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Abstract 

With the widespread use of blockchain, more and more smart contracts are being deployed, and their internal logic is 
getting more and more sophisticated. Due to the large false positive rate and low detection accuracy of most current 
detection methods, which heavily rely on already established detection criteria, certain smart contracts additionally 
call for human secondary detection, resulting in low detection efficiency. In this study, we propose HGAT, a hierarchi-
cal graph attention network-based detection model, in order to address the aforementioned issues as well as the 
shortcomings of current smart contract vulnerability detection approaches. First, using Abstract Syntax Tree (AST) and 
Control Flow Graph, the functions in the smart contract are abstracted into code graphs (CFG). Then abstract each 
node in the code subgraph, extract the node features, utilize the graph attention mechanism GAT, splice the obtained 
vectors to form the features of each line of statements and use these features to detect smart contracts. To create test 
data and assess HGAT, we leverage the open-source smart contract vulnerability sample dataset. The findings of the 
experiment indicate that this method can identify smart contract vulnerabilities more quickly and precisely than other 
detection techniques.
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Introduction
Through the consensus process, the blockchain has 
recently made sure that all nodes can achieve point-
to-point communication without the requirement for a 
reliable third party [1, 2]. Blockchain is also frequently 
used in logistics, banking, edge computing, medical 
and other industries because to its tamper proof, trace-
able and decentralized qualities [3–8]. Smart contracts, 
which operate as an application atop the blockchain’s 
top layer, offer a comprehensive transaction protocol 

for all types of virtual currency transactions, resolving 
the issue that the blockchain has not seen widespread 
use since its inception. Smart contracts are essentially 
pieces of code with contractual properties, which una-
voidably results in programming flaws. Many contract 
attacks have been revealed in recent years [9]. Hack-
ers targeted Coincheck, a significant Japanese digital 
currency exchange, in January 2018, and more than 
534 million dollars’ worth of NEM (New Economy 
Currency) on the site was moved unlawfully; Hackers 
attacked the decentralized lending platform Lendf.Me 
on April 19, 2020, and stole the contract’s assets worth 
$25 million. On April 19, 2020, Lendf.Me, a decentral-
ized lending agreement, was attacked by hackers, and 
the assets worth 25 million dollars in the contract were 
looted; More than 37 significant attacks in the block-
chain ecological field were observed in the third quar-
ter of 2022, with a total loss of roughly $450.4 million, 
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according to the Beosin EagleEye security early warn-
ing and monitoring platform, which not only resulted 
in significant financial losses for consumers but also 
posed a serious threat to the security and trust interests 
of smart contracts [10].

The main reasons for smart contract vulnerabilities are 
as follows: (1) The source code is transparent and acces-
sible. Since smart contracts are immutable, program 
patches can no longer be used to change the smart con-
tract that has been uploaded to the blockchain. Attacker 
entry requirements and attack costs are lowered because 
of this because attackers can exploit loophole contracts 
on the chain to launch attacks. (2) Developers’ careless-
ness. Given that the smart contract was written using 
Solidity high-level Programming language, flaws in the 
Solidity design pattern and developers’ writing styles 
could result. Developers, for instance, neglected to ver-
ify potential contract flaws, leading to integer overflow, 
arbitrary address writing, uninitialized variables, etc. (3) 
Design level of an EVM virtual machine. Vulnerabilities 
are brought on by the bytecode and EVM virtual machine 
design guidelines. For instance, a frequent vulnerability 
at the design level of the EVM virtual machine is the seg-
ment address attack.

Currently, the smart contract code audit approach 
mostly relies on experts for manual audit, but because 
manual audit is expensive and inefficient, experts strug-
gle to fully extract the vulnerability features in each con-
tract [11]. The existing research frequently simplifies the 
code into natural language or relies on the subject-matter 
expertise of specialists to extract code features. The pro-
cess of translating the code into plain language is overly 
straightforward, which makes it simple to lose informa-
tion. Experts frequently use a heuristic rule model that is 
too sophisticated, not scalable, and not universal, which 
results in low detection accuracy and efficiency of vulner-
abilities. Studying effective vulnerability feature extrac-
tion techniques is crucial in light of the security issues 
with smart contracts.

Aiming at the above problems, this paper proposes 
a smart contract vulnerability detection model HGAT 
based on hierarchical graph attention network. Our main 
contributions are as follows: 

1.	 A contract graph contraction strategy is suggested to 
shrink the contract graph’s nodes in order to speed 
up model learning and avoid the model from being 
overfit.

