
Bouizem et al. Journal of Cloud Computing (2023) 12:94
https://doi.org/10.1186/s13677-023-00457-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Integrating request replication into FaaS
platforms: an experimental evaluation
Yasmina Bouizem1,2, Djawida Dib1*, Nikos Parlavantzas3 and Christine Morin2

Abstract

Function-as-a-Service (FaaS) is a popular programming model for building serverless applications, supported by all
major cloud providers and many open-source software frameworks. One of the main challenges for FaaS providers is
providing fault tolerance for the deployed applications, that is, providing the ability to mask failures of function invo-
cations from clients. The basic fault tolerance approach in current FaaS platforms is automatically retrying function
invocations. Although the retry approach is well suited for transient failures, it incurs delays in recovering from other
types of failures, such as node crashes. This paper proposes the integration of a Request Replication mechanism in
FaaS platforms and describes how this integration was implemented in Fission, a well-known, open-source platform.
It provides a detailed experimental comparison of the proposed approach with the retry approach and an Active-
Standby approach in terms of performance, availability, and resource consumption under different failure scenarios.

Keywords Cloud, Serverless, FaaS, Fault tolerance, High availability

Introduction
Serverless computing is an increasingly popular model
for developing and running cloud applications [1, 2].
With serverless computing, developers are isolated from
the details of infrastructure management and are able
to focus on the business logic of their applications. At
the core of serverless computing is the Function-as-a-
Service (FaaS) programming model in which the unit of
computation is a function. Developers provide the func-
tion code, and the FaaS platform automatically manages
resource provisioning and function execution. Several
FaaS platforms are commercially available, such as Ama-
zon Lambda [3], Google Functions [4], and Azure func-
tions [5], or distributed in open source, such as Fission
[6], OpenFaaS [7], Kubeless [8], and OpenWhisk [9].

A key challenge in running applications on FaaS plat-
forms is ensuring fault-tolerance for the deployed func-
tions. Fault tolerance for FaaS refers to the ability of the
system to continue serving function requests despite
infrastructure failures, such as hardware failures, virtual-
ization software failures, and network failures. Fault tol-
erance is essential for ensuring high availability in FaaS
deployments. High availability and built-in fault toler-
ance are promoted as essential features of commercial
FaaS platforms (e.g., [3]). Most current FaaS platforms
support a single fault tolerance approach that involves
retrying function executions [4, 6, 10–13]. However,
while the retry approach allows coping with transient
failures such as temporary loss of network connectivity,
it incurs delays in recovering from other kinds of failures
such as node failures.

In the work described in the present paper, we pro-
pose to integrate an active replication [14] approach in
FaaS frameworks in order to make failures transparent
to the applications. The proposed approach consists in
replicating function requests and is implemented in Fis-
sion, a popular open-source FaaS framework. This work
extends our previous work [15] describing the integration

*Correspondence:
Djawida Dib
d.djawida@gmail.com
1 Department of Computer Science, University of Tlemcen, Tlemcen,
Algeria
2 Inria Centre at Rennes University, Rennes, France
3 INSA Rennes, Rennes, France

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00457-z&domain=pdf

Page 2 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

of an Active-Standby fault tolerance approach in FaaS
platforms. Specifically, the current work proposes a new
fault-tolerance approach, provides an extensive experi-
mental evaluation of the two approaches along with the
retry approach, and discusses the lessons learned from
this evaluation.

The proposed approach along with the Active-Standby
and retry approaches assume that functions are or can
be converted to become idempotent, which means that
the functions produce the same results when executed
multiple times with the same input. This is the typical
assumption made by current FaaS platforms. Convert-
ing non-idempotent code to become idempotent may
be challenging, especially when the code interacts with
external, non-idempotent services, but FaaS providers
give guidelines for performing this conversion (e.g., [16,
17]).

Moreover, the proposed approach along with the
Active-Standby approach maintain functions continu-
ously running and thus using resources even if they
receive no traffic. This resource cost is only paid for func-
tions that require high availability. Current commercial
FaaS platforms also include features that maintain func-
tions continuously running, such as the provisioned
concurrency feature in AWS Lambda [18]. The motiva-
tion for that AWS feature, however, is to reduce start-up
latency rather than provide fault-tolerance.

This paper brings the following novel contributions:

• Study of the integration of an active replication fault
tolerance approach (called Request Replication) in a
FaaS environment;

• Implementation of the approach in the Fission FaaS
platform (Fission Request Replication);

• Comparative evaluation according to several metrics
of Fission Request Replication, Fission Vanilla (native
retry approach), and a new version of Fission Active-
Standby (enhanced implementation of the fault tol-
erance approach proposed in [15]), using a compu-
tational application both in normal functioning and
in various failure scenarios, including instance and
node failures and network delays;

• Insights on how to select a fault tolerance approach
according to the application type and user require-
ments in terms of performance, resource consump-
tion, and availability.

The remainder of the paper is organized as follows.
Section “Related Work” discusses related work. Sec-
tion “Fission FaaS Framework” presents Fission, a rep-
resentative, open-source FaaS platform, which we used
for implementing and evaluating our proposed fault
tolerance approach. Section “Existing fault tolerance

mechanisms in Fission” describes two existing fault tol-
erance approaches and their implementation in Fission;
namely, the retry approach natively implemented in Fis-
sion, and the Active-Standby approach that we proposed
in [15]. Section “Request Replication for FaaS” presents
the Request Replication approach in the context of FaaS
platforms and its implementation in Fission. Section
“Experimental Setup” is devoted to the experimental
setup, and Section “Experimental Results” analyses the
experimental evaluation results. We expand on lessons
learnt in Section “Lessons Learned” and conclude in Sec-
tion “Conclusion and Future Work”.

Related work
A wide range of approaches have been applied to sup-
port fault tolerance in cloud systems [19]. In the follow-
ing, we only consider work related to fault tolerance in
serverless systems. The basic fault tolerance mechanism
in current commercial and open-source FaaS platforms is
automatically retrying invocations. All major commercial
platforms, such as AWS Lambda [10, 11], Google Cloud
Functions [4] and Microsoft Azure Functions [12], pro-
vide automatic retry functionality to handle failures and
timeouts. For instance, AWS Lambda retries asynchro-
nous invocations up to two times with a delay between
such retries. Some open-source FaaS platforms also sup-
port the retry mechanism, including Fission and Open-
FaaS, which retry asynchronous invocations with an
exponential back-off [13]. Our work considers fault toler-
ance mechanisms beyond automatic retry.

