme
and stack-based task ranking mechanism are ana-
lyzed and evaluated through comparison experi-
ments on real datasets. The experimental results veri-
fied the superiority of this scheme.

The rest of this paper is organized as follows. Section
II introduces the related works. Section III describes the
DTOO algorithm and resource allocation scheme. Sec-
tion IV presents the comparison experiments and the
discussion of the experimental results. Finally, Section V
presents the conclusion.

Related work
In recent years, more and more attention has been paid
to the research of task assignment [27, 28] based on
mobile crowdsourcing in the edge cloud environment,
aiming at design an optimal task offloading strategy with
low latency, low energy consumption, and high service
quality. Many scholars have conducted in-depth research
on this and proposed feasibility studies.

Edge computing
With the popularization of the IoT and the promotion
of cloud services [29], edge computing has emerged as
a new computing paradigm. Edge computing refers to
delegating data processing to the edge of the network

Page 3 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

[30]. This mode can reduce request delay and network
bandwidth while ensuring data security and privacy
[31–33]. The core part of edge computing is to migrate
some or all of the computing tasks in cloud computing
to the vicinity of mobile devices. This highly poten-
tial way can solve some of the shortcomings of cloud
computing [34]. Zhao et al. [35] designed a new mobile
device data transmission scheme, introduced edge
computing in the cloud platform-centric architecture,
and used edge nodes to assist data transmission to
solve the problem of excessive bandwidth consump-
tion in traditional cloud platform solutions [36]. This
scheme explores the bandwidth consumption of edge
nodes through the edge computing paradigm. Ren et al.
[37] explored the problem of joint communication
technology and computing resource allocation, which
aimed at find an optimal solution to minimize latency
in the cloud and edge-cloud collaborative systems.
And esigned an offloading scheme based on distrib-
uted computing, which can achieve excellent comput-
ing offloading ability and can make corresponding
adjustments with the change of user scale [38]. Opti-
mized the problem of multi-user resource offloading
of edge cloud in a multi-channel wireless interference
environment.

Task offloading based on edge cloud
The problem of offloading computing tasks in edge com-
puting is a research hotspot [39]. In the actual crowd-
sourcing environment, task offloading will be affected
by various external factors, such as the hardware per-
formance of the device, the network environment where
the worker is located [40, 41], and the worker’s person-
alized choice [42]. This makes it particularly important
to formulate a reasonable and dynamically changing
task offloading strategy according to the external envi-
ronment. Some existing works mainly study how to
make task assignment decisions in an offline or online
state, and most of the research focuses on minimiz-
ing task completion time and resource consumption
as the optimization goal. For example, Dinh et al. [43]
considered two cases of whether the CPU frequency of
the edge server can be adjusted or not, and proposed
a linear relaxation-based method and an exhaustive
search-based scheme to solve the two cases, respec-
tively. Obviously, the exhaustive approach consumes a
lot of computing resources. To get a balance between
resource consumption and computational latency. Wu
et al. [44] proposed a task offloading algorithm based
on Lyapunov, which reduces the resource consump-
tion of the device under the condition of satisfying the
delay constraint. Considering service heterogeneity,
unknown system dynamics, spatial demand coupling,

and decentralized coordination, Xu et al. [45] pro-
posed an online task offloading algorithm based on
Lyapunov optimization and Gibbs sampling. Shu et al.
[46] designed an algorithm that supports multi-user
task offloading, dividing tasks into subtasks and off-
loading them to edge servers to reduce the end-to-end
task execution time. Mao et al. [47] studied an Energy
Harvesting (EH) technology to power mobile devices
through renewable energy. Based on Lyapunov, the fre-
quency and transmit power of the CPU are optimized to
reduce the execution delay of the task. Zhao et al. [48]
optimized the offloading decision, radio resource allo-
cation, and computing resource allocation, and trans-
formed the resource minimization problem into the
Mixed Integer Nonlinear Programming (MINLP) prob-
lem. A Gini coefficient-based greedy heuristic (GCGH)
was proposed to solve this problem. Although comput-
ing offloading in edge computing is the core technology,
how to allocate resources to improve the task comple-
tion rate should also be considered in practical crowd-
sourcing applications.

Deep learning
As an emerging technology in machine learning algo-
rithms, Deep Learning’s main purpose is to build and
simulate a neural network for analyzing and learn-
ing the human brain [49]. The essence of deep learn-
ing is to perform hierarchical feature representation
on data, and further abstract low-level features into
high-level features through neural networks. DNN
composed of multi-layer perceptions have achieved
major breakthroughs in the fields of image classifi-
cation and recognition, natural language process-
ing, and a robot control. Mnih et al. [50] used deep
neural networks to develop a novel surrogate model
called a deep Q-network [51], which bridges the gap
between high-level sensory input and decision-making
actions. Deep learning is also widely used in the field
of wireless communication, such as resource alloca-
tion problems [52], signal detection problems [53],
data caching problems [54], etc. In recent years, some
scholars have used deep learning models to solve the
task offloading problem in the edge cloud environ-
ment. Huang et al. [55] proposed a deep reinforcement
learning-based method to solve the task offloading and
resource allocation problem, with the aim of making
each user obtain a satisfactory task offloading decision
and resource allocation scheme. However, the search
nature of deep Q-learning based on Q-table makes its
performance not outstanding when dealing with high-
dimensional data.

