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Abstract 

Cloud computing adoption has been increasing rapidly amid COVID‑19 as organisations accelerate the implementa‑
tion of their digital strategies. Most models adopt traditional dynamic risk assessment, which does not adequately 
quantify or monetise risks to enable business‑appropriate decision‑making. In view of this challenge, a new model 
is proposed in this paper for assignment of monetary losses terms to the consequences nodes, thereby enabling 
experts to understand better the financial risks of any consequence. The proposed model is named Cloud Enterprise 
Dynamic Risk Assessment (CEDRA) model that uses CVSS, threat intelligence feeds and information about exploitation 
availability in the wild using dynamic Bayesian networks to predict vulnerability exploitations and financial losses. A 
case study of a scenario based on the Capital One breach attack was conducted to demonstrate experimentally the 
applicability of the model proposed in this paper. The methods presented in this study has improved vulnerability and 
financial losses prediction.
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Introduction
Cloud services
Cloud computing adoption has been increasing rapidly 
among organisations of all sizes [1]. Amid COVID-19, 
enterprises have accelerated their digital transformation; 
thus, cybersecurity has become even a bigger challenge. 
Consequently, technology has become more essential 
in both our working and our personal lives. Companies 
have realised the importance of adapting to the market’s 
needs. As such, the adoption of cloud services and agile 
methodology has enabled the rapid delivery of services 

online. The mechanism of cloud services introduces 
many benefits for organisations, such as ease of deploy-
ment, on-demand scalability, wide accessibility and 
ease of management [2]. This has propelled the growth 
of cloud-based adoption and application. As adoption 
widens, so does the threat landscape. To cater to the 
dynamically changing landscape of threats towards the 
use of cloud services, effective security countermeas-
ures should be implemented, selected based on risk and 
threat assessment [3].

Risks in cloud services
Risks levels in cloud environments are prone fluctua-
tion due to time-varying factors, such as the emergence 
of new vulnerabilities in safety barriers, installation of 
new software/components and misconfigurations. It is 
essential to quantify these time-dependent factors and 
their relations via robust calculation techniques. The 
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outcome is then used to derive quantified estimates of 
risk that are mapped against a pre-defined risk criterion. 
Traditional risk assessment methods, such as quantita-
tive risk assessment (QRA), and such methods as FT, ET 
and What-if analysis are limited in terms of incorporat-
ing new information or evidence, as these models can-
not handle data scarcity and uncertainties. Therefore, it 
is important to focus research on the field of dynamic 
risk assessment, where risk is consistently emerging [3]. 
Dynamic Bayesian Network (DBN), an extended version 
of standard Bayesian Network (BN) with the concept of 
time, is a Probabilistic Graphical Model (PGM) that are 
potentially used to develop models from data or expert 
opinion using Bayes’ theorem. The model is ideal for a 
extensive range of functions such as prediction, deviation 
detection, diagnostics, reasoning, time series prediction 
and decision making under uncertainty. BN corresponds 
to a set of random variables, and their relationships are 
signified using a directed acyclic graph (DAG). The arcs 
signify the causal relationship between nodes, and the 

nodes represent the variables. The main node is called a 
‘root node’. If there is an arc connected to another node, 
that is called a ‘parent node’, and if a the ‘parent node’ is 
connected to another node, that is called a ‘child node’, as 
seen in Fig. 1. All nodes in the BN are allotted an initial 
probability. The purpose of BN is to use the node prob-
abilities and their relational dependencies to assess and 
use the provided evidence and posterior to update the 
distribution probabilities of the random variables. The 
calculation of the probabilities of the ‘child node’ is a 
blend of ‘parent node’ probability and conditional prob-
ability tables (CPT). This is considered the main protocol 
of the well-known ‘Bayes theorem’ of conditional prob-
abilities [4]. The primary motivation of this paper is to 
address the issues described above. Thus, it presents a 
new model that quantifies the criticality of consequences 
and predicts risks in monetary terms. The model is 
updated as new information is acquired. Previous models 
suffer from a lack of historical data and have an inability 
to adapt in dynamic environments, so that the resulting 

Fig. 1 Schematic of the framework developed
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risk assessments are subjective. To validate the proposed 
model, it was run against a scenario based on the Capi-
tal One breach in 2019. A dataset was collated with data 
from various sources. The corresponding bow-tie dia-
gram was constructed using the components of the case 
study. Then a BN was developed to produce a dynamic 
risk assessment. It assumes no prior information about 
the probabilities. The results reveal that applying a com-
bination of a bow-tie analysis based on a dynamic Bayes-
ian network using threat intelligence and information 
about the availability of exploits in the wild can improve 
predictions of vulnerabilities and financial losses.