Fault tolerance in serverless systems can also be real-
ised through using additional services provided by cloud
platforms. For instance, using Azure load-balancing and
event ingestion services, developers can deploy func-
tions in different regions to allow for disaster recovery.
The functions can be deployed using an active-active or
an active-passive configuration [20]. Using serverless
orchestration services (such as Google Workflows [21],
AWS Step Functions [22], or Azure Durable Func-
tions [23]), developers can define workflows that coor-
dinate functions, automatically retry failed or timed-out
invocations, and run custom code to handle different
types of errors. For instance, using AWS Step Functions,
developers can resume failed workflows from the state
at which they failed [24]. Similar capabilities are pro-
vided by open-source orchestration frameworks, such
as Apache OpenWhisk Composer [25] or Faas-flow for
OpenFaaS [26]. Our work focuses on fault tolerance
mechanisms implemented within FaaS platforms without
involving external services.

Recent research works investigate fault tolerance for
stateful serverless applications, composed of multiple
functions and interacting with storage services. Sreekanti

Page 3 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

et al. [27] introduce a layer that lies between standard
FaaS platforms and key-value databases to ensure atomic
visibility of storage updates. The proposed system assures
fault tolerance by enforcing the read atomic consistency
guarantee. Zhang et al. [28] describe a library and runt-
ime for building transactional, fault-tolerant workflows
on existing serverless platforms. The system supports
transactions within and across functions through apply-
ing a log-based fault tolerance approach. Jia et al. [29]
propose Boki, a FaaS runtime that offers an API for
stateful applications. The API enables the applications
to manage their state and uses a log-based mechanism
to achieve fault tolerance. Wu et al. [30] present Hydro-
Cache, a distributed cache layer for FaaS systems, which
provides transactional causal consistency for state-
ful functions. The system relies on Anna storage [31], a
key-value state backend that supports fault tolerance. To
ensure fault tolerance, transactions are retried with the
same key version in case of storage node failure or net-
work delay. Node failures are detected using a heartbeat
mechanism and unfinished functions of the failed node
are re-scheduled on another node. Unlike those sys-
tems, our work focuses on ensuring fault tolerance for
individual, idempotent functions rather than for stateful
function compositions, and does not impose the use of
additional APIs on FaaS developers.

Another recent work [32] introduces a programming
model and associated implementation for supporting
transactions across stateful FaaS functions. This work
builds on Apache Flink StateFun [33], an open-source
platform for stateful FaaS functions that uses a stream-
ing dataflow engine. The platform deals with failures via
checkpointing/snapshots to achieve exactly-once-pro-
cessing guarantees. The StateFun programming model
supports encapsulating state within function instances,
which is not allowed in the typical FaaS model.

Zhang et al. [34] propose Kappa, a programming
framework for building parallel serverless applications.
The framework periodically checkpoints function results
in order to enable failure recovery. Carver et al. [35] pre-
sent Wukong, a framework for building parallel FaaS
applications on top of AWS Lambda. In case of failure,
the automatic retry mechanism of AWS Lambda is used
to re-execute the failed function. Both these systems
propose libraries built on top of an unmodified FaaS
platform (AWS Lambda) while our mechanisms are inte-
grated within the FaaS platform.

Karhula et al. [36] propose using Docker and CRIU
(Checkpoint/Restore In Userspace) for checkpointing
and resuming long-running functions that run on IoT
devices as well as for migrating these functions to differ-
ent IoT devices. Although these mechanisms could be
used as building blocks for a fault-tolerant FaaS system,

this work does not provide a complete, practical imple-
mentation of such a system.

In summary, there are several solutions that propose
fault tolerance mechanisms beyond the basic retry mech-
anism. However, all such solutions require the use of
APIs and primitives outside those provided by the core
FaaS model, which only supports invoking functions in
response to events. For instance, these solutions require
the use of load balancing services [20], workflow orches-
tration services [24], or specialized, state-aware program-
ming models [27–30, 32]. To the best of our knowledge,
our work is the first to integrate fault-tolerance mecha-
nisms into the FaaS platform without deviating from the
core FaaS model and thus without adding complexity for
developers.

Fission FaaS framework
In this section, we present Fission [6], the FaaS platform
used in all the experiments presented in this paper. We
selected Fission because it is representative of exist-
ing FaaS platforms. Indeed, as the vast majority of such
platforms [37], Fission is built on the Kubernetes [38]
container orchestrator, and is developed in Go [37].
Moreover, Fission is one of the most popular open-source
FaaS platforms [37].

The core Fission components are: Function Pods,
Router, and Executor (see Fig. 1). Function Pods contain
function-specific containers to serve requests coming
from users, called function calls.

The Router receives the function call (message 1 in
Fig. 1) and checks if a corresponding function pod is
running. If no corresponding function pod is running,
the Router requests the creation of a new one from the
Executor (message 2 in Fig. 1). There are two types of
Executor: PoolManager and NewDeploy. The PoolMan-
ager Executor maintains a pool of warm generic pods in
order to provide low cold start latencies [39] and start
functions quickly (message 2.a in Fig. 1). After creating
the function pod, the PoolManager Executor sends the
Pod’s IP address to the Router (message 3.a in Fig. 1).
Then, the Router forwards the function call to the pod
(message 4.a in Fig. 1). The PoolManager Executor does
not allow using multiple pods per function, which limits
its scaling during high traffic. The NewDeploy Executor
allows creating multiple pods per function along with a
Kubernetes service to load balance the requests between
the function pods (message 2.b in Fig. 1). The NewDeploy
Executor also uses a Horizontal Pod Autoscaler (HPA)
to automatically adjust the number of pods to match the
traffic. After creating the function pod(s), the NewD-
eploy Executor sends the IP address of the corresponding
Kubernetes service to the Router (message 3.b in Fig. 1).
The Router forwards the function call to the Kubernetes

Page 4 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

service which routes it to the corresponding pod(s) (mes-
sage 4.b in Fig. 1). If a running function pod exists at the
time of receiving a function call, the Router forwards it
either to the corresponding Pod’s IP address (message 4.a
in Fig. 1) or to the corresponding Kubernetes service’s IP
address (message 4.b in Fig. 1), depending on the Execu-
tor used to create the running function pod.

Existing fault tolerance mechanisms in Fission
We present in this section two fault tolerance mech-
anisms implemented in Fission: the native retry
mechanism available in most FaaS platforms and the
Active-Standby mechanism, an enhanced version of the
one proposed in our previous work [15].

