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Abstract 

Function-as-a-Service (FaaS) is a popular programming model for building serverless applications, supported by all 
major cloud providers and many open-source software frameworks. One of the main challenges for FaaS providers is 
providing fault tolerance for the deployed applications, that is, providing the ability to mask failures of function invo-
cations from clients. The basic fault tolerance approach in current FaaS platforms is automatically retrying function 
invocations. Although the retry approach is well suited for transient failures, it incurs delays in recovering from other 
types of failures, such as node crashes. This paper proposes the integration of a Request Replication mechanism in 
FaaS platforms and describes how this integration was implemented in Fission, a well-known, open-source platform. 
It provides a detailed experimental comparison of the proposed approach with the retry approach and an Active-
Standby approach in terms of performance, availability, and resource consumption under different failure scenarios.
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Introduction
Serverless computing is an increasingly popular model 
for developing and running cloud applications [1, 2]. 
With serverless computing, developers are isolated from 
the details of infrastructure management and are able 
to focus on the business logic of their applications. At 
the core of serverless computing is the Function-as-a-
Service (FaaS) programming model in which the unit of 
computation is a function. Developers provide the func-
tion code, and the FaaS platform automatically manages 
resource provisioning and function execution. Several 
FaaS platforms are commercially available, such as Ama-
zon Lambda [3], Google Functions [4], and Azure func-
tions [5], or distributed in open source, such as Fission 
[6], OpenFaaS [7], Kubeless [8], and OpenWhisk [9].

A key challenge in running applications on FaaS plat-
forms is ensuring fault-tolerance for the deployed func-
tions. Fault tolerance for FaaS refers to the ability of the 
system to continue serving function requests despite 
infrastructure failures, such as hardware failures, virtual-
ization software failures, and network failures. Fault tol-
erance is essential for ensuring high availability in FaaS 
deployments. High availability and built-in fault toler-
ance are promoted as essential features of commercial 
FaaS platforms (e.g., [3]). Most current FaaS platforms 
support a single fault tolerance approach that involves 
retrying function executions [4, 6, 10–13]. However, 
while the retry approach allows coping with transient 
failures such as temporary loss of network connectivity, 
it incurs delays in recovering from other kinds of failures 
such as node failures.

In the work described in the present paper, we pro-
pose to integrate an active replication  [14] approach in 
FaaS frameworks in order to make failures transparent 
to the applications. The proposed approach consists in 
replicating function requests and is implemented in Fis-
sion, a popular open-source FaaS framework. This work 
extends our previous work [15] describing the integration 
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of an Active-Standby fault tolerance approach in FaaS 
platforms. Specifically, the current work proposes a new 
fault-tolerance approach, provides an extensive experi-
mental evaluation of the two approaches along with the 
retry approach, and discusses the lessons learned from 
this evaluation.

The proposed approach along with the Active-Standby 
and retry approaches assume that functions are or can 
be converted to become idempotent, which means that 
the functions produce the same results when executed 
multiple times with the same input. This is the typical 
assumption made by current FaaS platforms. Convert-
ing non-idempotent code to become idempotent may 
be challenging, especially when the code interacts with 
external, non-idempotent services, but FaaS providers 
give guidelines for performing this conversion (e.g.,  [16, 
17]).

Moreover, the proposed approach along with the 
Active-Standby approach maintain functions continu-
ously running and thus using resources even if they 
receive no traffic. This resource cost is only paid for func-
tions that require high availability. Current commercial 
FaaS platforms also include features that maintain func-
tions continuously running, such as the provisioned 
concurrency feature in AWS Lambda  [18]. The motiva-
tion for that AWS feature, however, is to reduce start-up 
latency rather than provide fault-tolerance.

This paper brings the following novel contributions:

• Study of the integration of an active replication fault 
tolerance approach (called Request Replication) in a 
FaaS environment;

• Implementation of the approach in the Fission FaaS 
platform (Fission Request Replication);

• Comparative evaluation according to several metrics 
of Fission Request Replication, Fission Vanilla (native 
retry approach), and a new version of Fission Active-
Standby (enhanced implementation of the fault tol-
erance approach proposed in [15]), using a compu-
tational application both in normal functioning and 
in various failure scenarios, including instance and 
node failures and network delays;

• Insights on how to select a fault tolerance approach 
according to the application type and user require-
ments in terms of performance, resource consump-
tion, and availability.

