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Abstract 

Graph representation learning has made significant strides in various fields, including sociology and biology, in recent 
years. However, the majority of research has focused on static graphs, neglecting the temporality and continuity of 
edges in dynamic graphs. Furthermore, dynamic data are vulnerable to various security threats, such as data privacy 
breaches and confidentiality attacks. To tackle this issue, the present paper proposes a data security detection method 
based on a continuous-time graph embedding framework (CTDGE). The framework models temporal dependencies 
and embeds data using a graph representation learning method. A machine learning algorithm is then employed 
to classify and predict the embedded data to detect if it is secure or not. Experimental results show that this method 
performs well in data security detection, surpassing several dynamic graph embedding methods by 5% in terms of 
AUC metrics. Furthermore, the proposed framework outperforms other dynamic baseline methods in the node clas-
sification task of large-scale graphs containing 4321477 temporal information edges, resulting in a 10% improvement 
in the F1 score metric. The framework is also robust and scalable for application in various data security domains. This 
work is important for promoting the use of continuous-time graph embedding framework in the field of data security.

Keywords Graph representation learning, Dynamic graph, Data Security, Large-scale graph, Graph neural network, 
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Introduction
Over the past few years, there has been significant growth 
in graph (network) data, which has been widely used in 
interdisciplinary fields such as social science [1], biology 
[2], and information science [3]. Moreover, as a subcat-
egory of machine learning, graph data processing plays 
an essential role in practical applications. For example, 
in fields such as healthcare, processing network data can 
assist doctors in accurately diagnosing patients [4]. How-
ever, the use of graph data also raises significant secu-
rity concerns, such as protecting sensitive information, 

ensuring data privacy, and preventing malicious attacks. 
In addition, as machine learning and artificial intelligence 
techniques become more prevalent in graph data analy-
sis, the potential impact of security breaches and data 
manipulation is even more significant [5].

Graph representation learning involves transforming 
graph data into low-dimensional vector representations, 
associating the attributes of graph data in vector space. 
To achieve better performance and model accuracy, a 
large amount of data is usually required for training. 
These data often contain sensitive information such as 
personal privacy, trade secrets, etc. Therefore, data secu-
rity is of great importance when storing and processing 
this data, such as protecting sensitive information, ensur-
ing data privacy, and preventing malicious attacks. In 
addition, graph representation learning may face attacks 
against the model, leading to unexpected outputs or 
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leaks of sensitive information. Despite most graph repre-
sentation learning methods relying on static graphs, the 
majority of graphs in the real world are dynamic and con-
stantly evolving as nodes and links are added, removed, 
and modified. As an increasing amount of sensitive data 
is collected and stored in dynamic graphs, it becomes 
increasingly critical to ensure the security and privacy of 
this data. Various types of attacks, including link predic-
tion attacks and node attribute inference attacks, can be 
launched to compromise the confidentiality and integrity 
of data in dynamic graphs. Since temporal information is 
crucial for accurately modeling, predicting, and under-
standing graph data [6], processing real-time data from 
dynamic graphs has emerged as a central research area in 
edge computing [7, 8]. Dynamic graphs can incorporate 
deep learning models from static graphs that disregard 
temporal information. However, this approach has been 
proven suboptimal. The limitations of dynamic graph 
embedding methods in network security applications are 
manifested in the detection of malicious network activity. 
Existing methods struggle to capture the complex tempo-
ral interactions between network nodes, resulting in poor 
performance in detecting network security threats [9]. 
Dynamic graph representation learning is a relatively new 
area of research, with some studies focusing on discrete-
time dynamic graph learning, which involves a series of 
snapshots of graphs [10]. However, these methods may 
not be appropriate for real-world scenarios, such as social 
networks, where time is continuous and sensitive data is 
prevalent. Simultaneously, modeling non-linear changes 
in social networks using dynamic graph representation 
learning methods is challenging, which has implications 
for detecting social engineering attacks in network secu-
rity [11]. Therefore, it is imperative to develop data secu-
rity and privacy detection methods for continuous time 
graphs to ensure the protection of this sensitive data.

Recently, some methods have been proposed to sup-
port continuous-time scenarios [12]. Graph data rep-
resentations contain a wealth of semantic information, 
and in natural language processing, skip-gram models 
capture some of this information by learning continu-
ous vector representations of the relationships between 
words. In the field of graph embedding, skip-gram 
models learn node sequences generated by DeepWalk 
[13] and Node2vec [14], where node sequences are 
extracted through random walks. Therefore, based on 
random walks, this paper proposes a continuous time 
graph embedding framework that can be used to detect 
data security and privacy threats in continuous time 
graphs. This approach incorporates temporal depend-
encies into node embeddings for real-time prediction 
of data, such as in the Internet of Things (IoT) [15, 16], 
blockchain [17, 18], and connected vehicle networks 

[19]. For example, in industry, IoT devices are used to 
manage production parameters such as machine oper-
ating status, temperature, and pressure. These data are 
stored on cloud servers and can be accessed and man-
aged through industrial control systems. If attackers 
can gain access to these data, they can take a series of 
malicious actions, such as exploiting temporary vulner-
abilities in machines for illegal intrusion, disrupting or 
interfering with production, or selling inferior indus-
trial machines on the market to gain economic gain. 
Because these data are crucial for industrial produc-
tion, protecting and encrypting industrial IoT devices 
and data is essential [20, 21].

