
Liu et al. Journal of Cloud Computing (2023) 12:89
https://doi.org/10.1186/s13677-023-00460-4

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A large-scale data security detection method
based on continuous time graph embedding
framework
Zhaowei Liu1, Weishuai Che1, Shenqiang Wang1, Jindong Xu1 and Haoyu Yin2*

Abstract

Graph representation learning has made significant strides in various fields, including sociology and biology, in recent
years. However, the majority of research has focused on static graphs, neglecting the temporality and continuity of
edges in dynamic graphs. Furthermore, dynamic data are vulnerable to various security threats, such as data privacy
breaches and confidentiality attacks. To tackle this issue, the present paper proposes a data security detection method
based on a continuous-time graph embedding framework (CTDGE). The framework models temporal dependencies
and embeds data using a graph representation learning method. A machine learning algorithm is then employed
to classify and predict the embedded data to detect if it is secure or not. Experimental results show that this method
performs well in data security detection, surpassing several dynamic graph embedding methods by 5% in terms of
AUC metrics. Furthermore, the proposed framework outperforms other dynamic baseline methods in the node clas-
sification task of large-scale graphs containing 4321477 temporal information edges, resulting in a 10% improvement
in the F1 score metric. The framework is also robust and scalable for application in various data security domains. This
work is important for promoting the use of continuous-time graph embedding framework in the field of data security.

Keywords Graph representation learning, Dynamic graph, Data Security, Large-scale graph, Graph neural network,
Edge computing

Introduction
Over the past few years, there has been significant growth
in graph (network) data, which has been widely used in
interdisciplinary fields such as social science [1], biology
[2], and information science [3]. Moreover, as a subcat-
egory of machine learning, graph data processing plays
an essential role in practical applications. For example,
in fields such as healthcare, processing network data can
assist doctors in accurately diagnosing patients [4]. How-
ever, the use of graph data also raises significant secu-
rity concerns, such as protecting sensitive information,

ensuring data privacy, and preventing malicious attacks.
In addition, as machine learning and artificial intelligence
techniques become more prevalent in graph data analy-
sis, the potential impact of security breaches and data
manipulation is even more significant [5].

Graph representation learning involves transforming
graph data into low-dimensional vector representations,
associating the attributes of graph data in vector space.
To achieve better performance and model accuracy, a
large amount of data is usually required for training.
These data often contain sensitive information such as
personal privacy, trade secrets, etc. Therefore, data secu-
rity is of great importance when storing and processing
this data, such as protecting sensitive information, ensur-
ing data privacy, and preventing malicious attacks. In
addition, graph representation learning may face attacks
against the model, leading to unexpected outputs or

*Correspondence:
Haoyu Yin
dhyy@yt.shandong.cn
1 Department of Computer Science, Yantai University, Yantai, China
2 Intellectual Property Protection Center, Yantai, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00460-4&domain=pdf

Page 2 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

leaks of sensitive information. Despite most graph repre-
sentation learning methods relying on static graphs, the
majority of graphs in the real world are dynamic and con-
stantly evolving as nodes and links are added, removed,
and modified. As an increasing amount of sensitive data
is collected and stored in dynamic graphs, it becomes
increasingly critical to ensure the security and privacy of
this data. Various types of attacks, including link predic-
tion attacks and node attribute inference attacks, can be
launched to compromise the confidentiality and integrity
of data in dynamic graphs. Since temporal information is
crucial for accurately modeling, predicting, and under-
standing graph data [6], processing real-time data from
dynamic graphs has emerged as a central research area in
edge computing [7, 8]. Dynamic graphs can incorporate
deep learning models from static graphs that disregard
temporal information. However, this approach has been
proven suboptimal. The limitations of dynamic graph
embedding methods in network security applications are
manifested in the detection of malicious network activity.
Existing methods struggle to capture the complex tempo-
ral interactions between network nodes, resulting in poor
performance in detecting network security threats [9].
Dynamic graph representation learning is a relatively new
area of research, with some studies focusing on discrete-
time dynamic graph learning, which involves a series of
snapshots of graphs [10]. However, these methods may
not be appropriate for real-world scenarios, such as social
networks, where time is continuous and sensitive data is
prevalent. Simultaneously, modeling non-linear changes
in social networks using dynamic graph representation
learning methods is challenging, which has implications
for detecting social engineering attacks in network secu-
rity [11]. Therefore, it is imperative to develop data secu-
rity and privacy detection methods for continuous time
graphs to ensure the protection of this sensitive data.

Recently, some methods have been proposed to sup-
port continuous-time scenarios [12]. Graph data rep-
resentations contain a wealth of semantic information,
and in natural language processing, skip-gram models
capture some of this information by learning continu-
ous vector representations of the relationships between
words. In the field of graph embedding, skip-gram
models learn node sequences generated by DeepWalk
[13] and Node2vec [14], where node sequences are
extracted through random walks. Therefore, based on
random walks, this paper proposes a continuous time
graph embedding framework that can be used to detect
data security and privacy threats in continuous time
graphs. This approach incorporates temporal depend-
encies into node embeddings for real-time prediction
of data, such as in the Internet of Things (IoT) [15, 16],
blockchain [17, 18], and connected vehicle networks

[19]. For example, in industry, IoT devices are used to
manage production parameters such as machine oper-
ating status, temperature, and pressure. These data are
stored on cloud servers and can be accessed and man-
aged through industrial control systems. If attackers
can gain access to these data, they can take a series of
malicious actions, such as exploiting temporary vulner-
abilities in machines for illegal intrusion, disrupting or
interfering with production, or selling inferior indus-
trial machines on the market to gain economic gain.
Because these data are crucial for industrial produc-
tion, protecting and encrypting industrial IoT devices
and data is essential [20, 21].

As network sizes continue to expand, the time attrib-
utes between nodes in constructed large-scale con-
tinuous-time graphs also increase. However, existing
continuous-time graph embedding methods have limi-
tations in effectively capturing the dynamic nature of
large-scale graphs. To ensure the accuracy of prediction
models and improve the security of large-scale data dur-
ing processing [22], this paper proposes a continuous-
time dynamic graph embedding framework (CTDGE).
The framework algorithm comprises three primary
steps: (1) graph partitioning, (2) continuous-time graph
embedding, and (3) graph aggregation. Specifically, the
CTDGE algorithm initially partitions the dynamic large-
scale graph into non-overlapping subgraphs using an
edge-based graph partitioning technique, which guar-
antees a balance of edge and weight partitioning. This
partitioning approach is suitable for most graph embed-
ding algorithms that rely on edge sampling, as it reduces
computational complexity and enhances embedding
quality (as discussed in “Reducing computational com-
plexity and improving embedding quality in multi-level
graph embedding”). This paper employs a random walk
depth graph model that incorporates temporal depend-
encies into the node embeddings of subgraphs. This
model improves the efficiency of dynamic graph embed-
ding while learning from the sequential nature of sub-
graphs maintains efficient parallel processing. With the
improvement of data security in fields such as the Inter-
net of Things, existing continuous-time graph embed-
ding methods are insufficient for adapting to new data
processing and there are limitations to existing security
detection techniques. However, the continuous-time
graph embedding framework proposed in this paper can
be combined with existing and future embedding meth-
ods to leverage machine learning techniques for iden-
tifying potential threats and privacy vulnerabilities in
dynamic graphs. The framework can provide effective
countermeasures to prevent these threats.

