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Abstract 

Robot cloud service platform is a combination of cloud computing and robotics, providing intelligent cloud services 
for many robots. However, to select a cloud service that satisfys the robot’s requirements from the massive services 
with different QoS indicator in the cloud platform is an NP hard problem. In this paper, based on the cost model 
between the cloud platform, cloud services and cloud service robotics, we propose a two-stage service selection 
strategy, namely, candidate services selection stage according to the specific QoS requirements of service robots 
and final cost optimization stage. Additionally, with respect to optimizing the final cost for the model, we propose a 
Dynamic Vector Hybrid Genetic Algorithm (DVHGA) that is integrated with local and global search process as well as a 
three-phase parameter updating policy. Specifically, inspired by momentum optimization in deep learning, dynamic 
vector is integrated with DVHGA to modify the weights of QoS and ensure the reasonable allocation of resources. 
Moreover, we suggest a linear evaluation method for the service robots and the cloud platform concerning time 
and final cost at the same time, which could be expected to be used in the real application environment. Finally, 
the empirical results demonstrate that the proposed DVHGA outperforms other benchmark algorithms, i.e., DABC, 
ESWOA, GA, PGA and GA-PSO, in convergence rate, total final cost and evaluation score.

Keywords DVHGA, Qos-aware, Cloud robotics, Genetic algorithm, Dynamic vector

Introduction
Service robots are considered to be cutting-edge technol-
ogies that improve human life. In recent years, they have 
gradually been used in homes, supermarkets, airports 
and other areas to provide patrols, inquiries, and navi-
gation tasks. On the one hand, robots have limited com-
puting resources, making it difficult to deploy complex 
intelligent algorithms. On the other hand, high prices dis-
courage people from buying robots. High performance 

robots with low prices are what people need. The trade-
off between performance and cost is difficult.

Many researchers have put forward methodologies 
to solve the above problems. Remote robots are an 
early typical example [1]. The remote nodes control 
the robots to perform specific tasks, which improves 
the intelligence of the robots. The remote end is mainly 
controlled by humans, and the robot cannot perform 
environmental data analysis and autonomous control. 
Subsequently, Kamei [2] put forward the concept of 
network robots, by building an Internet of robots, pro-
viding powerful data resources for robots to eliminate 
the problem of limited data. However, the data process-
ing method and execution process have yet to be stud-
ied. Until 2010, James J. Kuffer [3] proposed the concept 
of cloud robotics and the basic framework of the robot 
cloud platform. The intelligence of the robot is encap-
sulated as a discrete cloud service [4]. The robot is sim-
plified into an information collection terminal, and the 
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robot cloud platform provides data analysis and deci-
sion services for the robot, which improves the robot’s 
intelligence.

As a container for cloud services, the robot cloud 
platform deploys multiple types of intelligent cloud 
services, including dialogue, face recognition, and 
SLAM for a large number of robots [5]. The different 
performance of hardware resources causes the same 
cloud service to have different qualities of service(Qos), 
such as real-time, accuracy, effectiveness, etc. Robots 
have quality requirements for cloud services to ensure 
intelligence [6]. Based on the elasticity of cloud com-
puting, more resources are allocated for cloud ser-
vices to improve the quality of cloud services to satisfy 
the requirements of robots, which waste comput-
ing resources. Therefore, to select the cloud service 
required by the robot from the massive number of 
services with different Qos on the cloud platform has 
research significance.

Rule-based algorithms are often used to solve the 
scheduling and selection problems of cloud services, such 
as FCFS, Maxmin, SLA, etc. These strategies are based on 
the parameters and time characteristics of cloud services 
to match cloud services and users, and are more suitable 
for data processing cloud services or resource cloud ser-
vices with few parameters and stable performance. How-
ever, the robot cloud service platform provides AI cloud 
services for robots. For the complexity of algorithms 
and the instability of computing resources, cloud service 
quality parameters are complicated, and robots have dif-
ferent requirements for cloud service quality. To select 
robot cloud service from cloud platform is an NP hard 
problem. Heuristic algorithms such as particle swarm 
algorithm, genetic algorithm, ant colony algorithm and 
other heuristic algorithms have been proven to be effec-
tive methods for cloud service selection. Most of these 
algorithms are evolved based on natural phenomena, 
have low requirements on cloud service parameters, and 
can dynamically track the optimal solution as the param-
eters change. Genetic algorithm is a natural evolution-
ary algorithm, which searches for the most individual 
through the selection of individual populations, crosso-
ver and mutation of chromosomes, and has been applied 
to find solutions in huge service search spaces composed 
of highly interacting parameters and shown its advan-
tages in parallelism.

In this paper, a detailed model is investigated for the 
cloud platform as well as cloud robotics based on our 
previous work in [7]. In addition, we present a novel algo-
rithm for solving the problems of cloud robotics in cloud 
service selection as well as relieving the above dilemmas. 
The main contributions of our work are summarized as 
follows. 

(a) We aim at cloud robotics and propose the cost 
model for the cloud platform, cloud services and 
service robots, including cloud service schedul-
ing cost, local computing cost, and communica-
tion cost. Specifically, the characteristic of cloud 
services, robots, as well as the cloud platform are 
investigated in System models section.

(b) We present a two-stage service selection strategy. 
That is, the candidate services are chosen according 
to the QoS requirements in the first stage, namely, 
local selection. Then, the service sequences will be 
optimized by DVHGA in the second stage called 
global selection.

