
Sun et al. Journal of Cloud Computing (2023) 12:77
https://doi.org/10.1186/s13677-023-00451-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Verifiable attribute‑based keyword search
scheme over encrypted data for personal health
records in cloud
Yuqin Sun1, Lidong Han1,2*, Jingguo Bi3, Xiao Tan1,2 and Qi Xie2 

Abstract 

Personal health record (PHR) is a medical model in which patients can upload their medical records and define the
access control by themselves. Since the limited local storage and the development of cloud computing, many PHR
services have been outsourced to the cloud. In order to ensure the privacy of electronic medical records, patients
intend to encrypt their health records before uploading them. However, encrypted PHR can not be accessed directly
and not be retrieved by legitimate users. To solve these issues, in this article we propose a new searchable encryption
scheme with ciphertext-policy attributes, which achieves fine-grained access control and exact keyword search over
encrypted PHRs. Moreover, in our proposed scheme, the receiver can verify the integrity of the search result that the
cloud server returns. Finally, we simulate our scheme, and the experiments show that our scheme has high practica-
bility for cloud-based healthcare systems and has high efficiency in aspects of keyword search and results verification.

Keywords  Searchable encryption, Ciphertext-policy ABE, Multi-keyword search, Discrete-logarithm problem,
Decisional bilinear Diffie-Hellman assumption, Indistinguishability, Unforgeability

Introduction
Personal health record (PHR) [1] is a collection of an
individual’s medical information, such as personal infor-
mation, patient’s medical history, and applicable diag-
noses. The advantage of the PHR system is that it allows
patients to generate and manage their personal health
information by themselves and authorize doctors and
researchers to access PHR according to their different
demands. Many PHR systems, including Google Health,
have risen in popularity as cloud computing has become
more prevalent, outsourcing personal health records to

cloud for reducing the storage and maintenance cost to
share the PHRs among legitimate users. Without physi-
cal control of cloud servers, sensitive PHR stored in the
cloud is under security threat by the malicious intercep-
tor and untrustworthy cloud servers.

It is a potential solution to encrypt the PHR before out-
sourcing them which can ensure the privacy of personal
health information. However, traditional encryption can
not provide one major functionality-keyword search
over encrypted PHR. In keyword search, the users who
have the ability to access PHR want to keep their key-
words from the server. The technique called searchable
encryption [2–5] can solve the above issues. Moreover,
the patients want to control the query on their PHRs in
a fine-grained manner which means that unauthorized
users have no ability to access their PHR and different
authorized users can perform different actions in a pri-
vacy-preserving way.

To cope with the problem, the researchers put
forth attribute-based keyword search schemes.

*Correspondence:
Lidong Han
ldhan@hznu.edu.cn
1 School of Information Science and Technology, Hangzhou Normal
University, Hangzhou, China
2 Key Laboratory of Cryptography Technology of Zhejiang Province,
Hangzhou Normal University, Hangzhou, China
3 School of Cyberspace security, Beijing University of Posts
and Telecommunications(BUPT), Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00451-5&domain=pdf

Page 2 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

Attribute-based encryption (ABE) is an encryption
method satisfying fine-grained access control. In 2006,
Goyal et al. [6] presented two ABE schemes: key-policy
attribute-based encryption (KP-ABE) and ciphertext-
policy attribute-based encryption (CP-ABE). CP-ABE
access policies are contained in ciphertext, while KP-ABE
access policies are related to keys. This method allows the
data owner to specify access control, and it satisfies the
one-to-many communication mode. After that, the ini-
tial CP-ABE scheme was put forth by Bethencourt et al.
[7]. In 2009, Ibraimi et al. [8] presented an approach that
enables secure storage and fine-grained access control on
personal health records. After that, some attribute-based
encryption schemes [9, 10] on the cloud were proposed.
However, they can not support the search function over
encrypted files.

The veracity of search results and multi-keyword search
are important research issues in searchable encryption.
Since cloud services are untrusted entities, cloud serv-
ers may return incomplete or incorrect data due to cost
savings and other reasons. Therefore, the search results
from the server should be verified in the scenarios. In
2012, Chai et al. [11] put forward the notion that verifi-
able searchable symmetric encryption (VSSE) and estab-
lished a verified SSE scheme with a word tree. Later,
some verifiable searchable encryption schemes [12, 13]
were proposed. But these schemes only allow the verifi-
cation of single-keyword search result. Ge et al. [14] and
Liu et al. [15] put forward searchable encryption schemes
which provide multi-keyword validation in the Internet

of Things. These schemes can verify if the returned files
include the keyword, but they do not verify whether
there are complete files relating to the keyword. In this
paper, we provide a fine-grained search scheme that sup-
ports multi-keyword search, and the receiver can verify
whether the data returned by the cloud is complete.

Contributions
In this paper, in order to ensure the privacy and search-
ability of personal health records, we propose a verifiable
attribute-based keyword search scheme (VABKSS) in
cloud-based healthcare system. Our VABKSS integrates
searchable encryption with cipher-text-policy ABE and
message authentication code (MAC) to support verifiable
keyword search over encrypted personal health records
in cloud. In our scheme, data user’s attributes are repre-
sented as values to generate access tree structure, which
achieves fine-grained access control. Moreover, the
MAC technique is utilized in inverted index to provide
the verification of search result. The VABKSS model for
encrypted PHR is shown in Fig. 1. The main contribu-
tions of our paper are described in detail as follows:

•	 In our VABKSS, we integrate searchable encryption
with ciphertext-policy ABE to provide fine-grained
access control and employ the MAC technique to
verify the correctness and integrity of the search
result from the server. This verification function can
efficiently prevent untrusted servers from cheating.

Fig. 1  Our system model

Page 3 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

•	 Our new scheme support not only single keyword
search but also multiple keywords search, which exe-
cutes the intersection of the keyword-file vectors to
perform multiple keyword searches.

•	 We analyze the theoretical performance of the
VABKSS scheme in aspects of computation. Further-
more, the simulation results show that it is practical
for cloud-based healthcare systems.

Related works
Searchable encryption can be divided into asymmetric
encryption and symmetric encryption. Since symmet-
ric encryption schemes require large key management
and communication overhead, we consider asymmet-
ric encryption schemes here. In 2004, Boneh et al. [16]
presented a public key encryption with keyword search
(PKES). Identity-based Encryption (IBE) was proposed
by Waters and Sahai [17] in 2005, which makes possible
fine-grained access control for encrypted cloud data files.
Goyal et al. [6] came up with KP-ABE and CP-ABE. In
CP-ABE, policies are linked to ciphertext, and keys are
connected to attributes. If the users with specific attrib-
utes fail to match the access control policies, they are not
able to decrypt the ciphertext. For the access method
of KP-ABE, the exact reverse is true. The advantage of
CP-ABE is that the identity of the decryptor need not
be known to the encrypting party, only the decrypt-
ing party should satisfy the necessary requirements to
decrypt ciphertext. Gao et al. [18] put forward a scheme
that increases the utilization of storage space and makes
internet services more convenient but implements no
keyword search functionality. A useful CP-ABE approach
for searching cloud data by keyword was provided by
Su et al. [19], and data owners can regulate users’ abil-
ity to conduct fine-grained searches. Later, some schemes
[20–23] based on CP-ABE with supporting keyword
search were proposed, but these schemes did not satisfy
the multi-keyword search. In practice, a single keyword
search will not only lead to inaccurate search results but
also search with low efficiency. After that, some research-
ers proposed more efficient CP-ABE-based solutions [3,
24, 25] that support multi-keyword search.