Existing optimization schemes do not take into
account the limitation of computational dimensions,

Page 4 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

and general optimization algorithms cannot efficiently
deal with the complexity of data in the actual crowd-
sourcing environment, especially when faced with a
large number of crowd workers. The existing work
failed to consider the allocation of resources when opti-
mizing the task offloading scheme. Therefore, according
to the above problems, this paper considers the balance
between resource consumption and quality of service,
and the task completion rate. A DTOO algorithm is pro-
posed to specify an efficient offloading decision through
mutual learning among DNNs. In order to improve the
task completion rate and allocate resources according to
the priority of tasks, a stack-based resource allocation
scheme is designed.

System design
In this section, first, the task offloading problem in the
edge cloud environment is defined, then, the system
model of this paper is introduced, and finally, the algo-
rithm proposed in this paper is described in detail. The
main symbol definitions are shown in Table 1.

Problem definition
Definition 1 (Crowd Task): In MCS system, the crowd
tasks are uploaded to the platform by the task requester,
and the crowd tasks are released by the platform,
defined as C = {c1, c2, c3, . . . , cn} .Each task also has
its properties, where the task is published is defined as
l = lc1 , lc2 , lc3 , . . . lcn . The time of task release is defined
as Tsatrt . The task deadline is defined as Tend . Therefore,
the maximum allowable delay of a task can be defined as
T =

{

tc1 , tc2 , tc3 , . . . , tcn
}

 . The data volume of the task is
defined as D =

{

dc1 , dc2 , dc1 , . . . , dcn
}

.
Definition 2 (Crowd Work): Crowd workers can

collect data with their own mobile devices and upload
the data to the crowd platform. Crowd workers are
defined as W = {w1,w2, w3, . . . ,wm} . Each crowd
worker also has its attributes, the id of the worker is
defined as Wid .

Definition 3 (Task Offload Policy): For each crowd
worker, he or she can choose to process computing tasks
locally or offload computing tasks to edge servers for
processing. Therefore, considering the task offloading
strategy as a binary problem, when workers choose to
process computing tasks locally, it is recorded as 0, and
when they choose to offload tasks to edge servers for pro-
cessing, it is recorded as 1. Therefore, the task offloading
strategy is defined as Eq. (1):

where Sciwj
 represents worker wj choice of offloading

strategy for task ci . Sciwj
= 0 , indicates that the task is

(1)Sciwj
=

{

0, local
1, offload

executed locally, and Sciwj
= 1 , indicates that the task is

offloaded to the edge server for execution.
Definition 4 (Local Computation): Model situations

where users choose to process computing tasks locally.
For computation tasks executed locally, the time con-
sumption is defined as Eq. (2):

where Tlocal

(

ci,wj

)

 is the time consumption of worker
wj task ci , and rlocal is the rate at which data is processed
locally. Energy consumption for local processing is
defined as Eq. (3):

where Elocal
(

ci,wj

)

 is the energy consumption of worker
wjtaskci , and qlocal is the consumption per bit of data

(2)Tlocal

(

ci,wj

)

=
dci
rlocal

(3)Elocal
(

ci,wj

)

= dci × qlocal

Table 1 Symbols and definitions

Notation Description

C = {c1, c2, c3, . . . , cn} Crowd task set

l = {lc1 , lc2 , lc3 , . . . lcn } Crowd tasks posted location set

Tsatrt Crowd task release time

Tend Crowd task deadline

T = {tc1 , tc2 , tc3 , . . . , tcn } Maximum allowable delay set for crowd
tasks

D = {dc1 , dc2 , dc1 , . . . , dcn } The amount of data contained set in
the crowd task

W = {w1,w2,w3, . . . ,wm} Crowd worker set

Wid Crowd worker id

Sciwj Task offload policy

rlocal Local data processing rate

qlocal Consumption per bit of data processed
locally

xedge Edge server data transfer rate

redge The rate at which edge server data is
processed

yedge Transmission energy consumption per
bit data of edge server

qedge Energy consumption per bit of data
processed by edge servers

Tlocal(ci ,wj) Local time consumption of worker wj
task ci

Elocal(ci ,wj) Local energy consumption of worker
wj task ci

Tedge(ci ,wj) The marginal time consumption of
worker wj task ci

Eedge(ci ,wj) The marginal energy consumption of
worker wj task ci

Wlocal The total consumption of local processing
computing tasks

Wedge The total consumption of edge servers
processing computing tasks

Page 5 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

processed locally. Therefore, the joint offloading strategy
defines the total consumption of locally processed com-
puting tasks as Eq. (4):