(c) DVHGA integrated with local and global search 
process is proposed to overcome the existing defi-
cits of the state-of-art algorithms. e.g., lacking for 
characteristic analysis in the relation of service 
robots, the cloud platform and cloud services, as 
well as falling into local optimal solution. Moreo-
ver, the dynamic vector is first proposed for cloud 
robotics to modify the weights of QoS require-
ments, specifically, composed of positive and nega-
tive attributes, and realize the dynamic weight coef-
ficient evaluation.

(d) In terms of the real application in the cloud plat-
form, we present a simple linear weight evaluation 
approach to quickly determine the appropriate 
algorithm under the consideration of time and cost 
at the same time. Besides, SLAM service, Dialog 
service, and face recognition service are shown as 
three representative applications in the experiment 
to validate the proposed DVHGA.

The remainder of this paper is organized as follows. 
Related work section provides the related works on QoS-
aware cloud robotics service selection. In System models 
section, the final cost model of robotics, cloud service, 
and the cloud platform is discussed. Here, we aim to 
improve the quality of services as well as meet the tough 
QoS requirements. The detailed problem definition is 
presented in Problem definition section. In The proposed 
algorithm section, the proposed scheduling algorithm 
and service selection approach are presented. The experi-
mental results are reported in Experiments section. Con-
clusions and future work are presented in Conclusion 
section.

Related work
The contradiction between the cost and intelligence 
of service robots has always affected the development 
of robots. S jia [8] proposed a robot architecture based 
on teleoperation, simplifying the intensive computing 
module of the robot based on manual remote operation. 
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Considering the small improvement of the robot’s intelli-
gence by teleoperating robots, M Sato [9] proposes a net-
work robot system, establishes a robot’s public network 
to share operating data, and enhances the robot’s intelli-
gence that robots can learn operating rules from between 
them. Robots still need to process a large amount of data 
and cannot be smart at low-cost. In 2010, James Kuffner 
proposed the concept of cloud robots, combining robots 
and cloud computing, offloading the robot’s intensive 
computing modules to the cloud. The cloud platform 
provides robot cloud service of dialogue interaction, 
image recognition, positioning, navigation, control cloud 
services, etc for the robot through the cloud-robot inter-
action interface. Intelligent cloud services improve robot 
intelligence while uninstalling the machine’s computing 
module to reduce hardware costs of robots.

A large number of cloud services with different param-
eters and qualities are deployed on the cloud platform. 
Each cloud service has different parameters and service 
quality. To select quality-matched cloud services from 
cloud platforms can improve the intelligence of robots 
[10–12]. Rule-based algorithms are widely used in cloud 
service selection due to their simplicity and high effi-
ciency. In [13], researchers mainly focused on ensur-
ing the QoS of the network to utilise the resources and 
reduce the average blocked users, as well as improve the 
throughput. In [6], by maximizing QoS and minimiz-
ing the cost, the author aimed to achieve efficient use of 
cloud resources and cloud service units, as well as ensure 
the normal operation of the system. Casalicchio et  al. 
designed a detailed cloud brokerage based on legal-rule 
aware and QoS-aware [14]. The broker can evaluate the 
cloud services from four aspects, including F1-Legal-
rule, F2-Legislation, F3-Qos and F4-Seamless service 
migration. Meanwhile, quality assurance and optimiza-
tion were composed of the QoS assurance service and the 
QoS monitor service. While the runtime adaptation and 
accurate assessment of QoS still exist defects. In [15], a 
hybrid multi-criteria method was proposed, which com-
bined K-Means with ANP to rank the cloud services and 
assign weights for clusters. Besides, CPU utilization ratio, 
memory utilization ratio, response time and cost were 
taken into consideration, while the evaluation process 
was too complicated and high-priced. Heidari et al. pre-
sented Graph Processing-as-a-Service (Gaas), which took 
service level agreement (SLA) requirements and qual-
ity of service into consideration to minimize the mon-
etary cost and provide appropriate services [16]. Abdul 
[17] presented an efficient algorithm for identifying the 
cloud services based on the QoS metric given by the 
cloud consumer using decision tree classification algo-
rithm to decreases the response time, CPU utilization 
and memory consumption for identifying and searching 

the cloud services and increases the accuracy of the CSPs 
list retrieved along with their QoS attributes. L. Stavrin-
ides et al. presented an energy-efficient, QoS-aware and 
cost-effective scheduling approach, which applied an 
improved per-core Dynamic Voltage and Frequency Scal-
ing (DVFS) approach to approximate computations [18]. 
For specific scenarios, some researchers study the pre-
ferred properties of services. In [19], An efficient trust 
management architecture for selecting cloud services is 
proposed, which is utilized by the Combined Preference 
Ranking Algorithm (CPRA) for an initial CSPs and their 
services ranking based on the requirements of the cus-
tomer’s cloud (CCs). This generates an accurate ranking 
list of CSPs with minimal execution time, ensuring that 
transactions are carried out effectively and efficiently.