2.	 A hierarchical graph attention network-based tech-
nique for detecting smart contract vulnerabilities is 
proposed. To increase the ability to extract discon-
tinuous features, features are extracted at the state-
ment level and the function level, respectively. The 

efficiency of this strategy has been tested on open 
source datasets.

3.	 It has been demonstrated through a large number of 
experiments that the HGAT model put out in this 
research performs better than the current detection 
techniques.

The organization of this paper is as follows: we intro-
duce existing smart contract vulnerability detection 
methods and their flaws in Section “Related Work”; 
detailed implementation details of HGAT are introduced 
in Section “Method”; and Section “Experiments” com-
pares HGAT with other detection methods; Summarize 
and prospect in Section “Conclusion”.

Related work
Smart contract vulnerability detection
In recent years, The blockchain has gained popularity 
because to its immutability. However, once the smart 
contract becomes immutable, if there is a security prob-
lem in the smart contract on the chain, it will bring seri-
ous economic losses to people. Therefore, it is crucial to 
identify smart contract vulnerabilities. Smart contract 
vulnerability detection is mainly divided into two types: 
manual detection and automatic detection [12]. Faced 
with the deployment of thousands of smart contracts 
every day, experts in manual detection need to analyze 
the Opcode [13] of smart contracts first, and then match 
vulnerabilities according to the rules defined in advance. 
This does not satisfy the criteria of blockchain and smart 
contract development prospects and is not only time-
consuming and expensive, but frequently ineffectual even 
when flaws are uncovered.

In accordance with the characteristics of the detec-
tion, automated detection is classified into three cat-
egories: code matching based on features, automatic 
detection based on formal verification, and automatic 
auditing techniques based on symbolic execution and 
symbolic abstraction [14–16]. Similar to string match-
ing, feature-based code matching primarily abstracts 
known smart contract vulnerabilities into a seman-
tic tag before matching with the smart contract to be 
detected. The method based on formal verification 
approach primarily makes use of mathematical tech-
niques and automated detection tools to replicate the 
deployment and use of smart contracts and check for 
security vulnerabilities. Amani et  al. [17] proposed to 
partition contracts into fundamental fast codes or build 
EVM bytecode sequences into linear code blocks using 
an Isabelle-based higher-order logic interaction theo-
rem prover, and then use formal model verification 
to determine whether the smart contract code con-
tains vulnerabilities. Karthikeyan et  al. [18] proposed 
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a verification framework for the functional correctness 
of smart contracts based on formal verification. This 
framework converts smart contract code into F* lan-
guage format and verifies various smart contract attrib-
utes to find hidden vulnerabilities. The approach based 
on symbolic execution and symbolic abstraction gen-
erates Opcode by compiling the smart contract using 
the Ethereum virtual machine, and then analyzes the 
Opcode to see whether there is a security vulnerability. 
Securify [19] is symbolic abstract analysis-based detec-
tion tools, while Mythril [20] and Oyente [16] are sym-
bolic execution-based detection tools. A static analysis 
tool for Ethereum smart contracts called SmartCheck 
has been proposed by Tikhomirov et al. [21] It employs 
the ANTLR parser as well as a customized Solidity syn-
tax. By utilizing ANTLR syntax and vulnerability pat-
terns, it can find more sophisticated vulnerabilities.

There are several similarities between the traditional 
automated smart contract vulnerability detection tech-
niques mentioned above [22, 23]. First, traditional smart 
contract vulnerability detection tools have low code cov-
erage and high false positive and false negative rates. 
For instance, Oytente’s code coverage is erratic and its 
rate of false positives for integer overflow vulnerabilities 
is significant. Additionally, because typical smart con-
tract vulnerability detection tools rely on detection rules 
established by experts, their scalability is constrained, 
often necessitating secondary detection, and their detec-
tion effectiveness is low.