In the case that the server is not a fully trusted third
entity, it may return incomplete data files to users in
order to keep the business’s reputation without declaring
data loss or save its own space. Therefore, it is important
that searchable encryption schemes require result verifi-
cation to guarantee the accuracy and integrity of results.
For this issue, Sun et al. [26] and Zheng et al. [27] put for-
ward verifiable attribute-based keyword search schemes
using the technique of bloom filter. However, both of
them have false positive rates and high communication

overhead. Miao et al. [28, 29] solve the construction
problem of verifiable search encryption scheme utilizing
the Boneh-Lynn-Shacham(BLS) signature as a tag, which
does not achieve fine-grained access and multi-keyword
search. Some schemes [30–32] put forth a searchable
encryption with fine-grained access which can verify the
correctness.

However, the verification method included in these
schemes, data users can only verify whether the received
single file contains the searched keywords completely,
and cannot verify the search process, that is, whether
the server returns all the files corresponding to the
searched keywords to themselves. It is an open problem
to construct keyword search encryption schemes which
provide result verifiability, fine-grained access, and multi-
keyword search.

Preliminaries
Definitions
Bilinear map
Let G and GT be two groups with prime order p and ê be
a bilinear map ê : G × G → GT , which satisfies the fol-
lowing three properties:

•	 Bilinearity: Given a random g ∈ G and two random
numbers a, b ∈ Zp , ê(ga, gb) = ê(g , g)ab.

•	 Non-degeneracy: Given g a generator of G, ê(g , g) is a
generator of GT .

•	 Computability: For any g , h ∈ G , one can compute
ê(g , h) in polynomial time.

Discrete logarithm problem assumption
Given g , ga ∈ G , the discrete logarithm problem (DLP) is
to compute a.

Definition 1  (DLP Assumption). Given g , ga ∈ G , for
probabilistic polynomial time (PPT) algorithm � , we
have:

where negl(�) is a negligible value.

Decisional bilinear Diffie‑Hellman assumption

Definition 2  (DBDH Assumption). Let G,GT be cycle
groups with prime order p, g , ga, gb, gc ∈ G and x ∈ GT .
ê : G × G → GT is a bilinear map.

The advantage of a PPT adversary � to solve the above
problem is:

Pr[a∗ = a|a∗ ← �(g , ga)]≤negl(�)

Page 4 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

If there is no polynomial time algorithm to solve the
DBDH assumption with non-negligible advantages, we
say that the DBDH assumption holds.

Access structure
Assume that T is the access tree of the access strat-
egy, and numx represents the number of child nodes of
node x, where x is a non-leaf node. The threshold value
is recorded as kx , where 0 < kx ≤ numx . Then we will
define the following symbols:

•	 parent(x): The parent node of node x excluding the
root node in T .

•	 att(x): The attribute value of leaf node x.
•	 index(x): The order of child nodes of node x that is

not a leaf node, which ranges from 1 to numx.
•	 Tx : A subtree of T rooted at x, and x is not the root

node.
•	 Troot : The access tree rooted at the root node root in

T .

In the access tree defined in [27], each leaf node corre-
sponds to an attribute uniquely. The role of each party
is determined by attributes and more details of the two
algorithms refer to [33].

•	 Share(p, s, T  ): Taking a prime number p, a secret
value s ∈ Zp , an access tree T  , and a set of leaf nodes

AdvDBDH

= |Pr[�(g , ga, gb, gc, ê(g , g)abc) = 1]

− Pr[�(g , ga, gb, gc, x) = 1]|

L in T  , it generates a distribution {Di}i∈L of s based
on T .

•	 Combine({{ê(g1, g2)Di}i∈S , T } ): Let T be an access
tree, Att is an attribute set with correspond-
ing to L and g1, g2 ∈ G1 , S ⊆ Att . With inputting
{ê(g1, g2)

Di}i∈S where {Di}i∈L is an output of Share(p,
s, T  ) and access tree T  , The algorithm outputs
ê(g1, g2)

s if S satisfies T  . Otherwise, it outputs ⊥.

Now we give an example shown in Fig. 2 in the
following.

•	 Share(p, s, T  ): The construction of the access tree
starts from the root node x = 2/3 . As shown in
Fig. 2, the threshold value of the root node is 2, and
there are 3 child nodes, so kx = 2 , numx = 3 . Then
it randomly generates a polynomial with the highest
degree of kx − 1 , so the highest degree of the root
node is 1. Then it selects s at random as the secret
number. In the example we set s = 5 , so the ran-
dom polynomial at the root node is f (x) = 3x + 5 .
In addition, since 3/3 is the first child of node x, so
index(3/3) = 1 , which is brought into f (x) = 3x + 5 .
Then we get the secret value 8 of the child node.
Next, we set a secret value and polynomial for each
node according to the same method above. Finally,
we get the attribute tree T as shown in Fig. 2.

•	 Combine({{ê(g , g)Di }i∈S , T }):

–	 For the leaf node, we find the attribute consistent
with the attribute value of this node in the attribute
set of the data visitor, and calculate the secret value
of this node using formula (1).

Fig. 2  Access tree instance

Page 5 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

–	 For non leaf nodes, we use formula (2) to calculate
the secret value.

�i,S′x
(0) is a Lagrange coefficient, where

i = index(z), S′x = {index(z) : z ∈ Sx} . For exam-
ple, if we have obtained that the secret values of
nodes “surgery”, “brain surgery” and “director” are
e(g , g)19r , e(g , g)44r and e(g , g)83r respectively. We
can calculate the secret value e(g , g)8r of node “3/3”
according to formula (2). Finally, we use the same
method to calculate the secret value e(g , g)5r of the
root node “2/3”.

System Framework and Security Model
In our model, there are five parties: central authority
(CA), data owner (DO), data user (DU), medical terminal
(MT) and cloud server (CS), which are described in detail
as follows:

•	 Central Authority (CA): It is a trusted entity and it
generates keys for data users that meet the attribute
requirements.

•	 Data Owner (DO): The data owner specifies access
policies and it encrypts keywords and PHR files.
Next, it generates a security index and sends the
ciphertext and index to MT.

•	 Data User (DU): All legitimate data users are fully
trusted entities. They encrypt keywords with their
key to get trapdoors and send them to CS. It is
able to verify the integrity and correctness of files
received from the CS. For example, doctors or rele-
vant researchers need to obtain patients’ PHR files to
make the correct diagnosis.