The previous methods have made important contri-
butions in optimizing computing costs and improving 
the utilization of cloud resources. However, the process 
of robot service selection not only considers the opti-
mization of platform resources, more importantly, the 
selected cloud service indicators satisfy the task require-
ments of the robot, and the quality indicators of each 
cloud service are inconsistent. In [20], the author pro-
posed a multi-robot service selection algorithm to pro-
vide service applications with the best service, namely, 
CAS (Circular Area Search algorithm), which is based 
on the SOA cloud platform. Dingju Zhu [21] presented a 
cooperative scheduling method for establishing the logis-
tics delivery service model in the cloud robot system. 
When the number of robotic cloud services increases, 
the ability of rule-based algorithms to search for optimal 
services decreases. Shahab Mokarizadeh et al. proposed 
the basic architecture for service discovery planning 
based on the SOA paradigm, aiming at exploiting the 
ontological relations between services and their concepts 
to recommend high quality services via utilizing service 
parameters [22]. However, these approaches take neither 
the QoS requirements nor the characteristics of service 
robotics into consideration.

Qos-aware cloud service selection has become an impor-
tant research. Li [23] proposed a hybrid architecture for 
cloud robotics to extend the capability of the service robots 
on their specified and predictable tasks without sacrificing 
QoS requirements. Brugali et  al. [24] presented a model-
based approach for building the relationship between the 
variability and Quality-of-Service (QoS) characteristics for 
autonomous robots. However, despite the achievements of 
these previous researches, there are two critical issues that 
need to be considered. For one thing, they focused on only 
one characteristic of QoS requirements without consider-
ing the positive and negative effect attributes. For another 
thing, when the number of services increases to a certain 
aspect, these algorithms may not work, even have a worse 
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effect. Thus, inspired by the success of meta-heuristic algo-
rithms in the cloud platform, e.g., Eagle Strategy with Whale 
Optimization Algorithm (ESWOA) [11], QoS-aware ABC 
algorithm [25], GA-based algorithms [18, 26, 27], etc., we 
propose a two-stage hybrid genetic algorithm integrated 
with dynamic vector to obtain the optimal services via 
global and local search process. Moreover, we are the first to 
provide a comprehensive study on cloud robot service selec-
tion under consideration of positive and negative attributes 
of QoS requirements, as well as taking the characteristics of 
service robots, the cloud platform and cloud services into 
account to optimize the final cost. More specifically, we pre-
sent a simple linear weight evaluation approach to quickly 
determine the appropriate algorithm in consideration of 
execution time and final cost at the same time (Fig. 1).

System models
Cloud robot platform framework
In our previous work [7], we proposed the robot cloud 
service platform architecture shown in Fig.  1. The plat-
form is composed of an interface layer, gateway layer, 
service pool, algorithm pool layer. The platform is devel-
oped based on the Inspur cloud serve. The interface layer 
is mainly responsible for providing interfaces, includ-
ing peripheral devices, internal services. The gateway 
layer is used to deploy services, schedule services, and 

authenticate identification. Service pool composed of var-
ious cloud services, can allocate service resources, as well 
as select suitable services or combined services. Algo-
rithm pool layer is formed of self-developed algorithms 
and running time dockers. For the robot cloud platform, 
two critical factors need to be considered, i.e., physical 
machine cost and service communication cost.

With various consumption requirements, cloud services 
are deployed on the computing nodes. Generally, CPU, 
Disk, and memory are three critical indicators that affect 
the Qos of robot cloud services. For a request for face rec-
ognition service from robot, the service data including 
JavaScript Object Notation(JSON) data, image data, and 
identification data can be represented as PCSD. The per-
formance parameters of the computing node are defined 
as a triplet (PCU, PCD, PCM), where PCU represents the 
execution ratio of a single CPU, PCD is the data exchange 
ratio of Disk, and PCM is the identifier for the memory 
consumption compressed ratio. UCPC, UCDC, and 
UCMC are the corresponding costs in unit time, respec-
tively. In this paper, PCSD/PCY ≤ 100ms is set on our 
platform to ensure the timely response of service and the 
reasonable CPU usage time, and the size of PCSD ( LPCSD ) 
≪ the memory of the platform ( Mcloud ) < the storage 
disk(Dcloud ). Thus, the specific cost for the face recogni-
tion service(m-th service) on k-th robot is defined in Eq. 1.

Fig. 1 An architecture of cloud platform
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where pw is the weight of three factors that satisfy the 
condition in Eq. 2, and recorded into MySql for the regis-
tered services associated with robot.

the weight of pw between legal services and robots as a 
matrix are defined in Eq. 3.

where s ∈ 1, · · · , k . k is the total number of quality impact 
factors of cloud services. pws,m is the weight of the s-th 
factor of the m-th cloud service Consequently, costs of all 
the running services are expressed as follows.

(1)

Fcostmk = UCPCk ∗
PCSDm

PCUk
∗ pw1mk +UCDCk∗

PCSDm

PCDk
∗ pw2mk + UCMCk ∗

PCSDm

PCMk
∗ pw3mk

s.t.
PCSD

PCY
≤ 100ms

LPCSD ≪ Mcloud < Dcloud

(2)1 =

n

i=1

pwn

(3)pw =









pw1,1 pw1,2 · · · pw1,m

pw2,1 pw2,2 · · · pw2,m

...
...

. . .
...

pws,1 pws,2 · · · pws,m









Figure  2 shows the architecture inside the basic cloud 
platform. services are deployed on various virtual 
machines in clusters. Communication cost is the impor-
tant factor, including three communication processes of 
robot-cloud(RC), cluster-cluster(CC) and node-node in 
cluster(NN).

Commonly, virtual machines on the same host commu-
nicate with high bandwidth, Cloud services in the same 
cluster can be combined into one cloud service. Thus, the 
inter-communication cost of cloud platform with e vir-
tual machines and m services are as Eq. 5.