The main technical contributions of this paper are
summarized as follows:

Page 3 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

• This paper presents an edge-based graph partitioning
algorithm suitable for large-scale continuous-time
graphs, which can divide the graph into non-overlap-
ping subgraphs.

• This paper proposes a time-respecting random wan-
dering model to capture the continuity of data during
embedding and ensure data security through node
detection.

• This paper improves graph aggregation algorithms to
enhance the accuracy of large-scale continuous-time
graph embedding.

Related work
This section provides an overview and classification of
recent graph embedding methods used for data security
detection [23, 24].

Static graph embedding method
The current methods for solving static graph embedding
can be classified into three categories: matrix decompo-
sition, random walk, and deep learning [25]. The static
graph embedding model based on matrix decomposition
performs feature decomposition on the node association
information matrix and attribute information matrix.
It then fuses the decomposed attribute embedding and
structural embedding to generate a low-dimensional
embedded representation of nodes. While the matrix
decomposition method improves embedding accuracy,
it is computationally intensive and relatively expensive,
particularly for large-scale data. The random walk-based
static graph embedding model obtains a training cor-
pus by conducting random walks, and then integrates
the corpus into Skip-Gram to obtain low-dimensional
embeddings of nodes. The most popular models of this
type are DeepWalk [13]and Node2vec [14]. However,
these models are limited to random walks and do not
take into account the temporal properties of edges.

A graph neural network (GNN) is a deep learning
model that specializes in processing graph data [26].
GNN-based static graph models aggregate the embed-
dings of node neighborhoods and iteratively update them,
using the current embedding and the embedding of the
previous iteration to generate a new representation. The
GNN model captures inter-node message-passing rela-
tionships through multiple iterations, allowing the gen-
erated embeddings to characterize the global structure
[27]. Graph neural networks include several models, such
as graph convolutional networks [28] for neighborhood
aggregation, recurrent neural networks [29] for combin-
ing with deep learning, neural networks with attention
mechanisms [30], adversarial networks [31] for adver-
sarial learning, and graph transformers [32]. The GNN

model significantly enhances the embedding model’s rep-
resentation capability. Combining the deep model with
semi-supervised techniques provides new ideas for the
scalability of graph embedding [23, 33].

Embedding method for discrete‑time dynamic graphs
Dynamic graph embedding methods typically incorpo-
rate a temporal dimension into static graph embedding
approaches [10]. As a result, dynamic graph embedding
methods can be categorized into matrix decomposi-
tion, random walk, and deep learning approaches. These
methods are further divided into discrete and continuous
models based on the graph’s evolutionary model.

Discrete-time graph embedding involves processing
time windows to learn node representations in snap-
shots, and is divided into two specific categories.

• Single Snapshot Model: A static model is used to cre-
ate a snapshot of the graph and predict the next snap-
shot in the dynamic graph [34]. Another approach
to implement this is TI-GCN (Time Interval Graph
Convolutional Network), which uses residual struc-
tures to embed discrete-time dynamic graphs [35].
These works use information from multiple snap-
shots represented by the edge differences in addition
to a single snapshot [36].

• Multi-Snapshot Models: For the random wandering
set, each snapshot is computed separately, and they
learn the final node embedding together [37]. Recur-
rent neural networks (RNNs) are used to process
serial data, such as graphs [29]. Recently, GANs have
been combined with RNNs instead of using node
features as inputs to RNNs [38]. DACHA [39] intro-
duces a dual convolutional network to capture the
impact of entity and historical relationships and uses
a self-attentive encoder to model temporal depend-
encies in the knowledge graph. STGCNs extend
graph convolution into temporal and spatial graph
convolution networks to capture temporal changes
in dynamic graphs, particularly to model dynamic
parameters in snapshots of adjacent graphs [40].

Many of the current discrete-time graph embedding
methods require manual selection of time windows, and
as a result, they lose the order of edge formation, reflect-
ing only a portion of the graph information. Additionally,
large-scale discrete-time graph representations can be
inefficient in memory usage and impractical to apply, as
noted by Cui et al. [41].

Embedding method for continuous‑time dynamic graphs
Recently, there has been increasing attention on dynamic
graph embeddings that consider edges with continuous

Page 4 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

time properties [42]. For instance, this continuous data
can enable travel businesses to intelligently predict
users’ interests and preferences, offer them scientifically
designed travel routes, and boost their revenue [43]. A
temporal-based random walk model has been proposed
that directly incorporates temporal dependencies into
the sequence of nodes generated by the random walk.
Attention-based mechanisms have also been devel-
oped to learn the importance of temporal random walks
between nodes and their neighbors [44]. Some methods
capture the evolution of graph structures through tempo-
ral random walks, resulting in embeddings that are more
specific [6, 45].

When nodes or edges are added or deleted in the graph,
the associated nodes’ embeddings are updated by aggre-
gating information from their new neighbors. This class
of methods is referred to as local neighborhood models.
In DyGCN [41] and TDGNN [46], the authors extend
the GCN-based approach by incorporating temporal and
spatial information to generalize embeddings for efficient
dynamic graph representation learning, while incorpo-
rating adaptive mechanisms in the model.

Some methods address the information asymmetry
problem in graphs by assigning priority to nodes [47].
However, the core idea of continuous temporal graph
embedding is to extend existing models with special
storage modules designed for node classification where
labels are fixed over time, making them unsuitable for
general frameworks [48, 49]. Independent module-based
frameworks have shown promising results in industrial
applications.

In the past, the main disadvantage of using vertex-
based partitioning was the uncertainty surrounding the

degree of each vertex, which made it difficult to achieve
a balanced partitioning of the graph. However, the latest
approach, which is based on edges, simplifies the parti-
tioning process and ensures a more even distribution of
the graph [50]. Given the potential of continuous-time
graph embedding models and the necessity of dealing
with large-scale graphs [6], this paper aims to imple-
ment a framework for large-scale continuous-time graph
embedding.

Framework
To expedite the processing of large-scale dynamic graphs,
this paper presents a framework comprising three com-
ponents, as depicted in Fig. 1: (1) Graph Partitioning;
(2) Continuous-Time Graph Embedding; and (3) Graph
Aggregation.

