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Abstract 

The rise of 5G technology has driven the development of edge computing. Computation offloading is the key and 
challenging point in edge computing, which investigates offloading resource-intensive computing tasks from the 
user side to the cloud or edge side for processing. More consideration needs to be given to load balancing, user 
variability, and the heterogeneity of edge facilities in relevant research. In addition, most of the research around edge 
collaboration also revolves around cloud-side collaboration, which pays relatively little attention to the collaboration 
process between edge nodes, and the incentive and trust issues of the collaboration process need to be addressed. 
In this paper, we consider the impact of the user demand variability and the edge facility heterogeneity, then propose 
a method based on Vickrey-Clarke-Groves (VCG) auction theory to accommodate the edge demand response (EDR) 
process where the number of users and service facilities do not match. The method makes users’ bidding rules satisfy 
the Nash equilibrium and weakly dominant strategy, which can improve the load balancing of edge nodes, has posi-
tive significance in improving the edge resource utilization and reducing the system energy consumption. In par-
ticular, combined with blockchain, we further optimize the incentive and trust mechanism of edge collaboration and 
consider three scenarios: no collaboration, internal collaboration, and incentive collaboration. We also consider the 
impact of the user task’s transmission distance on the quality of experience (QoE). In addition, we illustrate the possi-
ble forking attack of blockchain in collaborative edge computing and propose a solution. We test the performance of 
the proposed algorithm on a real-world dataset, and the experimental results verify the algorithm’s effectiveness and 
the edge collaboration’s necessity.
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Introduction
With the development of the Internet of Things (IoT) and 
network communication technologies, a large amount of 
information is sent, transmitted, and processed in vari-
ous forms, affecting all aspects of people’s productive 
lives [1]. The rise of 5G technology has driven the devel-
opment of mobile edge computing (MEC). Computation 

offloading, a very active topic in edge computing, investi-
gates the process of transferring resource-intensive com-
putational tasks from the resource-constrained user side 
to the cloud or edge side for processing, which involves 
allocating many resources [2]. Improving the load bal-
ancing of edge systems is beneficial to improve resource 
utilization, reduce system energy consumption, and 
improve system resilience to abnormal traffic attacks 
(e.g., distributed denial of service (DDoS) attacks), which 
is necessary for large-area, high-density 5G ultra-dense 
cellular networks [3].

Different user demands pose new challenges to edge 
devices. For demands such as autonomous driving tech-
nology and cloud gaming, lower task processing latency 
and lower user-side power consumption are required. 
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For IoT devices such as intelligent cameras and tempera-
ture sensors, real-world data processing and uploading 
are needed, as well as larger emergency processing and 
computing capabilities. Meanwhile, demands for video 
transmission, hotspot content queries, and other services 
require new requirements for edge caching. Correspond-
ingly, domestic manufacturers have introduced different 
types of servers. For example, Huawei has launched gen-
eral entry-level and general computing servers, while Ali-
baba has set up computing, general, and memory-based 
servers based on the ratio of CPU and memory.

Currently, some scholars have conducted in-depth 
research on computation offloading in edge comput-
ing environments and achieved some results. Refer-
ences [4–27] consider the problem of edge demand 
response (EDR) from the perspectives of communication 
resources, computing resources, and IoT device power 
consumption, mainly involving theoretical methods such 
as reinforcement learning and game theory. For example, 
references [4–6, 9–11, 13, 21, 22] mainly applied rein-
forcement learning methods to the specific allocation of 
edge resources. For example, references [19–27] further 
considered edge collaboration issues, but mainly focused 
on cloud-edge collaboration, with less consideration 
given to collaborative processing among edge nodes.

Due to limited edge resources, servers belonging to dif-
ferent edge facility providers lack the incentive to assist 
other servers in completing user requests. Moreover, 
edge collaboration among different application provid-
ers may generate user privacy and quality of experience 
(QoE) issues due to external factors or malicious com-
petition among merchants. Therefore, there is a need to 
record the collaboration process to trace the execution 
of user tasks and to reward users based on the perfor-
mance of their tasks. In order to facilitate traceability 
and improve the credibility of the recorded content, the 
recorded content should be public and untameable, and 
the traditional centralized storage method is obviously 
unsuitable.