The remainder of the paper is organized as follows. 
Section “Related Work” discusses related work. Sec-
tion “Fission FaaS Framework” presents Fission, a rep-
resentative, open-source FaaS platform, which we used 
for implementing and evaluating our proposed fault 
tolerance approach. Section “Existing fault tolerance 

mechanisms in Fission” describes two existing fault tol-
erance approaches and their implementation in Fission; 
namely, the retry approach natively implemented in Fis-
sion, and the Active-Standby approach that we proposed 
in [15]. Section “Request Replication for FaaS” presents 
the Request Replication approach in the context of FaaS 
platforms and its implementation in Fission. Section 
“Experimental Setup” is devoted to the experimental 
setup, and Section “Experimental Results” analyses the 
experimental evaluation results. We expand on lessons 
learnt in Section “Lessons Learned” and conclude in Sec-
tion “Conclusion and Future Work”.

Related work
A wide range of approaches have been applied to sup-
port fault tolerance in cloud systems [19]. In the follow-
ing, we only consider work related to fault tolerance in 
serverless systems. The basic fault tolerance mechanism 
in current commercial and open-source FaaS platforms is 
automatically retrying invocations. All major commercial 
platforms, such as AWS Lambda [10, 11], Google Cloud 
Functions  [4] and Microsoft Azure Functions  [12], pro-
vide automatic retry functionality to handle failures and 
timeouts. For instance, AWS Lambda retries asynchro-
nous invocations up to two times with a delay between 
such retries. Some open-source FaaS platforms also sup-
port the retry mechanism, including Fission and Open-
FaaS, which retry asynchronous invocations with an 
exponential back-off [13]. Our work considers fault toler-
ance mechanisms beyond automatic retry.

Fault tolerance in serverless systems can also be real-
ised through using additional services provided by cloud 
platforms. For instance, using Azure load-balancing and 
event ingestion services, developers can deploy func-
tions in different regions to allow for disaster recovery. 
The functions can be deployed using an active-active or 
an active-passive configuration  [20]. Using serverless 
orchestration services (such as Google Workflows  [21], 
AWS Step Functions  [22], or Azure Durable Func-
tions  [23]), developers can define workflows that coor-
dinate functions, automatically retry failed or timed-out 
invocations, and run custom code to handle different 
types of errors. For instance, using AWS Step Functions, 
developers can resume failed workflows from the state 
at which they failed  [24]. Similar capabilities are pro-
vided by open-source orchestration frameworks, such 
as Apache OpenWhisk Composer  [25] or Faas-flow for 
OpenFaaS  [26]. Our work focuses on fault tolerance 
mechanisms implemented within FaaS platforms without 
involving external services.

Recent research works investigate fault tolerance for 
stateful serverless applications, composed of multiple 
functions and interacting with storage services. Sreekanti 
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et  al.  [27] introduce a layer that lies between standard 
FaaS platforms and key-value databases to ensure atomic 
visibility of storage updates. The proposed system assures 
fault tolerance by enforcing the read atomic consistency 
guarantee. Zhang et al.  [28] describe a library and runt-
ime for building transactional, fault-tolerant workflows 
on existing serverless platforms. The system supports 
transactions within and across functions through apply-
ing a log-based fault tolerance approach. Jia et  al.  [29] 
propose Boki, a FaaS runtime that offers an API for 
stateful applications. The API enables the applications 
to manage their state and uses a log-based mechanism 
to achieve fault tolerance. Wu et al. [30] present Hydro-
Cache, a distributed cache layer for FaaS systems, which 
provides transactional causal consistency for state-
ful functions. The system relies on Anna storage  [31], a 
key-value state backend that supports fault tolerance. To 
ensure fault tolerance, transactions are retried with the 
same key version in case of storage node failure or net-
work delay. Node failures are detected using a heartbeat 
mechanism and unfinished functions of the failed node 
are re-scheduled on another node. Unlike those sys-
tems, our work focuses on ensuring fault tolerance for 
individual, idempotent functions rather than for stateful 
function compositions, and does not impose the use of 
additional APIs on FaaS developers.

Another recent work  [32] introduces a programming 
model and associated implementation for supporting 
transactions across stateful FaaS functions. This work 
builds on Apache Flink StateFun  [33], an open-source 
platform for stateful FaaS functions that uses a stream-
ing dataflow engine. The platform deals with failures via 
checkpointing/snapshots to achieve exactly-once-pro-
cessing guarantees. The StateFun programming model 
supports encapsulating state within function instances, 
which is not allowed in the typical FaaS model.

Zhang et  al.  [34] propose Kappa, a programming 
framework for building parallel serverless applications. 
The framework periodically checkpoints function results 
in order to enable failure recovery. Carver et al. [35] pre-
sent Wukong, a framework for building parallel FaaS 
applications on top of AWS Lambda. In case of failure, 
the automatic retry mechanism of AWS Lambda is used 
to re-execute the failed function. Both these systems 
propose libraries built on top of an unmodified FaaS 
platform (AWS Lambda) while our mechanisms are inte-
grated within the FaaS platform.