Definitions
Dynamic graphs can be categorized as discrete-time
graphs and continuous-time graphs, depending on how
time is represented. A discrete-time graph consists of
a sequence of static graphs, each representing a spe-
cific time interval, denoted as G = {G1,G2, . . . ,GT } . On
the other hand, a continuous-time graph is defined as
G = (V ,ET , T) , where ET is the set of edges between ver-
tices V with temporal properties, and T : E → R

+ maps
each edge to a non-negative real number, representing
the time at which the edge occurs. This mapping is repre-
sented here as a temporal function. In a continuous-time
graph, each edge e = (u, v, t) ∈ ET has a unique times-
tamp t ∈ R

+.

Fig. 1 A dynamic graph embedding framework based on large-scale continuous time

Page 5 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

Graph partition
Due to the memory and runtime demands of big data,
large-scale continuous-time graph embedding poses
a significant challenge. Currently, the most efficient
approach involves partitioning the graph into multiple
clusters for embedding. Graph partitioning methods
generally fall into two categories: vertex-based and edge-
based partitioning. While the vertex-based method is
straightforward, it cannot ensure a balanced division of
the graph. On the other hand, the edge-based method
can achieve a balanced division, but it may not preserve
the temporal continuity. To address this issue, our paper
proposes a temporal attribute-based edge delineation
method with the following key features.

• This paper proposes an edge-based graph partition-
ing algorithm that improves the division of unbal-
anced graphs. Unlike vertex-based methods, the
time complexity of graph embedding is determined
by the number of edges in the subgraph rather than
the number of vertices. Consequently, the proposed
algorithm is more likely to reduce running time.

• Moreover, the algorithm partitions the graph based
on the temporal properties of its edges, while pre-
serving the similarity between vertices to the maxi-
mum extent possible.

For a given dynamic large-scale graph G = (V ,ET , T) ,
all edges are divided into k distinct subgraphs
Gk = Vk ,EkT , T without overlapping, i.e.,

The variable k represents a predetermined number of
subgraphs. It’s important to note that subgraphs result-
ing from graph partitioning can have overlapping ver-
tices, whereas in continuous-time dynamic graphs,
the order of vertices is significant. The formula
Nij =

{

vk | vk ∈ Vi ∩ Vj

}

 denotes the set of overlapping
vertices in the subgraph between Gi and Gj , where Vi and
Vj represent the vertex sets of Gi and Gj , respectively.

The graph partition section of Fig. 1 displays three
subgraphs denoted as Ga,Gb , and Gc , with their edges
highlighted in yellow, blue, and green respectively. Obser-
vation reveals that v1 is connected by both yellow and
blue edges, hence v1 belongs to Ga and Gb (i.e., v1 ∈ Nab).
Similarly, this paper obtain Nab = {v1, v2, v3, v4, v5} ,
Nbc = {v3, v4, v5, v8, v9} , and Nac = {v3, v4, v5, v6, v7} .
Moreover, vertices v3, v4 and v5 are common to all three
subgraphs.

To ensure effective application of graph partitioning
algorithms on large-scale graphs, it is crucial to main-
tain a relatively consistent number of edges within each

(1)E = ∪K
k=1Ek ∀i, j : i �= j ⇒ Ei ∩ Ej = ∅.

subgraph, ideally as close to |E| /K as possible. One com-
mon metric for evaluating the balance of the partitioning
is the standard deviation of subgraph sizes.

For a subgraph Gk , the set of d-dimensional embed-
ding vectors of the subgraph embedding and the global
embedding is Z(k),Y (k),∈ R

|Vk |×d . The objective func-
tion of graph partitioning optimization is:

Moreover, the study necessitates an examination of the
communication among all partitions. This scrutiny is well
illustrated by the graph aggregation process in the frame-
work, which defines the overlapping vertices in the graph
partition.

where Nij is the set of overlapping vertices between two
continuous-time subgraphs Gi and Gj , as discussed in Eq.
(2), ∀i, ∀j ∈ [1,K], i �= j

Recent studies have introduced effective partition-
ing methods [51]that yield good results. However, the
initial time in a continuous-time system can impact the
size of the partition. Moreover, in a continuous-time sys-
tem T = R

+ , the order in which nodes are connected by
edges is crucial. It is important to note that the weights
of the continuous-time subgraph Gk are determined by
the corresponding time t* = T (ei) . In order to tackle this
issue, an edge partitioning algorithm based on continu-
ous-time graphs is proposed, which takes into consid-
eration the correlation time. Furthermore, to maintain
the structural similarity of each subgraph to the original
graph, while minimizing the effect of total weights on
training, the weight balance of graph partitions is taken
into account. The procedure for implementing this algo-
rithm is outlined as follows:

• First, all subgraphs (K in total) are initially open
to accept new edges. Once the subgraph reaches
its capacity (i.e., the maximum number of allowed
edges), it is considered closed.

• Second, after partitioning the graph, an edge
e = (u, v) will be assigned to the subgraph that
contains the vertex u or v with the lowest weight,
while ensuring that the total weight of all subgraphs
remains conserved.

(2)
std =

√

√

√

√

√

√

∑K
k=1

(
∣

∣

∣
EkT

∣

∣

∣

|E|/K − 1

)2

K
.

(3)min
∑

∥

∥

∥
Z(k) − Y (k)

∥

∥

∥

2
.

(4)min
∑

i

∑

i

∣

∣Nij

∣

∣,

Page 6 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

• Finally, to ensure balance in the number of edges |EkT |
within each subgraph k = {1, 2, · · ·K } over time, a
threshold te is established. If the difference between
the maximum and minimum number of edges in
subgraphs

(

max
(
∣

∣EkT
∣

∣

)

−min
(
∣

∣EkT
∣

∣

))

 is greater
than or equal to te , the next incoming edge with the
smallest weight will be assigned to the subgraph with
the smallest |EkT | as time progresses (from the begin-
ning to the current state).

Continuous‑time graph embeddings
In the dynamic embedding process, this paper defines
each dynamic subgraph as Gk =

(

Vk ,EkT , T
)

 , where Vk
is a set of vertices and EkT is the set of edges between
vertices in Vk . The set EkT is the set of edges that occur
consecutively between the subgraph vertices in Vk , and
T : Ek → R

+ is a time function that assigns a timestamp
to each edge in the subgraph. For the optimal partitioned
subgraph, each edge ei = (u, v, t) ∈ EkT can be assigned a
specific timestamp T ∈ R

+.
In a continuous-time subgraph, the set T ⊆ T repre-

sents the time span during which information on an edge
occurs, where T is the time domain. The continuous-time
system is defined as T = R

+ . In such a graph, a valid
walk is a sequence of consecutive nodes that have tem-
poral properties themselves and are connected by edges
between nodes with non-decreasing temporal informa-
tion. Specifically, the timestamp of each edge captures
the contact time between two nodes, so that a valid time
walk represents feasible routes that respect temporal
information.

For a valid random walk from vertex V1 to Vk in Gk , a
sequence of vertices �v1, v2, · · · , vk� is valid if �vi, vi+1� ∈ EkT
for 1 ≤ i < k , and T (vi, vi+1) ≤ T (vi+1, vi+2) for
1 ≤ i < (k − 1) . If there exists a time walk from vertex u to
vertex v for any arbitrary vertices u, v ∈ Vk , then u is time-
connected to v.