Blockchain is tamper-proof, traceable, and main-
tained by multiple parties [24, 28, 29], which can be 
used to store the server execution information divided 
among different edge facility providers. However, 
the following two points should be noted. First, the 
information recorded by the blockchain is open and 
transparent. The storage method determines that the 
information recorded at each time should be small. 
Sensitive information should be avoided as much as 
possible during the recording process, focusing on 
metrics that evaluate the effectiveness of task execu-
tion (e.g., time, quality of user experience). Second, 
since each edge facility provider in a certain area has 
installed multiple servers to handle user requests, 

paying attention to forking attacks is necessary. If most 
edge servers (more than 50%) involved in edge collabo-
ration belong to the same edge provider, illegal modifi-
cation of information may occur, such as overwriting, 
disregarding inconvenient data in history, and elimi-
nating convenient data of other servers, thus affecting 
the reputation value of edge servers and creating a bad 
cycle. The forking attack is a key concern for whether 
distributed ledger technology can be applied in edge 
collaboration, but it is a consideration that many schol-
ars have overlooked.

In this paper, we will fully consider the variability of user 
demand and task volume, as well as the heterogeneous 
situation of edge servers. We first propose a computation 
offloading method based on the Vickrey-Clarke-Groves 
(VCG) auction in game theory. The method adapts to 
the edge demand scenario with the unequal number of 
users and edge servers. Compared to classical algorithms 
and some advanced algorithms, this method has certain 
improvements in terms of EDR latency, energy consump-
tion, and load balancing. Based on the method, we combine 
blockchain to optimize the incentive and trust mechanism 
of edge collaboration to improve edge node load balancing 
further. In addition, we propose corresponding strategies 
from both hardware and software perspectives to respond 
to the forking attack issue that may arise in the process 
of blockchain application in edge collaboration. We con-
ducted experiments on a real-world dataset from the Cen-
tral Business District of Melbourne (EUA datasets) [30], 
and the experimental results verified the algorithm’s effec-
tiveness. The main contributions are as follows.

• We attempt to apply the VCG auction method in sce-
narios where the number of users and edge devices 
are unequal, to optimize the computation offloading 
and resource allocation process and improve the load 
balancing of edge systems. The study considers edge 
user variability and edge facility heterogeneity.

• We try to combine blockchain to optimize edge col-
laboration’s incentive and trust mechanism. We con-
sider user privacy in data disclosure and the potential 
forking attack pitfalls in the edge environment, and 
propose corresponding solutions.

• The performance is experimentally evaluated on a 
widely-used real-world dataset. Frequently, incentive 
collaboration outperforms internal collaboration and 
scenarios without collaboration, especially in service 
scenarios with uneven task distribution.

The rest of the paper is organized as follows: Related 
work section presents related work, System model and 
algorithm design section models the system and pro-
poses solutions, Performance evaluation section designs 



Page 3 of 13Gao et al. Journal of Cloud Computing           (2023) 12:72  

experiments and evaluates the algorithm’s performance, 
and Conclusion section summarizes the paper.

Related work
Currently, some scholars have conducted research on the 
problem of computation offloading and edge collabora-
tion in edge environments and achieved some results. 
Some relevant studies are summarized as follows:

The literature [4] addressed the integrity problem of 
managing high-density IoT devices in the current edge 
computing environment, modeled the allocation process 
of service resources as a Markov decision process (MDP), 
and trained the allocation policy to maximize the confi-
dence gain by reinforcement learning (RL) methods. The 
literature [5] proposed a reinforcement learning-based 
task offloading strategy that considers offloading tasks 
from IoT devices to the edge to improve the battery life-
time. The literature [6] integrated the channel quality and 
queue state between the user and edge sides, modeled the 
computation offloading problem as a MDP, and proposed 
a deep Q-network-based offloading strategy to minimize 
the long-term cost. The literature [7] considered the cost-
effectiveness issue of supporting non-orthogonal multiple 
access (NOMA) in the IoT scenario from the perspective 
of edge caching. To minimize energy consumption, the 
literature [8] investigated the problem of computation 
offloading and resource allocation in smart buildings 
and environments, and combines stochastic optimiza-
tion techniques. Considering the limited resources of 
wireless networks and IoT devices, to balance the latency 
and energy consumption, the literature [9] represented 
the computation offloading and user scheduling process 
as a MDP and proposed a neural network architecture 
combined with deep reinforcement learning (DRL). Also 
using DRL method, the literature [10] studied the Indus-
trial Internet of Things (IIoT) scenario with multiple IoT 
devices and multiple edge servers, and this article aimed 
to minimize long-term energy consumption. And the lit-
erature [11] proposed a dynamic task offloading strategy, 
aimed at optimizing the task scheduling problem in the 
MEC system of Digital Twin technology. The literature 
[12] considered scheduling cloud computing resources 
to reduce energy consumption on mobile, modeled the 
selection problem of mobile services as an energy con-
sumption model, and solved it by genetic algorithms. 
The literature [13] applied blockchain to task mining, 
modeled the task offloading problem as a Markov deci-
sion, and introduced adaptive genetic algorithms to 
DRL to improve the convergence speed. To determine 
the user-task offloading ratio and implement adaptive 
task scheduling in a highly dynamic Telematics environ-
ment, the literature [14] proposed a bilateral matching 
algorithm to determine the optimal scheduling method, 

which calculates the offloading rate by convex optimiza-
tion and thus implements a non-cooperative game. The 
literature [15] integrated computational and communica-
tion resources and proposed a primal pairwise optimiza-
tion framework to schedule user tasks online, specifically 
considering the user’s task size, latency and preferences 
to maximize social welfare. The literature [16] modeled 
the resource competition and service selection problem 
as a nonconvex optimization problem and proposed an 
online offloading strategy based on Lyapunov optimiza-
tion for more complex edge environments. Combined 
with game theory, the literature [17, 18] explored the 
computation offloading problem from different perspec-
tive angles of QoS-aware and NOMA-enabled.

Considering the limited energy and resources at the 
edge, literature [19] proposed a cloud-side collabora-
tive system to coordinate computation offloading and 
resource allocation at the cloud and edge, based on a 
simulated annealing algorithm for joint optimization 
to maximize profits. By applying game theory methods, 
the literature [20] studied the problem of multi-user 
computation offloading with cloud-edge collaboration, 
aiming to maximize the QoE of the users under limited 
communication and computing resources. To reduce the 
service latency and improve the quality of service of in-
vehicle networks, literature [21] proposed a collabora-
tive computing approach based on artificial intelligence 
to formulate the task offloading and computation process 
as a MDP. Combined with DRL, service delays and fail-
ure penalties are modeled as costs, which are minimized 
by collaborative workload and server selection. In col-
laboratively utilizing edge cloud and Internet of Vehicles 
(IoV) resources, the literature [22] proposed a DRL-based 
method to optimize computation offloading and resource 
allocation for vehicle tasks. The literature [23] designed 
an incentive mechanism based on auction theory to ena-
ble user devices and neighboring devices to help each 
other and thus optimize long-term system welfare. The 
literature [24] applied the blockchain to the collabora-
tive process of edge caching by establishing reputation 
assessment through distributed consensus and using it 
to verify whether the edge servers are trustworthy as well 
as to motivate the servers to participate in the collabo-
rative process. Literature [25] applied the game theory 
and the Lagrange multiplier method to the computa-
tion offloading and resource allocation decision process 
of cloud-edge collaboration, significantly improving the 
system utility and reducing task latency. The literature 
[26] jointly considered the problem of allocating compu-
tational and communication resources, transforming the 
problem into a convex optimization problem, and deter-
mining whether user tasks are uploaded to the cloud 
for processing, with the main objective of minimizing 
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the weighting and latency of user devices. The literature 
[27] proposed a pipeline-based collaborative comput-
ing framework where each mobile user, edge node can 
offload tasks to different edge nodes or cloud for process-
ing depending on the computational and communication 
capabilities to minimize the total latency, etc.