Karhula et  al.  [36] propose using Docker and CRIU 
(Checkpoint/Restore In Userspace) for checkpointing 
and resuming long-running functions that run on IoT 
devices as well as for migrating these functions to differ-
ent IoT devices. Although these mechanisms could be 
used as building blocks for a fault-tolerant FaaS system, 

this work does not provide a complete, practical imple-
mentation of such a system.

In summary, there are several solutions that propose 
fault tolerance mechanisms beyond the basic retry mech-
anism. However, all such solutions require the use of 
APIs and primitives outside those provided by the core 
FaaS model, which only supports invoking functions in 
response to events. For instance, these solutions require 
the use of load balancing services [20], workflow orches-
tration services [24], or specialized, state-aware program-
ming models [27–30, 32]. To the best of our knowledge, 
our work is the first to integrate fault-tolerance mecha-
nisms into the FaaS platform without deviating from the 
core FaaS model and thus without adding complexity for 
developers.

Fission FaaS framework
In this section, we present Fission [6], the FaaS platform 
used in all the experiments presented in this paper. We 
selected Fission because it is representative of exist-
ing FaaS platforms. Indeed, as the vast majority of such 
platforms  [37], Fission is built on the Kubernetes  [38] 
container orchestrator, and is developed in Go  [37]. 
Moreover, Fission is one of the most popular open-source 
FaaS platforms [37].

The core Fission components are: Function Pods, 
Router, and Executor (see Fig. 1). Function Pods contain 
function-specific containers to serve requests coming 
from users, called function calls.

The Router receives the function call (message 1 in 
Fig.  1) and checks if a corresponding function pod is 
running. If no corresponding function pod is running, 
the Router requests the creation of a new one from the 
Executor (message 2 in Fig.  1). There are two types of 
Executor: PoolManager and NewDeploy. The PoolMan-
ager Executor maintains a pool of warm generic pods in 
order to provide low cold start latencies  [39] and start 
functions quickly (message 2.a in Fig.  1). After creating 
the function pod, the PoolManager Executor sends the 
Pod’s IP address to the Router (message 3.a in Fig.  1). 
Then, the Router forwards the function call to the pod 
(message 4.a in Fig. 1). The PoolManager Executor does 
not allow using multiple pods per function, which limits 
its scaling during high traffic. The NewDeploy Executor 
allows creating multiple pods per function along with a 
Kubernetes service to load balance the requests between 
the function pods (message 2.b in Fig. 1). The NewDeploy 
Executor also uses a Horizontal Pod Autoscaler (HPA) 
to automatically adjust the number of pods to match the 
traffic. After creating the function pod(s), the NewD-
eploy Executor sends the IP address of the corresponding 
Kubernetes service to the Router (message 3.b in Fig. 1). 
The Router forwards the function call to the Kubernetes 
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service which routes it to the corresponding pod(s) (mes-
sage 4.b in Fig. 1). If a running function pod exists at the 
time of receiving a function call, the Router forwards it 
either to the corresponding Pod’s IP address (message 4.a 
in Fig. 1) or to the corresponding Kubernetes service’s IP 
address (message 4.b in Fig. 1), depending on the Execu-
tor used to create the running function pod.

Existing fault tolerance mechanisms in Fission
We present in this section two fault tolerance mech-
anisms implemented in Fission: the native retry 
mechanism available in most FaaS platforms and the 
Active-Standby mechanism, an enhanced version of the 
one proposed in our previous work [15].

Retry
Retry is the native fault tolerance approach in Fission 
and consists basically in restarting the entire submission 
process of a failed request. The retry mechanism used 
in Fission works as shown in Fig.  2 assuming a NewD-
eploy Executor. When a function call is received, the 
Router forwards it to the corresponding function pod, 
as described in Section  “Fission FaaS Framework”. The 
Router then sends the request to the Kubernetes ser-
vice which forwards it to the function pod. If the func-
tion execution fails due to network timeout errors, the 
Router tries to forward again the function call until 
receiving a response from the function execution or 
reaching the maximum number of retries set by the 

administrator  [40]. If all the retries fail or the error is a 
network dial error, Fission assumes that the function pod 
does not exist anymore. Thus, the Router asks the Execu-
tor for a new service for the function. The Router tries to 
forward the function call to the new Kubernetes service 
and so on until the request is served. The Router relays to 
the user any errors beyond network timeout and network 
dial errors.

Active‑Standby
In the context of FaaS, the Active-Standby approach con-
sists in creating two function instances. The first is active 
and serves incoming requests while the second is passive 
(on standby).