This paper defines the embedding problem for contin-
uous-time subgraphs as follows: Given a continuous-time
graph G = (V ,ET , T) , the goal is to map its nodes to a
D-dimensional vector space and learn a time-varying fea-
ture representation function f : V → R

D . This approach
is suitable for link prediction of temporal attributes and
other machine learning tasks. The first step of graph
embedding involves determining the node at which the
random walk starts. In this paper, the starting time t∗ is
drawn from a uniform weighted distribution FS , and the
closest edge E to time t∗ is found. Alternatively, the initial
edge ei = (v,w) and its associated time t∗ = T (ei) can be
drawn from an arbitrary (uniform or weighted) distribu-
tion FS . To achieve dynamic graph embedding, this paper
employs time-varying embeddings, which distinguishes

our framework from existing approaches that use ran-
dom wandering on static graphs. Strategies for selecting
initial time edges that are temporally biased or unbiased
are discussed in [6]. Specifically, the proposed method
starts directly from the initial time edge of each subgraph.

In each subgraph, the time random walk is initiated
with the selection of the initial edge ei = (u, v, t) , and this
paper defines the set Ŵt(v) of temporal neighbors of node
v at time t as follows.

It should be noted that a node w may appear multiple
times in the temporal neighborhood Ŵt(v) of a node v,
due to the presence of multiple edges with distinct times-
tamps between the two nodes. This paper focuses solely
on unbiased time, and favors the selection of tempo-
ral neighbors in the second distribution Ŵt . Specifically,
this paper bias the sampling strategy towards walks that
exhibit smaller “in-between” times on consecutive edges.
This way, the subgraph embedding considers each pair of
consecutive edges (u, v, t) and (v,w, t + k) encountered
by the random walk. For example, if k is small, the ran-
dom walk sequence (v2, v4, t), (v4, v9, t + k) can be sam-
pled. Since v4 is linked to v2 and v9 , respectively, it is likely
that v2 and v9 are also connected. On the other hand, if
k is large, this sequence is unlikely to be sampled. Con-
sequently, if v4 interacts with v2 and v9 at very different
times, they are more likely to be separated and unaware
of each other’s existence.

Given a time walk St , the task of learning node embed-
dings in continuous-time dynamic graphs is formulated
as an optimization problem.

The node embedding function f : V → R
D

is used to optimize the context window size,
denoted by ω . The window WT is defined as
T (vi−ω, vi−ω+1) < · · · < T (vi+ω−1, vi+ω) and is a subset
of the time walk St . It is assumed in this paper that when
the source node v i is observed, there exists conditional
independence between the nodes within the temporal
background window WT .

This paper utilizes a graph partitioning algorithm to
divide a continuous-time dynamic graph G = (V ,ET , T)
into k subgraphs. The random walk space for each sub-
graph Gk is represented by S . The space of temporal ran-
dom walks of subgraph Gk is denoted as ST , representing
only the subset of random walks that respect time. To

(5)
Ŵt(v) =

{(

w, t ′
)

| e =
(

v,w, t ′
)

∈ EkT ∧ T (e) > t
}

(6)max
f

log Pr(WT = {vi−ω, · · · , vi+ω}\vi | f(vi))

(7)Pr(WT | f(vi)) =
∏

vi+k∈WT

Pr
(

vi+k | f(vi)
)

Page 7 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

ensure temporal coherence, this paper defines the con-
text window size of jump frames as the minimum length
for each temporal walk. Specifically, a set of tempo-
ral random walks {St1,St2, · · · ,Stk} is used to obtain a
series of context windows of size ω , and the total number
of these temporal context windows is denoted as β.

When sampling a set of time wanderings, β is usually set
to a multiple of N = |V |.

This paper provides an overview of the process of
learning continuous-time subgraph embeddings using
Alg. 1 and the Temporal Random Walk (TRW) [6]. Addi-
tionally, the subgraph embedding framework presented
in this paper can be utilized in a depth-model based
approach, as the temporal random walk can serve as an
input vector to the neural network.

Algorithm 1 Continuous‑Time Subgraph
EmbeddingsGraph aggregation
In the final stage of CTDGE, distributed subgraph
embeddings are aggregated. However, the effective walks
in a subgraph embedding, which are represented by a
sequence of nodes connected by edges with non-decreas-
ing timestamps, present a challenge to graph aggrega-
tion due to uncertain continuity between subgraphs. To
address this issue, a basic idea of global aggregation is
employed in this study to identify a global vector space
in time that can map multiple local subgraph embedding
spaces. The subspaces are then mapped using the over-
lapping vertex set N.

Assuming that a vertex vm belongs to multiple subgraphs,
such as Gi and Gj that are represented by vm ∈ Nij , the local
embedding vector spaces of Gi and Gj can be denoted as
Z(i) = F(Gi) and Z(j) = F

(

Gj

)

 , respectively. As a result,
the local embedding vectors of vm in the subgraphs Gi and
Gj can be represented by z(i)m and z(j)m , respectively. If a map-
ping function h

(

z
(i)
m , z

(j)
m

)

−→ ym exists for overlapping

(8)β =

k
∑

i=1

∣

∣Sti

∣

∣− ω + 1

vertices vm , this function maps the entire subspaces Z(i)
and Z(j) to a global vector space Y .

This unsupervised graph global aggregation algorithm
is designed to be low-complexity. It is both simple and
efficient, and involves normalization and combination
processes. Specifically, the algorithm first identifies the
set of overlapping vertices in all subgraphs, denoted by
Nall = V1 ∩ V2 ∩ . . . ∩ VK . For each vertex vm ∈ Nall , the
local embedding vector zim =

[

zim(1), z
i
m(2), . . . , z

i
m(d)

]

 in
each cluster i is then normalized, with

The mean of
∑

zim is calculated as

and the variance is denoted as σ (i)2

m .
After normalization, the normalized embedding vec-

tors are used to combine the global space, and overlapping
vertices are generated through different local clustering
techniques. The average value of the normalized vector for
vertex vm can be obtained using Eq. (10).

The mapping function for vertex vm can be represented as
zim = hm

(

z
(i)
m , z

(j)
m

)

 . To calculate the global standard embed-
ding vector, this paper takes the average value of the transfor-
mation embeddings of all vertices m in the set Nall , denoted as:

Additionally, the subgraph’s vector space Z(i) is mapped
to the global vector space yi , denoted as:

where dist(i) =

∑

vm∈Vi∩Nall

(

z
(i)
m−z(all)

)

|Vi∩Nall|
∀vm ∈ Vi ∩Nall .

Finally, the global feature Y of the graph aggregation is
denoted as Y =

[

y′1, y
′
2, . . . , y

′
K

]

.

