
Ma et al. Journal of Cloud Computing (2023) 12:93
https://doi.org/10.1186/s13677-023-00459-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

HGAT: smart contract vulnerability detection
method based on hierarchical graph attention
network
Chuang Ma1, Shuaiwu Liu1 and Guangxia Xu2* 

Abstract 

With the widespread use of blockchain, more and more smart contracts are being deployed, and their internal logic is
getting more and more sophisticated. Due to the large false positive rate and low detection accuracy of most current
detection methods, which heavily rely on already established detection criteria, certain smart contracts additionally
call for human secondary detection, resulting in low detection efficiency. In this study, we propose HGAT, a hierarchi-
cal graph attention network-based detection model, in order to address the aforementioned issues as well as the
shortcomings of current smart contract vulnerability detection approaches. First, using Abstract Syntax Tree (AST) and
Control Flow Graph, the functions in the smart contract are abstracted into code graphs (CFG). Then abstract each
node in the code subgraph, extract the node features, utilize the graph attention mechanism GAT, splice the obtained
vectors to form the features of each line of statements and use these features to detect smart contracts. To create test
data and assess HGAT, we leverage the open-source smart contract vulnerability sample dataset. The findings of the
experiment indicate that this method can identify smart contract vulnerabilities more quickly and precisely than other
detection techniques.

Keywords  Smart Contract, BlockChain, Graph Attention Network, Vulnerability Detection, Security

Introduction
Through the consensus process, the blockchain has
recently made sure that all nodes can achieve point-
to-point communication without the requirement for a
reliable third party [1, 2]. Blockchain is also frequently
used in logistics, banking, edge computing, medical
and other industries because to its tamper proof, trace-
able and decentralized qualities [3–8]. Smart contracts,
which operate as an application atop the blockchain’s
top layer, offer a comprehensive transaction protocol

for all types of virtual currency transactions, resolving
the issue that the blockchain has not seen widespread
use since its inception. Smart contracts are essentially
pieces of code with contractual properties, which una-
voidably results in programming flaws. Many contract
attacks have been revealed in recent years [9]. Hack-
ers targeted Coincheck, a significant Japanese digital
currency exchange, in January 2018, and more than
534 million dollars’ worth of NEM (New Economy
Currency) on the site was moved unlawfully; Hackers
attacked the decentralized lending platform Lendf.Me
on April 19, 2020, and stole the contract’s assets worth
$25 million. On April 19, 2020, Lendf.Me, a decentral-
ized lending agreement, was attacked by hackers, and
the assets worth 25 million dollars in the contract were
looted; More than 37 significant attacks in the block-
chain ecological field were observed in the third quar-
ter of 2022, with a total loss of roughly $450.4 million,

*Correspondence:
Guangxia Xu
xugx@gzhu.edu.cn
1 School of Software Engineering, Chongqing University of Posts
and Telecommunications, Chongqing 400065, China
2 Advanced Institute of Cyberspace Technology, Guangzhou University,
Guangzhou 510006, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00459-x&domain=pdf

Page 2 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

according to the Beosin EagleEye security early warn-
ing and monitoring platform, which not only resulted
in significant financial losses for consumers but also
posed a serious threat to the security and trust interests
of smart contracts [10].

The main reasons for smart contract vulnerabilities are
as follows: (1) The source code is transparent and acces-
sible. Since smart contracts are immutable, program
patches can no longer be used to change the smart con-
tract that has been uploaded to the blockchain. Attacker
entry requirements and attack costs are lowered because
of this because attackers can exploit loophole contracts
on the chain to launch attacks. (2) Developers’ careless-
ness. Given that the smart contract was written using
Solidity high-level Programming language, flaws in the
Solidity design pattern and developers’ writing styles
could result. Developers, for instance, neglected to ver-
ify potential contract flaws, leading to integer overflow,
arbitrary address writing, uninitialized variables, etc. (3)
Design level of an EVM virtual machine. Vulnerabilities
are brought on by the bytecode and EVM virtual machine
design guidelines. For instance, a frequent vulnerability
at the design level of the EVM virtual machine is the seg-
ment address attack.

Currently, the smart contract code audit approach
mostly relies on experts for manual audit, but because
manual audit is expensive and inefficient, experts strug-
gle to fully extract the vulnerability features in each con-
tract [11]. The existing research frequently simplifies the
code into natural language or relies on the subject-matter
expertise of specialists to extract code features. The pro-
cess of translating the code into plain language is overly
straightforward, which makes it simple to lose informa-
tion. Experts frequently use a heuristic rule model that is
too sophisticated, not scalable, and not universal, which
results in low detection accuracy and efficiency of vulner-
abilities. Studying effective vulnerability feature extrac-
tion techniques is crucial in light of the security issues
with smart contracts.

Aiming at the above problems, this paper proposes
a smart contract vulnerability detection model HGAT
based on hierarchical graph attention network. Our main
contributions are as follows:

1.	 A contract graph contraction strategy is suggested to
shrink the contract graph’s nodes in order to speed
up model learning and avoid the model from being
overfit.

2.	 A hierarchical graph attention network-based tech-
nique for detecting smart contract vulnerabilities is
proposed. To increase the ability to extract discon-
tinuous features, features are extracted at the state-
ment level and the function level, respectively. The

efficiency of this strategy has been tested on open
source datasets.