Where PS is the price for communication between dif-
ferent machines toward various services. SD is the data 
to be packaged and forwarded at the gateway layer. SD′ is 
the processed data length. PF is data transfer ratio. Typi-
cally, the size of SD ( LSD ) and SD′ ( LSD′ ) is smaller than 
PCSD after the JSON parser processes. For a set of ser-
vices, the final cost on the cloud is Tcloud in Eq. 6.

(4)POC =

k
∑

k=1

m
∑

m=1

Fcostmk

(5)INTERC =

e
∑

j=1

m
∑

i=1

PSi ∗ (
SDi

PFj
+

SD
′

i

PFj
)

(6)Tcloud = INTERC + POC

s.t.
PCSD

PCY
≤ 100ms

Fig. 2 Inter architecture of cloud platform
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Cloud service model
QoS attributes of service are defined as 
< q1, q2, · · · , ql > , where ql represent the l-th QoS 
attribute. The most critical factors for cloud services 
are service response time, best practices, availability, 
latency, reliability, and throughput. Each cloud ser-
vice has different requirements for QOS attributes. 
For instance, face detection service is less time-sensi-
tive than SLAM service. Therefore, for each service’s 
bias towards service quality, we divide QoS attributes 
into two categories, i.e., positive attributes[availability, 
reliability, throughput, best practices] and negative 
attributes[response time, latency].

Maximum-minimum normalization based on [28] in 
Eqs. 7 and 8 is proposed to make different QoS values in 
a unified space. By this means, each QoS value is trans-
ferred into a value between 0 and 1.

where qmax and qmin are the normalized value of the max-
imum and minimum QoS attributes respectively. qpmi and 
qnmi represent the positive and negative normalized values 
of Qos attributes with respect to the m-th service. ǫ is the 
bias factor and set to 1e-2.

Besides, when service robots request a suitable ser-
vice from the cloud, a set of services SR can be repre-
sented as < SR1, SR2, · · · , SRk , · · · , SRt > . SRk from k-th 
service robot is composed of the following sequence, 
{< sk1, spk1, cpk1 >,< sk2, spk2, cpk2 >,⋯ , < skm, spkm, cpkm >}. 
Where spkm is the price set by cloud service providers and 
cpkm is the price set by cloud platform providers. skm is the 
m-th service in SRt of k-th service robot. Thus, the cloud 
service could be represented as < skm, spkm, cpkm, qkml > , 
where qkml represents the l-th QoS attribute of m-th ser-
vice from k-th robot in SR.

Robotics cost model
As task execution terminal and processing terminal 
for raw data, the cost of a robot is an important factor 
to consider. Chen et al. proposed a QoS-aware robotic 
streaming workflow model in solving computation off-
loading problems based on the characteristics of the 

LPCSD ≪ Mcloud < Dcloud

LSD and LSD′ < LPCSD

(7)q
p
mi =

{

qmax−qi
qmax−qmin if qmax − qmin �= 0

1− ǫ if qmax − qmin = 0

(8)qnmi =

{

qi−qmin

qmax−qmin if qmax − qmin �= 0

1− ǫ if qmax − qmin = 0

NCR and RSW for cloud robotics [29], while the model 
didn’t consider the cost of the robot and service com-
pletion condition. In this paper, the local computing 
cost, communication cost, service completion ratio are 
introduced to establish the robot cost model.

Generally, the robot is equipped with Raspberry Pi or 
other mainboards, with ROS or Android. The cost of the 
robot is mainly related to the calculation attribute. We define 
the robot as a computing unit. RC is defined as the robot’s 
computing consuming and RP as the power energy con-
suming at a specific service invocation per seconds. RCPU 
and RPC are the cost spent per unit time of CPU and power 
energy respectively. The cost in � t are obtained in Eq. 9.

where RLCk represents the local computing cost of the 
k-th robot. α and β are the weights of CPU and energy 
cost.

The robot communication cost model consists of service 
invocation, data conversion and local bandwidth-consum-
ing (ignored in this article). Based on our previous experi-
ence in building a robot cloud platform, for data timeout, 
JSON file format is used to transfer a small amount of 
data, and the meta-data denoted by FD is transferred after 
packing. FL and FL’ are JSON data lengths of sending pro-
cess and receiving process (i.e., JSON file), respectively. 
To simplify the model, the ratio of which the same kind 
robots transfer data is set to a constant number between 
cloud platform and specific robot, i.e., 5MB/s, 50MB/s, 
100MB/s, is denoted by RFk . Thus, the k-th robot commu-
nication cost can be expressed as Eq. 10.

where SC and DSC are the cost of the requesting stage 
and the data transfer stage, respectively. CLC is the local 
channel cost and set to 1e-3 considering the local chan-
nel’s high-speed transfer ratio.

The final cost of robot is shown in Eq. 11 derived from 
Eqs. 9 and 10.

When robot requests a set of services, if the service 
can’t be completed before its deadline, the robot will con-
tinue to apply for other similar cloud services to replace 
the previous service. the SCR(service completion ration, 
SCR) in a service set is defined as follows.

(9)

RLCk =

m
∑

j=1

(�RCj ∗ RCPUk ∗ Δtj + �RPCk ∗ ∫
Δtj

0

RPj)

(10)

RCCk =

m
∑

j=1

(SCj ∗ (
FLj

RFk
+

FL
�

j

RFk
) + DSCj

FDj

RFk
+ CLCj)

(11)Trobot =

k
∑

i=1

(RLKk + RCCk)
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where SFS represents the successful completed service 
and TSS is the total number of a service set.