Experiments
The experiment aims to investigate the effectiveness of
a proposed continuous-time dynamic graph embedding
(CTDGE) framework, which uses temporal graphs with

(9)h
(

Z(i),Z(j)
)h

(

z
(i)
m ,z

(j)
m

)

−→ Y

(10)

z(i)
′

m =

[

zim(1)− eim

σ
(i)
m

,
zim(2)− eim

σ
(i)
m

, . . . ,
zim(d)− eim

σ
(i)
m

]

.

(11)eim =

∑

zim(1)+ zim(2)+ · · · + zim(d)

d
,

(12)z′m =

∑K
i=1 z

(i)′

m

K

(13)z(all) =

∑

m∈Nall
z′m

|Nall |
.

(14)yi′ = Z(i) − dist(i),

Page 8 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

different temporal characteristics and number of scales.
This paper evaluate the performance of CTDGE in data
security using metrics such as link prediction and node
classification tests. Additionally, the performance of the
framework is compared with current mainstream meth-
ods as the graph size is increased. The experimental
results show that the proposed framework achieves bet-
ter results for large-scale continuous time graphs while
significantly reducing the running time.

Datasets
To compare the performance of various graph embed-
ding methods, the dataset needs to fulfill certain crite-
ria, such as selecting continuous-time dynamic graphs
with timestamps from T = R

+ . This paper examines and
analyzes two types of datasets. The first type comprises
publicly available continuous-time datasets. This study
collects and pre-processes four datasets, as shown in
Table 1. The second type is a large-scale dynamic data-
set obtained from the web to verify the embedding on
dynamic bigraphs. This paper uses the Yelp and Tmall
datasets, which track a large number of internet users’
reviews of merchants (e.g., restaurants and shopping
malls) and user information on Tmall products, respec-
tively, as shown in Table 2.

Experimental setup
The paper employs continuous-time dynamic graphs to
model the learning framework and compares different
baseline methods from various categories. Two vector-
based graph representation learning approaches, namely
DeepWalk and Node2vec, are used as typical examples
of link prediction using static random wandering. Graph
Convolutional Networks (GCN) and Graph Attention
Networks (GAT) are considered as static networks, and
the graph is assumed to be static during the experi-
ments. The paper focuses on the node detection task
for each graph, and aligns these embedding methods to
the same vector space. To assess the framework’s perfor-
mance comprehensively, the paper compares it with two
continuous-time graph embedding methods (CTDNE

and TempGAN) and one discrete-time graph embedding
method (DynGEM). The experimental procedure follows
the hyperparameter settings suggested by the continu-
ous-time uniformity [6] to enable better comparison with
dynamic graph embedding methods.

• DeepWalk is a method for mining graph structure
data based on random walks inspired by the skip-
gram model. In this paper, to enable comparison of
experiments, this paper set three hyperparameters
to the default values (D = 128, r = 10, ns = 10) , and
leave the other two hyperparameters to vary among
several values: L ∈ {40, 60, 80} and cs ∈ {6, 8, 10}.

• Node2vec [14]. Node2vec is a graph embedding
method with multi-neighborhood sets and preserv-
ing the higher order similarity of nodes. To better
present the experimental data, node2vec introduces
new hyperparameters for the grid search, putting
p, q ∈ {0.25, 0.50, 1, 2}.

• GCN [52]. GCN is a multilayer network, where each
convolutional layer handles first-order neighborhood
information, and multi-order neighborhood informa-
tion transfer is achieved by overlaying multiple con-
volutional layers.

• GAT [30]. GAT is an algorithm for increasing atten-
tion mechanism on GCN which uses a parameter
matrix to learn the relative importance between
nodes i and neighbors j. It enables the graph neural
network to focus more on the important nodes to
reduce the impact from edge noise.

• CTDNE [6]. This is a DeepWalk-based continuous-
time network embedding method that captures
temporal information through chronological ran-
dom walks. This method is also the base embedding

Table 1 Statistics of a Dynamic Graph. |V | represents the number of nodes in the graph, |ET | represents the number of temporal edges,
d denotes the average node degree across all timesteps, dmax represents the maximum node degree across all timesteps, St represents
the entire time span in days, T denotes the number of time steps in the training data

Database |V | |ET | d dmax St T

IA-EMAIL-EU 927 323.3K 15.8 232 784.87 44

FB-FORUM 899 33.7K 9.9 109 147.52 10

SOC-SIGN-BITCOINA 3.7K 24.1K 5.9 597 1791.32 11

SOC-WIKI-ELEC 7.1K 107K 12.2 602 1263.47 20

Table 2 Statistics of large scale dynamic graphs

Dataset nodes edges time steps

Yelp 42 653 834 291 17

Tmall 36 183 4 321 477 10

Page 9 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

method for subgraphs. In this paper, Fs is set as a lin-
ear distribution and Ft is set as an unbiased distribu-
tion.

• TempGAN [53]. This is a method that preserves the
temporal proximity between network nodes and
learns representations from a temporal network in
continuous time. In addition, link prediction experi-
ments are performed using TempGAN autoencoder
to evaluate the quality of the generated embeddings.

• DynGEM [34]. This is a deep autoencoder-based
model that generates nonlinear embedding vectors
by initializing the previous graph to improve dynamic
graph embedding efficiency. This article refers to the
suggested fixed parameters in [34].

• DynamicTriad [54]. DynamicTriad is a dynamic rep-
resentation learning method that focuses on triples
of vertices and shared neighbor nodes. For large-
scale graphs, this paper refers to DynamicTriad’s file
tests.

Link prediction
This paper evaluates the quality of continuous-time
dynamic graph representation learning in the CTDGE
framework through link prediction. When generating
training and test data, the suggestion in [6] is followed,
which involves sorting all temporal edges in ascending
chronological order. First, the process of parameter tun-
ing is discussed to optimize the system’s performance.
The static graph embedding methods (Deepwalk, Node-
2vec, GCN, and GAT) learn the entire training data as a
graph, while specific information about the time nodes is
set in Table 1. In the dynamic graph embedding method,
the TempGAN encoder generates node embeddings that
hide 15% of the temporal links in the original graph. The
L2 distance of the current time period is used to compute
the similarity of two nodes with the same test parameters
as CTDNE. The aim is to predict whether there is an edge
between these two nodes in the next time period. The
performance of AUC is evaluated based on the logistic
regression model and 5-fold cross-validation.