3.	 It has been demonstrated through a large number of
experiments that the HGAT model put out in this
research performs better than the current detection
techniques.

The organization of this paper is as follows: we intro-
duce existing smart contract vulnerability detection
methods and their flaws in Section “Related Work”;
detailed implementation details of HGAT are introduced
in Section “Method”; and Section “Experiments” com-
pares HGAT with other detection methods; Summarize
and prospect in Section “Conclusion”.

Related work
Smart contract vulnerability detection
In recent years, The blockchain has gained popularity
because to its immutability. However, once the smart
contract becomes immutable, if there is a security prob-
lem in the smart contract on the chain, it will bring seri-
ous economic losses to people. Therefore, it is crucial to
identify smart contract vulnerabilities. Smart contract
vulnerability detection is mainly divided into two types:
manual detection and automatic detection [12]. Faced
with the deployment of thousands of smart contracts
every day, experts in manual detection need to analyze
the Opcode [13] of smart contracts first, and then match
vulnerabilities according to the rules defined in advance.
This does not satisfy the criteria of blockchain and smart
contract development prospects and is not only time-
consuming and expensive, but frequently ineffectual even
when flaws are uncovered.

In accordance with the characteristics of the detec-
tion, automated detection is classified into three cat-
egories: code matching based on features, automatic
detection based on formal verification, and automatic
auditing techniques based on symbolic execution and
symbolic abstraction [14–16]. Similar to string match-
ing, feature-based code matching primarily abstracts
known smart contract vulnerabilities into a seman-
tic tag before matching with the smart contract to be
detected. The method based on formal verification
approach primarily makes use of mathematical tech-
niques and automated detection tools to replicate the
deployment and use of smart contracts and check for
security vulnerabilities. Amani et al. [17] proposed to
partition contracts into fundamental fast codes or build
EVM bytecode sequences into linear code blocks using
an Isabelle-based higher-order logic interaction theo-
rem prover, and then use formal model verification
to determine whether the smart contract code con-
tains vulnerabilities. Karthikeyan et al. [18] proposed

Page 3 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

a verification framework for the functional correctness
of smart contracts based on formal verification. This
framework converts smart contract code into F* lan-
guage format and verifies various smart contract attrib-
utes to find hidden vulnerabilities. The approach based
on symbolic execution and symbolic abstraction gen-
erates Opcode by compiling the smart contract using
the Ethereum virtual machine, and then analyzes the
Opcode to see whether there is a security vulnerability.
Securify [19] is symbolic abstract analysis-based detec-
tion tools, while Mythril [20] and Oyente [16] are sym-
bolic execution-based detection tools. A static analysis
tool for Ethereum smart contracts called SmartCheck
has been proposed by Tikhomirov et al. [21] It employs
the ANTLR parser as well as a customized Solidity syn-
tax. By utilizing ANTLR syntax and vulnerability pat-
terns, it can find more sophisticated vulnerabilities.

There are several similarities between the traditional
automated smart contract vulnerability detection tech-
niques mentioned above [22, 23]. First, traditional smart
contract vulnerability detection tools have low code cov-
erage and high false positive and false negative rates.
For instance, Oytente’s code coverage is erratic and its
rate of false positives for integer overflow vulnerabilities
is significant. Additionally, because typical smart con-
tract vulnerability detection tools rely on detection rules
established by experts, their scalability is constrained,
often necessitating secondary detection, and their detec-
tion effectiveness is low.

It’s important to note that researchers have recently
put forth approaches for detecting smart contract vul-
nerabilities that based on machine learning and neural
networks. These techniques are more accurate and effi-
cient than more traditional ones. A neural network-based
smart contract fuzzer called ILF was proposed by He
et al. [24]. It uses a symbolic execution engine to pro-
duce effective test and call sequences to direct the feature
learning of neural network models, enabling effective
vulnerability discovery. Wang et al. [25] proposed Con-
tractWard, which uses machine learning technology to
detect vulnerabilities in smart contracts. First, using the
XGBoost training model and the SMOTETomek bal-
anced training set, binary features are extracted from the
condensed operation code of smart contracts. Second,
the model to simultaneously detect multiple vulnerabili-
ties is built using five machine learning techniques and
two sampling algorithms. Huang et al. [26] proposed an
unsupervised graph embedding algorithm that trans-
forms the code graph into a quantitative comparable vec-
tor, transforms the vulnerability characteristics into the
same dimension vector, and finds the potentially vulner-
able smart contract by comparing its vector to the known
vulnerable vector.

The internal logic of smart contracts, however,
becomes more and more complex as the number of
smart contracts rises, and the current detection methods
have certain issues:

1.	 Existing detection methods will use the entire smart
contract as input for detection, including code seg-
ments unrelated to vulnerabilities, such as keywords
CALL, CALL.VALUE for reentrancy vulnerabilities,
integer operations for integer overflow, etc. This will
make detection more difficult and lower detection
effectiveness.

2.	 Since source code is more logical and structural than
natural language, many vulnerabilities occur across
functions, such as function calls, which requires
smart contract vulnerability detection methods to be
able to handle discontinuous feature extraction.

Therefore, in order to further reduce the security risk of
smart contracts, it is necessary to design a method with
high detection efficiency and high detection accuracy.