Retry
Retry is the native fault tolerance approach in Fission
and consists basically in restarting the entire submission
process of a failed request. The retry mechanism used
in Fission works as shown in Fig. 2 assuming a NewD-
eploy Executor. When a function call is received, the
Router forwards it to the corresponding function pod,
as described in Section “Fission FaaS Framework”. The
Router then sends the request to the Kubernetes ser-
vice which forwards it to the function pod. If the func-
tion execution fails due to network timeout errors, the
Router tries to forward again the function call until
receiving a response from the function execution or
reaching the maximum number of retries set by the

administrator [40]. If all the retries fail or the error is a
network dial error, Fission assumes that the function pod
does not exist anymore. Thus, the Router asks the Execu-
tor for a new service for the function. The Router tries to
forward the function call to the new Kubernetes service
and so on until the request is served. The Router relays to
the user any errors beyond network timeout and network
dial errors.

Active‑Standby
In the context of FaaS, the Active-Standby approach con-
sists in creating two function instances. The first is active
and serves incoming requests while the second is passive
(on standby).

Each instance monitors the connectivity of the other
instance using heartbeats. If no heartbeat is received from
an instance within a given time interval, the instance
is considered as unreachable. If the passive instance is
unreachable, another passive instance is created. If the
active instance is unreachable, the passive instance is
activated and a new passive instance is created.

Implementation in Fission
To implement the Active-Standby approach in Fission,
we use the NewDeploy executor because it supports
creating replicas of function pods. In this approach, two
function pods are created (i.e., active and passive) and
both support the Kubernetes Readiness Probe [41] that
indicates when the container is ready to receive requests.

Fig. 1 Simplified Fission Architecture

Page 5 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

The active pod declares the ready state and can receive
and serve traffic. The passive pod declares the not-ready
state, and no traffic is forwarded to it.

We implemented a new Router, called Active-Standby
Router (Router AS), which allows routing requests only

to the Active pod, and use this instead of the default Fis-
sion Router. The Router AS does not support the retry
mechanism. Once a request is received by the Router
AS (message 1 in Fig. 3), it needs to be executed specifi-
cally by the active pod. In this case, the Router AS gets

Fig. 2 Fault tolerance protocol with the Retry mechanism

Fig. 3 Overview of the Active-Standby mechanism in Fission

Page 6 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

the IP address of the active pod from the Kubernetes API
(message 2 in Fig. 3) and forwards the request directly to
this address (message 3 in Fig. 3). The Router receives
the response (message 4 in Fig. 3) and sends it to the user
(message 5 in Fig. 3).

Figure 4 offers a more comprehensive view of the
implementation of the Active-Standby mechanism in
Fission. While the request is being processed, both
active and standby pods send and receive heartbeats to
and from each other for health checks. The heartbeats
are sent every second (the minimum configurable value
using Kubernetes Readiness probes). While the active
pod is running, the passive pod fails the readiness probe
and remains in the not-ready state. If the active pod fails,
the passive pod passes the readiness probe and becomes
active. A new pod is then created to take the place of the
previously passive pod. Similarly, if the passive pod fails,
a new pod is created to take its place.

Request Replication for FaaS
In this section, we present the Request Replication fault
tolerance approach and its implementation in Fission.

Request Replication principle
Request Replication consists in having K replicas pro-
cess a request at the same time. The number of replicas

depends on the required number of simultaneous failures
to be tolerated.

The Request Replication (RR) solution is divided into
two phases. First, the client sends a request, and the
request is received and processed simultaneously by all
replicas. Second, the first response produced by any rep-
lica is delivered to the client. The client can thus receive a
response despite replica failures.

Implementation in Fission
To implement the RR approach in Fission, we used the
NewDeploy Executor as it allows to create many pod
replicas. We replaced the default Router with a new
implemented one, called Router Request Replication
(Router RR). This Router submits requests to all function
pod replicas at the same time, and it does not support
the retry mechanism. When the Router RR receives a
request (message 1 in Fig. 5), it retrieves the IP addresses
of the function pod replicas from the Kubernetes API
(message 2 in Fig. 5). Then, it uses these IP addresses to
replicate each received request on all function pod rep-
licas in order to be processed in parallel (message 3 in
Fig. 5). Then, the responses are sent to the router (mes-
sage 4 in Fig. 5) and the first received response is sent
to the user (message 5 in Fig. 5). To tolerate K failures
using this approach, it is necessary to have a minimum
of K+1 replicas, distributed across different nodes. The

Fig. 4 Fault tolerance protocol with the Active-Standby mechanism

Page 7 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

pod anti-affinity mechanism provided by Kubernetes
is used to guarantee this distribution. Figure 6 offers a
more comprehensive view of the implementation of the
Request Replication approach in Fission.

Experimental setup
In this section we describe the experimental setup for
evaluating the effectiveness of the proposed RR fault
tolerance approach and comparing it with the retry and

the AS approaches in the context of their implemen-
tation in Fission. In all experiments, the RR approach
uses two replicas, which is sufficient to demonstrate the
differences among the three approaches. Increasing the
number K of replicas would be useful for services that
require the highest level of availability (e.g., emergency
response systems, medical services).

Fig. 5 Overview of the Request Replication mechanism in Fission

Fig. 6 Fault tolerance protocol with the Request Replication mechanism

Page 8 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

Environment
Our experiments were performed on Grid’5000 [42],
a configurable testbed distributed over different sites
in France with the goal to support experiment-driven
research in parallel and distributed computing. Specifi-
cally, we used 5 nodes on the Lyon site (nova cluster),
each node having 2 Intel Xeon E5-2620 v4 CPUs with
8 cores/CPU and 64 GB memory, to deploy Kuber-
netes [43] (version 1.19). In our cluster we have one
node for the Kubernetes master and four worker nodes.
One worker node contains the components of Fission
AS (Active-Standby), Fission RR (Request Replication)
or the original version of Fission (vanilla), depending on
the experiment. The three other worker nodes are used
to host the function pods. For each experiment we use
either RR, AS or vanilla with version 1.10.0 (the latest
stable release of Fission at the time we run our experi-
ments). We set up 2 additional nodes; one used as cli-
ent to invoke functions and one used to inject faults.