It’s important to note that researchers have recently 
put forth approaches for detecting smart contract vul-
nerabilities that based on machine learning and neural 
networks. These techniques are more accurate and effi-
cient than more traditional ones. A neural network-based 
smart contract fuzzer called ILF was proposed by He 
et  al. [24]. It uses a symbolic execution engine to pro-
duce effective test and call sequences to direct the feature 
learning of neural network models, enabling effective 
vulnerability discovery. Wang et  al. [25] proposed Con-
tractWard, which uses machine learning technology to 
detect vulnerabilities in smart contracts. First, using the 
XGBoost training model and the SMOTETomek bal-
anced training set, binary features are extracted from the 
condensed operation code of smart contracts. Second, 
the model to simultaneously detect multiple vulnerabili-
ties is built using five machine learning techniques and 
two sampling algorithms. Huang et al. [26] proposed an 
unsupervised graph embedding algorithm that trans-
forms the code graph into a quantitative comparable vec-
tor, transforms the vulnerability characteristics into the 
same dimension vector, and finds the potentially vulner-
able smart contract by comparing its vector to the known 
vulnerable vector.

The internal logic of smart contracts, however, 
becomes more and more complex as the number of 
smart contracts rises, and the current detection methods 
have certain issues: 

1.	 Existing detection methods will use the entire smart 
contract as input for detection, including code seg-
ments unrelated to vulnerabilities, such as keywords 
CALL, CALL.VALUE for reentrancy vulnerabilities, 
integer operations for integer overflow, etc. This will 
make detection more difficult and lower detection 
effectiveness.

2.	 Since source code is more logical and structural than 
natural language, many vulnerabilities occur across 
functions, such as function calls, which requires 
smart contract vulnerability detection methods to be 
able to handle discontinuous feature extraction.

Therefore, in order to further reduce the security risk of 
smart contracts, it is necessary to design a method with 
high detection efficiency and high detection accuracy.

Graph Attention Network (GAT)
Gori et  al. first proposed the concept of Graph Neural 
Network (GNN) [27]. The core idea is to learn the rep-
resentation of the target node or state by iteratively dis-
seminating and gathering the information of surrounding 
nodes and finally reaching a stable state. Joan Bruna 
et al. [28] proposed that Graph Convolutional Networks 
(GCNs) can combine local graph structure and node fea-
tures to achieve good performance in node classification 
tasks. Petar Velickovic et al. [29] proposed (Graph Atten-
tion Network, GAT), which uses an attention mechanism 
to weighted summation of adjacent node features. GAT 
is independent of the graph structure, and the weight of 
adjacent node features completely depends on the node 
features.

As graph neural networks advance, more and more 
use applications for them are emerging in areas includ-
ing semantic segmentation, association extraction, and 
picture categorization. Additionally, it can be utilized to 
understand and recognize program behavior. A graph 
neural network is used to learn the program behavior 
that is challenging to learn from the prior deep learning 
model after building the graphic data of the program’s 
data flow and control flow. In order to lower the high 
false positive rate of smart contract vulnerability identi-
fication, Ma et al. [30] proposed an abstract syntax tree 
(AST) based vulnerability detection method to efficiently 
find reentrancy vulnerabilities. Xu et  al. [31] proposed 
a binary code similarity comparison method based on 
graph neural network, which discovered the bytecode 
containing the vulnerability keyword by compiling the 
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code into bytecode and matching it with the vulnerability 
keyword, in order to determine whether there is a vulner-
ability in the contract. This demonstrates the enormous 
potential of graph neural networks in the field of vulnera-
bility mining. Zhuang et al. [32] proposed a new message 
propagation network to use GCNs for intelligent contract 
vulnerability identification. They also built a contract 
graph representing syntax and semantics. The disadvan-
tage of this method is that the way GCNs aggregate the 
attributes of nearby nodes is intimately tied to the graph’s 
structure, which restricts the trained model’s capacity to 
generalize to other graph structures. Zhou et al. [33] pro-
posed a general model based on graph neural networks 
for graph-level classification by learning a rich set of code 
semantic representations to efficiently extract useful 
features. Liu et al. [34] proposed a novel temporal mes-
sage propagation network to extract graph features from 
normalized graphs, and combined graph features with a 
designed expert mode to improve vulnerability detection 
accuracy. After GAT introduces the attention mecha-
nism, each graph node is only related to the adjacent 
nodes, and there is no need to obtain the information of 
the whole graph, which improves the generalization abil-
ity on different graph structures, breaks the limitations 
of GCN, and also provides Smart contract vulnerability 
detection with complex logic makes it possible. From this 
point of view, it is feasible to apply GAT to smart con-
tract vulnerability detection.