Each instance monitors the connectivity of the other 
instance using heartbeats. If no heartbeat is received from 
an instance within a given time interval, the instance 
is considered as unreachable. If the passive instance is 
unreachable, another passive instance is created. If the 
active instance is unreachable, the passive instance is 
activated and a new passive instance is created.

Implementation in Fission
To implement the Active-Standby approach in Fission, 
we use the NewDeploy executor because it supports 
creating replicas of function pods. In this approach, two 
function pods are created (i.e., active and passive) and 
both support the Kubernetes Readiness Probe  [41] that 
indicates when the container is ready to receive requests. 

Fig. 1 Simplified Fission Architecture
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The active pod declares the ready state and can receive 
and serve traffic. The passive pod declares the not-ready 
state, and no traffic is forwarded to it.

We implemented a new Router, called Active-Standby 
Router (Router AS), which allows routing requests only 

to the Active pod, and use this instead of the default Fis-
sion Router. The Router AS does not support the retry 
mechanism. Once a request is received by the Router 
AS (message 1 in Fig. 3), it needs to be executed specifi-
cally by the active pod. In this case, the Router AS gets 

Fig. 2 Fault tolerance protocol with the Retry mechanism

Fig. 3 Overview of the Active-Standby mechanism in Fission
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the IP address of the active pod from the Kubernetes API 
(message 2 in Fig. 3) and forwards the request directly to 
this address (message 3 in Fig.  3 ). The Router receives 
the response (message 4 in Fig. 3) and sends it to the user 
(message 5 in Fig. 3).

Figure  4 offers a more comprehensive view of the 
implementation of the Active-Standby mechanism in 
Fission. While the request is being processed, both 
active and standby pods send and receive heartbeats to 
and from each other for health checks. The heartbeats 
are sent every second (the minimum configurable value 
using Kubernetes Readiness probes). While the active 
pod is running, the passive pod fails the readiness probe 
and remains in the not-ready state. If the active pod fails, 
the passive pod passes the readiness probe and becomes 
active. A new pod is then created to take the place of the 
previously passive pod. Similarly, if the passive pod fails, 
a new pod is created to take its place.

Request Replication for FaaS
In this section, we present the Request Replication fault 
tolerance approach and its implementation in Fission.

Request Replication principle
Request Replication consists in having K replicas pro-
cess a request at the same time. The number of replicas 

depends on the required number of simultaneous failures 
to be tolerated.

The Request Replication (RR) solution is divided into 
two phases. First, the client sends a request, and the 
request is received and processed simultaneously by all 
replicas. Second, the first response produced by any rep-
lica is delivered to the client. The client can thus receive a 
response despite replica failures.

Implementation in Fission
To implement the RR approach in Fission, we used the 
NewDeploy Executor as it allows to create many pod 
replicas. We replaced the default Router with a new 
implemented one, called Router Request Replication 
(Router RR). This Router submits requests to all function 
pod replicas at the same time, and it does not support 
the retry mechanism. When the Router RR receives a 
request (message 1 in Fig. 5), it retrieves the IP addresses 
of the function pod replicas from the Kubernetes API 
(message 2 in Fig. 5). Then, it uses these IP addresses to 
replicate each received request on all function pod rep-
licas in order to be processed in parallel (message 3 in 
Fig. 5). Then, the responses are sent to the router (mes-
sage 4 in Fig.  5) and the first received response is sent 
to the user (message 5 in Fig.  5). To tolerate K failures 
using this approach, it is necessary to have a minimum 
of K+1 replicas, distributed across different nodes. The 

Fig. 4 Fault tolerance protocol with the Active-Standby mechanism
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pod anti-affinity mechanism provided by Kubernetes 
is used to guarantee this distribution. Figure  6 offers a 
more comprehensive view of the implementation of the 
Request Replication approach in Fission.

Experimental setup
In this section we describe the experimental setup for 
evaluating the effectiveness of the proposed RR fault 
tolerance approach and comparing it with the retry and 

the AS approaches in the context of their implemen-
tation in Fission. In all experiments, the RR approach 
uses two replicas, which is sufficient to demonstrate the 
differences among the three approaches. Increasing the 
number K of replicas would be useful for services that 
require the highest level of availability (e.g., emergency 
response systems, medical services).