As network sizes continue to expand, the time attrib-
utes between nodes in constructed large-scale con-
tinuous-time graphs also increase. However, existing 
continuous-time graph embedding methods have limi-
tations in effectively capturing the dynamic nature of 
large-scale graphs. To ensure the accuracy of prediction 
models and improve the security of large-scale data dur-
ing processing [22], this paper proposes a continuous-
time dynamic graph embedding framework (CTDGE). 
The framework algorithm comprises three primary 
steps: (1) graph partitioning, (2) continuous-time graph 
embedding, and (3) graph aggregation. Specifically, the 
CTDGE algorithm initially partitions the dynamic large-
scale graph into non-overlapping subgraphs using an 
edge-based graph partitioning technique, which guar-
antees a balance of edge and weight partitioning. This 
partitioning approach is suitable for most graph embed-
ding algorithms that rely on edge sampling, as it reduces 
computational complexity and enhances embedding 
quality (as discussed in “Reducing computational com-
plexity and improving embedding quality in multi-level 
graph embedding”). This paper employs a random walk 
depth graph model that incorporates temporal depend-
encies into the node embeddings of subgraphs. This 
model improves the efficiency of dynamic graph embed-
ding while learning from the sequential nature of sub-
graphs maintains efficient parallel processing. With the 
improvement of data security in fields such as the Inter-
net of Things, existing continuous-time graph embed-
ding methods are insufficient for adapting to new data 
processing and there are limitations to existing security 
detection techniques. However, the continuous-time 
graph embedding framework proposed in this paper can 
be combined with existing and future embedding meth-
ods to leverage machine learning techniques for iden-
tifying potential threats and privacy vulnerabilities in 
dynamic graphs. The framework can provide effective 
countermeasures to prevent these threats.

The main technical contributions of this paper are 
summarized as follows:
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• This paper presents an edge-based graph partitioning 
algorithm suitable for large-scale continuous-time 
graphs, which can divide the graph into non-overlap-
ping subgraphs.

• This paper proposes a time-respecting random wan-
dering model to capture the continuity of data during 
embedding and ensure data security through node 
detection.

• This paper improves graph aggregation algorithms to 
enhance the accuracy of large-scale continuous-time 
graph embedding.

Related work
This section provides an overview and classification of 
recent graph embedding methods used for data security 
detection [23, 24].

Static graph embedding method
The current methods for solving static graph embedding 
can be classified into three categories: matrix decompo-
sition, random walk, and deep learning [25]. The static 
graph embedding model based on matrix decomposition 
performs feature decomposition on the node association 
information matrix and attribute information matrix. 
It then fuses the decomposed attribute embedding and 
structural embedding to generate a low-dimensional 
embedded representation of nodes. While the matrix 
decomposition method improves embedding accuracy, 
it is computationally intensive and relatively expensive, 
particularly for large-scale data. The random walk-based 
static graph embedding model obtains a training cor-
pus by conducting random walks, and then integrates 
the corpus into Skip-Gram to obtain low-dimensional 
embeddings of nodes. The most popular models of this 
type are DeepWalk [13]and Node2vec [14]. However, 
these models are limited to random walks and do not 
take into account the temporal properties of edges.

A graph neural network (GNN) is a deep learning 
model that specializes in processing graph data [26]. 
GNN-based static graph models aggregate the embed-
dings of node neighborhoods and iteratively update them, 
using the current embedding and the embedding of the 
previous iteration to generate a new representation. The 
GNN model captures inter-node message-passing rela-
tionships through multiple iterations, allowing the gen-
erated embeddings to characterize the global structure 
[27]. Graph neural networks include several models, such 
as graph convolutional networks [28] for neighborhood 
aggregation, recurrent neural networks [29] for combin-
ing with deep learning, neural networks with attention 
mechanisms [30], adversarial networks [31] for adver-
sarial learning, and graph transformers [32]. The GNN 

model significantly enhances the embedding model’s rep-
resentation capability. Combining the deep model with 
semi-supervised techniques provides new ideas for the 
scalability of graph embedding [23, 33].

Embedding method for discrete‑time dynamic graphs
Dynamic graph embedding methods typically incorpo-
rate a temporal dimension into static graph embedding 
approaches [10]. As a result, dynamic graph embedding 
methods can be categorized into matrix decomposi-
tion, random walk, and deep learning approaches. These 
methods are further divided into discrete and continuous 
models based on the graph’s evolutionary model.

Discrete-time graph embedding involves processing 
time windows to learn node representations in snap-
shots, and is divided into two specific categories.

• Single Snapshot Model: A static model is used to cre-
ate a snapshot of the graph and predict the next snap-
shot in the dynamic graph [34]. Another approach 
to implement this is TI-GCN (Time Interval Graph 
Convolutional Network), which uses residual struc-
tures to embed discrete-time dynamic graphs [35]. 
These works use information from multiple snap-
shots represented by the edge differences in addition 
to a single snapshot [36].