Contributions
In the literature, most applied Bayesian network model 
in risk assessment studies are focused on areas such as 
aiming to predict drilling-related risks, asset failure in 
thermal power plant and industrial control systems, how-
ever do not take into consideration the monetary losses. 
To overcome this problem, this study aims to develop a 
cloud risk assessment framed that enables the assign-
ment of monetary losses terms to the consequences 
nodes, thereby enabling experts to understand better 
the financial risks of any consequence. In this work, BT 
analysis has been converted into a dynamic BN network 
that estimates monetary losses for cloud environments. 
It is the first time such an analysis has been applied to 
cyber threats in cloud environments (previous usage of 
this method was in response to cyber attacks on physi-
cal systems, tank storage, etc). To ensure the feasibility of 
our study, a cloud service is simulated, and one undesired 
event is simulated based on the capital one breach case 
constructed. Our risk assessment model is developed and 
assessed against BN. The rest of this paper is organised as 
follows. Related work section demonstrates related work 
and justifies the reasons for using DBN. Our proposed 
risk assessment model is demonstrated in Framework for 
dynamic risk assessment section. The case study is then 
highlighted in Case study section to present our model. 
Finally, a discussion of the proposed model is presented 
in Discussion and results section and our work is con-
cluded in Conclusion section.

Related work
Threat intelligence
Today’s cybersecurity threats have emerged, and tradi-
tional approaches based on heuristics and signatures are 
not very effective against dynamically changing threats 
known to be evasive, persistent and complex. Organi-
sations must gather the latest cyber threat information 
to deter attacks in a timely manner [5]. Threat intelli-
gence (TI) represents an actionable defence that aims to 
reduce the gap between the attack and the organisation’s 

defensive action [6]. TI can take on multiple forms and 
means. Numerous methods and tools offer TI feeds, 
such as IBM X-Force Exchange, CrowdStrike Intelli-
gence Exchange and AlienVault OTX Pulse. In this study, 
we utilized the AlienVault OTX Pulse to retrieve pulse 
information regarding the vulnerabilities in scope of this 
study. This enables us to understand which vulnerabilities 
attackers are primarily pursuing.

Risk assessment theory
The objective of risk assessment is to explore and deter-
mine threats and vulnerabilities in a particular area or 
scope to apply adequate mitigation controls that would 
minimise the risk to an appropriate level. The process 
is continuous to measure risk factors as they change 
and develop over a significant time [7]. The numerous 
impacts of risks on organisations adopting cloud services 
are either tangible or intangible losses, such as downtime, 
data loss and reputation jeopardy. However, in this study, 
we limit these impacts to system asset loss.

Dynamic risk assessment
There are numerous cyber risk assessment frameworks 
aimed at exercising risk evaluation that were developed 
by governmental agencies, the cyber defence industry, 
and academic institutions. Nevertheless, such frame-
works lack the mechanism to handle dynamically chang-
ing environment and cannot adapt their countermeasures 
and priorities to changes happening within inter-systems 
and external environments [8]. Another major issue in 
risk management involves real-time data scarcity and 
uncertainties to enable adequate risk calculation [9]. 
Data mining to predict the outcome of a cyberattack is 
a challenge especially in a situation where a series of fac-
tors may be involved in launching a malicious attack to 
cause losses. This requires a synthetic model that entails 
attack knowledge and system knowledge for analysing 
attack vectors and cybersecurity risks [10]. For exam-
ple, [11] proposed the Bayesian attack graph method in 
risk assessment for predicting potential attacks. Such a 
model, including other models such as fault tree analysis 
(FTA), event tree analysis (ETA), bow-tie analysis (BTA), 
Markov chain analysis (MCA) and Bayesian network 
(BN) has a limitation as they require a deep insight into 
prior knowledge about attacks [9] or referred to as epis-
temic, a form of a uncertainty [12]. Another uncertainty 
can be referred to as aleatory uncertainty, where this is 
considered a nondeterministic nature of the events [13]. 
Therefore, we argue that a DRA addresses this issue by 
reassessing the risks by continuously updating the prob-
abilities of events, as new informaton is fed and made 
available.
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For example, [14] have proposed a dynamic risk assess-
ment based on the 2.0 semantic version of  STIXTM for 
cyber threat intelligence that enables fetching indicators 
of compromise such as malicious URL, domain, and IP 
addresses. A dynamic risk assessment can be further con-
sidered a technique that takes consideration the effect 
of nonlinear interactions within inter-processes in its 
operational risk estimation. Thus, this type of technique 
can demonstrate a realistic prediction of the risks iden-
tified in sophisticated processes [15]. Another example 
of leveraging DRA is by [16], whereby they developed a 
conceptual dynamic quantitative risk assessment model 
for identifying and classifying accidents and the risk 
influence factors of barrier elements, which are physical 
objects that protect a target against a hazard. The limita-
tion of their work is that they leveraged expert opinion 
in their methodologies which tend to be incomplete and 
subjective, thus the assessment results may be inaccurate. 
They may also potentially be incapable for predicting 
unknown attacks.

