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Abstract 

With the rise of edge computing technology and the development of intelligent mobile devices, task offloading in 
the edge-cloud environment has become a research hotspot. Task offloading is also a key research issue in Mobile 
CrowdSourcing (MCS), where crowd workers collect sensed data through smart devices they carry and offload 
to edge-cloud servers or perform computing tasks locally. Current researches mainly focus on reducing resource 
consumption in edge-cloud servers, but fails to consider the conflict between resource consumption and service 
quality. Therefore, this paper considers the learning generation offloading strategy among multiple Deep Neural 
Network(DNN), proposed a Deep Neural Network-based Task Offloading Optimization (DTOO) algorithm to obtain 
an approximate optimal task offloading strategy in the edge-cloud servers to solve the conflict between resource 
consumption and service quality. In addition, a stack-based offloading strategy is researched. The resource sorting 
method allocates computing resources reasonably, thereby reducing the probability of task failure. Compared with 
the existing algorithms, the DTOO algorithm could balance the conflict between resource consumption and service 
quality in traditional edge-cloud applications on the premise of ensuring a higher task completion rate.

Keywords Edge-cloud, Task offloading, Mobile crowdsourcing, Deep neural network, Resource consumption, Service 
quality

Introduction
With the rapid development of Internet of Things (IoT) 
[1] and 5G technology [2], edge-cloud has been integrated 
into daily applications, MCS, as a new mode of perception 
network, data collection [3] and information service, has 
become an indispensable part of today’s society [4]. MCS is 
a process in which crowd workers form an interactive per-
ception network by carrying mobile devices to a designated 
location for information collection and crowdsourcing 

platforms. MCS is a process in which crowd workers form 
an interactive perception network by carrying mobile 
devices to a designated location for information collection 
and crowdsourcing platforms. The crowdsourcing platform 
publishes tasks and recruits crowd workers to complete the 
tasks [5], which provides many conveniences to people’s 
lives, such as collecting information, analyzing data [6], and 
sharing knowledge [7], so it has received extensive atten-
tion in various fields. Academics at Zurich University [8] 
designed an environmental monitoring model that uses a 
smartphone carrying a sensor to detect ozone levels. The 
Smart City project in Serbia [9] uses sensors provided by 
Libelium [10] on public transport equipment to monitor 
air quality. In addition, the famous Waze company also 
provides commercial map services for people based on the 
MCS model. Mobile crowdsourcing has become a research 
hotspot in Infocom, Ubicomp, Percom, and Mobicom [11].
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In a typical mobile crowdsourcing system, a complete 
cloud-based architecture consists of the cloud plat-
form, task requesters, and crowd workers. First, the task 
requester issues the task through the cloud platform. 
Then, select appropriate workers to assign tasks through 
task assignment [12]. Crowd workers collect data 
through their mobile devices and upload it to the cloud 
platform. Finally, the platform will evaluate and update 
the worker’s reputation value [13–15] based on the qual-
ity of the worker’s uploaded data [16]. With the emer-
gence of technologies such as intelligent driving [17], 
task requesters have higher and higher requirements for 
real-time data [18, 19], and workers uploading data to 
the cloud platform will generate large data delays [20], 
and traditional centralized cloud platforms will not be 
able to meet this requirement. The emergence of edge-
cloud technology has temporarily solved this problem.

Edge-Cloud refers to the use of an edge-cloud server 
that integrates network, computing, storage, and appli-
cation core capabilities on the side close to the mobile 
device or data source [21] to provide the nearest com-
puting service nearby. When workers use mobile devices 
to upload data, they can directly interact with the near-
est edge node, which greatly reduces data transmission 
latency [22]. In the edge-cloud environment, computing 
tasks are performed on a powerful edge-cloud server, 
which has the advantages of easy installation and small 
size [23]. But their load capacity and computing power 
are still far inferior to cloud servers. Chen et al. [24] pro-
posed a game theory-based task offloading algorithm, 
but this algorithm requires multiple interactions between 
crowd workers and edge servers, which consumes a lot 
of resources. Huang et  al. [25] proposed a task offload-
ing and resource allocation scheme based on a deep 
Q-network, but its feature of searching in tables is not 
suitable for processing high-dimensional data. Therefore, 
the problem of optimizing the task offloading strategy in 
edge servers needs to be solved urgently [26]. The main 
challenges for task offloading in MCS are as follows.