Fig. 5 Overview of the Request Replication mechanism in Fission

Fig. 6 Fault tolerance protocol with the Request Replication mechanism
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Environment
Our experiments were performed on Grid’5000  [42], 
a configurable testbed distributed over different sites 
in France with the goal to support experiment-driven 
research in parallel and distributed computing. Specifi-
cally, we used 5 nodes on the Lyon site (nova cluster), 
each node having 2 Intel Xeon E5-2620 v4 CPUs with 
8 cores/CPU and 64 GB memory, to deploy Kuber-
netes  [43] (version 1.19). In our cluster we have one 
node for the Kubernetes master and four worker nodes. 
One worker node contains the components of Fission 
AS (Active-Standby), Fission RR (Request Replication) 
or the original version of Fission (vanilla), depending on 
the experiment. The three other worker nodes are used 
to host the function pods. For each experiment we use 
either RR, AS or vanilla with version 1.10.0 (the latest 
stable release of Fission at the time we run our experi-
ments). We set up 2 additional nodes; one used as cli-
ent to invoke functions and one used to inject faults.

Applications
We used a CPU-intensive HTTP-triggered function 
that computes the Fibonacci sequence (a series of num-
bers where each number is the sum of the two preced-
ing ones). Our function takes n=15 as input, computing 
the 15th term of the sequence. We chose this simple 
function because it demonstrates in the most clear 
and concise manner the differences between the three 
approaches. Indeed, since the function is compute-
bound and does not rely on any data storage or exter-
nal services, it becomes easier to isolate and analyze 
the effect of the FT approach on performance, resource 
consumption, and availability.

Workload
The workload is generated with Tsung  [44], a high-
performance benchmark framework. In our test, we 
generated 60000 requests during 10 minutes with 100 
concurrent users created every second (corresponding 
to an input data rate of 100 requests/sec).

Failure scenarios
We defined three failure scenarios:

• Pod failure: where we inject a fault into a specified 
application to make it unavailable for a period of 
time.

• Node failure: where we kill the node hosting the 
application.

• Network delay: where we inject latency to see the 
impact of network delay on the deployed applica-

tion. This scenario is executed to see how the three 
approaches react to network issues.

 In the pod failure and network delay scenarios, we use 
the Chaos Mesh tool [45] to inject faults to pods. In the 
first scenario, the failure is simulated by killing the func-
tion pod at the 5th minute from the beginning of the 
workload execution. In the second scenario, the fail-
ure is simulated by killing the node hosting the func-
tion instance 5 minutes after the beginning of workload 
execution. In the third scenario, we inject latency at the 
5th minute for a duration of 10 seconds. The injected 
latency values are 50ms, 100ms and 200ms. Note that the 
injected latency causes a delay for all responses coming 
from the function pod. In the three scenarios, the failure 
is injected in the active pod for AS and in one of the two 
pods for RR. Each scenario has been repeated at least 5 
times for each version of Fission (i.e., vanilla, AS and RR). 
The averages of the measurements are shown in the illus-
trated results.

 Metrics
We evaluate our solution using three categories of 
metrics:

• Performance: Performance is measured using 
throughput (i.e, number of requests per second) and 
response time (i.e., the time between sending a user 
request and receiving the system response).

• Availability: Availability is measured using recovery 
time, i.e., the time between the first reaction to a fail-
ure and the resumption of the service. We also meas-
ure the error rate, that is, the proportion of failed 
requests (having HTTP 5xx response code).

• Resource consumption: Resource consumption is 
measured using CPU and memory usage of the 5 
nodes for the applied workload.

Experimental results
This section presents the results obtained from the 
experimental comparison of our proposed RR approach 
with the existing AS and retry approaches.

Performance Results
Results with no failures
Figure 7 shows the response time for Fission AS, vanilla 
and Fission RR with no failures. In this figure we can 
notice that Fission RR is slightly faster than Fission AS 
and vanilla because once it receives the first response 
from one of the function replicas, it forwards it to the 
user. Vanilla is slightly slower. This can be explained by 
the use of the Kubernetes service to send the request to 
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the pod belonging to the function, which adds another 
hop compared to AS and RR. AS, vanilla and RR handle 
the same throughput with values around 100 requests/
sec, which is the expected throughput. As a conclusion, 
we see that RR performs better than AS and vanilla in 
terms of response time when there are no failures.

Results with failures
  

1 Pod Failure Scenario Figures  8 and 9 illustrate the 
throughput and response time of AS, vanilla and RR 
with a pod failure. In Fig. 8, we can observe a small 
degradation in the throughput of AS. This is because 
of the failover of the active pod to the standby pod. 