To address this issue, various scholars have proposed 
models that can compensate for the necessity of acquir-
ing historical data. For example, the fuzzy probability 
Bayesian network approach replaces limited historical 
data with fuzzy probabilities and a fuzzy approximate 
dynamic inference algorithm [10]. Another example, is 
an automated intrusion response system that utilises 
dynamic risk assessment using fuzzy logic. This is merely 
because fuzzy logic lessens the level of uncertainty of risk 
factors [17].  (Table  1)  A tabular depicts an  overview of 
the literary study.

Dynamic Bayesian networks
Bayesian Networks (BN) provide a useful mechanism in 
the risk analysis field due to their ability to model proba-
bilistic data. Andrade et al. [18] states that dynamic BNs 
take into consideration temporal dependencies based 
on time. Basic BNs do not consider alterations in time 
or manage time-evolving environments; thus, dynamic 
BNs (DBNs) are ideal for handling time-dependent risk 
assessments. Li et  al. [19] demonstrate how BNs have 
gained popularity because of their capabilities in pre-
dictive and diagnostic analyses. However, we are of the 
opinion that traditional BNs can only demonstrate rela-
tionships between variables at a specific time points, or 
for a specific period of time. They do not indicate tem-
poral relationships between different times. To address 
this issue, DBNs can be used to present changes over 
time and relationships between a device’s current, past or 
future states. A DBN is an extension of a BN that intro-
duces appropriate temporal dependencies to model the 
dynamic behaviour of attributes. Numerous inference 
algorithms are available for DBN modelling. In [20], the 

forwards-backwards inference and mutual information 
were used to model the Bayesian inference. In [20] and 
[21], the authors claim this is a major barrier to acquiring 
the precise probability of basic events related to a system 
target in a situation when objective data is scarce to pre-
dict probabilities pertaining to a target system. In addi-
tion, the availability of large data samples is a necessity 
of deep learning. Therefore, expert judgement is deemed 
an appropriate approach to obtain the occurrence prob-
abilities of events. Although judgements obtained from 
expert opinions are subjective and susceptible to a mar-
gin of error, they are the ideal way forward. A DBN can 
also be leveraged using a FT, ET and BT, as these can-
not handle the dynamic nature of operational risks. 
For example, [21] proposed a dynamic risk assessment 
methodology based on FT methods that is mapped into 
DBNs, however the domino effect, a phenomenon that is 
also referred to as a chain of accidents, which should be 
taken into consideration in risk assessments whereby pri-
mary events trigger a secondary or higher event is over-
looked in this study. In [4] claims that a DBN requires a 
high number of simulation runs, merely because dynamic 
probabilistic risk assessment models require heavy com-
putational power and system memory for running a 
vast number of simulations. Therefore, they proposed 
the use of a DBN with clustering analysis to enable a 
reduced number of simulation runs and the quantifica-
tion of emerging system risk in a probabilistic manner 
for thermal-hydraulic simulation data. The approach was 

Table 1 Overview of the literary study related to DRA

Research Study Modelling 
Approaches

Identified Gaps

[8] System dynamics Unable to handle 
dynamically changing 
environment

[10] Fuzzy Probability 
Bayesian Network

Lack of attack knowl‑
edge and system 
knowledge for analys‑
ing attack vectors and 
cybersecurity risks