• Multi-Snapshot Models: For the random wandering 
set, each snapshot is computed separately, and they 
learn the final node embedding together [37]. Recur-
rent neural networks (RNNs) are used to process 
serial data, such as graphs [29]. Recently, GANs have 
been combined with RNNs instead of using node 
features as inputs to RNNs [38]. DACHA [39] intro-
duces a dual convolutional network to capture the 
impact of entity and historical relationships and uses 
a self-attentive encoder to model temporal depend-
encies in the knowledge graph. STGCNs extend 
graph convolution into temporal and spatial graph 
convolution networks to capture temporal changes 
in dynamic graphs, particularly to model dynamic 
parameters in snapshots of adjacent graphs [40].

Many of the current discrete-time graph embedding 
methods require manual selection of time windows, and 
as a result, they lose the order of edge formation, reflect-
ing only a portion of the graph information. Additionally, 
large-scale discrete-time graph representations can be 
inefficient in memory usage and impractical to apply, as 
noted by Cui et al. [41].

Embedding method for continuous‑time dynamic graphs
Recently, there has been increasing attention on dynamic 
graph embeddings that consider edges with continuous 
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time properties [42]. For instance, this continuous data 
can enable travel businesses to intelligently predict 
users’ interests and preferences, offer them scientifically 
designed travel routes, and boost their revenue [43]. A 
temporal-based random walk model has been proposed 
that directly incorporates temporal dependencies into 
the sequence of nodes generated by the random walk. 
Attention-based mechanisms have also been devel-
oped to learn the importance of temporal random walks 
between nodes and their neighbors [44]. Some methods 
capture the evolution of graph structures through tempo-
ral random walks, resulting in embeddings that are more 
specific [6, 45].

When nodes or edges are added or deleted in the graph, 
the associated nodes’ embeddings are updated by aggre-
gating information from their new neighbors. This class 
of methods is referred to as local neighborhood models. 
In DyGCN [41] and TDGNN [46], the authors extend 
the GCN-based approach by incorporating temporal and 
spatial information to generalize embeddings for efficient 
dynamic graph representation learning, while incorpo-
rating adaptive mechanisms in the model.

Some methods address the information asymmetry 
problem in graphs by assigning priority to nodes [47]. 
However, the core idea of continuous temporal graph 
embedding is to extend existing models with special 
storage modules designed for node classification where 
labels are fixed over time, making them unsuitable for 
general frameworks [48, 49]. Independent module-based 
frameworks have shown promising results in industrial 
applications.

In the past, the main disadvantage of using vertex-
based partitioning was the uncertainty surrounding the 

degree of each vertex, which made it difficult to achieve 
a balanced partitioning of the graph. However, the latest 
approach, which is based on edges, simplifies the parti-
tioning process and ensures a more even distribution of 
the graph [50]. Given the potential of continuous-time 
graph embedding models and the necessity of dealing 
with large-scale graphs [6], this paper aims to imple-
ment a framework for large-scale continuous-time graph 
embedding.

Framework
To expedite the processing of large-scale dynamic graphs, 
this paper presents a framework comprising three com-
ponents, as depicted in Fig.  1: (1) Graph Partitioning; 
(2) Continuous-Time Graph Embedding; and (3) Graph 
Aggregation.

Definitions
Dynamic graphs can be categorized as discrete-time 
graphs and continuous-time graphs, depending on how 
time is represented. A discrete-time graph consists of 
a sequence of static graphs, each representing a spe-
cific time interval, denoted as G = {G1,G2, . . . ,GT } . On 
the other hand, a continuous-time graph is defined as 
G = (V ,ET , T ) , where ET is the set of edges between ver-
tices V with temporal properties, and T : E → R

+ maps 
each edge to a non-negative real number, representing 
the time at which the edge occurs. This mapping is repre-
sented here as a temporal function. In a continuous-time 
graph, each edge e = (u, v, t) ∈ ET has a unique times-
tamp t ∈ R

+.

Fig. 1 A dynamic graph embedding framework based on large-scale continuous time
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Graph partition
Due to the memory and runtime demands of big data, 
large-scale continuous-time graph embedding poses 
a significant challenge. Currently, the most efficient 
approach involves partitioning the graph into multiple 
clusters for embedding. Graph partitioning methods 
generally fall into two categories: vertex-based and edge-
based partitioning. While the vertex-based method is 
straightforward, it cannot ensure a balanced division of 
the graph. On the other hand, the edge-based method 
can achieve a balanced division, but it may not preserve 
the temporal continuity. To address this issue, our paper 
proposes a temporal attribute-based edge delineation 
method with the following key features.

• This paper proposes an edge-based graph partition-
ing algorithm that improves the division of unbal-
anced graphs. Unlike vertex-based methods, the 
time complexity of graph embedding is determined 
by the number of edges in the subgraph rather than 
the number of vertices. Consequently, the proposed 
algorithm is more likely to reduce running time.

• Moreover, the algorithm partitions the graph based 
on the temporal properties of its edges, while pre-
serving the similarity between vertices to the maxi-
mum extent possible.

For a given dynamic large-scale graph G = (V ,ET , T ) , 
all edges are divided into k distinct subgraphs 
Gk = Vk ,EkT , T  without overlapping, i.e.,

The variable k represents a predetermined number of 
subgraphs. It’s important to note that subgraphs result-
ing from graph partitioning can have overlapping ver-
tices, whereas in continuous-time dynamic graphs, 
the order of vertices is significant. The formula 
Nij =

{

vk | vk ∈ Vi ∩ Vj

}

 denotes the set of overlapping 
vertices in the subgraph between Gi and Gj , where Vi and 
Vj represent the vertex sets of Gi and Gj , respectively.