This paper compares the performance of CTDGE
with four static graph embedding methods (Deepwalk,

Node2vec, GCN, and GAT) and three dynamic graph
embedding methods (CEDNE, TempGAN, and Dyn-
GEM). Table 3 illustrates the AUC comparison. It is
evident that for the LA-EMAIL-EU dataset, the pro-
posed framework outperforms Deepwalk, Node2vec,
GCN, GAT, and DynGEM by 11.1%, 4.0%, 11.8%, 3.4%,
and 3.5%, respectively. Similarly, for the FB-FORUM
dataset, the AUC improves by 25.5%, 6.4%, 24.7%,
4.2%, and 2.3% compared to the baseline. The frame-
work achieves comparable performance to dynamically
advanced methods (CTDNE and TempGAN) in graphs
with less than 1000 nodes. For graphs with more than
1000 nodes, on the SOC-SIGN-BITCOINA dataset,
the proposed framework achieves 11.9%, 9.3%, 10.9%,
7.8%, 4.9%, 1.2%, and 3.5% performance improvement.
Similarly, on the SOC-WIKI-ELEC dataset, the AUC
improves by 6.1%, 3.5%, 4.4%, 2.9%, 1.3%, 0.5%, and 2.7%
compared to all methods. Overall, the proposed method
outperforms other methods in the case of a large num-
ber of nodes and edges, demonstrating that delineating
dynamic large-scale graphs and incorporating temporal
dependencies in graphs are essential for learning appro-
priate graph representations. Finally, the framework
of this paper can be combined with and generalized to
other random walk and continuous time graph embed-
ding based methods, which are important for future
application studies.

Additionally, Fig. 2 presents the AUC scores for each
time step of all evaluated methods. Based on these
results, static methods such as Deepwalk and Node2vec
perform worse than most dynamic methods but outper-
form some dynamic graph embedding methods such as
DynGEM in large-scale datasets. This is due to the inabil-
ity of dynamic learning methods to focus on the temporal
properties of the dataset. Moreover, our method shows
better performance than some continuous-time meth-
ods (CTDNE) on large-scale datasets (Yelp and Tmall).
One possible explanation is that the global graph is par-
titioned by our framework to capture the graph evolution
between different time steps in the subgraphs. Lastly,
the temporal dimension is varied multiple times in our
framework to effectively capture the temporal evolution-
ary characteristics of the nodes.

Table 3 AUC scores for Temporal Link Prediction

Dataset DeepWalk Node2vec GCN GAT CTDNE TempGAN DynGEM CTDGE

IA-EMAIL-EU 0.793 0.847 0.788 0.852 0.885 0.887 0.851 0.881

FB-FORUM 0.647 0.763 0.651 0.779 0.815 0.819 0.794 0.812

SOC-SIGN-BITCOINA 0.816 0.835 0.823 0.847 0.870 0.902 0.882 0.913
SOC-WIKI-ELEC 0.810 0.831 0.824 0.836 0.849 0.856 0.837 0.860

Page 10 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

Large‑scale dynamic graph embedding
To further demonstrate the advantages of the graph
embedding framework for large-scale continuous-time
graphs proposed in this paper, experiments were con-
ducted on two dynamic graphs (Yelp and Tmall). As
training on large-scale dynamic graphs requires global
traversal, this was a test of computational efficiency.
The four basic embedding methods studied in this
paper required significant training time, and even with
improved computing power, the results were unsat-
isfactory. In contrast, the CTDGE framework divides
large-scale graphs into multiple subgraphs using graph
partitioning methods, performs local random walks in

each subgraph, and then aggregates the graphs to make
embedding more feasible for large-scale datasets.

As shown in Fig. 3, the CTDGE framework significantly
improves the performance of large-scale continuous-time
graph embedding while also reducing memory usage. On
the Yelp dataset, the proposed framework achieved a 13.3%,
9.3%, 6.8%, 1.2%, and 2.2% performance improvement over
Deepwalk, Node2vec, CTDNE, DynamicTriad, and Temp-
GAN, respectively. Similarly, on the Tmall dataset, CTDGE
improved AUC by 15.6%, 10.6%, 7.5%, 1.5%, and 1.9% com-
pared to Deepwalk, Node2vec, CTDNE, DynamicTriad,
and TempGAN. Overall, the framework achieved an AUC
gain of 6.6% across all embedding methods.

Fig. 2 Evaluation results for link prediction of dynamic datasets calculated with AUC

Fig. 3 Results of link prediction using various graph embedding methods for large-scale dynamic graphs

Page 11 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

CTDGE performs global segmentation of large-scale
dynamic graphs and adheres to the time sequence within
subgraphs, giving a higher weight to edges that appear
later in time. Experimental results consistently demon-
strate that this method outperforms both DeepWalk and
Node2vec. It is noteworthy that embedding methods for
large-scale dynamic graphs are scarce due to the consid-
erable computing and memory requirements. Moreover,
for applications involving such graphs, our proposed
framework can be combined with state-of-the-art ran-
dom-walk-based methods, making it even more scalable.

Node classification
In order to evaluate the performance of large-scale
graphs (with over 10,000 nodes), this paper also con-
ducted tests on the node classification task. Table 4
displays the experimental results, showing the node clas-
sification performance of various embedding methods on
large-scale graphs. The results demonstrate that CTDGE
outperforms other dynamic baseline methods, achieving
up to a 22.7% improvement in F1-score for node classifi-
cation on large-scale graphs. This suggests that learning
the representation jointly across all time steps enhances
the overall performance, since it enforces continuous
subgraph embeddings over time. In contrast, our frame-
work performs global aggregation at the end, capturing
the global temporal structure better than the local struc-
ture, since the node classification task considers the over-
all position of the embeddings. Therefore, the framework
presented in this paper is better suited for large-scale data
in detecting and capturing the evolution of information.

The subgraph embedding process involves an impor-
tant hyperparameter, the latent space dimension. The
embedding algorithm offers benefits in terms of cod-
ing efficiency and inference performance. Therefore,

comparing the proposed framework with the baseline
methods is carried out to evaluate the impact of embed-
ding dimension on node classification tasks. Experi-
mental results depicted in Fig. 4 show that CTDGE
demonstrates superior embedding effectiveness on
large-scale graphs compared to other methods. Addition-
ally, CTDGE’s performance stabilizes as the embedding
dimension increases, starting from d=6.

Furthermore, there is a saturation point in the embed-
ding dimension where only 20 features are sufficient to
represent the node neighborhood. This value is related
to the potential dimensionality of the continuous-time
graph, which captures all the structural information in
the graph and depends on the nature, rather than the
size, of the input data. In other words, the maximum pro-
portion of information encoded in a dimension does not
depend on the number of samples.

Additionally, Fig. 5 presents the F1 scores for each time
step in the large-scale dataset. The experimental results
demonstrate that our framework outperforms other
static and dynamic methods in node classification tasks
for large-scale graphs. Finally, the base embedding com-
ponent of CTDGE can be used as a modular component
that can be combined with existing and future graph
embedding methods.

Conclusion
This paper presents a general framework for incorporat-
ing temporal information into large-scale graph embed-
dings. The CTDGE framework improves the efficiency of
large-scale data security detection through balanced sub-
graph partitioning. Additionally, the model dynamically
embeds continuous-time subgraphs and captures tem-
poral attributes in the network, which is of paramount
importance for network security in the real world. The
experimental results indicate that CTDGE achieved high

Fig. 4 Impact of embedding dimension on node classification task

Page 12 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

scores in link prediction and node classification tasks for
large-scale data. As the dataset increases, the accuracy
remains constant while the execution time decreases
significantly, proving the effectiveness of the model in
large-scale data security. Moreover, in real-world net-
work testing, the model can accurately classify malicious
nodes. In summary, the proposed framework achieved an
average gain of 10.3% compared to embedding methods
in a comprehensive analysis.