[11, 12, 13] BN, life cycle assess‑
ment (LCA) and quan‑
titative risk assess‑
ment (QRA), Delphi 
risk communication 
platform

Require a deep insight 
into prior knowledge 
about attacks to make 
the proposed model 
effective

[16] Fuzzy DEMATEL‑BN Leveraging expert 
opinion in their meth‑
odologies which tend 
to be incomplete and 
subjective

[17] Fuzzy logic Lessens the level of 
uncertainty of risk 
factors
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demonstrated with the mean shift clustering algorithm 
along with the bandwidth selection method. In addition, 
[22] asserts that the DBN has a strong advantage when 
handling uncertainty, because it is a directed acyclic 
graph (DAG) that describes the conditional probabil-
ity relationship between parameters using probabilistic 
inference theory. However, the limitation in their meth-
odology is that they are dependent on expert knowledge, 
thus are subjective and susceptible to a margin of error or 
may be rendered ineffective.

In this paper, a dynamic Bayesian network is leveraged 
in a case study that enables the prediction of vulnerabil-
ity exploitation and financial losses. Our proposed model 
also has the capability to be updated as new information 
is attained and aids in quantifying the criticality of the 
consequences and predicting risks in monetary terms. 
We believe our work has demonstrated the importance 
of dynamic quantitative risk assessment for multiple rea-
sons, including the absence of historical data, the inability 
to adapt to a dynamically changing environment and the 
need to avoid subjective risk assessment results as much 
as possible based on the gaps identified in the literature.

Framework for dynamic risk assessment
The detailed process of the proposed methodology, 
Cloud Enterprise Dynamic Risk Assessment (CEDRA), is 
shown in Fig. 1. 

1. Construction of a bow-tie (BT) model (top event, 
initiating events and safety barriers) BT has been 
widely employed as a graphical approach to represent 
an end-to-end accident scenario, from its causes to 
its consequences. The top event is placed in the cen-
tre, and on the left-hand side is a ET that identifies 
the potential events causing the critical event. On 
the right-hand side is an event tree that depicts the 
possible consequences of the critical events based on 
the safety barrier’s success or failure. To simplify this, 
an example of a bow-tie top risk sources and conse-
quences is as following:

• Fireplace (top threats) and death (top conse-
quence).

• Electrical fault (top risk source) and equipment 
damage (top consequence).

• ... etc.

2. Developing of the skeleton of the Bayesian net-
work from BT Starting out with a BT, a Bayesian 
network (BN) needs to be constructed. A BN is a 
DAG that is broadly used in risk and safety analyses, 
inspired by probability and uncertainty. Graphically, 
a BN’s structure is created based on a FT and an ET 

in such a manner that the top event and the causes 
shown in the FT are demonstrated by nodes, while its 
relationship is depicted through arcs in the BN. OR 
gates and AND gates are used to present relationships 
between the causes and the top event in the ET. The 
process of mapping a ET into a BN comprises nodal 
representations of the barriers. Each node generally 
has discrete outputs of nodes. For equipment that 
operates continuously, nodes can take continuous 
values. Therefore, matters such as the probability of 
failure within a specified time period and the time to 
failure (TTF) for equipment under continuous opera-
tion are taken into consideration. The failure rate is 
considered constant or time dependent. When the 
nodes have discrete outputs, we use a discrete node 
BN with marginal prior probabilities, and when the 
nodes have continuous outputs, we use a marginal 
distribution for the nodes (Weibull, exponential or 
gamma distributions). For example, each top threat 
and consequence is placed within a node. An arc sig-
nifying causal relationship is drawn between them.

3. Incorporating monetary loss terms in the BN This 
study discusses a method for incorporating monetary 
losses resulting from a failure (or the triggering of a 
top event). Each security vulnerability is associated 
with a monetary loss. The total financial loss associ-
ated with the breach of an event would be given by the 
probability of a breach of an event node multiplied by 
the financial loss associated with that node. The finan-
cial loss associated with a node can be calculated from 
the financial loss associated with each security vulner-
ability. The financial loss limited to asset purchasing 
cost has been calculated by the following formula: 

 where F(t) is the financial loss at time t. 
Pexploitability,d  (vj,t) is the dynamic probability of 
exploitability (considering EA and TI scores) of vul-
nerability vj (where j varies frorm 0 to 6), and a(vj) is 
the maximum asset loss of vulnerability vj. For sim-
plicity, we divided the monetary losses based on asset 
value. We can expect higher risk consequences lead-
ing to higher monetary class nodes and vice-versa 
over time. Please refer to Table 2

4. Construction of the complete BN Once the initiat-
ing events, monetary loss nodes and top event and 
consequences are identified and the skeleton of the 
BN is determined, the final Bayesian network can be 
developed. When expert opinion is not available, step 
3 can be skipped, and a BN is constructed without 
considering the risk influence factors.