The graph partition section of Fig.  1 displays three 
subgraphs denoted as Ga,Gb , and Gc , with their edges 
highlighted in yellow, blue, and green respectively. Obser-
vation reveals that v1 is connected by both yellow and 
blue edges, hence v1 belongs to Ga and Gb (i.e., v1 ∈ Nab ). 
Similarly, this paper obtain Nab = {v1, v2, v3, v4, v5} , 
Nbc = {v3, v4, v5, v8, v9} , and Nac = {v3, v4, v5, v6, v7} . 
Moreover, vertices v3, v4 and v5 are common to all three 
subgraphs.

To ensure effective application of graph partitioning 
algorithms on large-scale graphs, it is crucial to main-
tain a relatively consistent number of edges within each 

(1)E = ∪K
k=1Ek ∀i, j : i �= j ⇒ Ei ∩ Ej = ∅.

subgraph, ideally as close to |E| /K as possible. One com-
mon metric for evaluating the balance of the partitioning 
is the standard deviation of subgraph sizes.

For a subgraph Gk , the set of d-dimensional embed-
ding vectors of the subgraph embedding and the global 
embedding is Z(k),Y (k),∈ R

|Vk |×d . The objective func-
tion of graph partitioning optimization is:

Moreover, the study necessitates an examination of the 
communication among all partitions. This scrutiny is well 
illustrated by the graph aggregation process in the frame-
work, which defines the overlapping vertices in the graph 
partition.

where Nij is the set of overlapping vertices between two 
continuous-time subgraphs Gi and Gj , as discussed in Eq. 
( 2 ), ∀i, ∀j ∈ [1,K ], i �= j

Recent studies have introduced effective partition-
ing methods [51]that yield good results. However, the 
initial time in a continuous-time system can impact the 
size of the partition. Moreover, in a continuous-time sys-
tem T = R

+ , the order in which nodes are connected by 
edges is crucial. It is important to note that the weights 
of the continuous-time subgraph Gk are determined by 
the corresponding time t* = T (ei) . In order to tackle this 
issue, an edge partitioning algorithm based on continu-
ous-time graphs is proposed, which takes into consid-
eration the correlation time. Furthermore, to maintain 
the structural similarity of each subgraph to the original 
graph, while minimizing the effect of total weights on 
training, the weight balance of graph partitions is taken 
into account. The procedure for implementing this algo-
rithm is outlined as follows:

• First, all subgraphs (K in total) are initially open 
to accept new edges. Once the subgraph reaches 
its capacity (i.e., the maximum number of allowed 
edges), it is considered closed.

• Second, after partitioning the graph, an edge 
e = (u, v) will be assigned to the subgraph that 
contains the vertex u or v with the lowest weight, 
while ensuring that the total weight of all subgraphs 
remains conserved.

(2)
std =

√

√
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√

√
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• Finally, to ensure balance in the number of edges |EkT | 
within each subgraph k = {1, 2, · · ·K } over time, a 
threshold te is established. If the difference between 
the maximum and minimum number of edges in 
subgraphs 

(

max
(
∣

∣EkT
∣

∣

)

−min
(
∣

∣EkT
∣

∣

))

 is greater 
than or equal to te , the next incoming edge with the 
smallest weight will be assigned to the subgraph with 
the smallest |EkT | as time progresses (from the begin-
ning to the current state).

Continuous‑time graph embeddings
In the dynamic embedding process, this paper defines 
each dynamic subgraph as Gk =

(

Vk ,EkT , T
)

 , where Vk 
is a set of vertices and EkT is the set of edges between 
vertices in Vk . The set EkT is the set of edges that occur 
consecutively between the subgraph vertices in Vk , and 
T : Ek → R

+ is a time function that assigns a timestamp 
to each edge in the subgraph. For the optimal partitioned 
subgraph, each edge ei = (u, v, t) ∈ EkT can be assigned a 
specific timestamp T ∈ R

+.
In a continuous-time subgraph, the set T ⊆ T  repre-

sents the time span during which information on an edge 
occurs, where T is the time domain. The continuous-time 
system is defined as T = R

+ . In such a graph, a valid 
walk is a sequence of consecutive nodes that have tem-
poral properties themselves and are connected by edges 
between nodes with non-decreasing temporal informa-
tion. Specifically, the timestamp of each edge captures 
the contact time between two nodes, so that a valid time 
walk represents feasible routes that respect temporal 
information.

For a valid random walk from vertex V1 to Vk in Gk , a 
sequence of vertices �v1, v2, · · · , vk� is valid if �vi, vi+1� ∈ EkT 
for 1 ≤ i < k , and T (vi, vi+1) ≤ T (vi+1, vi+2) for 
1 ≤ i < (k − 1) . If there exists a time walk from vertex u to 
vertex v for any arbitrary vertices u, v ∈ Vk , then u is time-
connected to v.