In future research, we will continue to investigate
dynamic graph representation learning methods and
apply them to fields such as the industrial Internet of
Things to enhance data security.

Acknowledgements
The authors thank the reviewers for their insightful comments and sugges-
tions to improve the quality of the paper. Thanks to Dr. Zhaowei Liu of Yantai
University for his help in our work.

Authors’ contributions
Zhaowei Liu, Weishuai Che, and Shenqiang Wang wrote the main manuscript
text, Jindong Xu drew the experimental diagrams in the manuscript, Haoyu
Yin drew the experimental tables in the manuscript, and all authors reviewed
the manuscript. The author(s) read and approved the final manuscript.

Authors’ information
Zhaowei Liu received the Ph.D. degree from the Shandong University, Jinan,
in 2018. Currently, he is a Professor at the Yantai University, Yantai, China. His
research interests include blockchain, and machine learning with graphs.

Weishuai Che is currently pursuing the M.Sc. degree with the School of
Computer and Control Engineering, Yantai University, Yantai, China. His current
research interests include blockchain and machine learning with graphs.
Shenqiang Wang is currently pursuing the M.Sc. degree with the School of
Computer and Control Engineering, Yantai University, Yantai, China. His current
research interests include blockchain and machine learning with graphs.

Funding
This work was supported in part by the National Natural Science Foundation
of China under Grant 62272405, School and Locality Integration Development
Project of Yantai City(2022), the Youth Innovation Science and Technology
Support Program of Shandong Provincial under Grant 2021KJ080, the Natural
Science Foundation of Shandong Province under Grant ZR2022MF238, Yantai
Science and Technology Innovation Development Plan Project under Grant
2022XDRH023.

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding author Haoyu Yin, upon reasonable request.

Declarations

Ethics approval and consent to participate
This material is the authors’ own original work, which has not been previously
published elsewhere. The paper is not currently being considered for publica-
tion elsewhere.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 20 March 2023 Accepted: 19 May 2023

References
 1. Alassad M, Spann B, Agarwal N (2021) Combining advanced computa-

tional social science and graph theoretic techniques to reveal adversarial
information operations. Inf Process Manag 58(1):102385

 2. Hussain MJ, Wasti SH, Huang G, Wei L, Jiang Y, Tang Y (2020) An approach
for measuring semantic similarity between wikipedia concepts using
multiple inheritances. Inf Process Manag 57(3):102188

Fig. 5 Evaluation results of dynamic large-scale datasets calculated with F1-score

Table 4 Node classification model scores for large scale
dynamic graphs

Dataset DeepWalk Node2vec DynamicTriad CTDGE

Yelp 0.29743 0.29735 0.25463 0.31405
Tmall 0.94382 0.96327 0.56271 0.96518

Page 13 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

 3. Gainza P, Sverrisson F, Monti F, Rodola E, Boscaini D, Bronstein M, Correia
B (2020) Deciphering interaction fingerprints from protein molecular
surfaces using geometric deep learning. Nat Methods 17(2):184–192

 4. Zhou X, Li Y, Liang W (2021) Cnn-rnn based intelligent recommendation
for online medical pre-diagnosis support. IEEE/ACM Trans Comput Biol
Bioinforma 18(3):912–921. https:// doi. org/ 10. 1109/ TCBB. 2020. 29947 80

 5. Gong W, Zhang X, Chen Y, He Q, Beheshti A, Xu X, Yan C, Qi L (2022)
Dawar: Diversity-aware web apis recommendation for mashup creation
based on correlation graph. In: Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval. New York: ACM, pp 395–404

 6. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-
time dynamic network embeddings. Companion Proceedings of the The
Web Conference 2018:969–976

 7. Heidari F, Papagelis M (2020) Evolving network representation learning
based on random walks. Appl Netw Sci 5:1–38

 8. Qi L, Chi X, Zhou X, Liu Q, Dai F, Xu X, Zhang X (2022) Privacy-aware data
fusion and prediction for smart city services in edge computing environ-
ment. In: 2022 IEEE International Conferences on Internet of Things
(iThings) and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics), IEEE, pp
9–16

 9. Mei JP, Lv H, Yang L, Li Y (2019) Clustering for heterogeneous informa-
tion networks with extended star-structure. Data Min Knowl Disc
33:1059–1087

 10. Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T,
Schardl T, Leiserson C (2020) Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Menlo Park: AAAI Press, pp 5363–5370

 11. Chen F, Wang YC, Wang B, Kuo CCJ (2020) Graph representation learning:
a survey. APSIPA Trans Signal Inf Process 9:15

 12. Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: Learning represen-
tations over dynamic graphs. In: International conference on learning
representations. [Online].

 13. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. New York: ACM,
pp 701–710

 14. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. New York: ACM, pp 855–864

 15. Zhou X, Liang W, Li W, Yan K, Shimizu S, Kevin I, Wang K (2021) Hierarchi-
cal adversarial attacks against graph-neural-network-based IoT network
intrusion detection system. IEEE Internet Things J 9(12):9310–9319

 16. Zhou X, Xu X, Liang W, Zeng Z, Yan Z (2021) Deep-learning-enhanced
multitarget detection for end-edge-cloud surveillance in smart IoT. IEEE
Internet Things J 8(16):12588–12596

 17. Wang W, Wang Y, Duan P, Liu T, Tong X, Cai Z (2022) A triple real-time
trajectory privacy protection mechanism based on edge computing and
blockchain in mobile crowdsourcing. IEEE Trans Mob Comput, pp 1–18

 18. Xu X, Zhang X, Gao H, Xue Y, Qi L, Dou W (2019) Become: Blockchain-
enabled computation offloading for IoT in mobile edge computing. IEEE
Trans Ind Inform 16(6):4187–4195

 19. Xu X, Jiang Q, Zhang P, Cao X, Khosravi MR, Alex LT, Qi L, Dou W (2022)
Game theory for distributed iov task offloading with fuzzy neural network
in edge computing. IEEE Trans Fuzzy Syst 30(11):4593–4604

 20. Zhou X, Liang W, Shimizu S, Ma J, Jin Q (2020) Siamese neural network
based few-shot learning for anomaly detection in industrial cyber-physi-
cal systems. IEEE Trans Ind Inform 17(8):5790–5798

 21. Liang W, Hu Y, Zhou X, Pan Y, Kevin I, Wang K (2021) Variational few-shot
learning for microservice-oriented intrusion detection in distributed
industrial IoT. IEEE Trans Ind Inform 18(8):5087–5095