Fig. 7 Response time of AS, vanilla and RR with no failure

Fig. 8 Throughput of AS, vanilla and RR with pod failure
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We also notice a degradation in the throughput of 
vanilla when the pod fails at 300s, as no pod is availa-
ble to serve the requests. RR provides stable through-
put despite the pod failure since all the traffic is exe-
cuted by the healthy replica. In Fig. 9, we notice some 
spikes in the response time of vanilla during almost 
30 seconds. This is attributed to that once the pod 
failure is detected, the router starts the retries. When 
the function pod recovers, we see that the response 

time drops off at around 7ms. In contrast, RR and 
AS provide stable response times with values around 
5ms.

2 Node Failure Scenario Figures  10 and  11 present 
performance results of AS, vanilla and RR with a 
node failure. Figure  10 shows a degradation in the 
throughput with AS when the node hosting the 
active pod crashes. This is because of the required 
actions to switch the passive pod to active. In vanilla, 

Fig. 9 Response time of AS, vanilla and RR with pod failure

Fig. 10 Throughput of AS, vanilla and RR with node failure
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the throughput drops when the function pod stops 
serving requests. The router then starts the retries 
and the requests are queued until a new pod starts 
running on a healthy node. This causes a spike in 
throughput that reaches 1300 requests/sec, and then 
drops back to a normal state. The throughput of RR 
remains constant because the failure is masked by the 
presence of the healthy replica that continues to pro-

cess the user’s requests. Figure 11 shows spikes in the 
latency of vanilla. This is because the router retries 
many requests, where the wait time is increased 
exponentially after each attempt. We assume that the 
response time of the queued requests is increased 
when the pod recovers. The response time of AS 
and RR is stable since the requests are served by the 
standby pod in AS and by the second replica in RR.

Fig. 11 Response time of AS, vanilla and RR with node failure

Fig. 12 Response time with 50ms of latency
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3 Network Delay Scenario We injected separately 
three latency values: 50ms, 100ms and 200ms. Fig-
ures  12, 13, and 14 show the response time of AS, 
vanilla and RR with the injected latency values. When 
we increase the latency value, we can see a significant 
change in the response time of vanilla. For example, 
200ms of latency doubles the response time of vanilla 

from 500ms to 1000ms (see Figs.  13 and  14). The 
reason for this behaviour is that the router retries 
requests with exponential backoff, increasing the 
waiting time between retries which leads to perfor-
mance degradation. Looking at the response time 
of AS, we notice a peak when the latency is added 
because the active pod responds too late. In RR, we 

Fig. 13 Response time with 100ms of latency

Fig. 14 Response time with 200ms of latency
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see no impact on the response time when we add 
latency on a single replica as this latency is masked by 
the fast response of the other replica.

Availability results
Recovery time
The recovery time is the time required for a service to 
recover from failures and become available again. This 
covers the time between failure detection and the time 
when the service becomes fully operational. It is meas-
ured for the three approaches as follows: For vanilla, 
after the failure, the pod becomes unhealthy (see Fig. 15). 
In reaction to that failure, the router retries the failed 
requests. When the maximum number of retries is 
reached, the pod is considered as failed and the ser-
vice URL is deleted from the router cache. The service 
becomes available again when a new pod is created and 
added to the router cache.

For AS, the failure is detected by the heartbeat mech-
anism (see Fig.  16). The reaction is the failover to the 

standby pod and the update of the router cache. Once the 
router cache is updated with the IP address of the active 
pod (Active-IP), the service becomes available.

For RR, no recovery is necessary as the failure of one 
of the replicas does not affect service availability (see 
Fig. 17). The service remains available because the second 
pod replica serves the requests.

1 Pod Failure Scenario As seen in Table 1, in the pod 
failure scenario, the measured recovery time for AS is 
significantly lower than for vanilla. The reason is that 
with AS, there is already a standby pod, and the ser-
vice is recovered as soon as the standby detects the 
failure of the active pod. In contrast, recovery with 
vanilla depends on the repair of the failed pod. For 
RR, the second replica continues to serve requests. 
Therefore, for this approach, recovery time is zero.

2 Node Failure Scenario In the node failure scenario 
(see Table 1), the recovery time for vanilla is signifi-
cantly higher than that for AS and RR. AS takes sec-
onds to recover from a node crash, whereas vanilla 
takes more than 2 minutes. This is explained by the 

Fig. 15 Recovery time in vanilla

Fig. 16 Recovery time in AS
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behavior of each approach. With AS when the node 
hosting the active replica fails, the passive replica 
detects the failure of the active replica and starts pro-
cessing the requests. RR recovery time is zero, since 
another active replica is running in parallel and con-
tinue processing the requests.

Error rate
In this section, we present the error rate of Fission 
vanilla, AS, and RR with pod and node failures. This met-
ric is a useful measure to evaluate the user perception 
when using the approaches under different failure sce-
narios. To measure the rate of requests that fail, we count 
the number of requests that return an HTTP status with 
a response code of 5xx (it means the request cannot be 
fulfilled due to a server error). If a request has been suc-
cessfully handled, the HTTP status code returned in the 
response is from the 2xx class of status code. 