To improve the quality of service scheduling model on 
the cloud platform. RSLA(Robot Service-Level Agree-
ment, RSLA) is defined in Eq.  13. RSLA reflects the 
satisfaction ratio of the service. In this paper, we set the fol-
lowing rules. If SCR is greater than 95%, the platform will 
record this service sequence and recommend it to a similar 
scene. It is the necessary premise for the selected services 
in our algorithms. When it is between 80% and 95%, the 
service scheduler will remove all the failure services and 
record it. Otherwise, the service set will be released all, 
and the service SLA will be registered. Once the service 
fails three times, the service provider and corresponding 
robot will be informed to troubleshoot the problem.

Problem definition
The robot’s service selection process is divided into two 
stages: local service selection and global service selection. 
As shown in Fig.  3. In the local selection process, a set 
of best candidate services were selected via dynamic QoS 
rank and randomly dropped. QoS is chosen through spe-
cific rules to satisfy the robot’s preference requirements 
for cloud services, e.g., when the robot requests SLAM 
service, the scheduler would prefer more time-sensitive 
relative services. In the global selection process, candi-
date services circled in red line are formed as a service 
set, and the final cost, including communication cost, 
scheduling cost, and platform operation cost are mini-
mized as well as hold a high service completion ratio.

(12)SCR =
SFS

TSS

(13)RSLA =







1, SCR ≥ 95%

0, 95% > SCR ≥ 80%

−1, SCR<80%.

In the first stage, many methods can be used to select 
candidate services. e.g., in [30], ANP was used to rank 
the QoS attribute for the first stage. In [24], AHP was 
used. In other conditions, fixed weight was introduced 
[11, 31]. In our algorithm, a performance formula was 
proposed as Eq.  14 to speed up the calculation effi-
ciency. One service set can be computed in a whole 
matrix. The procedure to select the best top S per-
formance candidate service of k-th service is shown 
as Eq.  15. Moreover, the LPs is obtained in parallel to 
accelerate the process.

where LPr is obtained by the Hadamard product denotes 
the specific performance service sequence of SR, and 
the size of the result matrix is m ∗ 1 . Services possess 
different weight evaluation standard. Typically, robots 
present different cloud service QoS requirements that 
can be selected via the service orientation and dynamic 
weights. Qnor represents the normalized value matrix of 
QoS. which is calculated via Eqs. 7 and 8. W denotes the 
dynamic weight of services.

(14)

LPr =

l
∑

g=1

Wmg ∗ Q
nor
mg r ∈ t [m ∗ 1 size]

W =







w11 w12 . . . w1l

w21 w22 . . . w2l

. . . . . . . . . . . .

wm1 wm2 . . . wml







Qnor =









q11 q12 . . . q1l
q21 q22 . . . q2l
...

...
. . .

...

qm1 qm2 . . . qml









(15)Sset = ranktopS{LPr} r ∈ t

Fig. 3 Service selection process
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For the second stage, minimizing total cost is an impor-
tant optimization goal. Since all the cost have the same 
affect, the main goal is formulized as Eq. 16.

The proposed algorithm
To select cloud services to achieve the minimum total 
cost is the optimization goal of the algorithm. Mean-
while, a more efficient scheduler should be designed to 
shorten the service selection time. Therefore, the fast and 
accurate algorithm of Dynamic Vector Hybrid Genetic 
Algorithm(DVHGA) is presented.

Algorithm 1 Procedure of the Basic DVHGAAlgorithm 1 
shows the procedure of DVHGA composed of six main 
modules, e.g., parameter initialization, dynamic vector 
modification, crossover and mutation, current parameters 
updating, local search process, and global improvement.

For each set of service requests, all the system parame-
ters will be initialized first. Once the gateway layer accepts 
the sequences, the cloud monitor will detect the cloud 
platform’s condition and modify the weights. After that, 
the best top-h candidate services will be selected for the 
most suitable service requests. The main loop framework 
continues until the iteration reaches the threshold or the 
best solution is found. At each stage, the best position and 
fitness are determined by the evaluating procedure after 
mutation, crossover, local search, and global modification. 

(16)min
∑

{Tcloud + Trobot}

s.t.



























SCR ≥ 95%

skm ∈ Sset

k ,m = 1, 2, . . .

PCSD/PCY ≤ 100ms
LPCSD ≪ Mcloud < Dcloud

LSD and LSD′ < LPCSD

The current algorithm parameters will be updated, and 
the current global best solution will be stored. Finally, the 
best suitable service set will be sent to the scheduler.

Paramter Initilization. The process in Algorithm  2 
includes three steps. Firstly, all the QoS are normalized 
by using Eqs. 7 and 8. Secondly, global parameters that 
include the main run-time parameter are initialized 
properly. Thirdly, for the local search, the basic particle 
swarm optimization (PSO) framework is used to accel-
erate the search procedure.

Algorithm  2 Parameter InitializationDynamic Vector 
Modification. In our research, fixed weight factors can 
lead to a high cost, and the result will be analyzed in Experi-
ments section. Thus, we propose the strategy of dynamic 
vector modification process inspired by gradient descent, 
and the vector moving direction may be positive or negative. 
Thus, the negative factor will be set to 0 here. The sum of 
all weights is 1, while an extreme case should be considered 
that the summation of the total factor becomes zero after 
the manipulation, which is solved in the following Eq. 17.