Graph Attention Network (GAT)
Gori et al. first proposed the concept of Graph Neural
Network (GNN) [27]. The core idea is to learn the rep-
resentation of the target node or state by iteratively dis-
seminating and gathering the information of surrounding
nodes and finally reaching a stable state. Joan Bruna
et al. [28] proposed that Graph Convolutional Networks
(GCNs) can combine local graph structure and node fea-
tures to achieve good performance in node classification
tasks. Petar Velickovic et al. [29] proposed (Graph Atten-
tion Network, GAT), which uses an attention mechanism
to weighted summation of adjacent node features. GAT
is independent of the graph structure, and the weight of
adjacent node features completely depends on the node
features.

As graph neural networks advance, more and more
use applications for them are emerging in areas includ-
ing semantic segmentation, association extraction, and
picture categorization. Additionally, it can be utilized to
understand and recognize program behavior. A graph
neural network is used to learn the program behavior
that is challenging to learn from the prior deep learning
model after building the graphic data of the program’s
data flow and control flow. In order to lower the high
false positive rate of smart contract vulnerability identi-
fication, Ma et al. [30] proposed an abstract syntax tree
(AST) based vulnerability detection method to efficiently
find reentrancy vulnerabilities. Xu et al. [31] proposed
a binary code similarity comparison method based on
graph neural network, which discovered the bytecode
containing the vulnerability keyword by compiling the

Page 4 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

code into bytecode and matching it with the vulnerability
keyword, in order to determine whether there is a vulner-
ability in the contract. This demonstrates the enormous
potential of graph neural networks in the field of vulnera-
bility mining. Zhuang et al. [32] proposed a new message
propagation network to use GCNs for intelligent contract
vulnerability identification. They also built a contract
graph representing syntax and semantics. The disadvan-
tage of this method is that the way GCNs aggregate the
attributes of nearby nodes is intimately tied to the graph’s
structure, which restricts the trained model’s capacity to
generalize to other graph structures. Zhou et al. [33] pro-
posed a general model based on graph neural networks
for graph-level classification by learning a rich set of code
semantic representations to efficiently extract useful
features. Liu et al. [34] proposed a novel temporal mes-
sage propagation network to extract graph features from
normalized graphs, and combined graph features with a
designed expert mode to improve vulnerability detection
accuracy. After GAT introduces the attention mecha-
nism, each graph node is only related to the adjacent
nodes, and there is no need to obtain the information of
the whole graph, which improves the generalization abil-
ity on different graph structures, breaks the limitations
of GCN, and also provides Smart contract vulnerability
detection with complex logic makes it possible. From this
point of view, it is feasible to apply GAT to smart con-
tract vulnerability detection.

Considering that the source code of smart contract is
written in Solidity high-level programming language,
which is as sparse as the code written in other languages,
we have layered it on the basis of GAT, which is divided
into code statement level and function level. The rep-
resentation result of a function is obtained at the code
statement level, while the representation result of the full
smart contract is obtained at the function level. Finally,
vulnerability categorization is performed using the learnt
representation. Because HGAT is based on GAT, it not
only has strong heterogeneous task processing capabili-
ties but also improves the capacity to extract the specifics
of the smart contract environment and lessen contract
sparsity, as will be covered in Section “Generation of
semantic features”.

Method
This paper proposes a smart contract vulnerability
detection method based on hierarchical graph atten-
tion network. This method is divided into 4 stages: 1) In
the contract graph generation stage, an abstract syntax
tree (AST) is generated according to the smart contract
source code. Each node represents the declared vari-
able or incoming parameter, and the edge represents the
calling relationship between them. Generate Contract
Graph (SCG) by combining semantic information of
Control Flow Graph (CFG); 2) In the shrinking stage of
graph nodes, in view of the increasingly complex logic
of the source code of smart contracts and the diversity
of information in the contract graph, it is not conducive
to model learning. Therefore, in this step, the contract
graph is shrunk to aggregate the node information; 3) In
the semantic feature generation stage, input to the hier-
archical graph attention network to vectorize the node
features; 4) In the stage of obtaining the result, the vec-
tor output by the hierarchical graph attention network
is input to the Softmax layer for classification, and the
final prediction result is obtained. The overall design of
the method is shown in Fig. 1. The above four stages are
described in detail below.

Contract chart generation
To better model smart contracts, we abstract smart con-
tracts using a graph structure. This article uses Solidi-
tyParser tool to generate AST for smart contract source
code. SolidityParser generates a parser from Solidity
grammars and uses the parser to identify the structure of
the program. However, AST still cannot make full use of
the structural information of code fragments. Therefore,
CFG is used to better capture the rich semantics between
nodes, and CFG is generated by using the calling rela-
tionship between functions, and then control flow, data
flow and function call are combined into abstract syntax.
On the tree, generate SCG. Where SCG = (V, E), V repre-
sents the node set.