(1)

DecryptNode(CT , SK , x)

=
e(Di,Cx)

e(D1
i ,C

1
x)

=
e(gr ·H(i)ri , gqx(0))

e(gri ,H(i)qx(0))

= e(g , g)rqx(0)

(2)

Fx

=

z∈Sx

Fz
�i,S′x

(0)

=

z∈Sx

(e(g , g)r·qz(0))
�i,S′x

(0)

=

z∈Sx

(e(g , g)r·qparent(z)(index(z)))
�i,S′x

(0)

=

z∈Sx

(e(g , g)r·qx(i))
�i,S′x

(0)
= e(g , g)r·qx(0)

•	 Medical Terminal (MT): MT is a semi-trusted entity,
it encrypts keywords encrypted by DO into keywords
that can be searched and forwards the ciphertext and
security index to CS.

•	 Cloud Server (CS): CS is an untrusted entity, it has
fast computing power and enough storage space, so
it is used to store ciphertext and security index sent
by MT, and it can provide a search function for legiti-
mate data users. When the received trapdoor and the
ciphertext stored in the cloud contain the same key-
words, the matching is successful. The cloud server
sends the corresponding ciphertext and tag to the
DU.

System architecture of our VABKSS scheme
Our scheme consists of five parts: system initialization,
key generation, data encryption, data search, verification
and decryption. Because the online/offline encryption
mechanism is an effective technology to improve com-
putational efficiency. The scheme ingeniously divides the
encryption process into two stages: offline and online:
the offline stage allows to preprocess the complex opera-
tions without knowing the keyword set. It only performs
a small amount of calculation operations to generate the
ciphertext during the online phase. Therefore, in order to
improve efficiency, we use the online/offline encryption
mechanism in encryption and token generation. There
are nine algorithms in polynomial time to achieve the
above processes in the following:

Setup(1� , U): First, CA randomly chooses a security
parameter � and a set of universal attributes U. Then
it runs this algorithm to obtain the master secret key
MK, MSK and public parameters PM. It keeps (MSK,
MK) secret and sends PM to other entities.
KeyGen(MSK, MK, IDi , Attid ): For each user with an
attribute set Attid and an identifier IDi , CA runs this
algorithm to get SKi with its secret key (MSK, MK)
and transmits it to the data user via a security chan-
nel.
OfflineEnc(T  , PM): Data owner uses this algorithm
in advance to generate auxiliary information AU
according to CP-ABE and defines an access tree T to
authorize users who have permission to access data.
OnlineEnc({Fi}mi=1

 , {wj}
n
j=1

 , SKi , AU): Given the med-
ical record files {Fi}mi=1

 and keyword set {wj}
n
j=1

 , it
uses its secret key SKi to run this algorithm, then it
generates partially encrypted data PCT and a secu-
rity index IC . Last, it sends PCT and IC to medical
terminal.
TerEnc(PCT, IC , PM): The medical terminal gener-
ates searchable ciphertext CT by performing this

Page 6 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

algorithm, where {Wj}
n
j=1

 denotes the encrypted
keywords. In the end, it transmits CT and IC to CS.
OfflineToken(SKi , Attid , PM): While offline, the data
user generates some auxiliary information using its
secret key for searching by running this algorithm, it
generates partial trapdoors FTK.
OnlineToken(w∗ , FTK): If the data user wants to
look up some medical record files about keyword
w∗ , it uses its private key and the selected keyword
to generate searchable TK. Then it sends TK to CS.
Search(CT, TK, IC , PM): Afterward, the cloud server
performs the algorithm to search the correct cipher-
text and returns ST to DU who had sent the query.
Verify and Decrypt(ST, PM): Before decrypting the
files, the data user verifies the integrity of the num-
ber of files received. At first, it runs the algorithm to
verify the search result. If the authentication is suc-
cessful, US decrypts the ciphertext.

Security model of VABKSS scheme
Our VABKSS scheme requires two security as follows.

Indistinguishability: This security requires that only
authorized users can access PHR, and the ciphertext can-
not disclose the keyword information in the file to other
entities in the model.

Unforgeability: This security means that if the server
performs the search algorithm incorrectly, then
the incomplete results will not pass the verification
algorithm.

Indistinguishability
Assume that A is a probabilistic polynomial time (PPT)
adversary who can define a challenging access tree T  ,
and C is a PPT challenger who receives the access tree
from A . We have:

•	 Setup: C executes Setup(1� , U) to get public param-
eters PM and the master secret key MK and MSK.
It keeps MSK and MK and sends PM to A . C makes
ID1, ..., IDn as the identities of the users.

•	 Phase 1: A can ask the oracles listed below a poly-
nomial number of times. C keeps two lists Ll and Lll
which are initially empty and l ∈ {1, 2, ..., n}.

–	 OKGen(IDi,Att) : If the event that T is satisfied by
Ll ∪ Att holds, the challenger suspends. If not, it
performs KeyGen(MSK, MK, IDi , Attid ) to obtain
a secret key SKi . Additionally, it replaces Ll ∪ Att
with Ll.

–	 OTGen(PM,w,Att) : First, the challenger utilizes
KeyGen(MSK, MK, IDi , Attid ) to acquire a secret
key SKi . Then it runs OfflineToken(SKi , Attid , PM)

and OnlineToken(w∗ , FTK) to get TKl . Finally, it
sends TKl to A and replaces Lll with Lll ∪ w∗.

•	 Challenge: When Phase 1 finishes, the only require-
ment is that two keywords, w∗

0
 and w∗

1
 which A

chooses are not in Lll . C selects b ∈ {0, 1} randomly
and gets the ciphertext CT by running OfflineEnc(T  ,
PM) , OnlineEnc({Fi}mi=1

 , {wj}
n
j=1

 , SKi , AU) and
TerEnc(PCT, IC , PM). Next, C sends CT and PM to A.

•	 Phase 2: This phase is similar to Phase 1 except that
A can not query OfflineToken ( SKi , Attid , PM) and
OnlineToken(w∗ , FTK) if w∗=w∗

0
 or w∗=w∗

1
.

•	 Guess: As a guess for b, A returns a bit b∗ ∈ {0, 1}.

If b∗ = b , A wins this indistinguishable game. We denote
that A succeeds as AdvA,I(�) = |Pr[b∗ = b] − 1

2
|.

Unforgeability
Assume that A is a probabilistic polynomial time (PPT)
adversary who can define a challenging access tree T  ,
and C is a PPT challenger who receives the access tree
from A . We have:

•	 Setup: Challenger generates public parameters that
need to be provided to the adversary A.

•	 Phase 1: A is allowed to obtain the secret key SKi by
issuing an access tree request. The key is generated
by the challenger through the generation algorithm
KeyGen(MSK, MK, IDi , Attid).

•	 Challenge: A selects two messages s1 and s2 with
the same length but different contents, challenger
encrypts information sµ by tossing coins. Finally, it
returns CT to A.