Definition 5 (Edge Computing): Model the user’s choice
to offload computing tasks to edge servers. The set of edge
servers is defined as ES = {es1, es2, es3, . . . , esz} , and the
time consumption for computing tasks offloaded to edge
servers is defined as Eq. (5):

where Tedge(ci,wj) is the time consumption of worker
wj task ci , xedge is the data transmission rate of the edge
server, and redge is the data processing rate of the edge
server. The energy consumption of offloading computing
tasks to edge servers is defined as Eq. (6):

where Eedge(ci,wj) is the energy consumption of worker
wj task ci , yedge is the energy consumption of data trans-
mission per bit, and qedge is the energy consumption of
edge server processing each bit of data. Therefore, the
joint offloading strategy defines the total consumption of
edge server processing computing tasks as Eq. (7):

Then the total consumption of the system is defined as
Eq. (8):

In short, to minimize the resource consumption of task
completion, the goal of this stage is to find an optimal
task offloading strategy to minimize Wtotal.

Definition 6 (Resource Allocation): Model resource
allocation among edge servers. Due to the limited com-
puting power and load capacity of edge servers, and
crowd tasks are also time-sensitive, edge servers need to
complete computing tasks within a certain period.
Therefore, according to the maximum allowable delay of
the tasks, this paper sorts the tasks by priority and

(4)Wlocal =

n
∑

i=1

m
∑

j=1

[

Tlocal

(

ci ,wj

)

+ Elocal

(

ci ,wj

)]

×

(

1 − Sciwj

)

(5)Tedge

(

ci,wj

)

=
dci
xedge

+
dci
redge

(6)Eedge
(

ci,wj

)

= dci × yedge + dci × qedge

(7)

Wedge =

n
∑

i=1

m
∑

j=1

[

Tedge

(

ci,wj

)

+ Eedge
(

ci,wj

)]

×Sciwj

(8)

Wtotal =

n
∑

i=1

m
∑

j=1

[

Tlocal

(

ci ,wj

)

+ Elocal

(

ci ,wj

)]

×

(

1 − Sciwj

)

+

n
∑

i=1

m
∑

j=1

[

Tedge

(

ci ,wj

)

+ Eedge

(

ci ,wj

)]

×Sciwj

stores them in the task stack, which corresponds to the
address stack in the edge server. When task ck joins, first

determine whether the total delay
k−1
∑

u=1

tcu of its previous

task will exceed the maximum allowable delay of task ck ,
and if it exceeds, it will be allocated to other idle
addresses.

System model design
In the edge cloud environment, the computing tasks
of the central cloud are sunk to the edge of the net-
work, which greatly reduces network latency. At the
same time, this paper uses mutual learning among
multiple DNNs to obtain an approximate optimal off-
loading strategy, which also ensures the service qual-
ity under the premise of low resource consumption. A
stack-based sorting mechanism to reasonably allocate
resources is used to improve task completion rate. In
practical crowd applications, each crowd worker will
have multiple jobs that need to be processed locally
or at the edge server, and the offloading decision is
represented by 0 or 1. Sciwj

= 0 means that the task is
executed locally. Sciwj

= 1 indicates that the task is
offloaded to the edge server for execution. The system
model is shown in Fig. 1. First, a DNN is used to gen-
erate candidate unloading actions by taking the task
scale carried by crowd workers as input to the model.
Then, an offloading strategy that meets the optimization
objective is selected as the output. For computing tasks
that are offloaded to edge servers for processing, the
tasks are sorted according to their priority. In the task
stack, tasks with larger maximum allowable delays are
placed at the bottom of the stack, and tasks with lower
delays are placed at the top of the stack. In the address
stack, servers with more resources, that is, addresses
with higher idle levels, are placed at the top of the stack,
and those with fewer resources are placed at the bot-
tom of the stack. The task stack and the address stack
are arranged in order so that the most urgent tasks can
be allocated addresses of more resources, which greatly
improves the success rate of the tasks.

Since there may be crowd workers at the boundary of
the edge server service range in the candidate set and
not recruited by the platform, these workers may have
better utility. Therefore, before recruiting workers, the
movement trajectories of the workers are predicted to
accurately locate the partitions where the workers are
located based on the workers’ historical trajectories and
social networks. Then, assign all the recruited workers
to edge servers.

Page 6 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

DTOO algorithms
In this section, algorithms for generating offloading
decisions using DNNs are presented. For the above-
mentioned problem, we only need to find an optimal
unloading strategy Scw , so that Wtotal achieves the mini-
mum value. Since the size of set Scw is 2nm , finding an
optimal offloading strategy is NP-hard. Therefore, the
approximate optimal unloading policy function � is
obtained by training the DNN, such that � :

∼

S ← D , as
Eq. (9):

where D is the input of the model. The function value is
optimized by performing a gradient descent algorithm
during training by minimizing the cross-entropy loss
function Eq. (10):

The DTOO algorithm proposed in this paper is
shown in Algorithm 1.