Each declared variable or function parameter in the
smart contract represents a node Vi(0 ≤ i ≤ n) , and the
node includes variable calls, function calls, data flow
and other characteristics. Nodes represent important

Fig. 1  Overall design steps of the method

Page 5 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

elements in the smart contract Solidity, such as function
and variable names. They are mainly divided into three
categories: primary node F, secondary node S, and call-
back node C. The main node is a function that has an
important impact on smart contract vulnerability detec-
tion, including Solidity’s built-in functions and custom
functions, such as the call.value function of sending
Ether, the withdrawal function of withdraw, etc.; Second-
ary nodes represent important variables, such as balance
balances[address], Ether boundary value amountLimit
used for verification, etc. Since most vulnerabilities in
smart contracts are associated with callback functions,
callback nodes are used as the callback function of the
attacked contract in indicated in the SCG. E represents
an edge set, each edge is a triple Ei = ( Vi , Vj , isLink), Vi ,
Vj represent node i and node j, isLink represents whether
node i and node j are connected, and the edge describes
the data flow in the contract And the transmission pro-
cess of control flow, while reflecting the variable transfer
and function call. Figure 2 shows the process of contract
graph generation.

As seen in Fig. 2, the left side of the figure is an exam-
ple of smart contract code, and the right side is a contract
graph created from a smart contract. The primary node F
consists of three functions: deposit, withdraw and mash.
sender.call. Secondary nodes include variables like bal-
ances and bal. Create the contract graph by scanning it
from top to bottom to identify all primary and second-
ary nodes, and then add details like control flow and data
flow according to the order of execution. Consider the
deposit function’s execution sequence as an illustration.
Balances[msg. sender] is the secondary node S1, amount
is the secondary node S2, and the deposit function is the
primary node F1. Both the out-degrees and in-degrees
of S1 contain e2, representing S1 for auto increment
operation. Using the control flow edge e3, one can deter-
mine whether S2 is greater than 0. When the condition

is satisfied, it will proceed to the F2 node to execute the
withdraw function.

Graph node shrinkage
After the contract graph is generated, the contract graph
needs to be embedded. However, different functions have
varying degrees of importance when it comes to identi-
fying smart contract vulnerabilities. For instance, some
functions are only used to initialize variables, so the like-
lihood that they will generate vulnerabilities is very low;
And the information in the contract graph is diverse,
which is not conducive to model learning. Therefore, the
model should be shrunk before inputting the contract
graph into the model. Specifically, the characteristics of
the secondary node S and the callback node C in the con-
tract graph are passed to the adjacent main node F, and
finally only the main node is retained, which is recorded
as node Xi.

Figure 3 is a contract diagram of Fig. 2 after feature
shrinking of secondary nodes and callback nodes. In
the specific operation, each secondary node or callback
node is shrunk to the closest primary node. Taking
the secondary node S1 as an example, the out-degrees
of S1 include e3, e5, and e2, and the in-degrees and

Fig. 2  Contract Graph Generation

Fig. 3  Contract after shrinkage

Page 6 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

out-degrees of the secondary node S1 both include e2.
The in-degrees of S2 includes e3, but S2 is not the pri-
mary node. Find the edge e4 with S2 as the outgoing
degree, we can see e4 and e5 both point to the primary
node F2, Therefore, secondary nodes S1 and S2 can be
shrunk to the primary node F2. When S1 and S2 are
deleted, the associated edge e1, which connects the pri-
mary nodes F1 and S1, will also point to the primary
node F2. This completes the shrinking of the secondary
node S2. After the contraction is completed, the char-
acteristics of the contract graph nodes include three
parts: the characteristics of the original main node Fi ,
the characteristics aggregated by the secondary node Si ,
and the characteristics aggregated by the callback node
Ci , as shown in formula 1.

Generation of semantic features
The framework of the HGAT model proposed in this
paper is shown in Fig. 4. The model is divided into 5
layers, namely: graph embedding layer, sentence layer,
function layer, splicing layer, and Softmax layer. Each
statement in source code is related to its context and fol-
lows a hierarchy similar to that of documents. HGAT
retains the hierarchical structure of the source code and
captures the semantic characteristics of different levels
in the source code hierarchically. Because each statement
has syntax and semantic characteristics, vulnerabilities
are often caused by a keyword or function call, which

(1)Xi = f (Fi, Si, Ci)

Fig. 4  HGAT Model Structure

Page 7 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

are included in the semantic and syntax characteristics.
In a function of the smart contract, learning contributes
different sentence weights to detecting vulnerabilities,
and the representation of sentences is learned through
weighted fusion. Then, the sentences in each function are
spliced to obtain different weights of different functions
in the smart contract, and the weighted fusion is used to
obtain the document representation.

First, input according to the contract contraction chart
generated in Section “Graph node shrinkage”, assuming
that a contract shrinkage graph has N nodes, the input
graph pays attention to the feature T of each node of the
network as:

where T is the dimension of node characteristics. In the
sentence layer, it only targets the statement logic inside
the function, including features such as sequence flow
and control flow inside the function. The final output of
all node features is expressed as:

For each shrinking node Xi in the contract shrinking
graph, the importance weights of neighbor nodes will be
learned. In order to obtain sufficient expressive ability to
learn the attention weights, a learnable linear transfor-
mation W is required in this process to achieve feature
enhancement. Assuming that the input feature is con-
verted into the weight matrix W of the output feature, the
attention value of node j on node i is:

where a is a single-layer feedforward neural network,
which is the attention function for calculating node cor-
relation. It is then activated using the LeakyReLU activa-
tion function:

where ‖ is the splicing operation, and aT is the transpose
of a. After finding the attention values of all adjacent
nodes of each shrinking node Xi , use the Softmax func-
tion to normalize the attention weights to obtain the sen-
tence-level attention weights:

Most of the smart contract vulnerabilities occur in
callback functions, but these callback functions may