Applications
We used a CPU-intensive HTTP-triggered function
that computes the Fibonacci sequence (a series of num-
bers where each number is the sum of the two preced-
ing ones). Our function takes n=15 as input, computing
the 15th term of the sequence. We chose this simple
function because it demonstrates in the most clear
and concise manner the differences between the three
approaches. Indeed, since the function is compute-
bound and does not rely on any data storage or exter-
nal services, it becomes easier to isolate and analyze
the effect of the FT approach on performance, resource
consumption, and availability.

Workload
The workload is generated with Tsung [44], a high-
performance benchmark framework. In our test, we
generated 60000 requests during 10 minutes with 100
concurrent users created every second (corresponding
to an input data rate of 100 requests/sec).

Failure scenarios
We defined three failure scenarios:

• Pod failure: where we inject a fault into a specified
application to make it unavailable for a period of
time.

• Node failure: where we kill the node hosting the
application.

• Network delay: where we inject latency to see the
impact of network delay on the deployed applica-

tion. This scenario is executed to see how the three
approaches react to network issues.

 In the pod failure and network delay scenarios, we use
the Chaos Mesh tool [45] to inject faults to pods. In the
first scenario, the failure is simulated by killing the func-
tion pod at the 5th minute from the beginning of the
workload execution. In the second scenario, the fail-
ure is simulated by killing the node hosting the func-
tion instance 5 minutes after the beginning of workload
execution. In the third scenario, we inject latency at the
5th minute for a duration of 10 seconds. The injected
latency values are 50ms, 100ms and 200ms. Note that the
injected latency causes a delay for all responses coming
from the function pod. In the three scenarios, the failure
is injected in the active pod for AS and in one of the two
pods for RR. Each scenario has been repeated at least 5
times for each version of Fission (i.e., vanilla, AS and RR).
The averages of the measurements are shown in the illus-
trated results.

 Metrics
We evaluate our solution using three categories of
metrics:

• Performance: Performance is measured using
throughput (i.e, number of requests per second) and
response time (i.e., the time between sending a user
request and receiving the system response).

• Availability: Availability is measured using recovery
time, i.e., the time between the first reaction to a fail-
ure and the resumption of the service. We also meas-
ure the error rate, that is, the proportion of failed
requests (having HTTP 5xx response code).

• Resource consumption: Resource consumption is
measured using CPU and memory usage of the 5
nodes for the applied workload.

Experimental results
This section presents the results obtained from the
experimental comparison of our proposed RR approach
with the existing AS and retry approaches.

Performance Results
Results with no failures
Figure 7 shows the response time for Fission AS, vanilla
and Fission RR with no failures. In this figure we can
notice that Fission RR is slightly faster than Fission AS
and vanilla because once it receives the first response
from one of the function replicas, it forwards it to the
user. Vanilla is slightly slower. This can be explained by
the use of the Kubernetes service to send the request to

Page 9 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

the pod belonging to the function, which adds another
hop compared to AS and RR. AS, vanilla and RR handle
the same throughput with values around 100 requests/
sec, which is the expected throughput. As a conclusion,
we see that RR performs better than AS and vanilla in
terms of response time when there are no failures.

Results with failures

1 Pod Failure Scenario Figures 8 and 9 illustrate the
throughput and response time of AS, vanilla and RR
with a pod failure. In Fig. 8, we can observe a small
degradation in the throughput of AS. This is because
of the failover of the active pod to the standby pod.

Fig. 7 Response time of AS, vanilla and RR with no failure

Fig. 8 Throughput of AS, vanilla and RR with pod failure

Page 10 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

We also notice a degradation in the throughput of
vanilla when the pod fails at 300s, as no pod is availa-
ble to serve the requests. RR provides stable through-
put despite the pod failure since all the traffic is exe-
cuted by the healthy replica. In Fig. 9, we notice some
spikes in the response time of vanilla during almost
30 seconds. This is attributed to that once the pod
failure is detected, the router starts the retries. When
the function pod recovers, we see that the response

time drops off at around 7ms. In contrast, RR and
AS provide stable response times with values around
5ms.

2 Node Failure Scenario Figures 10 and 11 present
performance results of AS, vanilla and RR with a
node failure. Figure 10 shows a degradation in the
throughput with AS when the node hosting the
active pod crashes. This is because of the required
actions to switch the passive pod to active. In vanilla,

Fig. 9 Response time of AS, vanilla and RR with pod failure

Fig. 10 Throughput of AS, vanilla and RR with node failure

Page 11 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

the throughput drops when the function pod stops
serving requests. The router then starts the retries
and the requests are queued until a new pod starts
running on a healthy node. This causes a spike in
throughput that reaches 1300 requests/sec, and then
drops back to a normal state. The throughput of RR
remains constant because the failure is masked by the
presence of the healthy replica that continues to pro-

cess the user’s requests. Figure 11 shows spikes in the
latency of vanilla. This is because the router retries
many requests, where the wait time is increased
exponentially after each attempt. We assume that the
response time of the queued requests is increased
when the pod recovers. The response time of AS
and RR is stable since the requests are served by the
standby pod in AS and by the second replica in RR.

Fig. 11 Response time of AS, vanilla and RR with node failure

Fig. 12 Response time with 50ms of latency

Page 12 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

3 Network Delay Scenario We injected separately
three latency values: 50ms, 100ms and 200ms. Fig-
ures 12, 13, and 14 show the response time of AS,
vanilla and RR with the injected latency values. When
we increase the latency value, we can see a significant
change in the response time of vanilla. For example,
200ms of latency doubles the response time of vanilla

from 500ms to 1000ms (see Figs. 13 and 14). The
reason for this behaviour is that the router retries
requests with exponential backoff, increasing the
waiting time between retries which leads to perfor-
mance degradation. Looking at the response time
of AS, we notice a peak when the latency is added
because the active pod responds too late. In RR, we

Fig. 13 Response time with 100ms of latency

Fig. 14 Response time with 200ms of latency

Page 13 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

see no impact on the response time when we add
latency on a single replica as this latency is masked by
the fast response of the other replica.

Availability results
Recovery time
The recovery time is the time required for a service to
recover from failures and become available again. This
covers the time between failure detection and the time
when the service becomes fully operational. It is meas-
ured for the three approaches as follows: For vanilla,
after the failure, the pod becomes unhealthy (see Fig. 15).
In reaction to that failure, the router retries the failed
requests. When the maximum number of retries is
reached, the pod is considered as failed and the ser-
vice URL is deleted from the router cache. The service
becomes available again when a new pod is created and
added to the router cache.