1. In the practical application of MCS, workers often 
choose the nearest edge-cloud server to upload sen-
sory data. If there are a large number of workers near 
the edge-cloud server and most workers choose to 
offload tasks to the edge-cloud server, the edge-cloud 
server may suffer from excessive data processing 
capacity. Large and overloaded and leads to paralysis. 
Therefore, how to make reasonable task offloading 
decisions is an important research content to prevent 
excessive load on edge-cloud servers.

2. Although researchers have proposed many schemes 
to solve the task distribution problem among mul-
tiple edge-cloud servers, the computing power of 

edge-cloud servers is limited. If there are too many 
tasks in the task queue, some time-sensitive tasks 
may not be solved in time. Therefore, how to reason-
ably allocate the computing resources on the edge-
cloud server is a key factor to improve the success 
rate of task allocation.

In response to the above challenges, this paper stud-
ies a task offloading optimization algorithm DTOO for 
the MCS, which generates a near-optimal task offload-
ing strategy and solves the conflict between resource 
consumption and quality of service. A resource alloca-
tion scheme is designed to improve the success rate of 
the task. The main contributions of this paper are sum-
marized as follows.

1. This paper designs a task offloading algorithm 
DTOO based on DNN, which can obtain an approxi-
mate excellent offloading strategy through learning 
among multiple neural units, so as to solve the con-
flict between edge-cloud server resource consump-
tion and service quality.

2. This paper proposes a stack-based resource sort-
ing scheme, which matches different computing 
resources according to the timeliness level of tasks, 
thereby improving the success rate of tasks.

3. The proposed DNN-based task offloading scheme 
and stack-based task ranking mechanism are ana-
lyzed and evaluated through comparison experi-
ments on real datasets. The experimental results veri-
fied the superiority of this scheme.

The rest of this paper is organized as follows. Section 
II introduces the related works. Section III describes the 
DTOO algorithm and resource allocation scheme. Sec-
tion IV presents the comparison experiments and the 
discussion of the experimental results. Finally, Section V 
presents the conclusion.

Related work
In recent years, more and more attention has been paid 
to the research of task assignment [27, 28] based on 
mobile crowdsourcing in the edge cloud environment, 
aiming at design an optimal task offloading strategy with 
low latency, low energy consumption, and high service 
quality. Many scholars have conducted in-depth research 
on this and proposed feasibility studies.

Edge computing
With the popularization of the IoT and the promotion 
of cloud services [29], edge computing has emerged as 
a new computing paradigm. Edge computing refers to 
delegating data processing to the edge of the network 
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[30]. This mode can reduce request delay and network 
bandwidth while ensuring data security and privacy 
[31–33]. The core part of edge computing is to migrate 
some or all of the computing tasks in cloud computing 
to the vicinity of mobile devices. This highly poten-
tial way can solve some of the shortcomings of cloud 
computing [34]. Zhao et al. [35] designed a new mobile 
device data transmission scheme, introduced edge 
computing in the cloud platform-centric architecture, 
and used edge nodes to assist data transmission to 
solve the problem of excessive bandwidth consump-
tion in traditional cloud platform solutions [36]. This 
scheme explores the bandwidth consumption of edge 
nodes through the edge computing paradigm. Ren et al. 
[37] explored the problem of joint communication 
technology and computing resource allocation, which 
aimed at find an optimal solution to minimize latency 
in the cloud and edge-cloud collaborative systems. 
And esigned an offloading scheme based on distrib-
uted computing, which can achieve excellent comput-
ing offloading ability and can make corresponding 
adjustments with the change of user scale [38]. Opti-
mized the problem of multi-user resource offloading 
of edge cloud in a multi-channel wireless interference 
environment.