This paper defines the embedding problem for contin-
uous-time subgraphs as follows: Given a continuous-time 
graph G = (V ,ET , T ) , the goal is to map its nodes to a 
D-dimensional vector space and learn a time-varying fea-
ture representation function f : V → R

D . This approach 
is suitable for link prediction of temporal attributes and 
other machine learning tasks. The first step of graph 
embedding involves determining the node at which the 
random walk starts. In this paper, the starting time t∗ is 
drawn from a uniform weighted distribution FS , and the 
closest edge E to time t∗ is found. Alternatively, the initial 
edge ei = (v,w) and its associated time t∗ = T (ei) can be 
drawn from an arbitrary (uniform or weighted) distribu-
tion FS . To achieve dynamic graph embedding, this paper 
employs time-varying embeddings, which distinguishes 

our framework from existing approaches that use ran-
dom wandering on static graphs. Strategies for selecting 
initial time edges that are temporally biased or unbiased 
are discussed in [6]. Specifically, the proposed method 
starts directly from the initial time edge of each subgraph.

In each subgraph, the time random walk is initiated 
with the selection of the initial edge ei = (u, v, t) , and this 
paper defines the set Ŵt(v) of temporal neighbors of node 
v at time t as follows.

It should be noted that a node w may appear multiple 
times in the temporal neighborhood Ŵt(v) of a node v, 
due to the presence of multiple edges with distinct times-
tamps between the two nodes. This paper focuses solely 
on unbiased time, and favors the selection of tempo-
ral neighbors in the second distribution Ŵt . Specifically, 
this paper bias the sampling strategy towards walks that 
exhibit smaller “in-between” times on consecutive edges. 
This way, the subgraph embedding considers each pair of 
consecutive edges (u,  v,  t) and (v,w, t + k) encountered 
by the random walk. For example, if k is small, the ran-
dom walk sequence (v2, v4, t), (v4, v9, t + k) can be sam-
pled. Since v4 is linked to v2 and v9 , respectively, it is likely 
that v2 and v9 are also connected. On the other hand, if 
k is large, this sequence is unlikely to be sampled. Con-
sequently, if v4 interacts with v2 and v9 at very different 
times, they are more likely to be separated and unaware 
of each other’s existence.

Given a time walk St , the task of learning node embed-
dings in continuous-time dynamic graphs is formulated 
as an optimization problem.

The node embedding function f : V → R
D 

is used to optimize the context window size, 
denoted by ω . The window WT is defined as 
T (vi−ω, vi−ω+1) < · · · < T (vi+ω−1, vi+ω) and is a subset 
of the time walk St . It is assumed in this paper that when 
the source node v i is observed, there exists conditional 
independence between the nodes within the temporal 
background window WT .

This paper utilizes a graph partitioning algorithm to 
divide a continuous-time dynamic graph G = (V ,ET , T ) 
into k subgraphs. The random walk space for each sub-
graph Gk is represented by S . The space of temporal ran-
dom walks of subgraph Gk is denoted as ST , representing 
only the subset of random walks that respect time. To 

(5)
Ŵt(v) =

{(

w, t ′
)

| e =
(

v,w, t ′
)

∈ EkT ∧ T (e) > t
}

(6)max
f

log Pr(WT = {vi−ω, · · · , vi+ω}\vi | f(vi))

(7)Pr(WT | f(vi)) =
∏

vi+k∈WT

Pr
(

vi+k | f(vi)
)
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ensure temporal coherence, this paper defines the con-
text window size of jump frames as the minimum length 
for each temporal walk. Specifically, a set of tempo-
ral random walks {St1,St2, · · · ,Stk} is used to obtain a 
series of context windows of size ω , and the total number 
of these temporal context windows is denoted as β.

When sampling a set of time wanderings, β is usually set 
to a multiple of N = |V |.

This paper provides an overview of the process of 
learning continuous-time subgraph embeddings using 
Alg. 1 and the Temporal Random Walk (TRW) [6]. Addi-
tionally, the subgraph embedding framework presented 
in this paper can be utilized in a depth-model based 
approach, as the temporal random walk can serve as an 
input vector to the neural network.

Algorithm 1 Continuous‑Time Subgraph 
EmbeddingsGraph aggregation
In the final stage of CTDGE, distributed subgraph 
embeddings are aggregated. However, the effective walks 
in a subgraph embedding, which are represented by a 
sequence of nodes connected by edges with non-decreas-
ing timestamps, present a challenge to graph aggrega-
tion due to uncertain continuity between subgraphs. To 
address this issue, a basic idea of global aggregation is 
employed in this study to identify a global vector space 
in time that can map multiple local subgraph embedding 
spaces. The subspaces are then mapped using the over-
lapping vertex set N.

Assuming that a vertex vm belongs to multiple subgraphs, 
such as Gi and Gj that are represented by vm ∈ Nij , the local 
embedding vector spaces of Gi and Gj can be denoted as 
Z(i) = F(Gi) and Z(j) = F

(

Gj

)

 , respectively. As a result, 
the local embedding vectors of vm in the subgraphs Gi and 
Gj can be represented by z(i)m  and z(j)m  , respectively. If a map-
ping function h

(

z
(i)
m , z

(j)
m

)

−→ ym exists for overlapping 

(8)β =

k
∑

i=1

∣

∣Sti

∣

∣− ω + 1

vertices vm , this function maps the entire subspaces Z(i) 
and Z(j) to a global vector space Y .