1 Pod Failure Scenario As seen in Table 2 and Fig. 18, 
in the pod failure scenario, Vanilla has a 0.01% error 
rate (i.e., some HTTP requests failed with code 503 
service unavailable) which indicates that the router 
is unable to handle the request due to a temporary 

overload. The error rate for AS and RR is 0% (i.e., 
all requests succeeded with a response code of 200) 
which means that all requests have been successfully 
served.

2 Node Failure Scenario In the node failure scenario 
(see Table 2 and Fig. 19), the error rate for vanilla is 
1.26%. Once the requests are retried, some of them 
return a 502 status code, bad gateway, which means 
the router cannot reach the requested pod. For AS 
and RR, the error rate is 0%. The crash is better toler-
ated because of the presence of a replica. All requests 
are thus served with success and return the code 200.

Resource consumption analysis
We evaluate here the three fault-tolerance approaches in 
terms of CPU and memory usage. We chose to evaluate 
the approaches in terms of resource consumption rather 
than monetary cost because resource consumption is 
the main factor that determines cost. The cost may also 
depend on further factors that vary widely across deploy-
ments, such as the cost of infrastructure, servers, net-
works, energy as well as the billing model of the provider. 
Figures 20 and 21 show CPU and memory consumption, 

Fig. 17 Recovery time in RR

Table 1 Recovery Time with vanilla, AS, and RR in pod and node 
failure scenarios

Failure scenario Fission vanilla Fission AS Fission RR

Pod failure 7s 1.81s 0s

Node failure 2m19s 2.80s 0s

Table 2 Error rate for vanilla, AS, and RR in pod and node failure 
scenarios

Failure scenario Fission vanilla Fission AS Fission RR

Pod failure 0.01% 0% 0%

Node failure 1.26% 0% 0%
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respectively, for vanilla, AS and RR approaches with-
out and with failures (pod and node failures). This is the 
overall CPU and memory usage of the 5 nodes hosting 
Kubernetes and the Fission platform during the execu-
tion of the workload.

In the three scenarios (i.e., no failure, pod failure, node 
failure), we observe that RR consumes more CPU and 
memory compared to vanilla and AS. In the case of no 

failures, for example, the overhead of using RR is 180% 
in CPU and 52% in memory consumption compared to 
vanilla. AS has an overhead of 141% in CPU consump-
tion and 39% in memory consumption compared to 
vanilla. Theoretically the expected overhead of RR should 
be proportional to the number of replicas (around 100% 
compared to vanilla in the case of two replicas). How-
ever the actual overhead of AS/RR compared to vanilla is 

Fig. 18 HTTP code response rate in vanilla, AS and RR with pod failure

Fig. 19 HTTP code response rate in vanilla, AS and RR with node failure
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higher. This is due to the implementation of their respec-
tive routers that regularly invoke the Kubernetes API to 
obtain the current IP addresses of pods. We chose this 
mechanism for its implementation simplicity. This over-
head could be reduced by notifying the routers when 
changes in the pod addresses occur, as in the case of pod 
failures.

Figures   22,   23, and   24 show the average CPU con-
sumption over time for the Kubernetes master node, 
the Fission worker node, and the 3 worker nodes for all 
approaches with a pod failure.

The CPU consumption of AS and RR is similar and 
vanilla shows the lowest CPU utilization. We notice that 
on average, the coordinator nodes (i.e., the two nodes 
hosting respectively the services that manage the Kuber-
netes cluster and those that manage the Fission func-
tions) need more resources compared to the worker 
nodes. Especially for AS and RR, their coordinator nodes 

are experiencing high CPU usage compared to vanilla. As 
previously mentioned, this is due to the CPU consump-
tion of the routers in the Fission worker node that regu-
larly call the Kubernetes API server to get updates on the 
IPs of the function pods.

When looking at the CPU consumption of Worker 2 
and Worker 3 in AS (see Fig. 23), we notice that after the 
failure, the CPU usage of Worker 3 starts to grow while 
the CPU usage of Worker 2 goes down, which reflects the 
behavior of the failover to the standby pod.

In RR, when pod 1 fails, another one is created in the 
same node (Worker 2) and we observe a very short peak 
in the CPU at the 6th minute, as shown in Fig. 24.