Considering that the source code of smart contract is 
written in Solidity high-level programming language, 
which is as sparse as the code written in other languages, 
we have layered it on the basis of GAT, which is divided 
into code statement level and function level. The rep-
resentation result of a function is obtained at the code 
statement level, while the representation result of the full 
smart contract is obtained at the function level. Finally, 
vulnerability categorization is performed using the learnt 
representation. Because HGAT is based on GAT, it not 
only has strong heterogeneous task processing capabili-
ties but also improves the capacity to extract the specifics 
of the smart contract environment and lessen contract 
sparsity, as will be covered in Section “Generation of 
semantic features”.

Method
This paper proposes a smart contract vulnerability 
detection method based on hierarchical graph atten-
tion network. This method is divided into 4 stages: 1) In 
the contract graph generation stage, an abstract syntax 
tree (AST) is generated according to the smart contract 
source code. Each node represents the declared vari-
able or incoming parameter, and the edge represents the 
calling relationship between them. Generate Contract 
Graph (SCG) by combining semantic information of 
Control Flow Graph (CFG); 2) In the shrinking stage of 
graph nodes, in view of the increasingly complex logic 
of the source code of smart contracts and the diversity 
of information in the contract graph, it is not conducive 
to model learning. Therefore, in this step, the contract 
graph is shrunk to aggregate the node information; 3) In 
the semantic feature generation stage, input to the hier-
archical graph attention network to vectorize the node 
features; 4) In the stage of obtaining the result, the vec-
tor output by the hierarchical graph attention network 
is input to the Softmax layer for classification, and the 
final prediction result is obtained. The overall design of 
the method is shown in Fig. 1. The above four stages are 
described in detail below.

Contract chart generation
To better model smart contracts, we abstract smart con-
tracts using a graph structure. This article uses Solidi-
tyParser tool to generate AST for smart contract source 
code. SolidityParser generates a parser from Solidity 
grammars and uses the parser to identify the structure of 
the program. However, AST still cannot make full use of 
the structural information of code fragments. Therefore, 
CFG is used to better capture the rich semantics between 
nodes, and CFG is generated by using the calling rela-
tionship between functions, and then control flow, data 
flow and function call are combined into abstract syntax. 
On the tree, generate SCG. Where SCG = (V, E), V repre-
sents the node set.

Each declared variable or function parameter in the 
smart contract represents a node Vi(0 ≤ i ≤ n) , and the 
node includes variable calls, function calls, data flow 
and other characteristics. Nodes represent important 

Fig. 1  Overall design steps of the method
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elements in the smart contract Solidity, such as function 
and variable names. They are mainly divided into three 
categories: primary node F, secondary node S, and call-
back node C. The main node is a function that has an 
important impact on smart contract vulnerability detec-
tion, including Solidity’s built-in functions and custom 
functions, such as the call.value function of sending 
Ether, the withdrawal function of withdraw, etc.; Second-
ary nodes represent important variables, such as balance 
balances[address], Ether boundary value amountLimit 
used for verification, etc. Since most vulnerabilities in 
smart contracts are associated with callback functions, 
callback nodes are used as the callback function of the 
attacked contract in indicated in the SCG. E represents 
an edge set, each edge is a triple Ei = ( Vi , Vj , isLink), Vi , 
Vj represent node i and node j, isLink represents whether 
node i and node j are connected, and the edge describes 
the data flow in the contract And the transmission pro-
cess of control flow, while reflecting the variable transfer 
and function call. Figure 2 shows the process of contract 
graph generation.

As seen in Fig. 2, the left side of the figure is an exam-
ple of smart contract code, and the right side is a contract 
graph created from a smart contract. The primary node F 
consists of three functions: deposit, withdraw and mash.
sender.call. Secondary nodes include variables like bal-
ances and bal. Create the contract graph by scanning it 
from top to bottom to identify all primary and second-
ary nodes, and then add details like control flow and data 
flow according to the order of execution. Consider the 
deposit function’s execution sequence as an illustration. 
Balances[msg. sender] is the secondary node S1, amount 
is the secondary node S2, and the deposit function is the 
primary node F1. Both the out-degrees and in-degrees 
of S1 contain e2, representing S1 for auto increment 
operation. Using the control flow edge e3, one can deter-
mine whether S2 is greater than 0. When the condition 

is satisfied, it will proceed to the F2 node to execute the 
withdraw function.