(9)arg minΦ(

∼

S) = arg minWtotal(D, Sciwj
),

(

i ∈ n;j ∈ m
)

(10)L(�) = −
[

Slog Ŝ + (1− S)log
(

1− Ŝ
)]

Algorithm 1 DTOO algorithm

Algorithm 1 shows the optimization process of task
offloading strategy based on deep neural network. The
input is the dataset D of the amount of data contained
in the crowd task. The output is the approximate opti-
mal task offloading strategy Scw . Line1 traverses all
task data volumes in D. Line2, Line3 Input dci into
all DNNs to get candidate offloading strategies

∼

S .

Fig. 1 System Model Design

Page 7 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

Line4-Line6 selects the optimal offloading strategy
that minimizes L(�) and stores it in memory for the
next round of training. Line7-Line9, sample data from
memory for the next round of training, and update
L(�) . The training of Line10 and Line11 ends, and the
approximate optimal unloading strategy Scw is finally
obtained.

Resource allocation algorithm
When crowd workers offload computing tasks to edge
services, computing tasks are added to the stack in
order based on priority. The administrator first matches
the task at the top of the task stack with an address in
the address stack with a high idle level. Then, when the
address has fewer resources after a round of task alloca-
tion, the administrator will allocate the task to the next
address with a higher idle level. The implementation pro-
cess is shown in Algorithm 2.

Algorithm 2 Resource allocation algorithm

Algorithm 2 demonstrates the stack-based and sorted
resource allocation process. The input is task offloading
policy Sciwj and edge server set ES. The output is the task
stack, the address stack. Line1-Line6 judges whether the
task is offloaded to the edge server and obtains the task
set Cedge that is offloaded to the edge server. Line7-Line8
prioritizes tasks according to their maximum allowable
delay. Line9-Line10 sorts the addresses according to the
idle class of edge servers. In Line11-Line14, when a new
task is added, determine whether the total delay of the
previous task is greater than that of the task, and if it is
greater, assign the task to other idle addresses. Line15
returns the task stack and address stack for the next
round of resource allocation.

Experiment and analysis
Dataset and experiment setup
The dataset used in the experiments is from the
research-based general spatial crowdsourcing platform
gMission [56]. As shown in Fig. 2, in the gMission data-
set, each task contains its location, release time, and
due date. The worker’s data includes their location, and
the time it takes to complete the task. Since the gMis-
sion dataset has a large period and a large amount of
data, this paper selects 48 hours of data records from it.
It contains 500 crowd workers, 1500 crowd tasks, and
29,654 worker check-in messages. The parameters used
in the experiments include crowd workers, crowd tasks,
and edge servers. In this paper, the number of tasks
accepted by workers is set to be no more than three at
most. The data processing speed of the mobile devices

Fig. 2 Mission information

Page 8 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

carried by workers is 1.50× 107bit/s . The consump-
tion of mobile devices processing data is 6.6× 108J/bit .
In addition, this paper sets the number of edge servers
within the task scope to five. The detailed parameter set-
tings are shown in Table 2.

The experiments in this paper are all implemented in
the Python environment. A laptop with Intel(R) Core
(TM) i7-10750H CPU and 16GB memory was used.

Performance evaluation and comparative test
Figure 3 shows the convergence performance of the algo-
rithm under different learning rates. From Fig. 3(a) and
(b), it can be seen that when batch=64, the algorithm has
the best convergence effect. In Fig. 3(c), the abscissa is the
training step size, and the ordinate is the total resource
consumption. It can be seen from Fig. 3 that the learning
rate is too high or too low to achieve a good convergence
effect. When the learning rate is 0.01, the convergence
effect is better when 0.001. In Fig. 3(d), the abscissa is the
training step size, and the ordinate is the gain rate. It can

Table 2 Experimental parameter settings

Variable Value

rlocal 1.50× 107bit/s

qlocal 6.60× 108J/bit

xedge 1.25× 108bit/s

redge 8.38× 108bit/s

yedge 7.81× 109J/bit

qedge 8.19× 109bit/s

Fig. 3 Performance of the algorithm under different hyperparameters

Page 9 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

be seen from the figure that the best effect is when the
learning rate is 0.01. Therefore, the batch is set to 64 and
the learning rate is set to 0.01 in the experiments.

The effect of the number of DNNs on the convergence
effect of the algorithm can be seen in Fig. 4(a). When
there is only one DNN, the mutual learning between
DNNs cannot be performed, so the algorithm cannot
converge. When the number of DNNs is greater than 1,
the gain rate increases as the number of DNNs increases,
and the convergence requires fewer steps. Therefore,
multiple DNNs can be selected for model training under
the premise of hardware equipment. It can be seen in

Fig. 4(b) that the convergence performance of the Adam
optimizer is the best.