Task offloading based on edge cloud
The problem of offloading computing tasks in edge com-
puting is a research hotspot [39]. In the actual crowd-
sourcing environment, task offloading will be affected 
by various external factors, such as the hardware per-
formance of the device, the network environment where 
the worker is located [40, 41], and the worker’s person-
alized choice [42]. This makes it particularly important 
to formulate a reasonable and dynamically changing 
task offloading strategy according to the external envi-
ronment. Some existing works mainly study how to 
make task assignment decisions in an offline or online 
state, and most of the research focuses on minimiz-
ing task completion time and resource consumption 
as the optimization goal. For example, Dinh et  al. [43] 
considered two cases of whether the CPU frequency of 
the edge server can be adjusted or not, and proposed 
a linear relaxation-based method and an exhaustive 
search-based scheme to solve the two cases, respec-
tively. Obviously, the exhaustive approach consumes a 
lot of computing resources. To get a balance between 
resource consumption and computational latency. Wu 
et  al. [44] proposed a task offloading algorithm based 
on Lyapunov, which reduces the resource consump-
tion of the device under the condition of satisfying the 
delay constraint. Considering service heterogeneity, 
unknown system dynamics, spatial demand coupling, 

and decentralized coordination, Xu et  al. [45] pro-
posed an online task offloading algorithm based on 
Lyapunov optimization and Gibbs sampling. Shu et  al. 
[46] designed an algorithm that supports multi-user 
task offloading, dividing tasks into subtasks and off-
loading them to edge servers to reduce the end-to-end 
task execution time. Mao et  al. [47] studied an Energy 
Harvesting (EH) technology to power mobile devices 
through renewable energy. Based on Lyapunov, the fre-
quency and transmit power of the CPU are optimized to 
reduce the execution delay of the task. Zhao et al. [48] 
optimized the offloading decision, radio resource allo-
cation, and computing resource allocation, and trans-
formed the resource minimization problem into the 
Mixed Integer Nonlinear Programming (MINLP) prob-
lem. A Gini coefficient-based greedy heuristic (GCGH) 
was proposed to solve this problem. Although comput-
ing offloading in edge computing is the core technology, 
how to allocate resources to improve the task comple-
tion rate should also be considered in practical crowd-
sourcing applications.

Deep learning
As an emerging technology in machine learning algo-
rithms, Deep Learning’s main purpose is to build and 
simulate a neural network for analyzing and learn-
ing the human brain [49]. The essence of deep learn-
ing is to perform hierarchical feature representation 
on data, and further abstract low-level features into 
high-level features through neural networks. DNN 
composed of multi-layer perceptions have achieved 
major breakthroughs in the fields of image classifi-
cation and recognition, natural language process-
ing, and a robot control. Mnih et  al. [50] used deep 
neural networks to develop a novel surrogate model 
called a deep Q-network [51], which bridges the gap 
between high-level sensory input and decision-making 
actions. Deep learning is also widely used in the field 
of wireless communication, such as resource alloca-
tion problems [52], signal detection problems [53], 
data caching problems [54], etc. In recent years, some 
scholars have used deep learning models to solve the 
task offloading problem in the edge cloud environ-
ment. Huang et al. [55] proposed a deep reinforcement 
learning-based method to solve the task offloading and 
resource allocation problem, with the aim of making 
each user obtain a satisfactory task offloading decision 
and resource allocation scheme. However, the search 
nature of deep Q-learning based on Q-table makes its 
performance not outstanding when dealing with high-
dimensional data.

Existing optimization schemes do not take into 
account the limitation of computational dimensions, 
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and general optimization algorithms cannot efficiently 
deal with the complexity of data in the actual crowd-
sourcing environment, especially when faced with a 
large number of crowd workers. The existing work 
failed to consider the allocation of resources when opti-
mizing the task offloading scheme. Therefore, according 
to the above problems, this paper considers the balance 
between resource consumption and quality of service, 
and the task completion rate. A DTOO algorithm is pro-
posed to specify an efficient offloading decision through 
mutual learning among DNNs. In order to improve the 
task completion rate and allocate resources according to 
the priority of tasks, a stack-based resource allocation 
scheme is designed.

System design
In this section, first, the task offloading problem in the 
edge cloud environment is defined, then, the system 
model of this paper is introduced, and finally, the algo-
rithm proposed in this paper is described in detail. The 
main symbol definitions are shown in Table 1.