Lessons learned
From our experimental comparison of the three fault 
tolerance approaches (i.e., retry, Active-Standby and 
Request Replication), we note that each approach has 

Fig. 20 CPU consumption in AS, vanilla and RR without and with failures (pod and node failure)

Fig. 21 Memory consumption in AS, vanilla and RR without and with failures (pod and node failure)
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different properties and is most effective under differ-
ent conditions. The retry approach is well suited for 
transient failures that last a short time. This approach 
consumes less resources and is thus more energy-effi-
cient than the Active-Standby and the Request Replica-
tion approaches. The Active-Standby approach offers 
better availability for long-lasting failures, compared to 
the retry approach, but at the cost of higher resource 
consumption. For instance, in our experiments, the 
Active-Standby mechanism consumes more than two 
times the CPU consumed by the retry mechanism. The 
Request Replication approach offers the best availabil-
ity whatever the duration of the failure. Indeed, when 
the failure does not affect all replicas, there is almost 

no impact on the overall availability. This approach also 
offers the best, and most stable performance. On the 
other hand, the approach incurs the highest resource 
consumption. In general, we observe that availability 
and resource consumption in the three approaches are 
inversely related.

Based on the previous discussion, we can see that 
choosing the appropriate fault tolerance approach 
depends on the requirements that must be addressed. If 
the emphasis is on good performance (e.g., for latency 
sensitive applications), the preferred approach is RR. 
If the emphasis is on minimum resource usage (e.g., for 
resource-constrained environments, such as edge envi-
ronments) with limited need for availability, the preferred 

Fig. 22 CPU consumption per node in vanilla with pod failure

Fig. 23 CPU consumption per node in AS with pod failure
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approach is retry. AS can be used when the requirement 
is for high availability as well as moderate resource usage.

In the presented experiments, the three approaches 
were tested with a stateless application that does not 
retain state between requests (neither within the instance 
nor in external storage). In future efforts, we will investi-
gate the behavior of these approaches with other applica-
tion types, such as stateful FaaS applications. With these 
applications, state is typically maintained in external 
storage services, such as NoSQL databases  [28]. Using 
RR for such applications seems challenging. The reason is 
that concurrent accesses generate a high load on the stor-
age service and introduce overhead for maintaining con-
sistency. This may result in reduced performance in the 
case of normal, fault-free operation compared to using 
AS or retry. Integrating caching into the stateful func-
tions could mitigate this problem [46].

Given the trade-offs between the different fault toler-
ance approaches, we believe that a FaaS platform should 
simultaneously support multiple mechanisms, such as 
retry, AS and RR, and use one or another according to 
specific criteria. These criteria may include performance, 
availability, and resource consumption requirements, 
application types, fault models, and operating conditions, 
such as network latencies.

Conclusion and future work
This paper proposes the integration of an active replica-
tion fault tolerance approach (RR) in FaaS platforms. 
The RR mechanism was experimentally compared with 
a passive replication mechanism (AS) and the basic retry 
mechanism in terms of different metrics, and under dif-
ferent failure scenarios.

The obtained results highlight the differences among 
the three approaches. Notably, they show that the retry 
approach is not sufficient for providing high availability. 
The reason is that the default behavior of retry results in 
significant recovery time in the case of node failures. The 
retry approach is better suited for transient failures as 
seen in the network delay scenario. With AS, the recov-
ery time is decreased because the service becomes avail-
able as soon as the standby replica detects the failure of 
the active replica. With RR, the service remains available 
as long as at least one replica continues to respond to 
users as recovery does not depend on replacing the faulty 
replica.

In our future work, we plan to investigate additional 
fault tolerance approaches proposed in the literature, 
such as checkpointing. This approach periodically saves a 
snapshot of an application’s state, known as a checkpoint, 
to be used for restoring the application in the case of fail-
ures. In the context of FaaS, some research  [34, 36] has 
already proposed the usage of checkpointing to restart 
functions from where they timed out, which is useful 
for functions that execute long-running computations. 
Checkpointing could be implemented with an adap-
tive checkpoint interval that uses the timings of already 
occurred failures to estimate the occurrences of the next 
ones [47].

Furthermore, we plan to design a fault-tolerant sys-
tem for FaaS that simultaneously supports multiple 
mechanisms (e.g., retry, replication, checkpointing) and 
uses one or another based on the type of FaaS applica-
tion (e.g., stateful or stateless) and operating conditions 
(e.g., fault rates, network latencies) while meeting user’s 
requirements (e.g., performance, availability, resource 
consumption).

Fig. 24 CPU consumption per node in RR with pod failure
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Abbreviations
AS  Active-Standby
AWS  Amazon Web Service
CPU  Central Processing Unit
FaaS  Function as a Service
HTTP  HyperText Transfer Protocol
IP  Internet Protocol
NoSQL  non Structured Query Language
RR  Request Replication
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