In order to verify the superiority of the proposed algo-
rithm in terms of task completion rate, this paper con-
ducts a comparison experiment with the RC [57] and LRU
[58] algorithms and adds the traditional arrival time task
ranking (ATR) algorithm for comparison. As shown in
Fig. 5, the task completion rates of the four algorithms all
decrease as the number of tasks increases, because when
the number of tasks increases, the newly added tasks may
not be allocated computing resources in time, resulting
in task failure. It can be seen from Fig. 5 that the DTOO

Fig. 4 Effect of optimizer and number of DNNs on performance

Fig. 5 Task completion rate under different number of tasks

Page 10 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

algorithm proposed in this paper has the highest task
completion rate because in DTOO, tasks and edge server
addresses are arranged in the stack according to their pri-
orities so that tasks with higher priorities can obtain more
computing resources, thus improving the task completion
rate. It can be seen that the algorithm proposed in this
paper is superior in terms of task completion rate.

In order to verify the superiority of the proposed
algorithm in terms of resource consumption, this paper
conducts comparison experiments with Deep Q-Net-
work [45], MUMTO [59], Greedy algorithm, adds only
local processing tasks and all tasks are offloaded to the
Edge Server. As shown in Fig. 6, it is clear that the total
resource consumption of all algorithms increases with
the number of tasks. If all tasks are offloaded to edge
servers for processing, high resource consumption will
occur. The DTOO algorithm proposed in this paper
is similar in utility to the Greedy algorithm, but since
the Greedy algorithm will enumerate all the offload-
ing strategies, it will occupy a considerable amount of
system memory. Therefore, the algorithm proposed in
this paper is superior in resource consumption.

Conclusion
This paper focuses on the task offloading problem of
MCS in an edge cloud environment. Aiming at the
problem of task offloading strategy selection, this paper
proposed a DTOO algorithm based on DNN, which
obtains an approximate optimal offloading strategy

through learning among multiple neural units. It aims
at solve the conflict between resource consumption
and quality of service in practical MCS applications. To
improve the completion rate of tasks, this paper pro-
posed a stack-based resource sorting method. The tasks
are arranged in the task stack according to their prior-
ity, and the server addresses are arranged in the address
stack according to the idle level. After the task unload-
ing is completed, according to the priority of the task for
task allocation, thereby improving the task completion
rate. Finally, performance tests and comparison experi-
ments are carried out on the research-based general
spatial crowdsourcing platform gMission dataset, and it
is verified that the algorithm proposed in this paper has
good performance in terms of balancing resource con-
sumption and service quality as well as task completion
rate. In the future work, the influence of workers’ pref-
erences on task offload decisions will be considered, and
the task offload strategy will be further optimized.

Abbreviations
MCS Mobile CrowdSourcing
DNN Deep Neural Network
DTOO Deep Neural Network-based Task Offloading Optimizatio
IoT Internet of Things
EH Energy Harvesting
MINLP Mixed Integer Nonlinear Programming
GCGH Gini Coefficient-based Greedy Heuristic
ATR Arrival Time task Rankin
RC tRend Caching
LRU Least Recently Used
MUMTO Multi-User Multi-Task Optimizatio

Fig. 6 Total resource consumption under different number of tasks

Page 11 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

Author’ contributions
M. L. wrote the main manuscript text . W. Y. modified and reviewed the
paper. W. H. , T. X. , S. Z. and C. Z. participated in sorting out references. All
authors reviewed the manuscript. The author(s) read and approved the final
manuscript.

Authors’ information
Lingkang Meng received his Bachelor degree in School of Computer and
Control Engineering from Yantai University. He is a graduate student in School
of Computer and Control Engineering at Yantai University. His research inter-
ests are mobile crowd sourcing and service computing.
Yingjie Wang received the received the Ph.D. degree in College of Computer
Science and Technology from Harbin Engineering University. She visited Geor-
gia State University from 2013/09 to 2014/09 as a visiting scholar. Dr. Wang is
currently an Professor in the School of Computer and Control Engineering at
Yantai University. She is a Postdoc in South China University of Technology. Her
research interests are mobile crowdsourcing, privacy protection and service
computing. She has published more than 60 papers in well known journals
and conferences in her research field, which includes 2 ESI high cited papers.
In addition, she has presided 2 National Natural Science Foundation of China
project, 2 China Postdoctoral Science Foundation projects. Dr. Wang obtained
the Shandong Province Artificial Intelligence Outstanding Youth Award.
Haipeng Wang received the Ph.D. degree from Naval Aviation University,
in 2012, where he is currently an Professor. His research interests include the
general area of intelligent perception and fusion, and big data technology and
application. He also serves as a Reviewer for several distinguished journals,
including IET RSN and IEEE AES.
Xiangrong Tong received the Ph.D. degree in School of Computer and
Information Technology from Beijing Jiaotong University. Currently, he is a
Full Professor of Yantai University. His research interests are computer science,
intelligent information processing and social networks. He has published
more than 50 papers in well known journals and conferences. In addition, he
has presided and joined 3 national projects and 3 provincial projects.
Zice Sun received the Bechelor degree in the School of Computer and Con-
trol Engineering, Yantai University. He is currently pursuing the Master degree
in the School of Computer and Control Engineering, Yantai University. His
research interests are mobile crowdsourcing and blockchain.
Zhipeng Cai received his PhD and M.S. degrees in the Department of Com-
puting Science at University of Alberta, and B.S. degree from Beijing Institute
of Technology. Dr. Cai is currently an Professor in the Department of Computer
Science at Georgia State University. Dr. Cai’s research areas focus on Network-
ing, Privacy and Big data. Dr. Cai is the recipient of an NSF CAREER Award. Dr.
Cai is now a Steering Committee Co-Chair for WASA. He is an editor/guest
editor for Algorithmica, Theoretical Computer Science, Journal of Combina-
torial Optimization, IEEE/ACM Transactions on Computational Biology and
Bioinformatics. He is a senior member of the IEEE.