•	 Phase 2: This phase is similar to Phase 1.
•	 Guess: A guesses the value of µ based on the infor-

mation obtained in the previous steps.

Our scheme is secure on the premise that there is only
one negligible advantage for any polynomial time A in
this game. Here the adversary advantage is defined as
|Pr(µ∗ = µ)− 1

2
| . Otherwise, we say A wins this game.

Concrete construction of our VABKSS
Basic VABKSS scheme
For convenience, in this subsection, we focus on con-
structing a basic verifiable attribute-based keyword
search scheme which supports single keyword search.
Next subsection replenishes a description that how to
achieve multi-keyword search.

•	 Setup(1� , U): Input security parameter � , a universal
attribute set U, and a bilinear map ê : G × G → GT ,
where G and GT are cyclic groups. Let g be a genera-

Page 7 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

tor of G, H1 : {0, 1}
∗ → G and H2 : {0, 1}

∗ → Zp are
two hash functions. It picks a1 , a2 , a3, s1, s2 ∈ Zp ran-
domly. Let MK = {a1 , a2 , a3} as master secret key and
MSK = {s1 , s2} as secret key. In the end, it outputs PM
= {H1 , H2 , ê , g, ga1 , ga2 , ga3 , G, GT }.

•	 KeyGen(MSK, MK, IDi , Attid ): Given user’s IDi
and Attid , CA selects ki ∈ Zp and kj ∈ Zp at ran-
dom for each user IDi and attribute respectively and
computes SKi1 = g (a1a3−ki)/a2 , Tij = gkiH1(atj)

kj ,
Tj = gkj , Ti = gki/a2 . Finally, it returns SKi = {U , SKi1 ,
Ti , s1 , s2 , {(Tij ,Tj)|atj ∈ Attid}} to DU.

•	 OfflineEnc(T  , PM): Let X be the set of leaf nodes
in T and x ∈ X . B1 = gqx(0) , B2 = H1(att(x))

qx(0) ,
where qx(0) denotes the attribute value of leaf node
x. It selects s, b1 ∈ Zp , and it computes A1 = ga2b1 ,
C̃ = sê(g , g)a1a3b1 , r = ga1b1 , k = π(s) , in which π is
pseudo-random function. It keeps AU = {T , A1, C̃ , r,
k, s, {B1, B2| x ∈ X}} secretly.

•	 OnlineEnc({Fi}mi=1
 , {wj}

n
j=1

 , SKi , AU): Given a key-
word set {wj}

n
j=1

 and a file set {Fi}mi=1
 , in which

j ∈ {1, 2, ..., n} and i ∈ {1, 2, ...,m} , where n denotes
the number of keywords and m indicates the number
of files, then it computes Wj = H2(wj) and encrypts
the files to {Ci}

m
i=1

 with symmetric encryption with
key k. It builds an inverted index I (Table 1) based
on keywords and the ID of the ciphertext, each row
of the table is represented by an index vector v(wj) .
Set v[wj][i] to 1 if the keyword wj is included in the
file Ci , and 0 otherwise. We refer to the set of files
including the keyword wj as Cwj . Then it makes use
of PRF fs1 to blind the index vectors and PRP ps2 to
confuse the location of keywords, where PRF and
PRP are pseudo-random permutation functions.
Next, let s be the key of MAC. And it computes

Ev(wj) = fs1(ps2(wj))⊕ v(wj) and tagwj = MACs

(ps2(wj) , Ev(wj) , Wj) . ps2(wj) and Ev(wj) mean to
blind the position and vector v(wj) of the keyword
wj . Then it generates a security index IC shown
in Table 2. Finally, it sends PCT = {T  , A1 , C̃ , r,
{Ev(wj)}

n
j=1

 , {Wj}
n
j=1

 , {Ci}
m
i=1

 , {B1,B2|x ∈ X}} and IC
to TE.

•	 TerEnc(PCT, IC , PM): It selects b2 ∈ Zp for each
data owner and computes A2 = ga3b2 , A3j =
rga1b2ga2H(wj)b2 = ga1(b1+b2)ga2H2(wj)b2 , j ∈ {1, 2, .., n} ,
in which n indicates the number of uploaded key-
words. Lastly, it sends index IC and CT = {T  , A1 , A2 ,
{A3j}

n
j=1

 , C̃ , {Ci}
m
i=1

 , {B1,B2|x ∈ X}} to CS.
•	 OfflineToken(SKi , Attid , PM): It chooses

c ∈ Zp at random and computes D1 = ga3c ,
D2 = SKi1

c = g (a1a3c−kic)/a2 , T̂j = Tj
c = gckj ,

T̂ij = Tij
c = gckiH1(atj)

ckj . And it keeps FTK = {D1,
D2, T̂ij , T̂j} secretly.

•	 OnlineToken(w∗ , FTK): Taking a keyword w∗ , it com-
putes D3 = (ga1ga2H2(w

∗))c , P(w∗) = fs1(ps2(w
∗))

and tagw∗ = MACs(ps2(w
∗), Ev(w∗), H2(w

∗)) . Finally,
it keeps tagw∗ and returns TK = {Attid , D1 , D2 , D3 ,
P(w∗) , {(T̂ij , T̂j)|atj ∈ Attid}} to CS.

•	 Search(CT, TK, IC , PM): It selects an attribute set S
that satisfies the access tree T specified in CT after
receiving the set of attribute Attid in TK. If S does
not exist, return 0; otherwise, for each atj ∈ Attid , it
computes Ex = ê(T̂ij ,B1)/ê(T̂j ,B2) = ê(g , g)kicqx(0) ,
where att(x) = atj for x ∈ X , ê(g , g)kicqroot (0) ←
Combine(T, {Ex|att(x) ∈ S} ), Eroot = ê(g , g)kicb1 .
Then if ê(A3j ,D1) = ê(A1,D2)Eroot ê(D3,A2) , it
returns 1 and computes v(w) = P(w∗)⊕ Ev(w) =

fs1 (ps2 (w
∗)⊕ Ev(w)) . Then it adds the ciphertext

corresponding to 1 in the recovered vector v(w) to

Table 1  Initial index I 

ID(C1) ID(C2) ID(C3) · · · ID(Cn) Tag

w1 0 1 0 · · · 1 tagw1

w2 1 1 0 · · · 0 tagw2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

wn 0 0 0 · · · 1 tagwn

Table 2  Security index IC

ID(C1) ID(C2) ID(C3) · · · ID(Cn) Tag

ps2 (wn) 1 0 1 · · · 0 tagwn

ps2 (w1) 1 1 0 · · · 0 tagw1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ps2 (w2) 0 0 1 · · · 0 tagw2

Page 8 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

Cw , which is the set of all ciphertext containing the
keyword w. Finally, it sends ST = {C̃ , v(w), tagw , Cw ,
Eroot , A1} to DU.