This unsupervised graph global aggregation algorithm 
is designed to be low-complexity. It is both simple and 
efficient, and involves normalization and combination 
processes. Specifically, the algorithm first identifies the 
set of overlapping vertices in all subgraphs, denoted by 
Nall = V1 ∩ V2 ∩ . . . ∩ VK . For each vertex vm ∈ Nall , the 
local embedding vector zim =

[

zim(1), z
i
m(2), . . . , z

i
m(d)

]

 in 
each cluster i is then normalized, with

The mean of 
∑

zim is calculated as

and the variance is denoted as σ (i)2

m .
After normalization, the normalized embedding vec-

tors are used to combine the global space, and overlapping 
vertices are generated through different local clustering 
techniques. The average value of the normalized vector for 
vertex vm can be obtained using Eq. (10).

The mapping function for vertex vm can be represented as 
zim = hm

(

z
(i)
m , z

(j)
m

)

 . To calculate the global standard embed-
ding vector, this paper takes the average value of the transfor-
mation embeddings of all vertices m in the set Nall , denoted as:

Additionally, the subgraph’s vector space Z(i) is mapped 
to the global vector space yi , denoted as:

where dist(i) =

∑

vm∈Vi∩Nall

(

z
(i)
m−z(all)

)

|Vi∩Nall|
∀vm ∈ Vi ∩Nall . 

Finally, the global feature Y  of the graph aggregation is 
denoted as Y =

[

y′1, y
′
2, . . . , y

′
K

]

.

Experiments
The experiment aims to investigate the effectiveness of 
a proposed continuous-time dynamic graph embedding 
(CTDGE) framework, which uses temporal graphs with 

(9)h
(

Z(i),Z(j)
)h

(

z
(i)
m ,z

(j)
m

)

−→ Y

(10)

z(i)
′

m =

[

zim(1)− eim

σ
(i)
m

,
zim(2)− eim

σ
(i)
m

, . . . ,
zim(d)− eim

σ
(i)
m

]

.

(11)eim =

∑

zim(1)+ zim(2)+ · · · + zim(d)

d
,

(12)z′m =

∑K
i=1 z

(i)′

m

K

(13)z(all) =

∑

m∈Nall
z′m

|Nall |
.

(14)yi′ = Z(i) − dist(i),
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different temporal characteristics and number of scales. 
This paper evaluate the performance of CTDGE in data 
security using metrics such as link prediction and node 
classification tests. Additionally, the performance of the 
framework is compared with current mainstream meth-
ods as the graph size is increased. The experimental 
results show that the proposed framework achieves bet-
ter results for large-scale continuous time graphs while 
significantly reducing the running time.

Datasets
To compare the performance of various graph embed-
ding methods, the dataset needs to fulfill certain crite-
ria, such as selecting continuous-time dynamic graphs 
with timestamps from T = R

+ . This paper examines and 
analyzes two types of datasets. The first type comprises 
publicly available continuous-time datasets. This study 
collects and pre-processes four datasets, as shown in 
Table  1. The second type is a large-scale dynamic data-
set obtained from the web to verify the embedding on 
dynamic bigraphs. This paper uses the Yelp and Tmall 
datasets, which track a large number of internet users’ 
reviews of merchants (e.g., restaurants and shopping 
malls) and user information on Tmall products, respec-
tively, as shown in Table 2.

Experimental setup
The paper employs continuous-time dynamic graphs to 
model the learning framework and compares different 
baseline methods from various categories. Two vector-
based graph representation learning approaches, namely 
DeepWalk and Node2vec, are used as typical examples 
of link prediction using static random wandering. Graph 
Convolutional Networks (GCN) and Graph Attention 
Networks (GAT) are considered as static networks, and 
the graph is assumed to be static during the experi-
ments. The paper focuses on the node detection task 
for each graph, and aligns these embedding methods to 
the same vector space. To assess the framework’s perfor-
mance comprehensively, the paper compares it with two 
continuous-time graph embedding methods (CTDNE 

and TempGAN) and one discrete-time graph embedding 
method (DynGEM). The experimental procedure follows 
the hyperparameter settings suggested by the continu-
ous-time uniformity [6] to enable better comparison with 
dynamic graph embedding methods.

• DeepWalk is a method for mining graph structure 
data based on random walks inspired by the skip-
gram model. In this paper, to enable comparison of 
experiments, this paper set three hyperparameters 
to the default values (D = 128, r = 10, ns = 10) , and 
leave the other two hyperparameters to vary among 
several values: L ∈ {40, 60, 80} and cs ∈ {6, 8, 10}.

• Node2vec [14]. Node2vec is a graph embedding 
method with multi-neighborhood sets and preserv-
ing the higher order similarity of nodes. To better 
present the experimental data, node2vec introduces 
new hyperparameters for the grid search, putting 
p, q ∈ {0.25, 0.50, 1, 2}.

• GCN [52]. GCN is a multilayer network, where each 
convolutional layer handles first-order neighborhood 
information, and multi-order neighborhood informa-
tion transfer is achieved by overlaying multiple con-
volutional layers.

• GAT [30]. GAT is an algorithm for increasing atten-
tion mechanism on GCN which uses a parameter 
matrix to learn the relative importance between 
nodes i and neighbors j. It enables the graph neural 
network to focus more on the important nodes to 
reduce the impact from edge noise.