Graph node shrinkage
After the contract graph is generated, the contract graph 
needs to be embedded. However, different functions have 
varying degrees of importance when it comes to identi-
fying smart contract vulnerabilities. For instance, some 
functions are only used to initialize variables, so the like-
lihood that they will generate vulnerabilities is very low; 
And the information in the contract graph is diverse, 
which is not conducive to model learning. Therefore, the 
model should be shrunk before inputting the contract 
graph into the model. Specifically, the characteristics of 
the secondary node S and the callback node C in the con-
tract graph are passed to the adjacent main node F, and 
finally only the main node is retained, which is recorded 
as node Xi.

Figure  3 is a contract diagram of Fig.  2 after feature 
shrinking of secondary nodes and callback nodes. In 
the specific operation, each secondary node or callback 
node is shrunk to the closest primary node. Taking 
the secondary node S1 as an example, the out-degrees 
of S1 include e3, e5, and e2, and the in-degrees and 

Fig. 2  Contract Graph Generation

Fig. 3  Contract after shrinkage
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out-degrees of the secondary node S1 both include e2. 
The in-degrees of S2 includes e3, but S2 is not the pri-
mary node. Find the edge e4 with S2 as the outgoing 
degree, we can see e4 and e5 both point to the primary 
node F2, Therefore, secondary nodes S1 and S2 can be 
shrunk to the primary node F2. When S1 and S2 are 
deleted, the associated edge e1, which connects the pri-
mary nodes F1 and S1, will also point to the primary 
node F2. This completes the shrinking of the secondary 
node S2. After the contraction is completed, the char-
acteristics of the contract graph nodes include three 
parts: the characteristics of the original main node Fi , 
the characteristics aggregated by the secondary node Si , 
and the characteristics aggregated by the callback node 
Ci , as shown in formula 1.

Generation of semantic features
The framework of the HGAT model proposed in this 
paper is shown in Fig.  4. The model is divided into 5 
layers, namely: graph embedding layer, sentence layer, 
function layer, splicing layer, and Softmax layer. Each 
statement in source code is related to its context and fol-
lows a hierarchy similar to that of documents. HGAT 
retains the hierarchical structure of the source code and 
captures the semantic characteristics of different levels 
in the source code hierarchically. Because each statement 
has syntax and semantic characteristics, vulnerabilities 
are often caused by a keyword or function call, which 

(1)Xi = f (Fi, Si, Ci)

Fig. 4  HGAT Model Structure
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are included in the semantic and syntax characteristics. 
In a function of the smart contract, learning contributes 
different sentence weights to detecting vulnerabilities, 
and the representation of sentences is learned through 
weighted fusion. Then, the sentences in each function are 
spliced to obtain different weights of different functions 
in the smart contract, and the weighted fusion is used to 
obtain the document representation.

First, input according to the contract contraction chart 
generated in Section “Graph node shrinkage”, assuming 
that a contract shrinkage graph has N nodes, the input 
graph pays attention to the feature T of each node of the 
network as:

where T is the dimension of node characteristics. In the 
sentence layer, it only targets the statement logic inside 
the function, including features such as sequence flow 
and control flow inside the function. The final output of 
all node features is expressed as:

For each shrinking node Xi in the contract shrinking 
graph, the importance weights of neighbor nodes will be 
learned. In order to obtain sufficient expressive ability to 
learn the attention weights, a learnable linear transfor-
mation W is required in this process to achieve feature 
enhancement. Assuming that the input feature is con-
verted into the weight matrix W of the output feature, the 
attention value of node j on node i is:

where a is a single-layer feedforward neural network, 
which is the attention function for calculating node cor-
relation. It is then activated using the LeakyReLU activa-
tion function:

where ‖ is the splicing operation, and aT is the transpose 
of a. After finding the attention values of all adjacent 
nodes of each shrinking node Xi , use the Softmax func-
tion to normalize the attention weights to obtain the sen-
tence-level attention weights:

Most of the smart contract vulnerabilities occur in 
callback functions, but these callback functions may 
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not be called in their contexts. Only the call relation-
ship between functions is taken into account in the 
function layer. The eigenvector of the function call 
flow on the statement layer’s output splice serves as the 
input of the function layer:

After that, the Softmax function is also used for 
normalization:

Through the two-layer attention network, the 
weighted sum method is used for feature extraction, 
and the output of the model is:

where σ is the activation function, and βij is the atten-
tion value of node i and node j. In this model, a multi-
head attention network is used, and k groups of attention 
coefficients are independently calculated and averaged to 
prevent overfitting. The final output of the model is:

Generation of semantic features
After obtaining the output result of the double-layer 
graph attention network, it is input into the fully con-
nected layer and mapped to the sample label space. The 
calculation formula of the fully connected layer is as 
follows:

where T ′ is the output of all node features, w is the 
parameter matrix of the fully connected layer, and b is the 
bias. In order to reduce the isomorphism bias generated 
by the graph structure data in the classification model, 
after the output of the fully connected layer is obtained, 
it is input to the softmax layer for normalization, and the 
final prediction result is:

Through the softmax function, the output can be con-
verted into a probability, classified, and the smart con-
tract vulnerability classification label t ′ can be obtained to 
complete the prediction target.