For AS, the failure is detected by the heartbeat mech-
anism (see Fig. 16). The reaction is the failover to the

standby pod and the update of the router cache. Once the
router cache is updated with the IP address of the active
pod (Active-IP), the service becomes available.

For RR, no recovery is necessary as the failure of one
of the replicas does not affect service availability (see
Fig. 17). The service remains available because the second
pod replica serves the requests.

1 Pod Failure Scenario As seen in Table 1, in the pod
failure scenario, the measured recovery time for AS is
significantly lower than for vanilla. The reason is that
with AS, there is already a standby pod, and the ser-
vice is recovered as soon as the standby detects the
failure of the active pod. In contrast, recovery with
vanilla depends on the repair of the failed pod. For
RR, the second replica continues to serve requests.
Therefore, for this approach, recovery time is zero.

2 Node Failure Scenario In the node failure scenario
(see Table 1), the recovery time for vanilla is signifi-
cantly higher than that for AS and RR. AS takes sec-
onds to recover from a node crash, whereas vanilla
takes more than 2 minutes. This is explained by the

Fig. 15 Recovery time in vanilla

Fig. 16 Recovery time in AS

Page 14 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

behavior of each approach. With AS when the node
hosting the active replica fails, the passive replica
detects the failure of the active replica and starts pro-
cessing the requests. RR recovery time is zero, since
another active replica is running in parallel and con-
tinue processing the requests.

Error rate
In this section, we present the error rate of Fission
vanilla, AS, and RR with pod and node failures. This met-
ric is a useful measure to evaluate the user perception
when using the approaches under different failure sce-
narios. To measure the rate of requests that fail, we count
the number of requests that return an HTTP status with
a response code of 5xx (it means the request cannot be
fulfilled due to a server error). If a request has been suc-
cessfully handled, the HTTP status code returned in the
response is from the 2xx class of status code.

1 Pod Failure Scenario As seen in Table 2 and Fig. 18,
in the pod failure scenario, Vanilla has a 0.01% error
rate (i.e., some HTTP requests failed with code 503
service unavailable) which indicates that the router
is unable to handle the request due to a temporary

overload. The error rate for AS and RR is 0% (i.e.,
all requests succeeded with a response code of 200)
which means that all requests have been successfully
served.

2 Node Failure Scenario In the node failure scenario
(see Table 2 and Fig. 19), the error rate for vanilla is
1.26%. Once the requests are retried, some of them
return a 502 status code, bad gateway, which means
the router cannot reach the requested pod. For AS
and RR, the error rate is 0%. The crash is better toler-
ated because of the presence of a replica. All requests
are thus served with success and return the code 200.

Resource consumption analysis
We evaluate here the three fault-tolerance approaches in
terms of CPU and memory usage. We chose to evaluate
the approaches in terms of resource consumption rather
than monetary cost because resource consumption is
the main factor that determines cost. The cost may also
depend on further factors that vary widely across deploy-
ments, such as the cost of infrastructure, servers, net-
works, energy as well as the billing model of the provider.
Figures 20 and 21 show CPU and memory consumption,

Fig. 17 Recovery time in RR

Table 1 Recovery Time with vanilla, AS, and RR in pod and node
failure scenarios

Failure scenario Fission vanilla Fission AS Fission RR

Pod failure 7s 1.81s 0s

Node failure 2m19s 2.80s 0s

Table 2 Error rate for vanilla, AS, and RR in pod and node failure
scenarios

Failure scenario Fission vanilla Fission AS Fission RR

Pod failure 0.01% 0% 0%

Node failure 1.26% 0% 0%

Page 15 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

respectively, for vanilla, AS and RR approaches with-
out and with failures (pod and node failures). This is the
overall CPU and memory usage of the 5 nodes hosting
Kubernetes and the Fission platform during the execu-
tion of the workload.

In the three scenarios (i.e., no failure, pod failure, node
failure), we observe that RR consumes more CPU and
memory compared to vanilla and AS. In the case of no

failures, for example, the overhead of using RR is 180%
in CPU and 52% in memory consumption compared to
vanilla. AS has an overhead of 141% in CPU consump-
tion and 39% in memory consumption compared to
vanilla. Theoretically the expected overhead of RR should
be proportional to the number of replicas (around 100%
compared to vanilla in the case of two replicas). How-
ever the actual overhead of AS/RR compared to vanilla is

Fig. 18 HTTP code response rate in vanilla, AS and RR with pod failure

Fig. 19 HTTP code response rate in vanilla, AS and RR with node failure

Page 16 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

higher. This is due to the implementation of their respec-
tive routers that regularly invoke the Kubernetes API to
obtain the current IP addresses of pods. We chose this
mechanism for its implementation simplicity. This over-
head could be reduced by notifying the routers when
changes in the pod addresses occur, as in the case of pod
failures.

Figures 22, 23, and 24 show the average CPU con-
sumption over time for the Kubernetes master node,
the Fission worker node, and the 3 worker nodes for all
approaches with a pod failure.

The CPU consumption of AS and RR is similar and
vanilla shows the lowest CPU utilization. We notice that
on average, the coordinator nodes (i.e., the two nodes
hosting respectively the services that manage the Kuber-
netes cluster and those that manage the Fission func-
tions) need more resources compared to the worker
nodes. Especially for AS and RR, their coordinator nodes

are experiencing high CPU usage compared to vanilla. As
previously mentioned, this is due to the CPU consump-
tion of the routers in the Fission worker node that regu-
larly call the Kubernetes API server to get updates on the
IPs of the function pods.

When looking at the CPU consumption of Worker 2
and Worker 3 in AS (see Fig. 23), we notice that after the
failure, the CPU usage of Worker 3 starts to grow while
the CPU usage of Worker 2 goes down, which reflects the
behavior of the failover to the standby pod.

In RR, when pod 1 fails, another one is created in the
same node (Worker 2) and we observe a very short peak
in the CPU at the 6th minute, as shown in Fig. 24.

Lessons learned
From our experimental comparison of the three fault
tolerance approaches (i.e., retry, Active-Standby and
Request Replication), we note that each approach has

Fig. 20 CPU consumption in AS, vanilla and RR without and with failures (pod and node failure)

Fig. 21 Memory consumption in AS, vanilla and RR without and with failures (pod and node failure)

Page 17 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

different properties and is most effective under differ-
ent conditions. The retry approach is well suited for
transient failures that last a short time. This approach
consumes less resources and is thus more energy-effi-
cient than the Active-Standby and the Request Replica-
tion approaches. The Active-Standby approach offers
better availability for long-lasting failures, compared to
the retry approach, but at the cost of higher resource
consumption. For instance, in our experiments, the
Active-Standby mechanism consumes more than two
times the CPU consumed by the retry mechanism. The
Request Replication approach offers the best availabil-
ity whatever the duration of the failure. Indeed, when
the failure does not affect all replicas, there is almost

no impact on the overall availability. This approach also
offers the best, and most stable performance. On the
other hand, the approach incurs the highest resource
consumption. In general, we observe that availability
and resource consumption in the three approaches are
inversely related.