• CTDNE [6]. This is a DeepWalk-based continuous-
time network embedding method that captures 
temporal information through chronological ran-
dom walks. This method is also the base embedding 

Table 1 Statistics of a Dynamic Graph. |V | represents the number of nodes in the graph, |ET | represents the number of temporal edges, 
d denotes the average node degree across all timesteps, dmax represents the maximum node degree across all timesteps, St represents 
the entire time span in days, T denotes the number of time steps in the training data

Database |V | |ET | d dmax St T

IA-EMAIL-EU 927 323.3K 15.8 232 784.87 44

FB-FORUM 899 33.7K 9.9 109 147.52 10

SOC-SIGN-BITCOINA 3.7K 24.1K 5.9 597 1791.32 11

SOC-WIKI-ELEC 7.1K 107K 12.2 602 1263.47 20

Table 2 Statistics of large scale dynamic graphs

Dataset nodes edges time steps

Yelp 42 653 834 291 17

Tmall 36 183 4 321 477 10
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method for subgraphs. In this paper, Fs is set as a lin-
ear distribution and Ft is set as an unbiased distribu-
tion.

• TempGAN [53]. This is a method that preserves the 
temporal proximity between network nodes and 
learns representations from a temporal network in 
continuous time. In addition, link prediction experi-
ments are performed using TempGAN autoencoder 
to evaluate the quality of the generated embeddings.

• DynGEM [34]. This is a deep autoencoder-based 
model that generates nonlinear embedding vectors 
by initializing the previous graph to improve dynamic 
graph embedding efficiency. This article refers to the 
suggested fixed parameters in [34].

• DynamicTriad [54]. DynamicTriad is a dynamic rep-
resentation learning method that focuses on triples 
of vertices and shared neighbor nodes. For large-
scale graphs, this paper refers to DynamicTriad’s file 
tests.

Link prediction
This paper evaluates the quality of continuous-time 
dynamic graph representation learning in the CTDGE 
framework through link prediction. When generating 
training and test data, the suggestion in [6] is followed, 
which involves sorting all temporal edges in ascending 
chronological order. First, the process of parameter tun-
ing is discussed to optimize the system’s performance. 
The static graph embedding methods (Deepwalk, Node-
2vec, GCN, and GAT) learn the entire training data as a 
graph, while specific information about the time nodes is 
set in Table 1. In the dynamic graph embedding method, 
the TempGAN encoder generates node embeddings that 
hide 15% of the temporal links in the original graph. The 
L2 distance of the current time period is used to compute 
the similarity of two nodes with the same test parameters 
as CTDNE. The aim is to predict whether there is an edge 
between these two nodes in the next time period. The 
performance of AUC is evaluated based on the logistic 
regression model and 5-fold cross-validation.

This paper compares the performance of CTDGE 
with four static graph embedding methods (Deepwalk, 

Node2vec, GCN, and GAT) and three dynamic graph 
embedding methods (CEDNE, TempGAN, and Dyn-
GEM). Table  3 illustrates the AUC comparison. It is 
evident that for the LA-EMAIL-EU dataset, the pro-
posed framework outperforms Deepwalk, Node2vec, 
GCN, GAT, and DynGEM by 11.1%, 4.0%, 11.8%, 3.4%, 
and 3.5%, respectively. Similarly, for the FB-FORUM 
dataset, the AUC improves by 25.5%, 6.4%, 24.7%, 
4.2%, and 2.3% compared to the baseline. The frame-
work achieves comparable performance to dynamically 
advanced methods (CTDNE and TempGAN) in graphs 
with less than 1000 nodes. For graphs with more than 
1000 nodes, on the SOC-SIGN-BITCOINA dataset, 
the proposed framework achieves 11.9%, 9.3%, 10.9%, 
7.8%, 4.9%, 1.2%, and 3.5% performance improvement. 
Similarly, on the SOC-WIKI-ELEC dataset, the AUC 
improves by 6.1%, 3.5%, 4.4%, 2.9%, 1.3%, 0.5%, and 2.7% 
compared to all methods. Overall, the proposed method 
outperforms other methods in the case of a large num-
ber of nodes and edges, demonstrating that delineating 
dynamic large-scale graphs and incorporating temporal 
dependencies in graphs are essential for learning appro-
priate graph representations. Finally, the framework 
of this paper can be combined with and generalized to 
other random walk and continuous time graph embed-
ding based methods, which are important for future 
application studies.

Additionally, Fig.  2 presents the AUC scores for each 
time step of all evaluated methods. Based on these 
results, static methods such as Deepwalk and Node2vec 
perform worse than most dynamic methods but outper-
form some dynamic graph embedding methods such as 
DynGEM in large-scale datasets. This is due to the inabil-
ity of dynamic learning methods to focus on the temporal 
properties of the dataset. Moreover, our method shows 
better performance than some continuous-time meth-
ods (CTDNE) on large-scale datasets (Yelp and Tmall). 
One possible explanation is that the global graph is par-
titioned by our framework to capture the graph evolution 
between different time steps in the subgraphs. Lastly, 
the temporal dimension is varied multiple times in our 
framework to effectively capture the temporal evolution-
ary characteristics of the nodes.