In this section, we reviewed research related to com-
putation offloading and edge collaboration. However, 
these studies have somewhat overlooked the differences 
in user task demands and heterogeneity of edge servers. 
Research on edge collaboration has also mainly focused 
on cloud-edge collaboration, with less consideration 
given to the collaboration process among edge servers. In 
the next section, we will establish a system model for the 
efficiency, incentives, and trust issues in edge collabora-
tion, and develop corresponding algorithms.

System model and algorithm design
In this system, mobile users and IoT devices are denoted 
by U = {u1,u2, ...,ui} , edge servers are denoted by 
S = s1, s2, ..., sj  , and physical machines within the edge 
servers are denoted by K =

{

k1, k2, ..., kt
}

 . The require-
ments of different users or IoT devices vary and mainly 
involve communication, computation, and caching. In 
this article, we categorize user tasks into two types sim-
ply: computational tasks and cache tasks. Each edge server 
can install multiple physical facilities, such as five [31]. We 
assume that three of these are general-purpose devices, one 
is a computational device, and one is a cache device. The 
general-purpose devices maintain a relatively stable ser-
vice rate when processing either compute-bound or cache-
bound tasks, while the specialized devices’ service rates are 
more affected by the type of task they receive. For example, 
when a computational server processes compute-bound 
tasks, its service rate will be higher than the general rate, 
and conversely, it will be lower than the general rate when 
processing cache-bound tasks. Combining the data sets, we 
construct the following general scenario diagram for what 
we are studying.

In the bottom half of Fig.  1, we represent the edge 
servers (usually base stations) and edge users (mobile 
users or IoT devices) in the dataset as solid red dots 
and purple dots, respectively. The top half of the figure 
describes real-world application scenarios and their 
corresponding network topologies. From the figure, it 
can be observed that there are many-to-many relation-
ships between users and edge servers, where each user 
can choose from multiple edge servers and each edge 
server can serve multiple users within its service range. 
The edge servers can collaborate by exchanging data 
through wired or wireless means to further alleviate 
service pressure and improve service quality.

VCG auction mechanism
In a heterogeneous edge network, the performance of differ-
ent edge servers may be affected by the received task types. 
Users may conceal the actual task types, so it becomes more 
important to determine the actual task types of users in the 
EDR process. We have envisioned determining and learning 
the characteristics of different user categories by deep rein-
forcement learning. However, the higher online computa-
tional demands may not be well suited for the high latency 
required EDR process. Thus, we considered using game the-
ory-related elements. We know that the VCG auction sat-
isfies a second-order confined auction, where the price that 
each buyer will eventually pay is the next highest price, and 
all have the incentive to bid truthfully.

The mechanism’s design contains two main parts: the 
allocation rule and the bid rule. The allocation rule can be 
efficient if it maximizes social welfare [32]. Combined with 
the idea of VCG auctions, we argue that the higher the 
service rate of the edge server selected for different users, 
the higher the utility obtained per unit of task volume pro-
cessed, and the higher the utility users can obtain. When 
users with high task volume are assigned to the server with 
a high service rate in priority, the server’s resources can be 
fully utilized, and social welfare can be maximized.

In the two-phase EDR process, which mainly contains 
two processes, user-edge server, and edge server-physical 
machine, the process is subject to capacity constraints, 
latency constraints, and proximity constraints in the edge 
computing [31]. We further consider the case of physical 
machine heterogeneity and classify them into general-
purpose, computational, and caching based on the ratio of 
CPU and memory within different physical machines. The 
general-purpose physical machines are stable at a general 
level when handling user tasks, and the specialized physi-
cal machines have more processing power for specialized 
tasks but not for non-professional tasks, as evidenced 
by the service rate. Combining VCG auctions for a two-
phase EDR process, physical machines with high service 
rates will bring higher utility per unit task volume and 
tend to assign users with high task volume to edge servers 
(physical machines) with high service rate, thus obtaining 
the greatest social welfare. For seller sj (server), the alloca-
tion rule is expressed as follows:

where xi,j denotes the utility of user ui selecting edge 
server sj ; x−i,j denotes the utility of users other than user 
ui selecting edge server sj ; pi,j denotes the probability of 
user ui selecting edge server sj.