Problem definition
Definition 1 (Crowd Task): In MCS system, the crowd 
tasks are uploaded to the platform by the task requester, 
and the crowd tasks are released by the platform, 
defined as C = {c1, c2, c3, . . . , cn} .Each task also has 
its properties, where the task is published is defined as 
l = lc1 , lc2 , lc3 , . . . lcn  . The time of task release is defined 
as Tsatrt . The task deadline is defined as Tend . Therefore, 
the maximum allowable delay of a task can be defined as 
T =

{

tc1 , tc2 , tc3 , . . . , tcn
}

 . The data volume of the task is 
defined as D =

{

dc1 , dc2 , dc1 , . . . , dcn
}

.
Definition 2 (Crowd Work): Crowd workers can 

collect data with their own mobile devices and upload 
the data to the crowd platform. Crowd workers are 
defined as W = {w1,w2, w3, . . . ,wm} . Each crowd 
worker also has its attributes, the id of the worker is 
defined as Wid .

Definition 3 (Task Offload Policy): For each crowd 
worker, he or she can choose to process computing tasks 
locally or offload computing tasks to edge servers for 
processing. Therefore, considering the task offloading 
strategy as a binary problem, when workers choose to 
process computing tasks locally, it is recorded as 0, and 
when they choose to offload tasks to edge servers for pro-
cessing, it is recorded as 1. Therefore, the task offloading 
strategy is defined as Eq. (1):

where Sciwj
 represents worker wj choice of offloading 

strategy for task ci . Sciwj
= 0 , indicates that the task is 

(1)Sciwj
=

{

0, local
1, offload

executed locally, and Sciwj
= 1 , indicates that the task is 

offloaded to the edge server for execution.
Definition 4 (Local Computation): Model situations 

where users choose to process computing tasks locally. 
For computation tasks executed locally, the time con-
sumption is defined as Eq. (2):

where Tlocal

(

ci,wj

)

 is the time consumption of worker 
wj task ci , and rlocal is the rate at which data is processed 
locally. Energy consumption for local processing is 
defined as Eq. (3):

where Elocal
(

ci,wj

)

 is the energy consumption of worker 
wjtaskci , and qlocal is the consumption per bit of data 

(2)Tlocal

(

ci,wj

)

=
dci
rlocal

(3)Elocal
(

ci,wj

)

= dci × qlocal

Table 1 Symbols and definitions

Notation Description

C = {c1, c2, c3, . . . , cn} Crowd task set

l = {lc1 , lc2 , lc3 , . . . lcn } Crowd tasks posted location set

Tsatrt Crowd task release time

Tend Crowd task deadline

T = {tc1 , tc2 , tc3 , . . . , tcn } Maximum allowable delay set for crowd 
tasks

D = {dc1 , dc2 , dc1 , . . . , dcn } The amount of data contained set in 
the crowd task

W = {w1,w2,w3, . . . ,wm} Crowd worker set

Wid Crowd worker id

Sciwj Task offload policy

rlocal Local data processing rate

qlocal Consumption per bit of data processed 
locally

xedge Edge server data transfer rate

redge The rate at which edge server data is 
processed

yedge Transmission energy consumption per 
bit data of edge server

qedge Energy consumption per bit of data 
processed by edge servers

Tlocal(ci ,wj) Local time consumption of worker wj 
task ci

Elocal(ci ,wj) Local energy consumption of worker 
wj task ci

Tedge(ci ,wj) The marginal time consumption of 
worker wj task ci

Eedge(ci ,wj) The marginal energy consumption of 
worker wj task ci

Wlocal The total consumption of local processing 
computing tasks

Wedge The total consumption of edge servers 
processing computing tasks
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processed locally. Therefore, the joint offloading strategy 
defines the total consumption of locally processed com-
puting tasks as Eq. (4):

Definition 5 (Edge Computing): Model the user’s choice 
to offload computing tasks to edge servers. The set of edge 
servers is defined as ES = {es1, es2, es3, . . . , esz} , and the 
time consumption for computing tasks offloaded to edge 
servers is defined as Eq. (5):

where Tedge(ci,wj) is the time consumption of worker 
wj task ci , xedge is the data transmission rate of the edge 
server, and redge is the data processing rate of the edge 
server. The energy consumption of offloading computing 
tasks to edge servers is defined as Eq. (6):

where Eedge(ci,wj) is the energy consumption of worker 
wj task ci , yedge is the energy consumption of data trans-
mission per bit, and qedge is the energy consumption of 
edge server processing each bit of data. Therefore, the 
joint offloading strategy defines the total consumption of 
edge server processing computing tasks as Eq. (7):

Then the total consumption of the system is defined as 
Eq. (8):

In short, to minimize the resource consumption of task 
completion, the goal of this stage is to find an optimal 
task offloading strategy to minimize Wtotal.