Where w′
= w + rand() , w′

sum =
∑

w
′ and wsum =

∑

w . 
The random small perturbations are applied for the for-
mer w to eliminate the bad effect of zero summation.

Algorithm 3 Dynamic Vector ModificationCrossover and 
Mutation. In Algorithm 4, multi-point crossover manipula-
tion is designed for superior parents, and to produce more 
superior mutated individuals from the inferior mating pool.

Local Search Process. PSO is used to explore more 
feasible solutions as well as speed up coverage. The strat-
egy of solutions to update velocity and position using 

(17)w =

{ w
wsum

if wsum �= 0

w
′

w
′
sum

if wsum = 0



Page 9 of 16Yin et al. Journal of Cloud Computing           (2023) 12:95  

Eqs. 18 and 19 is similar to PSO. Finally, the global solu-
tion will be updated and returned to the main framework.

Algorithm 4 Crossover and Mutation

Algorithm  5 Local Search ProcessCurrent parameter 
updating. In Algorithm 6, improvement threshold (IT) is 
proposed to ensure that the excellent solution set increases 
faster in the primary stage. Then, escape threshold (ET) is 
proposed to prevent falling into local optimality. Finally, 
searching threshold (ST) is designed for exploring more 
superior solution. All the three threshold is shown in Eq. 20

Algorithm  6 Current parameter updatingCom-
plexity analysis of DVHGA. The time computa-
tional complexity of of DVHGA can be described as 

(18)
vk+1
i = rand ∗ vki + c1 ∗ r1 ∗ (c_pos − poski )+

c2 ∗ r2 ∗ (Leader_pos − poski )

(19)posk+1
i = poski + vk+1

i

(20)







IT ← (round(MG/2), round(MG ∗ 3/4))

ET ← (round(MG ∗ 3/4), round(MG))

ST ← (round(MG ∗ 4/5), round(MG))

O(I × (N + P + C)+ Q) , in which I represents the 
number of iterations; N denotes the calculation time of 
genetic algorithm; P is the number of particles in PSO; C 
denotes the calculation time in current parameter updat-
ing process; and Q is the calculation time in the first-
stage for selecting the candidate service.

Moreover, the time computional complexity of 
the original GA-PSO algorithm can be defined as 
O(I × (N + P)+ Q) . We can observe that the compu-
tational complexity of DVHGA is slight higher than the 
GA-PSO due to local search process, updating process 
and first-satge calculation. However, DVHGA can obtain 
superior solutions in reasonable time significantly. Thus, 
in the Algorithm evaluation section, we will suggest a 
linear evaluation approach for choosing the appropriate 
algorithm in different circumstances.

Experiments
In this section, the experiment is designed to compare 
DVHGA and several state-of-art algorithms of discrete 
artificial bee colony (DABC) [25], eagle strategy whale 
optimization algorithm (ESWOA) [11], genetic algorithm 
(GA) [12], proposed genetic algorithm (PGA) [32], and 
GA-PSO. In this section, these contents will be analyzed, 
such as the convergence of DVHGA, various number of 
services, different cloud platforms (c1.medium, c1.large, 
c1.xlarge) features and robots features (v1 version, v2 ver-
sion, v3 version) defined into low, middle and high lev-
els, the parameter state of DVHGA and the algorithm 
evaluation.

Experimental setup
To reduce the influence of programming language on 
algorithm performance, all comparison algorithms 
are run in matlab environment. Moreover, the experi-
ments are conducted on Intel(R) Core(TM) i7-8700 
with 3.2GHZ and 32GB RAM running on the 64-bit of 
Windows 10.

Algorithm Parameters: The main parameters of the 
mentioned algorithms are shown in Table 1. The parame-
ters are set to maximize the performance for all the com-
parable algorithms.

DataSet: the QWS dataset v2.0 including over 2500 
services from the real world with QoS is used. Ten kinds 
of services that each contains only four concrete services 
are selected as the reference. To ensure the fairness of 
algorithm, 1000 cloud service data sets with Qos param-
eters are expanded by 30 specific service include general 
services (face recognition service, etc.) and specific ser-
vices (typically time-oriented services, e.g., SLAM, relia-
bility-oriented services, e.g., identification service). As is 
shown in Table 2, each service from the dataset contains 
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six attributes i.e., availability, reliability, throughput, best 
practice, response time, and latency.

Experiment on convergence
For the mechanism of coding and evolution, genetic algo-
rithm has very good performance in service selection 
research, especially for solving discrete solutions. How-
ever, the direction of solving the optimal solution uncer-
tain for the randomness of mutation and crossover. The 
following two problems are verified based on GA through 
experiment results in which the service length is set 100 
and robot is low performance.

As can be seen from the Fig.  4(a). Although the final 
cost decreases in the previous iteration (left of pink line) 

and tends to convergence, the dispersion and volatil-
ity can’t be neglected, which increase the cost of service 
scheduling. The result of Fig.  4(b) is worse. Algorithm 
can’t keep the best solution, and the final cost gradually 
increases with volatility.