(1)

Q∗
j ∈ argmax

pi,j∈∆

∑

i∈U

pi,j · xi,j

{

pi,j = 1 if xi,j ≥ x−i,j

pi,j = 0 if xi,j < x−i,j
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After the allocation process, the price to be paid by the 
user needs to be further calculated. The bidding rule of 
VCG auction satisfies the Nash equilibrium, weak domi-
nance strategy, which can ensure the user’s true trans-
mission of task type and task volume. The price to be 
paid by the user is the effect of the externality to other 
participants caused by the user’s choice to participate 
in the bidding or not to participate in the bidding. If the 
externality is positive, the user receives revenue; if it is 
negative, it indicates that the user’s participation brings 
negative externalities to others and needs to be paid. Spe-
cifically, suppose user ui is successful in the auction. In 
that case, the price to be paid by user ui is the difference 
between the sum of the utility values that all other par-
ticipants would have received if user ui did not partici-
pate in the auction (or if the bid was zero) minus the sum 
of the utility values that all other participants would have 
received if user ui had participated in the auction. The 
social welfare Wi,j of user ui participating in the auction 

and the social welfare W−i,j of user ui not participating in 
the auction are calculated as follows:

The payment rule and the equilibrium payoff for user ui 
are as follows:

(2)Wi,j =
∑

i∈U

Q∗
i,j · xi,j

(3)W−i,j =
∑

−i∈U(�=i)

Q∗
−i,j · x−i,j

(4)

MV
i,j
=W−i,j −

(

Wi,j − Q∗

i,j
⋅ xi,j

)

=
∑

−i∈U(≠i)

Q∗

−i,j
⋅ x−i,j −

{

0 if xi,j ≥ x−i,j
max x−i,j if xi,j < x−i,j

=max x−i,j −

{

0 if xi,j ≥ x−i,j
max x−i,j if xi,j < x−i,j

Fig. 1 EDR process in edge heterogeneous networks
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For a bid, if the user bids the highest price, the user pays 
the next highest price; otherwise, the user does not get 
the bid and pays a price of 0. From here, we can also see 
that the VCG auction still satisfies the subprime auction 
mechanism that allows for efficient allocation (i.e., social 
welfare maximization), and the mechanism in which 
each buyer truthfully reports his or her information and 
pays its externalities is a weak dominance strategy.

In particular, in the multi-user-multi-server scenario, 
the equilibrium payoff for user ui is as follows:

Collaborative edge computing
Due to the variability in the performance of different edge 
nodes and the variability in the distribution of users in their 
service range, it is necessary to consider edge collaboration 
among edge servers. Since different edge servers may belong 
to different edge facility providers or be leased by different 
edge content providers, the incentive and trust issues among 
edge nodes need to be considered. Blockchain, which is 
tamper-proof, traceable, and maintained by multiple parties, 
is suitable for distributed edge collaborative computing sce-
narios and can be used to store server execution information 
belonging to different edge facility providers. However, atten-
tion should be paid to privacy protection and forking attack.

In terms of incentives, we use CVj to denote the reputation 
value of edge server sj . Nodes with high reputation value will 
receive task requests from other nodes with a higher prob-
ability. After each round of sub-task completion, the edge 
content provider will cash out the reward in equal propor-
tion to the reputation value. The reputation value is cleared 
after cashing out. In order to ensure the traceability of the 
collaboration process between edge servers, the specific 
information of each user task processed by the edge collabo-
ration is recorded as a block. The server that assists in com-
pleting the edge task has the authority to keep the account 
and update the reputation (the reputation value can be 
exchanged for the reward after the system completes the task 
per unit of time). The credit value is updated as follows:

where CVn
j  denotes the reputation value of server sj 

after processing user task updates for the nth time, τ 

(5)EPi = Q∗
i,j · xi,j −MV

i,j

(6)EP∗
i =

∑

j∈S

Q∗
i,j · xi,j−

∑

j∈S

MV
i,j

(7)CV
(n+1)
j = CV

(n)
j + [1+ τ · (1− pi)] · CV

(8)pi =
dactst,i

dorist,i

represents the weight value to assist the server to com-
plete the task efficiently, and pi denotes the ratio of the 
actual sojourn time of user ui ’s task to the computation 
time processed at the initially assigned edge server. CV 
denotes the unit reputation for processing each task.