Table 3 AUC scores for Temporal Link Prediction

Dataset DeepWalk Node2vec GCN GAT CTDNE TempGAN DynGEM CTDGE

IA-EMAIL-EU 0.793 0.847 0.788 0.852 0.885 0.887 0.851 0.881

FB-FORUM 0.647 0.763 0.651 0.779 0.815 0.819 0.794 0.812

SOC-SIGN-BITCOINA 0.816 0.835 0.823 0.847 0.870 0.902 0.882 0.913
SOC-WIKI-ELEC 0.810 0.831 0.824 0.836 0.849 0.856 0.837 0.860
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Large‑scale dynamic graph embedding
To further demonstrate the advantages of the graph 
embedding framework for large-scale continuous-time 
graphs proposed in this paper, experiments were con-
ducted on two dynamic graphs (Yelp and Tmall). As 
training on large-scale dynamic graphs requires global 
traversal, this was a test of computational efficiency. 
The four basic embedding methods studied in this 
paper required significant training time, and even with 
improved computing power, the results were unsat-
isfactory. In contrast, the CTDGE framework divides 
large-scale graphs into multiple subgraphs using graph 
partitioning methods, performs local random walks in 

each subgraph, and then aggregates the graphs to make 
embedding more feasible for large-scale datasets.

As shown in Fig. 3, the CTDGE framework significantly 
improves the performance of large-scale continuous-time 
graph embedding while also reducing memory usage. On 
the Yelp dataset, the proposed framework achieved a 13.3%, 
9.3%, 6.8%, 1.2%, and 2.2% performance improvement over 
Deepwalk, Node2vec, CTDNE, DynamicTriad, and Temp-
GAN, respectively. Similarly, on the Tmall dataset, CTDGE 
improved AUC by 15.6%, 10.6%, 7.5%, 1.5%, and 1.9% com-
pared to Deepwalk, Node2vec, CTDNE, DynamicTriad, 
and TempGAN. Overall, the framework achieved an AUC 
gain of 6.6% across all embedding methods.

Fig. 2 Evaluation results for link prediction of dynamic datasets calculated with AUC 

Fig. 3 Results of link prediction using various graph embedding methods for large-scale dynamic graphs
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CTDGE performs global segmentation of large-scale 
dynamic graphs and adheres to the time sequence within 
subgraphs, giving a higher weight to edges that appear 
later in time. Experimental results consistently demon-
strate that this method outperforms both DeepWalk and 
Node2vec. It is noteworthy that embedding methods for 
large-scale dynamic graphs are scarce due to the consid-
erable computing and memory requirements. Moreover, 
for applications involving such graphs, our proposed 
framework can be combined with state-of-the-art ran-
dom-walk-based methods, making it even more scalable.

Node classification
In order to evaluate the performance of large-scale 
graphs (with over 10,000 nodes), this paper also con-
ducted tests on the node classification task. Table  4 
displays the experimental results, showing the node clas-
sification performance of various embedding methods on 
large-scale graphs. The results demonstrate that CTDGE 
outperforms other dynamic baseline methods, achieving 
up to a 22.7% improvement in F1-score for node classifi-
cation on large-scale graphs. This suggests that learning 
the representation jointly across all time steps enhances 
the overall performance, since it enforces continuous 
subgraph embeddings over time. In contrast, our frame-
work performs global aggregation at the end, capturing 
the global temporal structure better than the local struc-
ture, since the node classification task considers the over-
all position of the embeddings. Therefore, the framework 
presented in this paper is better suited for large-scale data 
in detecting and capturing the evolution of information.

The subgraph embedding process involves an impor-
tant hyperparameter, the latent space dimension. The 
embedding algorithm offers benefits in terms of cod-
ing efficiency and inference performance. Therefore, 

comparing the proposed framework with the baseline 
methods is carried out to evaluate the impact of embed-
ding dimension on node classification tasks. Experi-
mental results depicted in Fig.  4 show that CTDGE 
demonstrates superior embedding effectiveness on 
large-scale graphs compared to other methods. Addition-
ally, CTDGE’s performance stabilizes as the embedding 
dimension increases, starting from d=6.

Furthermore, there is a saturation point in the embed-
ding dimension where only 20 features are sufficient to 
represent the node neighborhood. This value is related 
to the potential dimensionality of the continuous-time 
graph, which captures all the structural information in 
the graph and depends on the nature, rather than the 
size, of the input data. In other words, the maximum pro-
portion of information encoded in a dimension does not 
depend on the number of samples.

Additionally, Fig. 5 presents the F1 scores for each time 
step in the large-scale dataset. The experimental results 
demonstrate that our framework outperforms other 
static and dynamic methods in node classification tasks 
for large-scale graphs. Finally, the base embedding com-
ponent of CTDGE can be used as a modular component 
that can be combined with existing and future graph 
embedding methods.

Conclusion
This paper presents a general framework for incorporat-
ing temporal information into large-scale graph embed-
dings. The CTDGE framework improves the efficiency of 
large-scale data security detection through balanced sub-
graph partitioning. Additionally, the model dynamically 
embeds continuous-time subgraphs and captures tem-
poral attributes in the network, which is of paramount 
importance for network security in the real world. The 
experimental results indicate that CTDGE achieved high 

Fig. 4 Impact of embedding dimension on node classification task
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scores in link prediction and node classification tasks for 
large-scale data. As the dataset increases, the accuracy 
remains constant while the execution time decreases 
significantly, proving the effectiveness of the model in 
large-scale data security. Moreover, in real-world net-
work testing, the model can accurately classify malicious 
nodes. In summary, the proposed framework achieved an 
average gain of 10.3% compared to embedding methods 
in a comprehensive analysis.

In future research, we will continue to investigate 
dynamic graph representation learning methods and 
apply them to fields such as the industrial Internet of 
Things to enhance data security.
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