Funding
This work was supported in part by the National Natural Science Foundation
of China under Grant 62272405, the Youth Innovation Science and Technology
Support Program of Shandong Provincial under Grant 2021KJ080, the Natural
Science Foundation of Shandong Province, Grant ZR2022MF238, Yantai
Science and Technology Innovation Development Plan Project under Grant
2021YT06000645, the Open Foundation of State key Laboratory of Network-
ing and Switching Technology (Beijing University of Posts and Telecommuni-
cations) under Grant SKLNST-2022-1-12.

Availability of data and materials
The gMission dataset: http:// gmiss ion. github. io/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 22 October 2022 Accepted: 25 April 2023

References
 1. Wu Y, Zeng JR, Peng H, Chen H, Li C (2016) Survey on incentive mecha-

nisms for crowd sensing. J Softw 27(8):2025–2047
 2. Cai Z, He Z (2019) Trading private range counting over big IoT data. In:

2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, Dallas, p 144–153

 3. Zheng X, Cai Z (2020) Privacy-preserved data sharing towards multiple
parties in industrial IoTs. IEEE J Sel Areas Commun 38:968–979

 4. Xiang C, Zhou Y, Dai H, Qu Y, He S, Chen C, Yang P (2021) Reusing delivery
drones for urban crowdsensing. IEEE Trans Mob Comput. https:// doi. org/
10. 1109/ TMC. 2021. 31272 12

 5. Lu Z, Wang Y, Li Y, Tong X, Mu C, Yu C (2021) Data-driven many-objective
crowd worker selection for mobile crowdsourcing in industrial IoT. IEEE
Trans Ind Inform. https:// doi. org/ 10. 1109/ TII. 2021. 30768 11

 6. Sandhu AK (2021) Big data with cloud computing: Discussions and chal-
lenges. Big Data Min Anal 5:32–40

 7. Duan Z, Li W, Zheng X, Cai Z (2019) Mutual-preference driven truthful
auction mechanism in mobile crowdsensing. In: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE, Dal-
las, p 1233–1242

 8. Hasenfratz D, Saukh O, Sturzenegger S, Thiele L et al (2012) Participatory
air pollution monitoring using smartphones. Mob Sens 1:1–5

 9. Brković M, Sretović V (2013) Smart solutions for urban development:
potential for application in serbia. In: Congress Proceedings. Regional
Development, Spatial Planning and Strategic Governance (RESPAG) 2nd
International Scientific Conference, Belgrade. IAUS, Belgrade

 10. Libelium (2017). http:// www. libel ium. com/. Accessed 2022
 11. Wang Y, Cai Z, Tong X, Gao Y, Yin G (2018) Truthful incentive mechanism

with location privacy-preserving for mobile crowdsourcing systems.
Comput Netw 135:32–43

 12. Qi L, Liu Y, Zhang Y, Xu X, Bilal M, Song H (2022) Privacy-aware point-of-
interest category recommendation in internet of things. IEEE Internet
Things J. https:// doi. org/ 10. 1109/ JIOT. 2022. 31811 36

 13. Li F, Wang Y, Gao Y, Tong X, Jiang N, Cai Z (2021) Three-party evolution-
ary game model of stakeholders in mobile crowdsourcing. IEEE Trans
Comput Soc Syst. https:// doi. org/ 10. 1109/ TCSS. 2021. 31354 27

 14. Chi C, Wang Y, Tong X, Siddula M, Cai Z (2021) Game theory in internet of
things: A survey. IEEE Internet Things J. https:// doi. org/ 10. 1109/ JIOT. 2021.
31336 69

 15. Chen Y, Zhao J, Wu Y et al (2022) Qoe-aware decentralized task offloading
and resource allocation for end-edge-cloud systems: A game-theoretical
approach. IEEE Trans Mob Comput. https:// doi. org/ 10. 1109/ TMC. 2022.
32231 19