When performing edge collaboration, priority is given 
to edge servers with high utility values, which are calcu-
lated as follows:

where α and β represent the weights of reputation value 
and distance, respectively, and α + β = 1 ; lsorij ,sactj

 denotes 
the physical distance between the requester and the edge 
server expecting to receive the task.

After completing the task, the edge server with book-
keeping privileges records the task information as 
{

ui, task
volu
ui

, taskhashui
, taskhash

sactj
, sorij , sactj , dorist , d

act
st ,H

}

 , 

where taskvoluui
 , taskhashui

 denote the task volume of user ui 
and the corresponding hash value of the specific task, 
respectively, sorij  , dorist  denote the edge server initially 
assigned to the user task and its corresponding process-
ing time, sactj  , dactst  denote the edge server actually pro-
cessing the user task and the actual processing time, and 
taskhash

sactj
 denote the hash value of the task execution. H 

denotes the hash value of the information recorded in the 
previous block. The edge server will publish the content 
after bookkeeping, and other edge servers will make a 
copy of the book content after checking that the content 
is correct. At this point the new block has been verified 
and can be added to the blockchain.

We know that when the arithmetic power of one party 
in the blockchain exceeds 50% of the overall arithmetic 
power of the system, the probability of the system suf-
fering from a forking attack will be greatly increased. 
This will fundamentally affect the tamper-evident char-
acteristics of the blockchain and reduce the system’s 
trustworthiness. In the collaborative edge computing 
environment, multiple edge servers in a certain area may 
belong to the same edge facility provider, which is similar 
to the "mining pool" mentioned in blockchain and must 
be taken seriously. Based on the system model, we pro-
pose three possible adverse effects of a forking attack, and 
make some suggestions from both hardware and software 
perspectives. The details are shown in Fig. 2.

In Scenario# 1, since one of the servers of edge facility 
provider A has a problem in co-processing task t3 , to avoid 
adverse effects, the edge facility provider proactively aban-
dons the reward from task t3 and initiates a forking attack to 

(9)EV
(n+1)
j,act = α · CV

(n+1)
j,act + β · lsorij ,sactj

(10)At = arg max

[

EV
(n+1)
j,act

]

sactj ∈ S
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overwrite the record. In Scenario# 2, edge facility provider 
B performs well in co-processing task t3 , and its reputa-
tion value increases significantly. Competitor A maliciously 
launches a forking attack to overwrite the record. In Sce-
nario# 3, during the reputation value accumulation process, 
edge facility provider A has more opportunities to partici-
pate in edge collaboration than other edge facility provid-
ers due to its larger computing resources. Furthermore, the 
collaborative computing process increases the reputation 
value. Over time, the reputation value of the servers under 
edge facility provider A will become larger and larger, lead-
ing to more possibility of its participation in collaborative 
computing until it has full control of the system. At this 
point, it will deviate from the original purpose of the dis-
tributed ledger.

We propose the following recommendations to prevent 
forking attacks for those three possible scenarios men-
tioned above. First, the edge facility providers to which they 
belong should be considered when selecting edge servers as 
co-servers. As much as possible, each edge facility provider 
should provide the similar number of servers with similar 
performance to reduce the possibility of forking attack from 
the hardware level. Second, in the algorithm scheduling 
process of edge collaborative computing, a threshold value 
should be set to prevent servers belonging to the same edge 
provider from continuously participating in collaborative 
computing. Finally, the system should reduce the period of 
redeeming reputation value to avoid excessive accumulation 
of reputation value to affect system stability.

By applying blockchain, we can ensure that the 
records of task execution are continuous and tamper-
proof, which is beneficial for establishing a trust mech-
anism among edge nodes. We can observe that edge 
servers with high task execution efficiency will receive 
higher reputation values, leading to more rewards or 
compensation. This can incentivize servers to actively 
participate in edge collaboration while ensuring the 
quality of task execution.