•	 Verify and Decrypt(ST, PM): When the
data user receives ST, it computes
U

1
= SKi1

⋅ Ti = g (a1a3−ki)∕a2 ⋅ gki∕a2 = ga1a3∕a2 , U
2
= U

1
∕Ti

c = g (a1a3−cki)∕a2 ,
C̃∕(ê(U

2
,A

1
) ⋅ Eroot) = C̃∕(ê(g (a1a3−cki)∕a2 , ga2b1) ⋅ ê(g , g)cki b1) = C̃∕(ê(g , g)a1a3b1) = s

Then it computes the value tagw and verifies that
the equation tagw∗ = tagw holds or not. If the
equation does not hold, it implies that the
ciphertext returned by the cloud are incomplete
and it returns 0; otherwise, it computes k = π(s)
and uses it to decrypt all the ciphertext Cw.

Multi‑keyword search scheme
Our scheme can be extended to multi-keyword search
and the encryption process is same as the basic scheme
steps. We will describe the steps of OnlineToken, Search
and Verify and Decrypt.

•	 OnlineToken({w∗
j }

l
j=1

 , FTK): Given a keyword set {w∗
j }

l
j=1

 ,
where l indicates the number of queried keywords. Then it
computes D3j = (ga1g

a2H2(w
∗
j))c , P(w∗

j) = fs1(ps2(w
∗
j))

and tagw∗
j
 = MACs(ps2(w∗

j) , Ev(w
∗
j) , H2(w

∗
j)) , j ∈ {1, 2, ...,

l} . Last, it keeps {tagw∗
j
}lj=1

 and forwards TK = {Attid , D1 ,
D2 , {D3j}

l
j=1

 , {P(w∗
j)}

l
j=1

 , {(T̂ij , T̂j)|atj ∈ Attid}} to CS.
•	 Search(CT, TK, Ic , PM): Before keywords match-

ing, the steps for generating Eroot are the same
as those for single keyword search. Next, if
ê(A3j ,D1) = ê(A1,D2)Eroot ê(D3j ,A2) exists, cloud
sever returns 1 and computes v(wj) . Then it computes
v = v(w1) ∩ v(w2) ∩ ... ∩ v(wk) , where k indicates
the number of keywords successfully searched. It will
append the ciphertext corresponding to 1 in v to Cw

, ,
which represents the ciphertext set containing all the
searched keywords {wj}

k
j=1

 , and it adds the cipher-
text corresponding to 1 in v(wj) that is not in Cw

, to
Cwj , where j ∈ {1, 2, ..., k} . Finally, it sends ST = {C̃ , v ,
{v(wj)}

k
j=1

 , {tagwj }
k
j=1

 , Cw
, , {Cwj }

k
j=1

 , Eroot , A1} to DU.
•	 Verify and Decrypt(ST, PM): First, the data user

decrypts the s using the same method as decrypting
the ciphertext corresponding to a single keyword.
Then it verifies whether the ciphertext corresponding
to each keyword received is complete. If {tagw∗

j
 =

tagwj }
k
j=1

 , it returns 1 and computes k = π(s) to
decrypt Cw

, and {Cwj }
k
j=1

 ; otherwise, it returns 0.

Correctness
In this part, we give the correct proof of our scheme. In
fact, it is clear that we only prove the Search algorithm is
able to return the correct ciphertext set when atj = attx
and w∗ = w.

For each leaf node, we can calculate

For each non-leaf node, we will calculate
Eroot = ê(g , g)kicb1 by formula (2). Then we will compute

Therefore, if the keywords are identical, the verification
equation holds.

Security of our VABKSS
In this part, we prove the indistinguishability and unforge-
ability of our scheme.

Indistinguishability

Definition 3  If the advantage function is negligible in
AdvA,I(�) for any PPT adversary, our VABKSS construc-
tion with indistinguishable security.

Theorem 1  Our VABKSS construction is indis-
tinguishable if the discrete logarithm problem is
intractable.

ê(T̂ij ,B1) = ê(gckiH1(atj)
ckj , gqx(0))

ê(T̂j ,B2) = ê(gckj ,H1(attx)
qx(0))

Ex = ê(T̂ij ,B1)/ê(T̂j ,B2) = ê(g , g)kicqx(0)

ê(A3j ,D1)

= ê(ga1(b1+b2)ga2H2(w)b2 , ga3c)

= ê(ga1b1+a1b2+a2H2(w)b2 , ga3c)

ê(A1,D2)Eroot ê(D3,A2)

= ê(ga2b1 , g (a1a3c−kic)/a2)ê(g , g)kicb1

ê((ga1ga2H2(w
∗))c, ga3b2)

= ê(g , g)b1a1a3c−kicb1 ê(g , g)kicb1

ê(ga1b2+a2H2(w
∗)b2 , ga3c)

= ê(ga1b1 , ga3c)ê(ga1b2+a2H2(w
∗)b2 , ga3c)

= ê(ga1b1+a1b2+a2H2(w
∗)b2 , ga3c)

Page 9 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

Proof
If A can break the indistinguishable security, C can uti-
lize A as a sub-algorithm to resolve the discrete logarithm
problem. Given a tuple {H1 , H2 , ê , g, p, (gb1+b2)a1 , ga2 , ga3 ,
G, GT } as a DL instance, the goal of C is to calculate a1
based on indistinguishable experiment.

As follows, C runs A as a subroutine to resolve this
problem:

•	 Target: A defines an access tree T .
•	 Setup: C chooses an attribute set U and with

ID1, ..., IDn indicates the identities of users, where
n indicates the number of users. Next, it selects
a2, a3 ∈ Zp and sets ga1 , ga2 , ga3 . Then C picks a value
ki ∈ Zp and kj ∈ Zp randomly, it further computes
SKi1 = g (a1a3−ki)/a2 , Tij = gkiH1(att(j))

kj , Tj = gkj ,
Ti = gki/a2 . Afterward, C sends IDi and {H1, H2, ê, g,
p, (gb2)a1 , ga2 , G, GT } to A.

•	 Phase 1: A can inquire the subsequent oracles, and it
keeps an Ll and answers the following oracles, where
l ∈ {1, 2, ..., n}.

–	 OKGen(IDi,Att) : First, C checks if Ll ∪ Att
meets A , if so, it aborts. Otherwise, for each
j ∈ Att , it computes SKi1 = g (a1a3−ki)/a2 ,
Tij = gkiH1(att(j))

kj , Tj = gkj , Ti = gki/a2 . Then it
sends SKi = {SKi1 ,Ti, {(Tij ,Tj)|atj ∈ Att}} to A .
And it replaces Ll ∪ Att with Ll.

–	 OTGen(IDi,w
∗,Att) : First, C utilizes OKGen-(IDi , Att)

to get SKi . Then it runs Off-lineToken(SKi , Attid ,
PM) and OnlineToken(w∗ , FTK), then it sends TK
to A . Next, it replaces Lll with Lll ∪ w∗.