Definition 6 (Resource Allocation): Model resource 
allocation among edge servers. Due to the limited com-
puting power and load capacity of edge servers, and 
crowd tasks are also time-sensitive, edge servers need to 
complete computing tasks within a certain period. 
Therefore, according to the maximum allowable delay of 
the tasks, this paper sorts the tasks by priority and 

(4)Wlocal =

n
∑

i=1

m
∑

j=1

[

Tlocal

(

ci ,wj

)

+ Elocal

(

ci ,wj

)]

×

(

1 − Sciwj

)

(5)Tedge

(

ci,wj

)

=
dci
xedge

+
dci
redge

(6)Eedge
(

ci,wj

)

= dci × yedge + dci × qedge

(7)

Wedge =

n
∑

i=1

m
∑

j=1

[

Tedge

(

ci,wj

)

+ Eedge
(

ci,wj

)]

×Sciwj

(8)

Wtotal =

n
∑

i=1

m
∑

j=1

[

Tlocal

(

ci ,wj

)

+ Elocal

(

ci ,wj

)]

×

(

1 − Sciwj

)

+

n
∑

i=1

m
∑

j=1

[

Tedge

(

ci ,wj

)

+ Eedge

(

ci ,wj

)]

×Sciwj

stores them in the task stack, which corresponds to the 
address stack in the edge server. When task ck joins, first 

determine whether the total delay 
k−1
∑

u=1

tcu of its previous 

task will exceed the maximum allowable delay of task ck , 
and if it exceeds, it will be allocated to other idle 
addresses.

System model design
In the edge cloud environment, the computing tasks 
of the central cloud are sunk to the edge of the net-
work, which greatly reduces network latency. At the 
same time, this paper uses mutual learning among 
multiple DNNs to obtain an approximate optimal off-
loading strategy, which also ensures the service qual-
ity under the premise of low resource consumption. A 
stack-based sorting mechanism to reasonably allocate 
resources is used to improve task completion rate. In 
practical crowd applications, each crowd worker will 
have multiple jobs that need to be processed locally 
or at the edge server, and the offloading decision is 
represented by 0 or 1. Sciwj

= 0 means that the task is 
executed locally. Sciwj

= 1 indicates that the task is 
offloaded to the edge server for execution. The system 
model is shown in Fig. 1. First, a DNN is used to gen-
erate candidate unloading actions by taking the task 
scale carried by crowd workers as input to the model. 
Then, an offloading strategy that meets the optimization 
objective is selected as the output. For computing tasks 
that are offloaded to edge servers for processing, the 
tasks are sorted according to their priority. In the task 
stack, tasks with larger maximum allowable delays are 
placed at the bottom of the stack, and tasks with lower 
delays are placed at the top of the stack. In the address 
stack, servers with more resources, that is, addresses 
with higher idle levels, are placed at the top of the stack, 
and those with fewer resources are placed at the bot-
tom of the stack. The task stack and the address stack 
are arranged in order so that the most urgent tasks can 
be allocated addresses of more resources, which greatly 
improves the success rate of the tasks.

Since there may be crowd workers at the boundary of 
the edge server service range in the candidate set and 
not recruited by the platform, these workers may have 
better utility. Therefore, before recruiting workers, the 
movement trajectories of the workers are predicted to 
accurately locate the partitions where the workers are 
located based on the workers’ historical trajectories and 
social networks. Then, assign all the recruited workers 
to edge servers.
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DTOO algorithms
In this section, algorithms for generating offloading 
decisions using DNNs are presented. For the above-
mentioned problem, we only need to find an optimal 
unloading strategy Scw , so that Wtotal achieves the mini-
mum value. Since the size of set Scw is 2nm , finding an 
optimal offloading strategy is NP-hard. Therefore, the 
approximate optimal unloading policy function � is 
obtained by training the DNN, such that � :

∼

S ← D , as 
Eq. (9):

where D is the input of the model. The function value is 
optimized by performing a gradient descent algorithm 
during training by minimizing the cross-entropy loss 
function Eq. (10):

The DTOO algorithm proposed in this paper is 
shown in Algorithm 1.