The pseudo-code for algorithm implementation is as fol-
lows: Pseudo-code 1 describes the process of computation 
offloading and resource allocation, mainly involves two-
phase of users to edge servers and physical facilities. Lines 
1 to 13 are the preparation process. Lines 14 to 37 repre-
sent the process of user tasks to edge servers. Lines 38 to 
41 represent the task allocation process to physical facilities 
within the edge server, similar to the first stage but consid-
ering the impact of user and physical facility types in the 
response process. Pseudo-code 2 describes the basic pro-
cess of edge collaboration. Lines 1, 2, 4, and 5 are incentive 
and selection processes. Lines 3 and 6 consider privacy and 
security issues in conjunction with blockchain.

In this section, we first investigate how to use VCG 
auction theory to improve the two-phase EDR when the 
number of users and edge devices does not match. This 
is the foundation of studying edge collaboration. Subse-
quently, we combine blockchain to study the incentive 
and trust issues in edge collaboration. We will verify the 
performance of the proposed methods in the next section.

Fig. 2 The forking attack’s impact on collaborative edge computing
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Algorithm 1 E-VCG

Algorithm 2 + Cooperative Computing

Performance evaluation
In this section, we conducted experiments based on a 
real-world dataset from the Central Business District of 
Melbourne to evaluate the performance of our algorithm. 
The selected dataset includes 125 service base stations 
and 816 randomly selected users. By utilizing this loca-
tion information, we can further determine the physi-
cal distances between users, between edge servers, and 
between users and edge servers. Combining this with the 
proximity constraints of the edge environment, we can 
further determine the subset of relationships between 
users and edge servers and proceed with the experi-
ments. We conducted experimental comparisons with 
the following algorithms in different scenarios:

• Improved ε − greedy : ε keeps getting smaller as the 
number of selections increases, and the edge node 
with the highest utility value is explored or selected 
with a certain probability.

• UCB: First explore all optional but not yet selected 
edge servers, then select the edge node with the high-
est utility value, and update the utility value after 
each selection.

• MTOTC: For each user, the selection probability of 
all its selectable nodes sums to 1. The game stops 
when the probability of a user selecting a node is 1 or 
exceeds a set threshold.

In this article, we mainly focus on the edge-to-end col-
laboration issues in edge demand response processes, 
specifically examining the load balancing of edge serv-
ers under different methods. The experimental process 
considers the diversity of user demands and the hetero-
geneity of edge facilities. Specifically, the task types and 
volumes of users may differ, and the service preferences 
of the physical facilities opened in edge servers may also 
vary. Initially, we only consider the computing offloading 
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Fig. 3 Cumulative service time for each physical machine
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and resource allocation processes between users and 
edge servers. Subsequently, since each edge facility pro-
vider may install multiple edge service devices in the 
area, we further consider the unconditional collabora-
tion between these service devices (referred to as internal 
collaboration). In practical environments, as each edge 
server may belong to different edge facility providers, the 
overall distribution of edge facility providers is relatively 
uniform, as they consider the environmental characteris-
tics and user situation when deploying devices. However, 
internal service collaboration within the provider may 
lead to longer-distance information transmission and 
thus affect user experience. Therefore, we further con-
sider the edge collaboration between different edge facil-
ity providers (referred to as incentive collaboration).

Figure  3 illustrates the distribution of cumulative 
computation time of physical facilities within each edge 
server under three different scenarios: internal collabo-
ration, incentive collaboration, and no collaboration, 
combined with different methods. In Fig. 3, the first col-
umn shows the distribution of cumulative computation 
time of physical facilities within each edge server under 
the incentive collaboration scenario after responding to 
user demands. The second and third columns respec-
tively represent the specific results without collaboration 
and with internal collaboration. In addition, each row 
in the figure compares the distribution of cumulative 
computation time of each method under different sce-
narios. From the figure, it can be seen that the cumula-
tive computation time of the E-VCG, UCB, and MTOTC 

Fig. 4 Average service time for each server

Fig. 5 User’s task transmission distance
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methods is stably distributed at a low level. The ε-greedy 
method tends to select physical facilities with higher 
service rates, resulting in higher service times for some 
physical facilities. After adding incentive collaboration 
or internal collaboration, the distribution of cumulative 
computation time of each method is improved to a cer-
tain extent. In particular, from Fig. 3(d-f ), it can be seen 
that collaboration methods are more effective for algo-
rithms with uneven demand response, and the incentive 
collaboration method is slightly better than the internal 
collaboration method.