(2)t =
−→
t1 ,

−→
t2 , ...,

−→
tn , ti ∈ R

T

(3)t
′

=
−→
t
′

1 ,
−→
t
′

2 , ...,
−→
t
′

n ,
−→
t
′

i ∈ R
T
′

(4)eij = a(Wti ,Wtj)

(5)lij = LeakyReLU(aT [Wti ||Wtj])

(6)αij = softmax(eij) =
exp(lij)∑
k∈Ni

lik

not be called in their contexts. Only the call relation-
ship between functions is taken into account in the
function layer. The eigenvector of the function call
flow on the statement layer’s output splice serves as the
input of the function layer:

After that, the Softmax function is also used for
normalization:

Through the two-layer attention network, the
weighted sum method is used for feature extraction,
and the output of the model is:

where σ is the activation function, and βij is the atten-
tion value of node i and node j. In this model, a multi-
head attention network is used, and k groups of attention
coefficients are independently calculated and averaged to
prevent overfitting. The final output of the model is:

Generation of semantic features
After obtaining the output result of the double-layer
graph attention network, it is input into the fully con-
nected layer and mapped to the sample label space. The
calculation formula of the fully connected layer is as
follows:

where T ′ is the output of all node features, w is the
parameter matrix of the fully connected layer, and b is the
bias. In order to reduce the isomorphism bias generated
by the graph structure data in the classification model,
after the output of the fully connected layer is obtained,
it is input to the softmax layer for normalization, and the
final prediction result is:

Through the softmax function, the output can be con-
verted into a probability, classified, and the smart con-
tract vulnerability classification label t ′ can be obtained to
complete the prediction target.

Calculate Loss using the cross-entropy loss function:

(7)nij = a(Wti ,Wtj)

(8)βij = softmax(nij)

(9)t
′

i = σ(
∑

j∈Ni

βijWtj)

(10)t
′

i = σ(
1

K

K∑

K=1

∑

j∈Ni

βk
ijW

k−→tj)

(11)t̂ = T
′

w + b

(12)t
′

i = softmax(t̂)

Page 8 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

Experiments
Data set and experimental platform
The experimental environment of this paper is Ubuntu
18.04 operating system, 3.7 GHz Intel Core i7 CPU pro-
cessor, 16 GB memory, RTX 3060Ti graphics card, 8 GB
video memory. We use SmartBugs Wild dataset [35] to
verify the advantages and disadvantages of the methods
in this paper. This is a large-scale dataset of smart con-
tract vulnerabilities based on Solidity. There are about
203716 smart contracts in this data collection, 47518 real
and distinct sol files, and 9693457 lines. The sol files in
the SmartBugs Wild dataset are finally divided into two
categories: smart contracts with vulnerabilities and smart
contracts without vulnerabilities. The number of smart
contracts with vulnerabilities is 35151, and the num-
ber of smart contracts without vulnerabilities is 168565.
The vulnerable smart contract contains six types of vul-
nerabilities, namely, stack call depth attack vulnerability
(Callstack depth attack), integer up overflow vulnerabil-
ity, integer down overflow vulnerability, reentrancy vul-
nerability, timestamp dependency vulnerability, and
transaction order dependency vulnerability. The data-
set we utilize consists of 7018 smart contracts, includ-
ing 1640 integer overflows vulnerabilities, 1988 integer
underflows vulnerabilities, 1671 timestamp dependence
vulnerabilities, and 1719 Reentrancy vulnerabilities. We
divided these smart contracts into 5615 training sets and
1403 test sets.

Evaluation indicators
This paper makes a comparative experiment from two
aspects. To demonstrate the effectiveness of our HGAT
model, the method in this study is first compared to other
smart contract vulnerability detection techniques and
evaluated with metrics including accuracy rate (ACC),
recall rate (TPR), accuracy rate (PRE), and F1 value.
Then, by contrasting the detection times, the detection
effectiveness of HGAT was confirmed.

Analysis of experimental results
We set cross-entropy as the loss function and 0.001 as
the learning rate for the model. The loss value is essen-
tially stable after the model has been trained for many
epochs, showing that the model can converge suc-
cessfully. The accuracy and loss curves of Reentrancy,
Timestamp, Integer Overflow and Integer Underflow
vulnerabilities detection during model training are
shown in Fig. 5. Figure 5 shows that HGAT has high
detection performance for Reentrancy, Timestamp,

(13)Loss = −
∑

ti ln y
′

i
Integer Overflow and Integer Underflow vulnerabili-
ties. Table 1 lists the HGAT detection indications.