•	 Challenge: After phase 1, A chooses two keywords
w∗
0
 and w∗

1
 and transmits both of them to C . The only

restriction is that w∗
0
 and w∗

1
 are not in Lll . C selects a

number b ∈ {0, 1} at random and encrypts w∗
b as fol-

lows: Firstly, C picks s, b1, b2 ∈ Zp randomly, it com-
putes A1 = ga2b1 , C̃ = sê(g , g)a1a3b1 , r = ga1b1 ,
k = π(s) , Wj = H2(wj) , Ev(wj) = fs1(ps2(wj))⊕ v(wj) ,
tagwj = MACs(ps2(wj),Ev(wj),Wj) and uses key k
to symmetrically encrypt the file. Then it calculates
A2 = ga3b2,A3=ga1(b1+b2)ga2H2(w

∗
b)b2 . Lastly, C sends

CT = {A1,A2,A3, C̃ , {Ci}
m
i=1

} and IDi to A.
•	 Phase 2: This phase is comparable to Phase 1.
•	 Guess: As a guess for b, A returns a bit b∗ ∈ {0, 1} .

When C receives b∗ from A , if b = b∗ , it means that
C can get a1 from (gb1+b2)a1 . Otherwise, it returns
0. C computes ga

∗
1
(b1+b2)=ga1(b1+b2) → g�a1 = 1 .

∀ζ1, ζ2 ∈ G , t ∈ Zp , ∃ζ2 = ζ1
t . Without losing

generality, g = ζ1
t1ζ2

t2 , where t1, t2 ∈ Zp . There-
fore, 1 = (ζ1

t1ζ2
t2)�a1 , so ζ2 = ζ1

−t1�a1/t2�a1 and
t = −t1�a1/t2�a1 , t2�a1 = 0 . Because t2�a1 = 0 ,
�a1 = 0 , t2 ∈ Zp , p is a large prime number, so C
solves the problem with the non-negligible advan-
tage 1− 1/p , which is in contradiction with the diffi-
culty of DLP. Hence, if the DL problem is intractable,
AdvA,I(�) is a negligible function in � . The theorem is
proved.

�

Unforgeability
In this part, we demonstrate that the validation of our
search results ensures that the results are unforgeable.

Theorem 2  Our VABKSS construction is unforgeable if
the DBDH assumption holds.

Proof
Assuming that there is a polynomial time adversary A
that can break our scheme with an advantage of ζ , we can
design a simulator B that can win DBDH game with an
advantage of ζ/2 . This step is performed as follows:

Fist, the challenger C selects G, GT , a1, a2, a3, b1, b2, s and
a bilinear map ê . Then it randomly throws a coin Con, if
Con = 1 , then it computes S = ê(g , g)a1a3b1 , else it calcu-
lates S = ê(g , g)β . And C sends (g, a2, ga1 , ga3 , gb1 , S) to
B . Next, B will replace the challenger C to execute this
game according to the following steps:

•	 Initialization: A define an attribute tree T .
•	 Setup: B makes α = α∗ + a1a3 , where α∗ is ran-

domly selected from Zp . Then it computes
ê(g , g)α = ê(g , g)α

∗
· ê(g , g)a1a3 . Finally, it sends (ga1 ,

gb1 , ga3) to A.
•	 Phase 1: A asks B to obtain the key,

Tij = gkiH1(att(j))
kj , Tj = gkj , SKi1=g (a1a3−ki)/a2 =

g (α−α∗−ki)/a2 , Ti = gki/a2 , where ki and kj are ran-
domly selected from Zp . Last, it returns SKi = {SKi1 ,
Ti, {(Tij ,Tj)|atj ∈ Attid}} to A.

•	 Challenge: A selects two messages s∗ and s, with the
same length but different contents, B encrypts infor-
mation sµ by tossing coins. Firstly, B picks b1, b2 ∈ Zp
randomly, it computes A1 = ga2b1 , r = ga1b1 ,
Wj = H2(wj) , Ev(wj) = fs1(ps2(wj))⊕ v(wj) ,
tagwj = MACs(ps2(wj),Ev(wj),Wj) , A2 = ga3b2 ,
A3 = ga1(b1+b2)ga2H2(w

∗
b)b2 . Let C∗

x = gnumx =
gb1 . Suppose B gives S = ê(g , g)a1a3b1 , then

Page 10 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

C̃ = sµê(g , g)αnumx = sµê(g , g)a1a3b1 · ê(g , g)α
∗b1

=sµSê(g , g)α∗b1 . We can get that the ciphertext is a
valid ciphertext about sµ only in this case. Otherwise,
S will be a random number in GT . Finally, B sends the
CT = {T  , A1 , A2 , {A3j}

n
j=1

 , C̃ , {Ci}
m
i=1

 , {B1,B2|x ∈ X}}
to A.

•	 Phase 2: This phase is similar to Phase 1.
•	 Guess: A guesses the value of µ based on the infor-

mation obtained in the previous steps. At the same
time, B guesses the value of Con in the DBDH game
according to the different results of A ’s guess. If
µ = µ∗ , then the guess result of B output is µ = 1 ,
and it points out that the tuple given by the chal-
lenger C is (g, a2, ga1 , ga3 , gb1 , ê(g , g)a1a3b1) . Oth-
erwise, B outputs the guess result µ = 0 and points
out that the tuple given by C is (g, a2, ga1 , ga3 , gb1 ,
ê(g , g)β) . The calculation result of the probability of
winning DBDH between B and C is: when Con = 1 ,
the tuple generated by C is (g, a2, ga1 , ga3 , gb1 ,
ê(g , g)a1a3b1) . We can get that CT is a valid ciphertext
about sµ . In this case, A guesses the correct s with a
non-negligible advantage ζ , so Pr[µ∗ = µ] = 1

2
+ ζ .

If Con = 0 , the challenger C builds a random tuple,
then S will be a random element in GT and A can’t
get any information about sµ , so it can’t guess the
advantage of µ∗ correctly. Therefore, the probability
that A will make a correct guess is 1

2
 , and the prob-

ability of simulator B winning DBDH is also 1
2
 . Finally,

the probability of B winning DBDH is calculated as
Pr=1

2
(1
2
+ ζ)+ 1

2
· 1

2
− 1

2
=ζ
2
.

According to the definition of DBDH assumption and
MAC protects against chosen message attacks with
irreversibility and message unforgeability, and A is una-
ware of the key of MAC. Thus, our VABKSS scheme is
unforgeable. �

Performance
In this part, we give a theoretical comparative analysis
and an experimental comparative analysis of the com-
putation costs between this scheme and some previous
schemes.

Let us denote P, H, E and ET as the operation of bilin-
ear pairing, map-to-point hash function, and modular
exponentiation in G and GT respectively. Note that the
relation between them is P ≈ H ≫ E ≈ ET . We record
the theoretical computational overhead required by the
KeyGen, OfflineEnc, OnlineEnc, OfflineTrap, Online-
Trap, Search, Verify and Dec processes of these schemes
in Table 3, where U represents the quantity of attributes
appearing in the system, f represents the quantity of data
owners, q represents the quantity of search results.