 16. Xiang C, Yang P, Wu X, He H, Wang B, Liu Y (2015) istep: A step-aware
sampling approach for diffusion profiling in mobile sensor networks. IEEE
Trans Veh Technol 65:8616–8628

 17. Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. Int J Commun
Syst 5154

 18. Kong L, Wang L, Gong W, Yan C, Duan Y, Qi L (2021) Lsh-aware multitype
health data prediction with privacy preservation in edge environment.
World Wide Web 1–16

 19. Qi L, Lin W, Zhang X, Dou W, Xu X, Chen J (2022) A correlation graph
based approach for personalized and compatible web apis recommen-
dation in mobile app development. IEEE Trans Knowl Data Eng. https://
doi. org/ 10. 1109/ TKDE. 2022. 31686 11

 20. Qi L, Yang Y, Zhou X, Rafique W, Ma J (2021) Fast anomaly identification
based on multi-aspect data streams for intelligent intrusion detection
toward secure industry 4.0. IEEE Trans Ind Inform. https:// doi. org/ 10. 1109/
TII. 2021. 31393 63

 21. Chen Y, Xing H, Ma Z, Chen X, Huang J (2022) Cost-efficient edge caching
for noma-enabled IoT services. China Commun

 22. Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading and
resource allocation for noma-enabled IoT in smart buildings and environ-
ment. Build Environ. https:// doi. org/ 10. 1016/j. build env. 2022. 109513

http://gmission.github.io/
https://doi.org/10.1109/TMC.2021.3127212
https://doi.org/10.1109/TMC.2021.3127212
https://doi.org/10.1109/TII.2021.3076811
http://www.libelium.com/
https://doi.org/10.1109/JIOT.2022.3181136
https://doi.org/10.1109/TCSS.2021.3135427
https://doi.org/10.1109/JIOT.2021.3133669
https://doi.org/10.1109/JIOT.2021.3133669
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1109/TII.2021.3139363
https://doi.org/10.1109/TII.2021.3139363
https://doi.org/10.1016/j.buildenv.2022.109513

Page 12 of 12Meng et al. Journal of Cloud Computing (2023) 12:76

 23. Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and compu-
tation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

 24. Chen X, Jiao L, Li W, Fu X (2015) Efficient multi-user computation offload-
ing for mobile-edge cloud computing. IEEE/ACM Trans Networking
24:2795–2808

 25. Huang L, Feng X, Zhang C, Qian L, Wu Y (2019) Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing. Digit Commun Netw 5:10–17

 26. Bi R, Liu Q, Ren J, Tan G (2020) Utility aware offloading for mobile-edge
computing. Tsinghua Sci Technol 26:239–250

 27. Zhang Q, Wang Y, Yin G, Tong X, Sai AMVV, Cai Z (2022) Two-stage bilateral
online priority assignment in spatio-temporal crowdsourcing. IEEE Trans
Serv Comput 8:516–530

 28. Wang Y, Cai Z, Zhan ZH, Zhao B, Tong X, Qi L (2020) Walrasian equilibrium-
based multiobjective optimization for task allocation in mobile crowd-
sourcing. IEEE Trans Comput Soc Syst 7(4):1033–1046

 29. Chen Y, Hu J, Zhao J, Min G (2023) Qos-aware computation offloading in
leo satellite edge computing for IoT: A game-theoretical approach. Chin J
Electron. https:// doi. org/ 10. 1109/ TMC. 2022. 32231 19

 30. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and chal-
lenges. IEEE Internet Things J 3:637–646

 31. Sun Z, Wang Y, Cai Z, Liu T, Tong X, Jiang N (2021) A two-stage privacy
protection mechanism based on blockchain in mobile crowdsourcing.
Int J Intell Syst (36-5). https:// doi. org/ 10. 1002/ int. 22371

 32. Liu T, Wang Y, Li Y, Tong X (2020) Privacy protection based on
stream cipher for spatio-temporal data in IoT. IEEE Internet Things J
7(9):7928–7940

 33. Cai Z, Zheng X (2018) A private and efficient mechanism for data upload-
ing in smart cyber-physical systems. IEEE Trans Netw Sci Eng 7(2):766–775

 34. Wang T, Lu Y, Cao Z, Shu L, Zheng X, Liu A, Xie M (2019) When sensor-
cloud meets mobile edge computing. Sensors 19(23):5324

 35. Zhao W, Liu J, Guo H, Hara T (2018) Etc-IoT: Edge-node-assisted transmit-
ting for the cloud-centric internet of things. IEEE Netw 32(3):101–107

 36. Cai Z, Xiong Z, Xu H, Wang P, Li W, Pan Y (2021) Generative adversarial
networks: A survey toward private and secure applications. ACM Comput
Surv (CSUR) 54(6):1–38