F(t) =

6

j=0

Pexploitability,d(vj , t). a(vj)
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5. Check whether historical data are available Imagine 
a BN with n variables A1, A2,..., An. The joint prob-
ability distribution of the BN is merely presented as 

 [23] where Parents(Ai) denote the set of parent 
nodes of the node Ai. If A and B are two random 
events with a prior probability P(A) and P(B), the 
posterior probability of event A occurring, given that 
B has occurred, can be determined by Bayes’ rule 

 [23] If historical data are not available, we construct 
the initial CPT using the CVSS scores of all the secu-
rity vulnerabilities used in constructing the event 
graph. We will use the static scores (access vector, 
attack vector, permission for intervention and user 
interaction) to create a static probability of exploit-
ability values for the initial CPT. As more evidence is 
added, including dynamic data, such as threat intel-
ligence scores and exploit availability information 
scores, the CPTs will be updated accordingly.

6. Evaluation of the dynamic risk profile When no 
historical data are present, the BN has no informa-
tion on how to connect initiating events with conse-
quences. As data are added, the CPT can be updated. 
The CPT is updated using the following:

P(A1,A2, . . . ., An) =

n
∏

i=1

P(Ai|Parents(Ai) )

P(A|B) =
P(A)P(B|A)

P(B)

– Dynamic CVSS scores (threat intelligence scores, 
exploit availability scores)

– - A Bayesian model that takes as input historic CPT 
values and new evidence (for example, whether a 
security node was breached or a top event was trig-
gered) and uses that to update the CPT tables

Risk assessment model
The vulnerabilities of the cloud environment are commonly 
identified using numerous scanning tools and the inputs of 
system experts (manual assessment), including historical 
data on previous incidents by attackers. System vulnerabili-
ties can also be identified on the basis of asset information 
from the Common Vulnerabilities and Exposures (CVE) 
database of asset/product information such as product 
names and versions. The third version of the Common 
Vulnerability Scoring System (CVSS) developed by the 
National Institute of Standards and Technology (NIST) is 
aimed at defining the characteristics of vulnerabilities and 
generating a numerical score to reflect the severity of a vul-
nerability. The score consists of a combination of param-
eters, including access vector (AV), access complexity 
(AC), and authentication (AU). Further information can be 
obtained from the CVSS v3.1 user guide [reference]. Zan-
geneh and Shajari [24] proposed to assess the probability of 
vulnerability exploitation using the equation

In this paper, we adopt this method while introducing 
two new parameters: exploit availability (EA) and threat 
intelligence (TI).Therefore, the successful exploitation of 
a specific vulnerability after the introduction of EA and 
TI is as follows:

where C and  C0 denote the exploitation factor and F and 
 F0 the upper limit of the exploitation score. As for AV, 

Pexploitability,s =
C

F
× AV × AC × PR×UI

Pexploitability,d =

C0

F0
× AV × AC × PR ×UI × TI × EA

Table 2 DRAs modelling based on Formulas and Framework

Asset Value (USD)

Web Server 0

SQL Server 0

Gateway Server 10,000

Application Server 10,000

Table 3 Probability that one vulnerability is successfully exploited

ID CVE ID AV AC AU/PR UI TI EA Pexploitability

v0 CVE‑2019‑2828 N(0.85) L(0.77) N(0.85) R(0.62) 0(0.45) No(0.5) 0.596

v1 CVE‑2021‑32791 N(0.85) H(0.44) N(0.85) N(0.85) 0(0.45) No(0.5) 0.467

v2 CVE‑2021‑1636 N(0.85) L(0.77) L(0.62) N(0.85) 1(0.45) No(0.45) 0.596

v3 CVE‑2021‑38639 L(0.55) L(0.77) L(0.62) N(0.85) ‑0.45 ‑0.45 0.351

v4 CVE‑2021‑36965 N(0.85) L(0.77) N(0.85) N(0.85) ‑0.45 ‑0.45 0.744

v5 CVE‑2020‑0670 L(0.55) L(0.77) L(0.62) N(0.85) 0 (0.45) No (0.45) 0.386

v6 CVE‑2020‑0720 A(0.62) L(0.77) H(0.5) N(0.85) 0 (0.45) No (0.45) 0.386
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AC, PR and UI, they demonstrate the static metrics: AV 
stands for access vector, AV is the metric of the attack 
vector, PR is the metric of the required permissions for 
intervention and the metric UI is the user interaction, 
respectively. The dynamic metrics are represented by TI 