From Table 3, we can learn that our scheme is slightly
slower than Qiu et al.’s scheme [34] but is more efficient
than Zhang et al.’s scheme [35] in KeyGen. In the encryp-
tion and trapdoor generation stage, our scheme is divided
into two parts, offline and online. The offline encryp-
tion stage and trapdoor generation can be precomputed
before online processing. The computation overhead of
OnlineEnc and OnlineTrap in our scheme is signifi-
cantly better than that of schemes [34, 35]. Although the
computation cost of Search phase is higher than [34, 35],
but the cloud is an entity with a large enough storage
capacity and sufficient computing resources. It is pointed
out that for the functions of search, our scheme can
achieve to verify the integrity of results efficiently while
the literature [34, 35] can not resolve this issue.

We execute these fundamental operations using the
MIRACL library on a computer with I5-4460S 2.90GHz
processor, 4 GB memory in Window 10 operating system.

In the experimental stage, we assume f = 1 , and
set the quantity of attributes to 10, 20, 30, 40 and 50
respectively. In Fig. 3, the time cost of KeyGen algo-
rithm in our scheme and [34, 35] increases gradually
with the quantity of attributes. Our scheme is a little
faster than [35] while slightly slower than [34].

In OnlinEnc, we set f = 1 and U is from 10 to 50.
We experimentally calculate the running time of our
scheme and schemes [34, 35] respectively. The experi-
mental results demonstrate that our scheme does the
OnlinEnc process more quickly by comparison with
[34, 35] (Fig. 4).

In OnlineTrap, we assume that the user only enters
a keyword to search the files, and set the quantity of
attributes from 10 to 50. As can be seen from Fig. 5,
when the quantity of attributes increases, the time cost
of our scheme also increases. Figure 5 shows that when
the quantity of attributes is 10, the running time of our
scheme is higher than that of schemes [34, 35]. How-
ever, when U ≥ 20 , our scheme is much faster than pre-
vious schemes [34, 35].

Table 3  Computation cost

[34] [35] Our

KeyGen (2U+1)E+ET (f+2U+4)E+ET+H 2UE+2E+H

OfflineEnc – – 2UE+2E+ET
OnlineEnc (2U+1)E+ET (2U+2f+4)E+3ET+H 2E

OfflineTrap – – 2UE+2E+H

OnlineTrap (2U+1)E+ET (2U+1)E 2E

Search (2U+1)P+ET (2U+1)P+ET 2UP+3P

Verify – 3E+2P+qH E+P

Dec – fE+fET+3P+H 0

Page 11 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

Fig. 3  Computation costs in KeyGen 

Fig. 4  Computation costs in OnlinEnc 

Fig. 5  Computation costs in OnlinTrap 

Page 12 of 13Sun et al. Journal of Cloud Computing (2023) 12:77

Since [34] does not have the ability to verify the cor-
rectness and integrity of the received files, in Verify, we
only compare our scheme with [35]. When the received
files come from the result of a single keyword search,
our scheme has high verification efficiency, and the run-
ning time of [35] increases as the quantity of keywords
increases. It can be seen from Fig. 6 that in our scheme,
the time required for verification has nothing to do with
the quantity of keywords.

Conclusion
This paper proposes a verifiable attribute-based keyword
search scheme over encrypted data for personal health
records in medical systems. We utilize the ciphertext-
policy attribute-based encryption to achieve fine-grained
access control and the message authentication code to
verify the search result. Furthermore, our scheme can
support multi-keyword search which has an important
practical significance. The security of our VABKSS is
proven and the performance of each sub-algorithm is
analyzed by comparing it to other schemes.

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions on improving this paper.

Authors’ contributions
This research paper was completed by the joint efforts of five authors. There-
fore, any author participates in every part of the paper. But the basic roles of
each author are summarized as follows: Y.S. is the designer of the proposed
model and method. L.H. is the corresponding author and the coordinator of
the group, assisting Y.S. in model design. J.B. is the implementer and tester of
the algorithm. X.T. is the main reviewer of this paper. Q.X. is responsible for the
experiment of the proposed method. All authors have read and agreed to the
published version of the manuscript.

Authors’ information
Yuqin Sun is a postgraduate in Cyberspace Security at School of Information
Science and Technology, Hangzhou Normal University, China. Her research
interests include searchable encryption and public key cryptography.
 Lidong Han received his Ph.D. degree from school of mathematics in
Shandong university in 2010. Currently, he is working at Key Laboratory of

Cryptography Technology of Zhejiang Province, and School of Information
Science and Technology, Hangzhou Normal University. His research interests
include cryptography, cloud computing, and remote user authentication.
 Jingguo Bi received the B.Sc. and Ph.D. degrees in information security from
Shandong University, in 2007 and 2012, respectively. He is currently an Associ-
ate Researcher with the School of Cyberspace Security, Beijing University
of Posts and Telecommunications. His research interests include public key
cryptography, cloud computing, and post-quantum cryptography.
 Xiao Tan received his Ph.D. degree from Department of Computer Science,
City University of Hong Kong in 2014. Currently, he is working in Hangzhou
Normal University. His current research interests include encryption schemes,
digital signatures, cloud storage.
 Qi Xie received Ph.D. degree in applied mathematics from Zhejiang University,
China, in 2005. He is currently with the Key Laboratory of Cryptographic
Technique Governance of Zhejiang Province, Hangzhou Normal University,
China. His research area is applied cryptography, including digital signatures,
authentication and key agreement protocols.

Funding
This work was supported by the National Natural Science Foundation of China
(Grant No.U21A20466, No.61972124).

Availability of data and materials
The datasets used during the current study are available from the correspond-
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 11 January 2023 Accepted: 25 April 2023

References
	1.	 Archer N, Fevrier-Thomas U, Lokker C, McKibbon KA, Straus SE (2011)

Personal health records: a scoping review. J Am Med Inform Assoc
18(4):515–522

Fig. 6  Computation costs in Verify 

Page 13 of 13Sun et al. Journal of Cloud Computing (2023) 12:77 	

	2.	 Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE Trans
Parallel Distrib Syst 27(2):340–352

	3.	 Miao Y, Ma J, Liu X, Li X, Liu Z, Li H (2017) Practical attribute-based multi-
keyword search scheme in mobile crowdsourcing. IEEE Internet Things J
5(4):3008–3018

	4.	 Ning J, Xu J, Liang K, Zhang F, Chang EC (2018) Passive attacks against
searchable encryption. IEEE Trans Inf Forensic Secur 14(3):789–802

	5.	 Liang K, Huang X, Guo F, Liu JK (2016) Privacy-preserving and regular
language search over encrypted cloud data. IEEE Trans Inf Forensic Secur
11(10):2365–2376

	6.	 Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption
for fine-grained access control of encrypted data. In: Proceedings of the
13th ACM conference on Computer and communications security. ACM
New York, pp 89–98

	7.	 Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based
encryption. In: 2007 IEEE Symposium on Security and Privacy (SP ’07). pp
321–334. https://​doi.​org/​10.​1109/​SP.​2007.​11