Based on the previous discussion, we can see that
choosing the appropriate fault tolerance approach
depends on the requirements that must be addressed. If
the emphasis is on good performance (e.g., for latency
sensitive applications), the preferred approach is RR.
If the emphasis is on minimum resource usage (e.g., for
resource-constrained environments, such as edge envi-
ronments) with limited need for availability, the preferred

Fig. 22 CPU consumption per node in vanilla with pod failure

Fig. 23 CPU consumption per node in AS with pod failure

Page 18 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

approach is retry. AS can be used when the requirement
is for high availability as well as moderate resource usage.

In the presented experiments, the three approaches
were tested with a stateless application that does not
retain state between requests (neither within the instance
nor in external storage). In future efforts, we will investi-
gate the behavior of these approaches with other applica-
tion types, such as stateful FaaS applications. With these
applications, state is typically maintained in external
storage services, such as NoSQL databases [28]. Using
RR for such applications seems challenging. The reason is
that concurrent accesses generate a high load on the stor-
age service and introduce overhead for maintaining con-
sistency. This may result in reduced performance in the
case of normal, fault-free operation compared to using
AS or retry. Integrating caching into the stateful func-
tions could mitigate this problem [46].

Given the trade-offs between the different fault toler-
ance approaches, we believe that a FaaS platform should
simultaneously support multiple mechanisms, such as
retry, AS and RR, and use one or another according to
specific criteria. These criteria may include performance,
availability, and resource consumption requirements,
application types, fault models, and operating conditions,
such as network latencies.

Conclusion and future work
This paper proposes the integration of an active replica-
tion fault tolerance approach (RR) in FaaS platforms.
The RR mechanism was experimentally compared with
a passive replication mechanism (AS) and the basic retry
mechanism in terms of different metrics, and under dif-
ferent failure scenarios.

The obtained results highlight the differences among
the three approaches. Notably, they show that the retry
approach is not sufficient for providing high availability.
The reason is that the default behavior of retry results in
significant recovery time in the case of node failures. The
retry approach is better suited for transient failures as
seen in the network delay scenario. With AS, the recov-
ery time is decreased because the service becomes avail-
able as soon as the standby replica detects the failure of
the active replica. With RR, the service remains available
as long as at least one replica continues to respond to
users as recovery does not depend on replacing the faulty
replica.

In our future work, we plan to investigate additional
fault tolerance approaches proposed in the literature,
such as checkpointing. This approach periodically saves a
snapshot of an application’s state, known as a checkpoint,
to be used for restoring the application in the case of fail-
ures. In the context of FaaS, some research [34, 36] has
already proposed the usage of checkpointing to restart
functions from where they timed out, which is useful
for functions that execute long-running computations.
Checkpointing could be implemented with an adap-
tive checkpoint interval that uses the timings of already
occurred failures to estimate the occurrences of the next
ones [47].

Furthermore, we plan to design a fault-tolerant sys-
tem for FaaS that simultaneously supports multiple
mechanisms (e.g., retry, replication, checkpointing) and
uses one or another based on the type of FaaS applica-
tion (e.g., stateful or stateless) and operating conditions
(e.g., fault rates, network latencies) while meeting user’s
requirements (e.g., performance, availability, resource
consumption).

Fig. 24 CPU consumption per node in RR with pod failure

Page 19 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

Abbreviations
AS Active-Standby
AWS Amazon Web Service
CPU Central Processing Unit
FaaS Function as a Service
HTTP HyperText Transfer Protocol
IP Internet Protocol
NoSQL non Structured Query Language
RR Request Replication

Acknowledgements
Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see
https:// www. grid5 000. fr).

Authors’ contributions
Yasmina Bouizem co-wrote the paper, developed the code, performed the
experiments, and participated in results analysis. Christine Morin, Nikos
Parlavantzas, and Djawida Dib co-supervised Yasmina Bouizem’s PhD thesis.
They co-wrote the paper. They provided critical feed-back and helped shape
the research, analysis, and paper. The author(s) read and approved the final
manuscript.

Authors’ information
Yasmina Bouizem received her Master degree in Networking and Distrib-
uted Systems from Department of Computer Science, Tlemcen University,
Algeria in 2015. She received her Ph.D. degree in Computer Science from the
University of Rennes I. Her research interests are specialized in Fault Tolerance,
Serverless computing, Cloud computing and distributed systems.
Djawida Dib has been an associate professor at the Computer Science
Department of the University of Tlemcen since 2015. Her research interests
include cloud computing, distributed systems and solving tradeoffs in such
systems between cost, performance, failure resiliency and energy efficiency.
She received her PhD and MSc degrees in Computer Science from the Univer-
sity of Rennes I.
Nikos Parlavantzas has been an associate professor at INSA Rennes and
member of the Myriads research team at IRISA/Inria Rennes-Bretagne
Atlantique since 2009. Before joining INSA Rennes, he worked as a researcher
at Inria and Lancaster University. He has participated in several European pro-
jects, such as PaaSage, S-Cube, CoreGRID, and Grid4All. His research interests
include cloud computing, autonomic systems, and adaptable middleware. He
has a Ph.D. and M.Sc. from Lancaster University, UK, and a Diploma in Com-
puter Engineering and Informatics from the University of Patras, Greece.
Christine Morin is a senior scientist at Inria. Her research interests include
distributed systems, dependable computing, autonomic computing, green
computing, and cloud computing. She published more than 150 papers. She
led the XtreemOS and Contrail European projects respectively in Grid comput-
ing and Cloud computing. She co-founded the Kerlabs startup for providing
commercial support on the Kerrighed cluster operating system resulting from
her research activities on the design and implementation of single system
image operating systems. She received a PhD in Computer Science from the
University of Rennes 1 and a Computer Engineering degree from INSA Rennes,
France.