In order to verify the effectiveness of the method
in this paper, we compared it with four static analysis
tools, Oyente, Mythril, Securify, Slither, and two deep
learning detection methods, LSTM and GCN. It can be
seen from Fig. 6 that the performance of HGAT is bet-
ter than other detection methods. Oyente’s detection
result is less than optimal and its PRE is only 38.43%
since it relies on detection rules established by experts
and does not completely imitate Ethereum’s execu-
tion environment. Mythril is similar in performance
to Oyente. Securify uses three modes to locate errors.
Only in the warning mode does it need to perform
manual secondary detection, which improves the accu-
racy of Securify, but TPR and PRE are still low. Slither
can draw the inheritance topology diagram of the con-
tract, the contract method call relationship diagram,
etc., and the detection accuracy rate reaches 77.34%.
LSTM only aggregates the feature information of the
source code context, so it ignores the function call, so
the accuracy rate is low, only 53.68%. GCN performs
well in various indicators, but due to the weak gener-
alization ability of GCN, the accuracy is only 70.02%.
The HGAT proposed in this paper surpasses the other
6 methods in 4 indicators, and the detection accuracy
rate is greatly improved, reaching 85.64%, and the recall
rate is also improved. It can be seen from the com-
parative experimental results that the method in this
paper has good detection performance for Reentrancy
vulnerabilities of smart contracts. Figure 7 shows the
detection results of Timestamp vulnerabilities by each
detection tool. ACC, PRE, TPR and F1 of the proposed
HGAT model were 87.98%, 89.69%, 85.59% and 85.26%,
indicating that HGAT was superior to other models in
detection accuracy. Since the Timestamp vulnerability
occurs when the function is called, it can also be seen
that HGAT’s ability to extract discontinuous features is
due to other detection methods. Figures 8 and 9 show
the detection results of various detection tools for Inte-
ger Overflow and Integer Underflow vulnerabilities.
It can be seen that HGAT performs better than other
models. Compared with Slither, the detection accu-
racy increased by 11.70% and 10.20%, respectively. The
detection accuracy of GCN increased by 11.48% and
9.02%, respectively.

The ROC curve for both this method and the compari-
son method are shown in Fig. 10. The AUC is the area
under the ROC curve, which is used as a performance
indicator. The larger the AUC value, the better the per-
formance. The AUC of Oyente and Securify is mod-
est, which indicates poor performance, as can be seen
in the figure. HGAT has the largest AUC value, and its

Page 9 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

Fig. 5  Reentrancy, Timestamp, Integer Overflow and Integer Underflow vulnerabilities Detection Accuracy and Loss Curve

Fig. 6  Reentrancy vulnerability detection results

Page 10 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

performance is better than other detection methods,
indicating that the method proposed in this paper per-
forms better than other detection methods.

Timing begins before the detection tool or model inputs
graph structure data in terms of detection time, and
ends after the output results. Under the same hardware

Fig. 7  Timestamp vulnerability detection results

Fig. 8  Integer Overflow vulnerability detection results

Fig. 9  Integer Underflow vulnerability detection results

Page 11 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

conditions and experimental environment, the average
detection time obtained by statistics is shown in Table 2.

The test findings in Table 2 demonstrate the poor
detection performance of four conventional detection
tools. A smart contract may be found in almost a minute
using the Mythril detection tool. The detection efficiency
is better, at about 1s, with the deep neural network detec-
tion model. Compared to LSTM and GCN, the method
proposed in this study is a little bit slower. The use of the
hierarchical attention network, which has higher compu-
tational complexity than a basic neural network when an
attention mechanism is introduced, may be the cause of
the longer detection times.

Fig. 10  ROC analysis curve on Reentrancy, Timestamp, Integer overflow and Integer Underflow vulnerabilities

Table 1  Test results based on SmartBugs Wild dataset

Vulnerability Type ACC/% PRE/% TPR/% F1 Score

Reentrancy 85.64 76.96 88.12 82.47

Timestamp 86.62 82.69 89.62 88.31

Integer Overflow 88.26 83.12 87.14 83.08

Integer Underflow 88.44 83.64 87.17 83.15

Table 2  Average detection time (unit: second)

Methods Oyente Mythril Securify Slither LSTM GCN HGAT​

Average Time 6.18 54.72 13.58 5.26 0.83 0.93 1.04

Page 12 of 13Ma et al. Journal of Cloud Computing (2023) 12:93

Conclusion
In this paper, we proposed a method for detecting
smart contracts’ reentrancy vulnerability based on
hierarchical graph attention network, which gener-
ated local abstract semantic graph data from the syn-
tax information of the abstract syntax tree in the smart
contract source code, and the semantic information
of control flow and data flow, used hierarchical graph
attention network to spread and aggregate informa-
tion on the graph, and used two-layer attention mech-
anism to extract extract features of smart contract
samples. Finally, a reentrancy vulnerability detection
experiment was carried out on the open source smart
contract dataset, which proved that the method had a
good detection performance on the reentrancy vulner-
ability of smart contracts. The next step is to continue
to improve the model to improve the accuracy and
extend it to other types of vulnerability detection and
to improve the detection efficiency without reducing
the accuracy of the model.

Acknowledgements
The authors would like to thank the teachers and students of the Blockchain
and Information Security Laboratory, School of Software Engineering, Chong-
qing University of Posts and Telecommunications for their help and valuable
opinions.

Authors’ contributions
Chuang Ma found the target problem and proposed the solution. Shuaiwu
Liu completed most of the writing of this manuscript. Guangxia Xu helped in
revising the paper and gave many useful suggestions. All authors have read
and approved the manuscript.