and EA-the threat intel and exploit availability scores, 
respectively. EA was set at a value of 0.33 when available 
and 0.66 when not available. As for TI calculation, values 
< 10 were set at 0.45; between 10 and 45, at 0.50; and >45, 
at 0.55. To construct the initial BN at t = 0, we assume no 
knowledge of the dynamic BN and hence use  Pexploitability,s 
to generate the initial CPT values. In our Bayesian net-
work, certain event nodes can be caused only by the 
occurrence of all security event nodes; in this case, we 
use the AND gate to describe this relationship that has 
been adopted from [25].

When the occurrence of any security event out of the 
many possible events triggers a warning, we use the 
OR gates to describe the relationship (for example, the 

P
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j
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relationship between v0 and v6 going to the node ‘block 
at firewall’ is described by OR logic).

Case study
The selected scenario is based on the Capital One breach 
that occurred in 2019. Capital One is the fifth largest 
consumer bank in the U.S. and is considered one of the 
early banks to adopt the cloud computing environment 
from Amazon, which played a key role in the 2019 inci-
dent. The bank’s objective was to reduce its on-premise 
data centre operation and expand its cloud service foot-
print. They also worked closely with AWS to craft a secu-
rity model to achieve a robust, secure cloud operation. In 
2019, the bank announced that adversaries gained unau-
thorised access and acquired some personal information 
from Capital One credit card customers [26]. CloudSploit 
published an incident analysis report indicating that the 
compromise of the vulnerable system was achieved by 
executing a Server-Side Request Forgery (SSRF) attack 
that exploited a misconfigured web application firewall 
(WAF) known as “ModSecurity”. In a typical SSRF attack, 
the attacker’s objective is to initiate a unauthorised con-
nection to internal-only services within the organisation’s 
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j
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�
ei
�
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Table 4 Conditional probability distribution of the web server 
(WS) node