 37. Ren J, Yu G, He Y, Li GY (2019) Collaborative cloud and edge computing
for latency minimization. IEEE Trans Veh Technol 68(5):5031–5044

 38. Wang W, Wang Y, Duan P, Liu T, Tong X, Cai Z (2022) A triple real-time
trajectory privacy protection mechanism based on edge computing and
blockchain in mobile crowdsourcing. IEEE Trans Mob Comput 1–18

 39. Xiang C, Zhang Z, Qu Y, Lu D, Fan X, Yang P, Wu F (2020) Edge computing-
empowered large-scale traffic data recovery leveraging low-rank theory.
IEEE Trans Netw Sci Eng 7(4):2205–2218

 40. Xiang C, Li Y, Zhou Y, He S, Qu Y, Li Z, Gong L, Chen C (2022) A compara-
tive approach to resurrecting the market of mod vehicular crowdsensing.
In: Proc. IEEE Conf. Comput. Commun. IEEE, London, p 1–10

 41. Xiang C, Yang P, Tian C, Zhang L, Lin H, Xiao F, Zhang M, Liu Y (2015) Carm:
Crowd-sensing accurate outdoor rss maps with error-prone smartphone
measurements. IEEE Trans Mob Comput 15(11):2669–2681

 42. Wang Y, Gao Y, Li Y, Tong X (2020) A worker-selection incentive mecha-
nism for optimizing platform-centric mobile crowdsourcing systems.
Comput Netw 171(107):144

 43. Dinh T, Tang J, La Q, Quek T (2017) Offloading in mobile edge computing:
Task allocation and computational frequency scaling. IEEE Trans Commun
65(8):3571–3584

 44. Wu H, Sun Y, Wolter K (2018) Energy-efficient decision making for mobile
cloud offloading. IEEE Trans Cloud Comput 8(2):570–584

 45. Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for
mobile edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, Honolulu, p 207–215

 46. Cand ShuZ, Zhao Han Y, Min G, Duan H (2019) Multi-user offloading for
edge computing networks: A dependency-aware and latency-optimal
approach. IEEE Internet Things J 7(3):1678–1689

 47. Mao Y, Zhang J, Letaief K (2016) Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE J Sel Areas
Commun 34(12):3590–3605

 48. Zhao P, Tian H, Qin C, Nie G (2017) Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge comput-
ing. IEEE Access 5:11255–11268

 49. Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital twin-
empowered mobile edge computing via deep reinforcement learning.
China Commun. https:// doi. org/ 10. 1002/ dac. 5154

 50. Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M, Graves
A, Riedmiller M, Fidjeland A, Ostrovski G (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533

 51. Huang J, Wan J, Lv B, Ye Q et al (2023) Joint computation offloading and
resource allocation for edge-cloud collaboration in internet of vehicles
via deep reinforcement learning. IEEE Syst J. https:// doi. org/ 10. 1109/
JSYST. 2023. 32492 17

 52. Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement
learning based framework for power-efficient resource allocation in
cloud rans. In: 2017 IEEE International Conference on Communications
(ICC). IEEE, Paris, p 1–6

 53. Ye H, Li G, Juang B (2017) Power of deep learning for channel estima-
tion and signal detection in ofdm systems. IEEE Wirel Commun Lett
7(1):114–117

 54. He Z Yand Zhang, Yu F, Zhao N, Yin H, Leung V, Zhang Y (2017) Deep-
reinforcement-learning-based optimization for cache-enabled oppor-
tunistic interference alignment wireless networks. IEEE Trans Veh Technol
66(11):10433–10445

 55. Huang L, Feng X, Qian L, Wu Y (2018) Deep reinforcement learning-based
task offloading and resource allocation for mobile edge computing. In:
International Conference on Machine Learning and Intelligent Communi-
cations. MLICOM, Hangzhou, p 33–42

 56. gmission dataset. http:// gmiss ion. github. io/. Accessed 2022
 57. Li S, Xu J, van der Schaar M, Li W (2016) Trend-aware video caching

through online learning. IEEE Trans Multimed 18(12):2503–2516
 58. Jin W, Li X, Yu Y, Wang Y (2013) Adaptive insertion and promotion

policies based on least recently used replacement. IEICE Trans Inf Syst
96(1):124–128

 59. Chen MH, Liang B, Dong M (2016) Joint offloading decision and resource
allocation for multi-user multi-task mobile cloud. In: 2016 IEEE Interna-
tional Conference on Communications (ICC). IEEE, Paris, p 1–6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1002/int.22371
https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
http://gmission.github.io/

	Task offloading optimization mechanism based on deep neural network in edge-cloud environment
	Abstract
	Introduction
	Related work
	Edge computing
	Task offloading based on edge cloud
	Deep learning

	System design
	Problem definition
	System model design
	DTOO algorithms
	Resource allocation algorithm

	Experiment and analysis
	Dataset and experiment setup
	Performance evaluation and comparative test

	Conclusion
	References