	8.	 Ibraimi L, Asim M, Petković M (2009) Secure management of personal
health records by applying attribute-based encryption. In: Proceedings of
the 6th International Workshop on Wearable, Micro, and Nano Technolo-
gies for Personalized Health. IEEE Piscataway, pp 71–74

	9.	 Lewko A, Okamoto T, Sahai A, Takashima K, Waters B (2010) Fully secure
functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer-Verlarg
Brelin, pp 62–91

	10.	 Lai J, Deng RH, Guan C, Weng J (2013) Attribute-based encryption
with verifiable outsourced decryption. IEEE Trans Inf Forensic Secur
8(8):1343–1354

	11.	 Chai Q, Gong G (2012) Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers. In: 2012 IEEE International Confer-
ence on Communications (ICC). pp 917–922. https://​doi.​org/​10.​1109/​ICC.​
2012.​63641​25

	12.	 Kurosawa K, Ohtaki Y (2012) Uc-secure searchable symmetric encryption.
In: International conference on financial cryptography and data security.
Springer Berlin, pp 285–298

	13.	 Ge X, Yu J, Zhang H, Hu C, Li Z, Qin Z, Hao R (2019) Towards achieving
keyword search over dynamic encrypted cloud data with symmetric-key
based verification. IEEE Trans Dependable Secure Comput 18(1):490–504

	14.	 Ge X, Yu J, Chen F, Kong F, Wang H (2021) Toward verifiable phrase
search over encrypted cloud-based iot data. IEEE Internet Things J
8(16):12902–12918

	15.	 Liu X, Yang X, Luo Y, Zhang Q (2021) Verifiable multi-keyword search
encryption scheme with anonymous key generation for medical internet
of things. IEEE Internet Things Journal 9(22):22315–22326

	16.	 Boneh D, Crescenzo GD, Ostrovsky R, Persiano G (2004) Public key encryp-
tion with keyword search. In: International conference on the theory and
applications of cryptographic techniques. Springer Berlin, pp 506–522

	17.	 Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: Annual
international conference on the theory and applications of cryptographic
techniques. Springer Berlin, pp 457–473

	18.	 Gao J, Zeng K, Jin HZ, Zhou F-C (2015) Data access control scheme based
on cp-abe in cloud storage. J Northeast Univ (Nat Sci) 36(10):1416

	19.	 Su H, Zhu Z, Sun L, Pan N (2016) Practical searchable cp-abe in cloud
storage. In: 2016 2nd IEEE International Conference on Computer and
Communications (ICCC). IEEE Piscataway, pp 180–185

	20.	 Yin H, Zhang J, Xiong Y, Ou L, Li F, Liao S, Li K (2019) Cp-abse: A ciphertext-
policy attribute-based searchable encryption scheme. IEEE Access
7:5682–5694

	21.	 Kaushik K, Varadharajan V, Nallusamy R (2013) Multi-user attribute based
searchable encryption. In: 2013 IEEE 14th International Conference on
Mobile Data Management, vol 2. IEEE Piscataway, pp 200–205

	22.	 Liang K, Susilo W (2015) Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage. IEEE Trans Inf Forensic
Secur 10(9):1981–1992

	23.	 Cui J, Zhou H, Zhong H, Xu Y (2018) Akser: Attribute-based keyword
search with efficient revocation in cloud computing. Inf Sci 423:343–352

	24.	 Miao Y, Liu X, Deng RH, Wu H, Li H, Li J, Wu D (2018) Hybrid keyword-field
search with efficient key management for industrial internet of things.
IEEE Trans Ind Inform 15(6):3206–3217

	25.	 Zhang K, Wen M, Lu R, Chen K (2020) Multi-client sub-linear boolean
keyword searching for encrypted cloud storage with owner-enforced
authorization. IEEE Trans Dependable Secure Comput 18(6):2875–2887

	26.	 Sun W, Yu S, Lou W, Hou YT, Li H (2014) Protecting your right: Verifiable
attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud. IEEE Trans Parallel Distrib Syst 27(4):1187–1198

	27.	 Zheng Q, Xu S, Ateniese G (2014) Vabks: Verifiable attribute-based
keyword search over outsourced encrypted data. In: IEEE INFOCOM
2014-IEEE conference on computer communications. IEEE Piscataway, pp
522–530

	28.	 Miao Y, Weng J, Liu X, Choo KKR, Liu Z, Li H (2018) Enabling verifiable
multiple keywords search over encrypted cloud data. Inf Sci 465:21–37

	29.	 Miao Y, Tong Q, Deng R, Choo KKR, Liu X, Li H (2020) Verifiable searchable
encryption framework against insider keyword-guessing attack in cloud
storage. IEEE Trans Cloud Computing 10(2):835–848

	30.	 Ali M, Sadeghi MR, Liu X, Miao Y, Vasilakos AV (2022) Verifiable online/
offline multi-keyword search for cloud-assisted industrial internet of
things. J Inf Secur Appl 65:103101

	31.	 Sun J, Yuan Y, Tang M, Cheng X, Nie X, Aftab MU (2021) Privacy-preserving
bilateral fine-grained access control for cloud-enabled industrial iot
healthcare. IEEE Trans Ind Inf 18(9):6483–6493

	32.	 Sun J, Xu G, Zhang T, Yang X, Alazab M, Deng RH (2022) Verifiable, fair and
privacy-preserving broadcast authorization for flexible data sharing in
clouds. IEEE Trans Inf Forensic Secur 18:683–698

	33.	 Ali M, Mohajeri J, Sadeghi MR, Liu X (2020) Attribute-based fine-grained
access control for outscored private set intersection computation. Inf Sci
536:222–243

	34.	 Qiu S, Liu J, Shi Y, Zhang R (2017) Hidden policy ciphertext-policy
attribute-based encryption with keyword search against keyword guess-
ing attack. Sci China Inf Sci 60(5):1–12

	35.	 Zhang Y, Zhu T, Guo R, Xu S, Cui H, Cao J (2021) Multi-keyword searchable
and verifiable attribute-based encryption over cloud data. IEEE Trans
Cloud Computing 11(1):971–983

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/ICC.2012.6364125
https://doi.org/10.1109/ICC.2012.6364125

	Verifiable attribute-based keyword search scheme over encrypted data for personal health records in cloud
	Abstract
	Introduction
	Contributions
	Related works

	Preliminaries
	Definitions
	Bilinear map
	Discrete logarithm problem assumption
	Decisional bilinear Diffie-Hellman assumption

	Access structure

	System Framework and Security Model
	System architecture of our VABKSS scheme
	Security model of VABKSS scheme
	Indistinguishability
	Unforgeability

	Concrete construction of our VABKSS
	Basic VABKSS scheme
	Multi-keyword search scheme
	Correctness

	Security of our VABKSS
	Indistinguishability
	Unforgeability

	Performance
	Conclusion
	Acknowledgements
	References