 22. Lu Z, Wang Y, Tong X, Mu C, Chen Y, Li Y (2021) Data-driven many-objec-
tive crowd worker selection for mobile crowdsourcing in industrial IoT.
IEEE Trans Ind Inform 19(1):531–540

 23. Makarov I, Kiselev D, Nikitinsky N, Subelj L (2021) Survey on graph
embeddings and their applications to machine learning problems on
graphs. PeerJ Comput Sci 7

 24. Barros CD, Mendonça MR, Vieira AB, Ziviani A (2021) A survey on
embedding dynamic graphs. ACM Comput Surv (CSUR) 55(1):1–37

 25. Wang Y, Liu Z, Xu J, Yan W (2022) Heterogeneous network representa-
tion learning approach for ethereum identity identification. IEEE Trans
Comput Soc Syst, pp 890–899

 26. Liu Z, Yang D, Wang S, Su H (2022) Adaptive multi-channel bayesian
graph attention network for iot transaction security. Digit Commun
Netw, pp 1–20

 27. Liu Z, Yang D, Wang Y, Lu M, Li R (2023) Egnn: Graph structure learn-
ing based on evolutionary computation helps more in graph neural
networks. Appl Soft Comput 135:110040

 28. Zhang H, Lu G, Zhan M, Zhang B (2022) Semi-supervised classifica-
tion of graph convolutional networks with laplacian rank constraints.
Neural Process Lett 54(4):2645–2656

 29. You J, Ying R, Ren X, Hamilton W, Leskovec J (2018) Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In: International
conference on machine learning, PMLR, pp 5708–5717

 30. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017)
Graph attention networks. Stat 1050:20

 31. Jin G, Liu C, Chen X (2021) Adversarial network integrating dual atten-
tion and sparse representation for semi-supervised semantic segmen-
tation. Inf Process Manag 58(5):102680

 32. Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph transformer net-
works. Adv Neural Inf Process Syst 32:1–11

 33. Li R, Liu Z, Ma Y, Yang D, Sun S (2022) Internet financial fraud detection
based on graph learning. IEEE Trans Comput Soc Syst, 1394–1401

 34. Goyal P, Chhetri SR, Canedo A (2020) dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learning. Knowl-
Based Syst 187(104):816

 35. Hisano R (2018) Semi-supervised graph embedding approach to
dynamic link prediction. In: International Workshop on Complex Net-
works, Springer, pp 109–121

 36. Wu Z, Zhan M, Zhang H, Luo Q, Tang K (2022) Mtgcn: A multi-task
approach for node classification and link prediction in graph data. Inf
Process Manag 59(3):102902

 37. Haddad M, Bothorel C, Lenca P, Bedart D (2019) Temporalnode2vec: Tempo-
ral node embedding in temporal networks. In: International Conference on
Complex Networks and Their Applications, Springer, pp 891–902

 38. Hu L, Li C, Shi C, Yang C, Shao C (2020) Graph neural news recommen-
dation with long-term and short-term interest modeling. Inf Process
Manag 57(2):102142

 39. Chen L, Tang X, Chen W, Qian Y, Li Y, Zhang Y (2021) Dacha: A dual
graph convolution based temporal knowledge graph representation
learning method using historical relation. ACM Trans Knowl Disc Data
(TKDD) 16(3):1–18

 40. Liu Z, Huang C, Yu Y, Dong J (2021) Motif-preserving dynamic attrib-
uted network embedding. Proc Web Conference 2021:1629–1638

 41. Cui Z, Li Z, Wu S, Zhang X, Liu Q, Wang L, Ai M (2022) Dygcn: Efficient
dynamic graph embedding with graph convolutional network. IEEE
Trans Neural Netw Learn Syst, pp 1–12

 42. Goel R, Kazemi SM, Brubaker M, Poupart P (2020) Diachronic embed-
ding for temporal knowledge graph completion. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, pp
3988–3995

 43. Liu Y, Wu H, Rezaee K, Khosravi MR, Khalaf OI, Khan AA, Ramesh D, Qi
L (2022) Interaction-enhanced and time-aware graph convolutional
network for successive point-of-interest recommendation in traveling
enterprises. IEEE Trans Ind Inf 19(1):635–643

 44. Huang S, Bao Z, Li G, Zhou Y, Culpepper JS (2020) Temporal network
representation learning via historical neighborhoods aggregation. In:
2020 IEEE 36th International Conference on Data Engineering (ICDE),
IEEE, pp 1117–1128

 45. Makarov I, Savchenko A, Korovko A, Sherstyuk L, Severin N, Kiselev D,
Mikheev A, Babaev D (2022) Temporal network embedding framework
with causal anonymous walks representations. PeerJ Comput Sci 8:858

 46. Qu L, Zhu H, Duan Q, Shi Y (2020) Continuous-time link prediction via
temporal dependent graph neural network. Proceedings of The Web
Conference 2020:3026–3032

 47. Chen H, Xiong Y, Zhu Y, Yu PS (2021) Highly liquid temporal inter-
action graph embeddings. Proceedings of the Web Conference
2021:1639–1648

 48. Ma Y, Guo Z, Ren Z, Tang J, Yin D (2020) Streaming graph neural networks.
In: Proceedings of the 43rd International ACM SIGIR Conference on

https://doi.org/10.1109/TCBB.2020.2994780

Page 14 of 14Liu et al. Journal of Cloud Computing (2023) 12:89

Research and Development in Information Retrieval. New York: ACM, pp
719–728

 49. Zhang Z, Bu J, Ester M, Zhang J, Yao C, Li Z, Wang C (2020) Learning
temporal interaction graph embedding via coupled memory networks.
Proceedings of the web conference 2020:3049–3055

 50. Liu W, Li H, Xie B (2018) Real-time graph partition and embedding of
large network. 2018 18th IEEE/ACM International Symposium on Cluster.
Cloud and Grid Computing (CCGRID), IEEE, pp 432–441

 51. Goranci G, Räcke H, Saranurak T, Tan Z (2021) The expander hierarchy
and its applications to dynamic graph algorithms. In: Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp
2212–2228

 52. Wan Y, Yuan C, Zhan M, Chen L (2022) Robust graph learning with graph
convolutional network. Inf Process Manag 59(3):102916

 53. Mohan A, Pramod K (2022) Temporal network embedding using graph
attention network. Complex Intell Syst 8(1):13–27

 54. Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embed-
ding by modeling triadic closure process. In: Proceedings of the AAAI
conference on artificial intelligence. Menlo Park: AAAI Press

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	A large-scale data security detection method based on continuous time graph embedding framework
	Abstract
	Introduction
	Related work
	Static graph embedding method
	Embedding method for discrete-time dynamic graphs
	Embedding method for continuous-time dynamic graphs

	Framework
	Definitions
	Graph partition
	Continuous-time graph embeddings
	Graph aggregation

	Experiments
	Datasets
	Experimental setup
	Link prediction
	Large-scale dynamic graph embedding
	Node classification

	Conclusion
	Acknowledgements
	References