(9)arg minΦ(

∼

S) = arg minWtotal(D, Sciwj
),

(

i ∈ n;j ∈ m
)

(10)L(�) = −
[

Slog Ŝ + (1− S)log
(

1− Ŝ
)]

Algorithm 1 DTOO algorithm

Algorithm 1 shows the optimization process of task 
offloading strategy based on deep neural network. The 
input is the dataset D of the amount of data contained 
in the crowd task. The output is the approximate opti-
mal task offloading strategy Scw . Line1 traverses all 
task data volumes in D. Line2, Line3 Input dci into 
all DNNs to get candidate offloading strategies 

∼

S . 

Fig. 1 System Model Design
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Line4-Line6 selects the optimal offloading strategy 
that minimizes L(�) and stores it in memory for the 
next round of training. Line7-Line9, sample data from 
memory for the next round of training, and update 
L(�) . The training of Line10 and Line11 ends, and the 
approximate optimal unloading strategy Scw is finally 
obtained.

Resource allocation algorithm
When crowd workers offload computing tasks to edge 
services, computing tasks are added to the stack in 
order based on priority. The administrator first matches 
the task at the top of the task stack with an address in 
the address stack with a high idle level. Then, when the 
address has fewer resources after a round of task alloca-
tion, the administrator will allocate the task to the next 
address with a higher idle level. The implementation pro-
cess is shown in Algorithm 2.

Algorithm 2 Resource allocation algorithm

Algorithm  2 demonstrates the stack-based and sorted 
resource allocation process. The input is task offloading 
policy Sciwj and edge server set ES. The output is the task 
stack, the address stack. Line1-Line6 judges whether the 
task is offloaded to the edge server and obtains the task 
set Cedge that is offloaded to the edge server. Line7-Line8 
prioritizes tasks according to their maximum allowable 
delay. Line9-Line10 sorts the addresses according to the 
idle class of edge servers. In Line11-Line14, when a new 
task is added, determine whether the total delay of the 
previous task is greater than that of the task, and if it is 
greater, assign the task to other idle addresses. Line15 
returns the task stack and address stack for the next 
round of resource allocation.

Experiment and analysis
Dataset and experiment setup
The dataset used in the experiments is from the 
research-based general spatial crowdsourcing platform 
gMission [56]. As shown in Fig. 2, in the gMission data-
set, each task contains its location, release time, and 
due date. The worker’s data includes their location, and 
the time it takes to complete the task. Since the gMis-
sion dataset has a large period and a large amount of 
data, this paper selects 48 hours of data records from it. 
It contains 500 crowd workers, 1500 crowd tasks, and 
29,654 worker check-in messages. The parameters used 
in the experiments include crowd workers, crowd tasks, 
and edge servers. In this paper, the number of tasks 
accepted by workers is set to be no more than three at 
most. The data processing speed of the mobile devices 

Fig. 2 Mission information
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carried by workers is 1.50× 107bit/s . The consump-
tion of mobile devices processing data is 6.6× 108J/bit . 
In addition, this paper sets the number of edge servers 
within the task scope to five. The detailed parameter set-
tings are shown in Table 2.

The experiments in this paper are all implemented in 
the Python environment. A laptop with Intel(R) Core 
(TM) i7-10750H CPU and 16GB memory was used.