In this paper, algorithm of swarm optimization is 
interated with DVHGA to perform local search process. 
Figure  5 show the convergence result of DVHGA and 
other algorithms over 100 iterations. DVHGA converges 
quickly than ESWOA and DABC, and has better search 
results. Moreover, DVHGA can search the solution 
space efficiently via local search as well as three current 
parameter updating strategy, and improve the ability to 
search for global solutions. Figure  6 shows the compu-
tational time of the above four algorithms. Search time 
of DVHGA is longer than ESWOA and GAPSO due to 
its search strategy. However, search time of DVHGAhas 
the smallest variance compared to the other three algo-
rithms, which could enable the scheduler to schedule in 
a reasonable way and minimize the overall system cost.

Experiment on fixed and dynamic weights of DVHGA
In this subsection, Service selection experiments of 100 
services are presented to improve that the performance 
of the dynamic parameter algorithm in cost optimization 
is better than the fixed parameter algorithm. As shown in 
Fig. 7, DVHGA algorithm has a stronger search capability 

Table 1 The cloud platform simulation parameters

Parameter Value

Number of particles (DNPSO) 25

Population size 30

Total maximum itertion 100

pw1,pw2,pw3 0.6,0.3,0.1

w[1..6] 0.2,0.1,0.2,0.2,0.1,0.2

topS 20

the number of robots 30

Table 2 Description of the Qos Parameters

Parameter Value Units

Availability Number of successful invocations/total invocations %

Reliability Ratio of the number of error messages to total messages %

Throughput Total Number of invocations for a given period of time invokes/second

Best Practices The extent to which a Web service follows WS-I Basic Profile %

Response Time Time taken to send a request and receive a response ms

Latency Time taken for the server to process a given request ms

a b

Fig. 4 Discretization of genetic algorithm. a descend trend, b ascend trend
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than the static GA algorithm. The reason for this result 
is that we used a matrix to calculate the weight. For the 
powerful processing of the cloud platform, the time-con-
suming could be neglected in this paper.

Based on the above experimental settings, the number 
of services will be increased from 500 to 1000 at inter-
vals of 50. the result shows in Fig. 8. For the fluctuation 
of platform and robot parameters in its state, the calcula-
tion time fluctuates as well with several numerical spikes. 
However, the longest extra time is only 1.4ms and small 
enough to be neglected. Additionally, the vast majority 
of the extra time is less than 0.2ms, which could help the 
scheduler work in a short time and cut the final cost.

Experiment on various number of services
In this section, We demonstrate the performance of 
different algorithms by setting up different numbers of 
100, 500,700,1000 cloud service selection experiments. 

All the algorithms run 30 times in a total of 100 itera-
tions without early stopping. As shown in Fig.  9 of 
experimental results. Since the advantages of global 
and local search, DVHGA outperforms than other 
comparison algorithms in the optimization of service 
selection costs with or without dynamic vectors. we 
can also find that the final cost increases as the num-
ber of services becomes large. Intuitively, DVHGA 
shows significant improvements compared with other 
benchmarks, especially GA-PSO, when the number 
of services rises from 700 to 1000. This mainly due 
to that DVHGA adopts the three-stage update strat-
egy, i.e.,primary stage, middle stage, late stage, and 
the multi-point crossover for superior parents, which 
makes it easier for the DVHGA to find the optimal 
strategy. Additionally, compared Fig.  9(a) with (b), all 
the algorithms are improved in different degrees due 
to dynamic vector.

To illustrate the affect of dynamic vector on the 
algorithms, we define the difference of cost in Eq.  21. 
According to the equation, the result is shown in 
Fig. 10.

(21)δcost = Cwithout − Cwith

Fig. 5 The cost convergence curve

Fig. 6 The computational time

Fig. 7 The algorithm cost

Fig. 8 The time fluctuation
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According to the equation, the experiment results are 
shown in Fig. 10. The dynamic vector has less influence 
on GA and PGA. Dynamic vector obtains approximately 
the same effect on GA-PSO when the number of services 
is 500 and 700. In contrast, DVHGA has a significant 
increase. dynamic vector can enhance the distinct per-
formance of algorithms in swarm algorithms and slight 
in genetic algorithms. Since the uncertainty of genetic 
direction, GA and PGA are difficult to search for the 
optimal solution. For the introduction of a three-stage 
parameter update strategy, DVHGA can optimize the 
process of chromosome compilation to quickly capture 
the optimal solution. The empirical results show that 
when the number of services increases to 1,000 or more, 
DVHGA can obtain satisfactory performance.

Experiments with different configurations of robots 
and cloud platforms
Features of robots
In this experiment, low, mid and high features are chosen 
for robots. The number of services is set as 100 and 500. 
All the algorithms are integrated with dynamic vector to 
obtain superior solutions. The results of final cost shows 
in Fig. 11.

When the robot cloud service deploys a fixed number 
of cloud services, as the robot configuration increases, 
the cost of cloud service selection increases. In this case, 
when the number of cloud services increases from 100 
to 500, the cost of choosing cloud services will increase 
greatly. The result is due to the limited computing 
resources of the robot. although the final cost rises in 
the experiment, for the global and local search as well as 
updating strategy, DVHGA has a lower cost compared 
with the above-mentioned benchmark algorithm.

Features of cloud platforms
In this experiment, a low-configuration robot is used 
as a cloud service call terminal. The cloud service plat-
form has three configurations of low, medium and high. 
The number of services is also 100 and 500. Besides, 
the algorithms dynamic vector to improve their perfor-
mance as well.