Calculate Loss using the cross-entropy loss function:

(7)nij = a(Wti ,Wtj )

(8)βij = softmax(nij)

(9)t
′

i = σ(
∑

j∈Ni

βijWtj)

(10)t
′

i = σ(
1

K

K∑

K=1

∑

j∈Ni

βk
ijW

k−→tj )

(11)t̂ = T
′

w + b

(12)t
′

i = softmax(t̂)
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Experiments
Data set and experimental platform
The experimental environment of this paper is Ubuntu 
18.04 operating system, 3.7 GHz Intel Core i7 CPU pro-
cessor, 16 GB memory, RTX 3060Ti graphics card, 8 GB 
video memory. We use SmartBugs Wild dataset [35] to 
verify the advantages and disadvantages of the methods 
in this paper. This is a large-scale dataset of smart con-
tract vulnerabilities based on Solidity. There are about 
203716 smart contracts in this data collection, 47518 real 
and distinct sol files, and 9693457 lines. The sol files in 
the SmartBugs Wild dataset are finally divided into two 
categories: smart contracts with vulnerabilities and smart 
contracts without vulnerabilities. The number of smart 
contracts with vulnerabilities is 35151, and the num-
ber of smart contracts without vulnerabilities is 168565. 
The vulnerable smart contract contains six types of vul-
nerabilities, namely, stack call depth attack vulnerability 
(Callstack depth attack), integer up overflow vulnerabil-
ity, integer down overflow vulnerability, reentrancy vul-
nerability, timestamp dependency vulnerability, and 
transaction order dependency vulnerability. The data-
set we utilize consists of 7018 smart contracts, includ-
ing 1640 integer overflows vulnerabilities, 1988 integer 
underflows vulnerabilities, 1671 timestamp dependence 
vulnerabilities, and 1719 Reentrancy vulnerabilities. We 
divided these smart contracts into 5615 training sets and 
1403 test sets.

Evaluation indicators
This paper makes a comparative experiment from two 
aspects. To demonstrate the effectiveness of our HGAT 
model, the method in this study is first compared to other 
smart contract vulnerability detection techniques and 
evaluated with metrics including accuracy rate (ACC), 
recall rate (TPR), accuracy rate (PRE), and F1 value. 
Then, by contrasting the detection times, the detection 
effectiveness of HGAT was confirmed.

Analysis of experimental results
We set cross-entropy as the loss function and 0.001 as 
the learning rate for the model. The loss value is essen-
tially stable after the model has been trained for many 
epochs, showing that the model can converge suc-
cessfully. The accuracy and loss curves of Reentrancy, 
Timestamp, Integer Overflow and Integer Underflow 
vulnerabilities detection during model training are 
shown in Fig.  5. Figure  5 shows that HGAT has high 
detection performance for Reentrancy, Timestamp, 

(13)Loss = −
∑

ti ln y
′

i
Integer Overflow and Integer Underflow vulnerabili-
ties. Table 1 lists the HGAT detection indications.