Funding
Yasmina Bouizem’s PhD work was partially funded by Inria and by a fellowship
from the University of Tlemcen. She also received mobility grants from PROFAS
B+, an Algerian-French scholarship program offered by the Algerian Ministry
of Higher Education and Scientific Research and Campus France, and from
Rennes Metropole (France).

Availability of data and materials
The source code and related resources are available in our Github repository:
https:// github. com/ YasFa aS/ FaaS- FT.

Declarations

Competing interests
The authors declare no competing interests.

Received: 18 September 2022 Accepted: 9 May 2023

References
 1. Castro P, Ishakian V, Muthusamy V, Slominski A (2019) The rise of serverless

computing. Commun ACM 62(12):44–54
 2. Jonas E, Schleier-Smith J, Sreekanti V, Tsai CC, Khandelwal A, Pu Q,

Shankar V, Carreira J, Krauth K, Yadwadkar N, et al (2019) Cloud program-
ming simplified: A berkeley view on serverless computing. arXiv preprint
arXiv: 1902. 03383

 3. Amazon Web Services (2020) Aws lambda features. https:// aws. amazon.
com/ lambda/ featu res/. Accessed 07 July 2021

 4. Google cloud functions (2019) Retrying background functions. https://
cloud. google. com/ funct ions/ docs/ bestp racti ces/ retri es. Accessed 07 July
2021

 5. Azure Functions (2020) Azure functions. https:// azure. micro soft. com/ fr- fr/
servi ces/ funct ions/. Accessed 07 July 2021

 6. Fission (2019) Fission. https:// docs. fissi on. io/ docs/. Accessed 07 July 2021
 7. OpenFaaS (2019) Openfaas. https:// www. openf aas. com. Accessed 07 July

2021
 8. Kubeless (2021) Kubeless. https:// kubel ess. io. Accessed 07 July 2021
 9. Apache OpenWhisk (2021) Apache openwhisk. https:// openw hisk.

apache. org. Accessed 07 July 2021
 10. Amazon Web Services (2020) Error handling and automatic retries in aws

lambda. https:// docs. aws. amazon. com/ lambda/ latest/ dg/ invoc ation- retri
es. html. Accessed 07 July 2021

 11. AWS Admin (2019) Using aws serverless technology as an enabler for
cloud adoption. https:// aws. amazon. com/ blogs/ apn/ using- aws- serve
rless- techn ology- as- an- enabl er- for- cloud- adopt ion/. Accessed 07 July
2021

 12. Cloud design patterns (2020) Retry pattern. https:// docs. micro soft. com/
en- us/ azure/ archi tectu re/ patte rns/ retry. Accessed 07 July 2021

 13. OpenFaaS (2019) Timeouts - asynchronous invocations. https:// docs.
openf aas. com/ deplo yment/ troub lesho oting/# timeo uts- async hrono us-
invoc ations. Accessed 07 July 2021

 14. Felber P, Narasimhan P (2004) Experiences, strategies, and challenges in
building fault-tolerant corba systems. IEEE Trans Comput 53(5):497–511

 15. Bouizem Y, Dib D, Parlavantzas N, Morin C (2020) Active-Standby for
High-Availability in FaaS. In: Sixth International Workshop on Serverless
Computing (WoSC6) 2020, Delft, Netherlands. https:// doi. org/ 10. 1145/
34298 80. 34300 97. https:// hal. inria. fr/ hal- 03043 479

 16. Amazon Web Services (2022) How do i make my lambda function idem-
potent? https:// aws. amazon. com/ premi umsup port/ knowl edge- center/
lambda- funct ion- idemp otent/. Accessed 29 Apr 2022

 17. Google cloud functions (2022) Retrying event-driven functions. https://
cloud. google. com/ funct ions/ docs/ bestp racti ces/ retri es. Accessed 30 Apr
2022

 18. Amazon Web Services (2022) Configuring provisioned concurrency.
https:// docs. aws. amazon. com/ lambda/ latest/ dg/ provi sioned- concu
rrency. html. Accessed 09 Dec 2022

 19. Mukwevho MA, Celik T (2021) Toward a smart cloud: A review of fault-tol-
erance methods in cloud systems. IEEE Trans Serv Comput 14(2):589–605.
https:// doi. org/ 10. 1109/ TSC. 2018. 28166 44

 20. AWS Admin (2020) Azure functions geo-disaster recovery. https:// docs.
micro soft. com/ en- us/ azure/ azure- funct ions/ funct ions- geo- disas ter-
recov ery. Accessed 07 July 2021

 21. Google Cloud Workflows (2021) Google cloud workflows. https:// cloud.
google. com/ workfl ows. Accessed 07 July 2021

 22. AWS Step Functions (2021) Aws step functions. https:// aws. amazon. com/
step- funct ions. Accessed 07 July 2021

 23. Azure Durable Functions (2021) Azure durable functions. https:// docs.
micro soft. com/ en- us/ azure/ azure- funct ions/ durab le. Accessed 07 July
2021

 24. Resume AWS Step Functions (2021) Resume aws step functions from any
state. https:// aws. amazon. com/ blogs/ compu te/ resume- aws- step- funct
ions- from- any- state/. Accessed 07 July 2021

 25. Apache OpenWhisk Composer (2021) Apache openwhisk composer.
https:// github. com/ apache/ openw hisk- compo ser. Accessed 07 July 2021

https://www.grid5000.fr
https://github.com/YasFaaS/FaaS-FT
http://arxiv.org/abs/1902.03383
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://azure.microsoft.com/fr-fr/services/functions/
https://azure.microsoft.com/fr-fr/services/functions/
https://docs.fission.io/docs/
https://www.openfaas.com
https://kubeless.io
https://openwhisk.apache.org
https://openwhisk.apache.org
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://aws.amazon.com/blogs/apn/using-aws-serverless-technology-as-an-enabler-for-cloud-adoption/
https://aws.amazon.com/blogs/apn/using-aws-serverless-technology-as-an-enabler-for-cloud-adoption/
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.openfaas.com/deployment/troubleshooting/#timeouts-asynchronous-invocations
https://docs.openfaas.com/deployment/troubleshooting/#timeouts-asynchronous-invocations
https://docs.openfaas.com/deployment/troubleshooting/#timeouts-asynchronous-invocations
https://doi.org/10.1145/3429880.3430097
https://doi.org/10.1145/3429880.3430097
https://hal.inria.fr/hal-03043479
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://doi.org/10.1109/TSC.2018.2816644
https://docs.microsoft.com/en-us/azure/azure-functions/functions-geo-disaster-recovery
https://docs.microsoft.com/en-us/azure/azure-functions/functions-geo-disaster-recovery
https://docs.microsoft.com/en-us/azure/azure-functions/functions-geo-disaster-recovery
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/
https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/
https://github.com/apache/openwhisk-composer