Figure  12 shows the cloud service cost under differ-
ent cloud platform configurations. When the number of 
services increases from 100 to 500, the increase in cost 
of services is much smaller than that shown in Fig.  11. 
Moreover, when the number of services is 500, the final 
cost remaines virtually unchanged near 400$. This mainly 
because of the sufficient computing power and resources, 

a b

Fig. 9 Experiment results of different number of services. a services without dynamic vector, b services with dynamic vector

Fig. 10 The results of cost difference for algorithms
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which could accelerate the operation and reduce the 
final cost for service robots and cloud platform. Suffi-
cient resources to maximize the algorithm performance 
of cloud services. In addition, the final cost of DVHGA 
grows in an acceptable range by setting different perfor-
mance platforms.

The cloud service of the platform adopts the pay-as-
you-go model. Cloud services will not occupy physical 
hosts for a long time. It can be inferred from the above 
two experiments that the architecture of the cloud robot 
is a low-performance robot with high-performance cloud 

providers, which can shift the cost to the cloud provider 
and promote the birth of more efficient scheduling.

Algorithm evaluation
In the application of the robot cloud service platform, 
the cloud platform must satisfy the robot’s cloud service 
QOS Request to improve robot intelligence and QoE 
(Quality of Experience) for users. Different cloud services 
require different QOS attributes. The simultaneous local-
ization and mapping(SLAM) cloud service cares more 
about response time. Face recognition cloud services pay 

a b

Fig. 11 Different features of robots. a 100 services, b 500 services

a b

Fig. 12 Different features of cloud platform. a 100 services, b 500 services
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more attention to accuracy and requires the least cost. In 
this experiment, we proposed a simple idea in our design 
to evaluate the algorithm on for robot and the cloud plat-
form side, which is shown in Eq. 22.

Where α , β , and γ represents the weight coefficients, 
satisfying α + β + γ =1. timea and costa are the aver-
age of time and cost. var(time) and var(cost) denote the 
variance of time and cost, respectively. All the basic ser-
vice information is stored in information repository for 
both robots and cloud platform. As for time-sensitive 
cloud service, α can be more significant than β , and γ is 
a bias for balancing the cost and time. To improve the 
user’s QOE, the priority of the robot is defined as higher 
than the priority of the cloud platform. When there are 
no other constraints, we give priority to ensuring the 
response time of cloud services.

In this experiment, Low-profile cloud platforms and 
robots are used. The number of cloud services is set to 100 
and 500 respectively, and algorithms equipped with dynamic 
vector. Additionally, three kinds of services, namely, dialog 
service ( α=0.3, β=0.3, γ=0.4), SLAM service ( α=0.7, β=0.2, 
γ=0.1), and face recognition service ( α=0.2, β=0.7, γ=0.1), 
are selected as three typical robot cloud service.

Tables 3 and 4 illustrate the results for different eval-
uation approaches toward 100 and 500 services. As can 
be seen from the tables, DVHGA remaines the best 

(22)T = � ∗ timea + � ∗ costa − � ∗ (var(time) + var(cost))

performance comparing with the benchmarks. Moreo-
ver, different algorithms rank differently with various 
service requirements evaluation. Thus, based on the 
evaluation approach, we could select a suitable algo-
rithm under various circumstances, whereas it is lin-
early related to the cost and time.

Conclusion
In this paper, we propose a cloud service selection method, 
including two-stage selection strategy, dynamic weight and 
cloud service quality evaluation method, and introduce a 
new search strategy into local and global search to ensure 
the solving efficiency of the optimal solution.

In the experiment, we evaluated DVHGA algorithms 
with four state-of-art algorithms, i.e. DABC, ESWOA, 
PGA, and GA-PSO, and a traditional common algo-
rithm, i.e. GA. The empirical results demonstrate that 
DVHGA outperforms the benchmarks in cost-savings 
with diverse characteristic of service robots and cloud 
platform, converges faster and is more stable than other 
algorithms. Furthermore, the experimental results also 
suggest that The combination of low-configuration 
robots and cloud services on high-configuration cloud 
platforms will result in lower cloud service costs. Fixed-
weights and dynamic-weights vector were stduied via 
several experiments to verify the superiority in dynamic 
vector modi- fication.

Table 3 100 services(†:first, *:second)

Dialog service SLAM service Face recognition

 Project results rank results rank results rank

DABC 24.27 4 16.42 4 56.46 4

ESWOA 23.47 2∗ 15.85 2∗ 55.07 2∗

GA 25.12 6 16.91 6 58.04 5

PGA 23.97 5 16.82 5 58.75 6

GA-PSO 23.68 3 15.98 3 55.61 3

DVHGA 22.82 1† 15.43 1† 53.10 1†

Table 4 500 services(†:first, *:second)

Dialog service SLAM service Face recognition

 Project results rank results rank results rank

DABC 125.24 4 84.44 5 291.81 5

ESWOA 123.43 3 83.32 2∗ 289.74 2∗

GA 125.7 6 85.11 6 298.42 6

PGA 125.35 5 16.82 4 296.96 4

GA-PSO 123.34 2∗ 15.98 3 289.41 3

DVHGA 120.34 1† 15.43 1† 284.86 1†
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In our future work, we intend to integrate the con-
cept of DVHGA with other meta-heuristic algorithms. 
Additionally, since different services have distinct 
requirements for service quality parameters in actual 
experiments, we will concentrate on studying robot 
service selection under varied preferences.

Abbreviation
DVHGA  Dynamic vector hybrid genetic algorithm
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