Authors’ information
Chuang Ma is currently a lecturer in the School of Software Engineering of
Chongqing University of Posts and Telecommunications. He obtained a mas-
ter’s degree in network and information security from Jilin University in 2011
and a doctor’s degree in computer system structure from Jilin University in
2016. Mainly engaged in the research and development of complex networks,
big data analysis and processing, and artificial intelligence. Shuaiwu Liu is
now studying for a master’s degree in the School of Software Engineering of
Chongqing University of Posts and Telecommunications, and received a bach-
elor’s degree in software engineering from Sichuan University of Light Chemi-
cal Industry in 2016. His main research interests are blockchain, smart contract,
and network security. Guangxia Xu is currently a professor at Cyberspace
Institute of Advanced Technology of Guangzhou University in Guangdong,
China. She received the M.S. and Ph.D. degrees in computer science from the
Chongqing University, Chongqing, China in 2006 and 2011, respectively. Her
research interests include information security and network management,
Big Data analytics for network security, and Blockchain technology. She is a
committee member at the Blockchain of CCF, IEEE Senior Member and ACM
member.

Funding
This work is supported by the National Natural Science Foundation of China
(Grant No. 62272120, 62106030); the Technology Innovation and Application
Development Projects of Chongqing (Grant No. cstc2021jscx-gksbX0032,
cstc2021jscx-gksbX0029); the Research Program of Basic Research and Frontier
Technology of Chongqing (Grant No. cstc2021jcyj-msxmX0530); the Key R & D
plan of Hainan Province (Grant No. ZDYF2021GXJS006).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
The work is a novel work and has not been published elsewhere nor is it cur-
rently under review for publication elsewhere.

Consent for publication
Informed consent was obtained from all individual participants included in
the study.

Competing interests
The authors declare no competing interests.

Received: 8 November 2022 Accepted: 18 May 2023

References
	1.	 Liu Y, Xu G (2021) Fixed degree of decentralization dpos consensus

mechanism in blockchain based on adjacency vote and the average
fuzziness of vague value. Comput Netw 199:108432

	2.	 Xu G, Liu Y, Khan PW (2020) Improvement of the dpos consensus
mechanism in blockchain based on vague sets. IEEE Trans Ind Inform
16(6):4252–4259. https://​doi.​org/​10.​1109/​TII.​2019.​29557​19

	3.	 Scekic O, Nastic S, Dustdar S (2019) Blockchain-supported smart city
platform for social value co-creation and exchange. IEEE Internet Comput
23(1):19–28. https://​doi.​org/​10.​1109/​MIC.​2018.​28815​18

	4.	 Du J, Cheng W, Lu G, Cao H, Chu X, Zhang Z, Wang J (2021) Resource
pricing and allocation in mec enabled blockchain systems: An a3c deep
reinforcement learning approach. IEEE Trans Netw Sci Eng 9(1):33–44

	5.	 Feng J, Zhang W, Pei Q, Wu J, Lin X (2022) Heterogeneous computation
and resource allocation for wireless powered federated edge learning
systems. IEEE Trans Commun 70(5):3220–3233

	6.	 Feng J, Liu L, Pei Q, Li K (2021) Min-max cost optimization for efficient
hierarchical federated learning in wireless edge networks. IEEE Trans
Parallel Distrib Syst 33(11):2687–2700

	7.	 Mao S, Liu L, Zhang N, Dong M, Zhao J, Wu J, Leung VC (2022) Recon-
figurable intelligent surface-assisted secure mobile edge computing
networks. IEEE Trans Veh Technol 71(6):6647–60

	8.	 Xu G, Dong J, Ma C, Liu J, Cliff UGO (2022) A certificateless signcryption
mechanism based on blockchain for edge computing. IEEE Internet
Things J

	9.	 He D, Deng Z, Zhang Y, Chan S, Cheng Y, Guizani N (2020) Smart contract
vulnerability analysis and security audit. IEEE Netw 34(5):276–282. https://​
doi.​org/​10.​1109/​MNET.​001.​19006​56

	10.	 Wang X, He J, Xie Z, Zhao G, Cheung SC (2020) Contractguard: Defend
Ethereum smart contracts with embedded intrusion detection. IEEE Trans
Serv Comput 13(2):314–328. https://​doi.​org/​10.​1109/​TSC.​2019.​29495​61

	11.	 Xing C, Chen Z, Chen L, Guo X, Zheng Z, Li J (2020) A new scheme of
vulnerability analysis in smart contract with machine learning. Wirel Netw
1–10

	12.	 FU M, WU L, HONG Z, Wenbo F (2019) Research on vulnerability mining
technique for smart contracts. J Comput Appl 39(7):1959

	13.	 Wood G et al (2014) Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum Proj Yellow Pap 151(2014):1–32

	14.	 Dika A, Nowostawski M (2018) Security vulnerabilities in Ethereum smart
contracts. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Halifax, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp 955–962

	15.	 D’Silva V, Kroening D, Weissenbacher G (2008) A survey of automated tech-
niques for formal software verification. IEEE Trans Comput Aided Des Integr
Circ Syst 27(7):1165–1178. https://​doi.​org/​10.​1109/​TCAD.​2008.​923410

	16.	 Luu L, Chu DH, Olickel H, Saxena P, Hobor A (2016) Making smart con-
tracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Association for Computing
Machinery, New York, NY, USA, CCS ’16, p 254–269. https://​doi.​org/​10.​
1145/​29767​49.​29783​09

https://doi.org/10.1109/TII.2019.2955719
https://doi.org/10.1109/MIC.2018.2881518
https://doi.org/10.1109/MNET.001.1900656
https://doi.org/10.1109/MNET.001.1900656
https://doi.org/10.1109/TSC.2019.2949561
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309