Performance evaluation and comparative test
Figure 3 shows the convergence performance of the algo-
rithm under different learning rates. From Fig.  3(a) and 
(b), it can be seen that when batch=64, the algorithm has 
the best convergence effect. In Fig. 3(c), the abscissa is the 
training step size, and the ordinate is the total resource 
consumption. It can be seen from Fig. 3 that the learning 
rate is too high or too low to achieve a good convergence 
effect. When the learning rate is 0.01, the convergence 
effect is better when 0.001. In Fig. 3(d), the abscissa is the 
training step size, and the ordinate is the gain rate. It can 

Table 2 Experimental parameter settings

Variable Value

rlocal 1.50× 107bit/s

qlocal 6.60× 108J/bit

xedge 1.25× 108bit/s

redge 8.38× 108bit/s

yedge 7.81× 109J/bit

qedge 8.19× 109bit/s

Fig. 3 Performance of the algorithm under different hyperparameters
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be seen from the figure that the best effect is when the 
learning rate is 0.01. Therefore, the batch is set to 64 and 
the learning rate is set to 0.01 in the experiments.

The effect of the number of DNNs on the convergence 
effect of the algorithm can be seen in Fig.  4(a). When 
there is only one DNN, the mutual learning between 
DNNs cannot be performed, so the algorithm cannot 
converge. When the number of DNNs is greater than 1, 
the gain rate increases as the number of DNNs increases, 
and the convergence requires fewer steps. Therefore, 
multiple DNNs can be selected for model training under 
the premise of hardware equipment. It can be seen in 

Fig. 4(b) that the convergence performance of the Adam 
optimizer is the best.

In order to verify the superiority of the proposed algo-
rithm in terms of task completion rate, this paper con-
ducts a comparison experiment with the RC [57] and LRU 
[58] algorithms and adds the traditional arrival time task 
ranking (ATR) algorithm for comparison. As shown in 
Fig. 5, the task completion rates of the four algorithms all 
decrease as the number of tasks increases, because when 
the number of tasks increases, the newly added tasks may 
not be allocated computing resources in time, resulting 
in task failure. It can be seen from Fig. 5 that the DTOO 

Fig. 4 Effect of optimizer and number of DNNs on performance

Fig. 5 Task completion rate under different number of tasks
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algorithm proposed in this paper has the highest task 
completion rate because in DTOO, tasks and edge server 
addresses are arranged in the stack according to their pri-
orities so that tasks with higher priorities can obtain more 
computing resources, thus improving the task completion 
rate. It can be seen that the algorithm proposed in this 
paper is superior in terms of task completion rate.

In order to verify the superiority of the proposed 
algorithm in terms of resource consumption, this paper 
conducts comparison experiments with Deep Q-Net-
work [45], MUMTO [59], Greedy algorithm, adds only 
local processing tasks and all tasks are offloaded to the 
Edge Server. As shown in Fig. 6, it is clear that the total 
resource consumption of all algorithms increases with 
the number of tasks. If all tasks are offloaded to edge 
servers for processing, high resource consumption will 
occur. The DTOO algorithm proposed in this paper 
is similar in utility to the Greedy algorithm, but since 
the Greedy algorithm will enumerate all the offload-
ing strategies, it will occupy a considerable amount of 
system memory. Therefore, the algorithm proposed in 
this paper is superior in resource consumption.

Conclusion
This paper focuses on the task offloading problem of 
MCS in an edge cloud environment. Aiming at the 
problem of task offloading strategy selection, this paper 
proposed a DTOO algorithm based on DNN, which 
obtains an approximate optimal offloading strategy 

through learning among multiple neural units. It aims 
at solve the conflict between resource consumption 
and quality of service in practical MCS applications. To 
improve the completion rate of tasks, this paper pro-
posed a stack-based resource sorting method. The tasks 
are arranged in the task stack according to their prior-
ity, and the server addresses are arranged in the address 
stack according to the idle level. After the task unload-
ing is completed, according to the priority of the task for 
task allocation, thereby improving the task completion 
rate. Finally, performance tests and comparison experi-
ments are carried out on the research-based general 
spatial crowdsourcing platform gMission dataset, and it 
is verified that the algorithm proposed in this paper has 
good performance in terms of balancing resource con-
sumption and service quality as well as task completion 
rate. In the future work, the influence of workers’ pref-
erences on task offload decisions will be considered, and 
the task offload strategy will be further optimized.

Abbreviations
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DTOO  Deep Neural Network-based Task Offloading Optimizatio
IoT  Internet of Things
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Fig. 6 Total resource consumption under different number of tasks
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