WS WS0 WS1

P(WS=WSs | v00, v10 ) 1 0

P(WS=WSs | v01, v10 ) 0.429 0.571

P(WS=WSs | v00, v11 ) 0.429 0.571

P(WS=WSs | v01, v11 ) 0.184 0.816

Table 5 Conditional probability distribution of the SQL server 
(SS) node

SS SS0 WS1

P(SS = SSs | v00, v10, v20 ) 1 0

P(SS = SSs | v00, v10, v21 ) 1 0

P(SS = SSs | v00, v11, v20 ) 1 0

P(SS = SSs | v01, v10, v20 ) 1 0

P(SS = SSs | v00, v11, v21 ) 0.696 0.304

P(SS = SSs | v01, v10, v21 ) 0.696 0.304

P(SS = SSs | v01, v11, v20 ) 1 0

P(SS = SSs | v01, v11, v21 ) 0.566 0.434

Table 6 Conditional probability distribution of the gateway 
server (GS) node

GS GS0 GS1

P(GS = GSs | v00, v10, v30 , v40, v50) 1 0

P(GS = GSs | v01, v10, v30 , v40, v51) 0.73 0.27

P(GS = GSs | v01, v10, v31 , v40, v50) 0.73 0.27

P(GS = GSs | v01, v11, v30 , v40, v51) 0.615 0.385

P(GS = GSs | v00, v10, v31 , v40, v51) 1 0

P(GS = GSs | v01, v10, v31 , v40, v51) 0.588 0.412

P(GS = GSs | v01, v11, v31 , v41, v51) 0.184 0.816

Table 7 Conditional probability distribution of the admin server 
(AS) node

AS AS0 AS1

P(AS = ASs | v00, v10, v30 , v40, v50 , v60 ) 1 0

P(AS = ASs | v01, v10, v31 , v40, v50 , v60 ) 1 0

P(AS = ASs | v01, v10, v31 , v40, v50 , v61 ) 0.884 0.116

P(AS = ASs | v01, v10, v30 , v40, v51 , v61 ) 0.884 0.116

P(AS = ASs | v01, v11, v31 , v40, v51 , v61 ) 0.748 0.252

P(AS = ASs | v01, v11, v31 , v41, v51 , v61 ) 0.65 0.35
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infrastructure in order to gain access to internal systems 
[27]. Based on our research, the vulnerability known as 
CVE-2019-2828 was the cause of the exploitation. The 
vulnerability was added into the National Vulnerability 
Database few days post the incident. The vulnerability 
has a base score of 9.6, implying that its requires mini-
mal effort for exploitation that enables unauthenticated 
adversary with network access via non-secure HTTP to 
jeopardise the WAF component [28]. The dataset used 
in this study was generated using a python script that 
fetches vulnerabilities from NVD, exploit-db.com (to 
retrieve information regarding exploitability availability 

in the wild), and AlienVault OTX Pulse to retrieve threat 
intelligence pulse information regarding the vulnerabili-
ties in the scope of the study. We ran the dataset gen-
eration tool for a month to retrieve sufficient data. The 
vulnerability related to the Capital One incident was 
added synthetically onto the dataset.

The corresponding bow-tie diagram was constructed 
using the components of the case study. Each of the vul-
nerabilities from v0 to v6 should be associated with an 
exploitability probability, where  Pexploitability represents the 
probability of successful exploitation. We are constructing 
a BN with dynamic risk assessment that assumes no prior 
information on the probability values. As vulnerabilities 
occur, the probability values for the different events will 
be recorded. As these probability values are recorded, the 
conditional probability tables would be updated (how to 
construct CPT tables is shown in ([25], Tables 8–14)

Tables 2, 3, 4, 5 and 6 show the conditional probabil-
ity distributions of the different event nodes (WS: web 
server, SS: SQL server, GS: gateway server, AS: admin 
server). These nodes were taken from the topology of 
the test network in [29]. The irrelevant nodes that were 
not used in our case study were removed.

Table 8 Conditional probability distribution of node TE (Top 
event)

TE TE0 TE1

P(TE = TEs | v00, v10, v20, v30 , v40, v50 , v60 ) 1 0

P(TE = TEs | v01, v10, v21, v31 , v40, v50 , v61 ) 0.965 0.035

P(TE = TEs | v01, v10, v21, v31 , v41, v50 , v61 ) 0.926 0.074

P(TE = TEs | v00, v11, v21, v31 , v41, v50 , v61 ) 0.926 0.074

Fig. 2 Probability of exploitability, financial asset loss, probability of failure of nodes with time where WAS misconfiguration is exploited as evidence 
at t=6. Dynamic update includes a Bayesian update plus the inclusion of TI and EA scores
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Tables  4, 5 and 6 only show a subsample of the very 
many possibilities. There are 32 possibilities in Table  3, 
64 possibilities in Table 4 and 128 possibilities in Table 5. 
Here, we have shown only a small subset related to dif-
ferent risk scenarios. Let us consider a scenario in which 
the evidence chain goes via v0, v2, v3 and v6. In this case, 
the probability of the web server being compromised is 
P(WS = WS1 | v01, v10 ) = 0.571.

The probability of the gateway server being compro-
mised is P(GS = GS1 | v01, v10, v31, v40, v50) = 0.270. 
This value is obtained by  Pexploitability (v0) *  Pexploitability (v3) 
using the AND gate relationship.

The probability of the admin server being compromised 
is P(AS = AS1 | v01, v10, v31, v40, v50, v61 ) = 0.116. 
This value is calculated by  Pexploitability (v0) *  Pexploitability 
(v3) *  Pexploitability (v6) (Table 7).

The probability for the SQL server being compromised 
is P(SS = SS1 | v01, v10, v21 ) = 0.303. This value is calcu-
lated by  Pexploitability (v0) *  Pexploitability (v2).

The probability of the top event (TE) node triggering is 
the combined probability of the admin server being com-
promised and the SQL server being compromised, which 
is P(TE = TE1 | v01, v10, v21, v31, v40, v50, v61 ) = P(AS 

= AS1 | v01, v10, v31, v40, v50, v61 ) * P(SS = SS1 | v01, 
v10, v21 ) = 0.116*0.416 = 0.035 (Table 8).