In order to verify the effectiveness of the method 
in this paper, we compared it with four static analysis 
tools, Oyente, Mythril, Securify, Slither, and two deep 
learning detection methods, LSTM and GCN. It can be 
seen from Fig. 6 that the performance of HGAT is bet-
ter than other detection methods. Oyente’s detection 
result is less than optimal and its PRE is only 38.43% 
since it relies on detection rules established by experts 
and does not completely imitate Ethereum’s execu-
tion environment. Mythril is similar in performance 
to Oyente. Securify uses three modes to locate errors. 
Only in the warning mode does it need to perform 
manual secondary detection, which improves the accu-
racy of Securify, but TPR and PRE are still low. Slither 
can draw the inheritance topology diagram of the con-
tract, the contract method call relationship diagram, 
etc., and the detection accuracy rate reaches 77.34%. 
LSTM only aggregates the feature information of the 
source code context, so it ignores the function call, so 
the accuracy rate is low, only 53.68%. GCN performs 
well in various indicators, but due to the weak gener-
alization ability of GCN, the accuracy is only 70.02%. 
The HGAT proposed in this paper surpasses the other 
6 methods in 4 indicators, and the detection accuracy 
rate is greatly improved, reaching 85.64%, and the recall 
rate is also improved. It can be seen from the com-
parative experimental results that the method in this 
paper has good detection performance for Reentrancy 
vulnerabilities of smart contracts. Figure  7 shows the 
detection results of Timestamp vulnerabilities by each 
detection tool. ACC, PRE, TPR and F1 of the proposed 
HGAT model were 87.98%, 89.69%, 85.59% and 85.26%, 
indicating that HGAT was superior to other models in 
detection accuracy. Since the Timestamp vulnerability 
occurs when the function is called, it can also be seen 
that HGAT’s ability to extract discontinuous features is 
due to other detection methods. Figures 8 and 9 show 
the detection results of various detection tools for Inte-
ger Overflow and Integer Underflow vulnerabilities. 
It can be seen that HGAT performs better than other 
models. Compared with Slither, the detection accu-
racy increased by 11.70% and 10.20%, respectively. The 
detection accuracy of GCN increased by 11.48% and 
9.02%, respectively.

The ROC curve for both this method and the compari-
son method are shown in Fig.  10. The AUC is the area 
under the ROC curve, which is used as a performance 
indicator. The larger the AUC value, the better the per-
formance. The AUC of Oyente and Securify is mod-
est, which indicates poor performance, as can be seen 
in the figure. HGAT has the largest AUC value, and its 
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Fig. 5  Reentrancy, Timestamp, Integer Overflow and Integer Underflow vulnerabilities Detection Accuracy and Loss Curve

Fig. 6  Reentrancy vulnerability detection results
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performance is better than other detection methods, 
indicating that the method proposed in this paper per-
forms better than other detection methods.

Timing begins before the detection tool or model inputs 
graph structure data in terms of detection time, and 
ends after the output results. Under the same hardware 

Fig. 7  Timestamp vulnerability detection results

Fig. 8  Integer Overflow vulnerability detection results

Fig. 9  Integer Underflow vulnerability detection results
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conditions and experimental environment, the average 
detection time obtained by statistics is shown in Table 2.

The test findings in Table  2 demonstrate the poor 
detection performance of four conventional detection 
tools. A smart contract may be found in almost a minute 
using the Mythril detection tool. The detection efficiency 
is better, at about 1s, with the deep neural network detec-
tion model. Compared to LSTM and GCN, the method 
proposed in this study is a little bit slower. The use of the 
hierarchical attention network, which has higher compu-
tational complexity than a basic neural network when an 
attention mechanism is introduced, may be the cause of 
the longer detection times.

Fig. 10  ROC analysis curve on Reentrancy, Timestamp, Integer overflow and Integer Underflow vulnerabilities

Table 1  Test results based on SmartBugs Wild dataset

Vulnerability Type ACC/% PRE/% TPR/% F1 Score

Reentrancy 85.64 76.96 88.12 82.47

Timestamp 86.62 82.69 89.62 88.31

Integer Overflow 88.26 83.12 87.14 83.08

Integer Underflow 88.44 83.64 87.17 83.15

Table 2  Average detection time (unit: second)

Methods Oyente Mythril Securify Slither LSTM GCN HGAT​

Average Time 6.18 54.72 13.58 5.26 0.83 0.93 1.04
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Conclusion
In this paper, we proposed a method for detecting 
smart contracts’ reentrancy vulnerability based on 
hierarchical graph attention network, which gener-
ated local abstract semantic graph data from the syn-
tax information of the abstract syntax tree in the smart 
contract source code, and the semantic information 
of control flow and data flow, used hierarchical graph 
attention network to spread and aggregate informa-
tion on the graph, and used two-layer attention mech-
anism to extract extract features of smart contract 
samples. Finally, a reentrancy vulnerability detection 
experiment was carried out on the open source smart 
contract dataset, which proved that the method had a 
good detection performance on the reentrancy vulner-
ability of smart contracts. The next step is to continue 
to improve the model to improve the accuracy and 
extend it to other types of vulnerability detection and 
to improve the detection efficiency without reducing 
the accuracy of the model.
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