Page 20 of 20Bouizem et al. Journal of Cloud Computing (2023) 12:94

 26. Faas-flow (2021) Faas-flow. https:// github. com/ s8sg/ faas- flow. Accessed
07 July 2021

 27. Sreekanti V, Wu C, Chhatrapati S, Gonzalez JE, Hellerstein JM, Faleiro JM
(2020) A fault-tolerance shim for serverless computing. In: Proceedings
of the Fifteenth European Conference on Computer Systems, Association
for Computing Machinery, New York, NY, USA, EuroSys ’20. https:// doi.
org/ 10. 1145/ 33421 95. 33875 35

 28. Zhang H, Cardoza A, Chen PB, Angel S, Liu V (2020) Fault-tolerant and
transactional stateful serverless workflows. In: 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), USENIX
Association, Banff, Alberta. https:// www. usenix. org/ confe rence/ osdi20/
prese ntati on/ zhang- haoran. Accessed 21 June 2023

 29. Jia Z, Witchel E (2021) Boki: Stateful serverless computing with shared
logs. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM. Association for Computing Machinery, New
York, pp 691–707

 30. Wu C, Sreekanti V, Hellerstein JM (2020) Transactional causal consistency
for serverless computing. In: Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. Association for Computing
Machinery, New York, pp 83–97

 31. Wu C, Faleiro J, Lin Y, Hellerstein J (2019) Anna: A kvs for any scale. IEEE
Trans Knowl Data Eng 33(2):344–58

 32. de Heus M, Psarakis K, Fragkoulis M, Katsifodimos A (2021) Distributed
transactions on serverless stateful functions. In: Proceedings of the
15th ACM International Conference on Distributed and Event-based
Systems. Association for Computing Machinery, New York, pp 31–42

 33. Apache Flink StateFu (2021) Apache flink statefu. https:// flink. apache. org/
state ful- funct ions. html. Accessed 14 Nov 2021

 34. Zhang W, Fang V, Panda A, Shenker S (2020) Kappa: A programming
framework for serverless computing. In: Proceedings of the 11th ACM
Symposium on Cloud Computing. Association for Computing Machinery,
New York, pp 328–343

 35. Carver B, Zhang J, Wang A, Anwar A, Wu Y Panruo andCheng (2020)
Wukong: A scalable and locality-enhanced framework for serverless par-
allel computing. In: Proceedings of the 11th ACM Symposium on Cloud
Computing. Association for Computing Machinery, New York, pp 1–15

 36. Karhula P, Janak J, Schulzrinne H (2019) Checkpointing and migration of
iot edge functions. In: Proceedings of the 2nd International Workshop
on Edge Systems, Analytics and Networking, Association for Computing
Machinery, New York, NY, USA, EdgeSys ’19, p 60–65. https:// doi. org/ 10.
1145/ 33014 18. 33139 47

 37. Yussupov V, Soldani J, Breitenbücher U, Brogi A, Leymann F (2021) Faasten
your decisions: A classification framework and technology review of
function-as-a-service platforms. J Syst Softw 175:110906. https:// doi. org/
10. 1016/j. jss. 2021. 110906

 38. Hightower K, Burns B, Beda J (2017) Kubernetes: up and running: dive
into the future of infrastructure. O’Reilly Media, Inc

 39. Shilkov M (2019) What is a cold start? https:// mikha il. io/ serve rless/ colds
tarts/ define/. Accessed 07 July 2021

 40. Fission Router (2020) Fission router. https:// godoc. org/ github. com/ fissi
on/ fissi on/ pkg/ router. Accessed 07 July 2021

 41. Kubernetes Readiness Probe (2021) Configure liveness, readiness and
startup probes. https:// kuber netes. io/ docs/ tasks/ confi gure- pod- conta
iner/ confi gure- liven ess- readi ness- start up- probes/. Accessed 07 July 2021

 42. Grid5000 (2020) Grid5000. https:// www. grid5 000. fr/w/ Grid5 000: Home.
Accessed 07 July 2021

 43. Kubernetes (2021) Kubernetes. https:// kuber netes. io/. Accessed 07 July
2021

 44. Tsung (2021) Tsung. http:// tsung. erlang- proje cts. org/ user_ manual/.
Accessed 07 July 2021

 45. chaos (2021) Chaos mesh. https:// chaos- mesh. org/. Accessed 07 July
2021

 46. Sreekanti V, Wu C, Lin XC, Schleier-Smith J, Gonzalez JE, Hellerstein JM,
Tumanov A (2020) Cloudburst: Stateful functions-as-a-service. Proc VLDB
Endow 13(12):2438–2452. https:// doi. org/ 10. 14778/ 34077 90. 34078 36

 47. bin Bandan MI, Bhattacharjee S, Pradhan DK, Mathew J, (2015) Adaptive
checkpoint interval algorithm considering task deadline and lifetime
reliability for real-time system. Procedia Comput Sci 70:821–828

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/s8sg/faas-flow
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://flink.apache.org/stateful-functions.html
https://flink.apache.org/stateful-functions.html
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1016/j.jss.2021.110906
https://doi.org/10.1016/j.jss.2021.110906
https://mikhail.io/serverless/coldstarts/define/
https://mikhail.io/serverless/coldstarts/define/
https://godoc.org/github.com/fission/fission/pkg/router
https://godoc.org/github.com/fission/fission/pkg/router
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.grid5000.fr/w/Grid5000:Home
https://kubernetes.io/
http://tsung.erlang-projects.org/user_manual/
https://chaos-mesh.org/
https://doi.org/10.14778/3407790.3407836

	Integrating request replication into FaaS platforms: an experimental evaluation
	Abstract
	Introduction
	Related work
	Fission FaaS framework
	Existing fault tolerance mechanisms in Fission
	Retry
	Active-Standby
	Implementation in Fission

	Request Replication for FaaS
	Request Replication principle
	Implementation in Fission

	Experimental setup
	Environment
	Applications
	Workload
	Failure scenarios
	 Metrics

	Experimental results
	Performance Results
	Results with no failures
	Results with failures

	Availability results
	Recovery time
	Error rate

	Resource consumption analysis

	Lessons learned
	Conclusion and future work
	Acknowledgements
	References