Page 13 of 13Ma et al. Journal of Cloud Computing (2023) 12:93 	

	17.	 Amani S, Bégel M, Bortin M, Staples M (2018) Towards verifying Ethereum
smart contract bytecode in Isabelle/hol. In: Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
Association for Computing Machinery, New York, NY, USA, CPP 2018, p
66–77. https://​doi.​org/​10.​1145/​31670​84

	18.	 Bhargavan K, Delignat-Lavaud A, Fournet C, Gollamudi A, Gonthier G, Kob-
eissi N, Kulatova N, Rastogi A, Sibut-Pinote T, Swamy N, Zanella-Béguelin S
(2016) Formal verification of smart contracts: Short paper. In: Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, Association for Computing Machinery, New York, NY, USA, PLAS
’16, p 91–96. https://​doi.​org/​10.​1145/​29936​00.​29936​11

	19.	 Mueller B, Honig J, Parasaram N (2018) Consensys/mythril. https://​github.​
com/​Conse​nSys/​mythr​il. Accessed 5 Sept 2022

	20.	 Tsankov P, Dan A, Cohen DD, Gervais A, Buenzli F, Vechev M (2018) Secu-
rify: Practical security analysis of smart contracts. arXiv:​1806.​01143

	21.	 Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko
E, Alexandrov Y (2018) Smartcheck: Static analysis of Ethereum smart
contracts. In: Proceedings of the 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain, Moscow, pp 9–16

	22.	 Grishchenko I, Maffei M, Schneidewind C (2018) Foundations and tools
for the static analysis of Ethereum smart contracts. In: International Con-
ference on Computer Aided Verification, Springer, pp 51–78

	23.	 Di Angelo M, Salzer G (2019) A survey of tools for analyzing Ethereum
smart contracts. In: 2019 IEEE international conference on decentralized
applications and infrastructures (DAPPCON), IEEE, pp 69–78

	24.	 He J, Balunović M, Ambroladze N, Tsankov P, Vechev M (2019) Learning
to fuzz from symbolic execution with application to smart contracts. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, Association for Computing Machinery, New York,
NY, USA, CCS ’19, p 531–548. https://​doi.​org/​10.​1145/​33195​35.​33632​30

	25.	 Wang W, Song J, Xu G, Li Y, Wang H, Su C (2020) Contractward: Auto-
mated vulnerability detection models for Ethereum smart contracts. IEEE
Trans Netw Sci Eng 8(2):1133–1144

	26.	 Huang J, Han S, You W, Shi W, Liang B, Wu J, Wu Y (2021) Hunting vulner-
able smart contracts via graph embedding based bytecode matching.
IEEE Trans Inf Forensic Secur 16:2144–2156. https://​doi.​org/​10.​1109/​TIFS.​
2021.​30500​51

	27.	 Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph
domains. In: Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005, vol 2. pp 729–734. https://​doi.​org/​10.​1109/​IJCNN.​
2005.​15559​42

	28.	 Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting
linear structure within convolutional networks for efficient evaluation. In:
Advances in Neural Information Processing Systems, Cambridge, vol 27

	29.	 Veličković P, Cucurull G, Casanova A, Romero A, Lió P, Bengio Y (2017)
Graph attention networks. arXiv:​1710.​10903

	30.	 Ma R, Jian Z, Chen G, Ma K, Chen Y (2019) Rejection: A AST-based reen-
trancy vulnerability detection method. In: Chinese Conference on Trusted
Computing and Information Security, Springer, pp 58–71

	31.	 Xu X, Liu C, Feng Q, Yin H, Song L, Song D (2017) Neural network-based
graph embedding for cross-platform binary code similarity detection.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. https://​doi.​org/​10.​1145/​31339​56.​31340​18

	32.	 Zhuang Y, Liu Z, Qian P, Liu Q, Wang X, He Q (2020) Smart contract vulner-
ability detection using graph neural network. In: Yokohama, IJCAI, pp
3283–3290

	33.	 Zhou Y, Liu S, Siow J, Du X, Liu Y (2019) Devign: Effective vulnerability identifica-
tion by learning comprehensive program semantics via graph neural networks.
Adv Neural Inf Process Syst 32. https://​doi.​org/​10.​48550/​arXiv.​1909.​03496

	34.	 Liu Z, Qian P, Wang X, Zhuang Y, Qiu L, Wang X (2021) Combining graph
neural networks with expert knowledge for smart contract vulnerability
detection. IEEE Trans Knowl Data Eng 35(2):1296–310

	35.	 Ferreira JF, Cruz P, Durieux T, Abreu R (2020) Smartbugs: A framework to
analyze solidity smart contracts. In: 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Australia, Virtual
Event, pp 1349–1352

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3167084
https://doi.org/10.1145/2993600.2993611
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
http://arxiv.org/abs/1806.01143
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/TIFS.2021.3050051
https://doi.org/10.1109/TIFS.2021.3050051
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
http://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.48550/arXiv.1909.03496

	HGAT: smart contract vulnerability detection method based on hierarchical graph attention network
	Abstract
	Introduction
	Related work
	Smart contract vulnerability detection
	Graph Attention Network (GAT)

	Method
	Contract chart generation
	Graph node shrinkage
	Generation of semantic features
	Generation of semantic features

	Experiments
	Data set and experimental platform
	Evaluation indicators
	Analysis of experimental results

	Conclusion
	Acknowledgements
	References