Subsequently, we calculated the average of the cumu-
lative service time for each physical facility within the 
edge server and compared the differences between the 
servers by the average. We represent the distribution of 
the average computation time across the edge servers 
in Fig.  4. Again, the first column represents the effect 
of adding incentive synergy, the second column is the 
effect without considering synergy, and the third col-
umn is the effect with considering internal synergy. Fig-
ure 4(a-c) represents the point distribution, from which 
we can see that the MTOTC algorithm, UCB algorithm 
and E-VCG algorithm have relatively balanced perfor-
mance, and E-VCG performs better. After adding syn-
ergy, the distribution of the average computation time 
of each method becomes more convergent, especially 
the ε-greedy method. Further, we take the average of 
10 edge servers as a unit and represent it as Fig. 4(d-f ). 

From the figure, we can see that the E-VCG method 
slightly outperforms the UCB method, and the UCB 
method slightly outperforms the MTOTC method. The 
overall distribution effect after adding internal collabo-
ration is better than without considering collaboration, 
and the incentive collaboration is slightly better than 
internal collaboration.

Considering that the task transmission process may 
cause significant transmission latency and affect the 
user quality of experience, we have collected data on 
the transmission distances of user tasks in three differ-
ent scenarios, which are presented in Fig. 5. Figure 5(b) 
shows the task transmission distances without consider-
ing edge collaboration. Due to the proximity constraint of 
the edge environment, the transmission distances for all 
users do not exceed 200 m. In Fig. 5(a,c), points that are 
farther than 200 m indicate that the user tasks were pro-
cessed through edge collaboration. From the figure, we 
can visually see that the transmission distances for incen-
tive collaboration mostly remain within 750 m, which is 
a certain advantage compared to internal collaboration.

To more specifically quantify the relevant metrics, we 
calculated the variances based on the average computa-
tion time of each edge server and represented them in 
Fig. 6. We believe that Fig. 6 can reflect the performance 
of each method in terms of load balancing in the edge 
demand response process. After adding edge collabora-
tion, the comparison of each method showed the same 

Fig. 6 Variance comparison
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trend as before, while varying degrees of improvement 
in load balancing. Specifically, after considering internal 
collaboration, the E-VCG, ε-greedy, UCB, and MTOTC 
methods improved load balancing by 68.63%, 79.60%, 
73.21%, and 72.75%, respectively. After considering 
incentive collaboration, the E-VCG, ε-greedy, UCB, and 
MTOTC methods improved load balancing by 76.53%, 
97.49%, 72.89%, and 87.59%, respectively. Interestingly, 
taking the UCB and MTOTC methods as examples, we 
can see that the UCB method is slightly better than the 
MTOTC method, but the MTOTC method with incen-
tive collaboration is better than the UCB method without 
collaboration. This indirectly illustrates the positive sig-
nificance of edge collaboration in balancing edge task dis-
tribution. In addition, based on the performance changes 
of the ε-greedy method, we can conclude that edge col-
laboration performs better in scenarios where task distri-
bution is uneven.

Conclusion
In this paper, we investigate the problem of computation 
offloading and collaborative edge computing, considering 
the heterogeneity of edge users and service facilities. We 
first propose the E-VCG method to schedule the limited 
edge resources. The method makes the bidding rules of 
users satisfy the Nash equilibrium, improving the edge 
resource utilization. Subsequently, we discuss edge col-
laboration with blockchain, specifically considering three 
forms of no-cooperation, internal collaboration, and 
incentive collaboration. We also elaborate on the possible 
forking attack by blockchain in edge collaboration appli-
cations and propose some solutions. We conduct experi-
ments on real-world datasets, and the experiments verify 
the necessity of edge collaboration and the effectiveness 
of the proposed method.

This research primarily considers computation offload-
ing and edge collaboration in static scenarios, and rele-
vant experiments are also conducted on static datasets. 
In future research, the impact of user mobility can be 
considered in dynamic scenarios.
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