Dynamic updating of CPTs
Initially, when t = 0, we use  Pexploitability,s to define CPTs, 
as shown above. With time, we collect a series of data 
points that provide information on threat intel scores and 
exploit availability. In addition, at each data point, we look 
for evidence of whether a security node was breached or 
a top event was triggered. This evidence is used to update 
the Bayesian probabilities of each security vulnerability 
and the subsequence event nodes. We have a series of 33 
data points with dynamic information available. We will 
randomly insert evidence of WAF misconfiguration being 
exploited between these data points to see how the CPTs 
change over a given period and how the financial asset 
losses correspondingly change with time.

Discussion and results
This section provides an attack scenario based on the 
capital breach case to evaluate our model. We utilised 33 
datasets where the WAF configuration (top event) was 
exploited as evidence at t=6. Therefore, we initially started 

Fig. 3 Probability of exploitability, financial asset loss, and probability of failure of nodes with time where WAF misconfiguration is exploited as 
evidence at t=11. The dynamic update includes a Bayesian update plus the inclusion of TI and EA scores
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with the probability of exploitability defined by  Pexploitability,s 
in the above section. At each time step, the code reads the 
dataset sheet to look for the dynamic exploitability scores: 
TI and ES. It also looks for evidence as to whether the top 
event (WAF misconfiguration) was triggered or not. We 
synthetically added evidence at a user-defined timestep 
for the WAF misconfiguration to be exploited. In the three 
graphs of Fig. 2, this has been done at t=6 units.

At time t<6 units, the code looks through the datasheet 
and finds no evidence of exploitation, and it hence updates 
the probability of exploitability of the security vulnerabili-
ties (v0, v1, v2...). After t=6, there is an unexpected jump 
in the exploitability probability values, the corresponding 
asset losses, and the probabilities of failure of the differ-
ent servers. For t>6, the same process is again repeated, 
where the code looks at the TI and ES scores and identi-
fies whether the WAF misconfiguration was exploited. 
At t=25, we again see a jump in exploitability values. 
This again means that the TI and EA scores might have 
increased at those times. Figure 3 shows another example 
where WAF misconfiguration was exploited at t=11.

In Figs. 4 and 5, we see the dynamic update occurring 
with a Bayesian approach without considering the TI and 

EA score update. In this case, all the 3 figures are rela-
tively smooth except a peak that occurs at t=6 and t=11 
time units respectively. This is because at these time 
instances, we find evidence for a WAF misconfiguration 
as has been shown in Figures 1 and 2. Due to the absence 
of TI and EA scores, we do not see the increase in the 
exploitation probability of exploitability financial asset 
loss, failure of nodes (at t=21) units.

Another example where WAF misconfiguration was 
exploited at t=11 is shown in Fig. 3.

The results clearly indicate that the model can incorpo-
rate new information and handle data scarcity and uncer-
tainties, so that it is suitable for protecting cloud services. 
Cloud services are particularly susceptible to fluctua-
tions due to time-varying factors, the occurrence of new 
vulnerabilities and misconfigurations. The Capital One 
breach occurred because of a WAF misconfiguration.

Conclusion
Risk assessment is an integral part of risk management. 
It is aimed at proactively identifying threats and vulner-
abilities that target assets and applying mitigation strate-
gies to reduce the risks to an acceptable level. This paper 

Fig. 4 Probability of exploitability, financial asset loss, probability of failure of nodes with time where WAF misconfiguration is exploited as evidence 
at t=6. Dynamic update includes a Bayesian update without the TI and EA scores
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proposes the Cloud Enterprise Dynamic Risk Assessment 
(CEDRA) model that uses CVSS, threat intelligence feeds 
and exploitation availability in the wild using dynamic 
Bayesian networks to predict vulnerability exploita-
tions and financial losses. The probability of successful 
exploitation and financial losses is calculated by identify-
ing CVE for each asset and then constructing a bow tie 
model based on the Capital One breach use case of 2019. 
The conditional probability distributions are achieved by 
AND and OR logic gates. The framework is based on a 
dynamic Bayesian network that facilitates an underly-
ing process of continuously identifying and assessing 
risks in the cloud environment. The current study has 
shown that combination of bow-tie analysis, including 
dynamic Bayesian network, threat intelligence and and 
information about exploitation availability in the wild has 
improved vulnerability and financial losses prediction. 
However, the work could be further enhanced by intro-
ducing data asset value, as it is currently limited to asset 
purchasing cost and location of the asset.
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