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Abstract 

Edge‑cloud computing is an emerging approach in which tasks are offloaded from mobile devices to edge or cloud 
servers. However, Task offloading may result in increased energy consumption and delays, and the decision to offload 
the task is dependent on various factors such as time‑varying radio channels, available computation resources, 
and the location of devices. As edge‑cloud computing is a dynamic and resource‑constrained environment, mak‑
ing optimal offloading decisions is a challenging task. This paper aims to optimize offloading and resource allocation 
to minimize delay and meet computation and communication needs in edge‑cloud computing. The problem of opti‑
mizing task offloading in the edge‑cloud computing environment is a multi‑objective problem, for which we employ 
deep reinforcement learning to find the optimal solution. To accomplish this, we formulate the problem as a Markov 
decision process and use a Double Deep Q‑Network (DDQN) algorithm. Our DDQN‑edge‑cloud (DDQNEC) scheme 
dynamically makes offloading decisions by analyzing resource utilization, task constraints, and the current status 
of the edge‑cloud network. Simulation results demonstrate that DDQNEC outperforms heuristic approaches in terms 
of resource utilization, task offloading, and task rejection.

Keywords Edge‑cloud computing, Task offloading, Resource allocation, Deep Reinforcement learning, Markov 
decision process (MDP)

Introduction
The advent of IoT and 5G has enabled the development 
of new applications in areas such as surveillance, aug-
mented/virtual reality, and facial recognition, which 
heavily depend on both computational resources and 
data storage for optimal performance. IoT and mobile 
devices have limited resources so it is difficult for them 
to support such intelligent, delay-sensitive applications 
[1]. Hence, edge computing can help these devices by 

offloading computation-intensive tasks to the cloud. 
The cloud can cause delays in communication and data 
transfer as a result of network congestion and high usage, 
this can limit their use in real-time applications such as 
autonomous driving, advanced navigation, augmented 
reality (AR), and virtual reality (VR). Overall, edge-
cloud computing and 5G can work together to enable 
new types of applications and services that require low-
latency, real-time processing. The use of edge computing 
can reduce latency, enhance performance, and reduce 
costs associated with cloud computing. The edge servers 
can process computation-intensive tasks instead of send-
ing them to the cloud [2].

Edge-cloud computing is a distributed computing 
model that utilizes both cloud computing resources 
and edge devices, such as servers and IoT devices, to 
process and transmit data. This model aims to improve 
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processing speed decision-making and reduce latency 
and bandwidth usage by bringing the cloud’s process-
ing power closer to the edge where data is generated and 
collected. Edge and cloud computing can coexist and 
work together to provide the necessary resources for 
task execution. The integration of AI with edge-cloud 
computing allows for the deployment of machine learn-
ing algorithms on edge devices, providing a high level of 
intelligence to the edge-cloud network and enabling it to 
understand its environment [3, 4]. Before offloading tasks 
to the cloud or edge, it is essential to carefully consider 
the requirements and available resources. However, edge-
cloud computing is a dynamic and resource-constrained 
environment. Hence making an optimal decision for task 
offloading based on the available resource is a critical 
issue.

Task offloading is the process of transferring a task or 
workload from a local device to a remote device, such as 
a server or cloud resource, to improve the local device’s 
performance and efficiency. Offloading tasks can result 
in increased delay and energy consumption while edge 
servers may have limited computational capacity, which 
can lead to increased computing latency. It is important 
to consider these trade-offs before making a decision. 
5G networks with high densities may also experience 
higher transmission delays. Cooperative task offloading 
is a technique used in edge-cloud networks to improve 
the performance of distributed systems. In the distrib-
uted approach, tasks are split among devices in the net-
work, such as edge devices and cloud servers, to optimize 
resource usage and reduce the workload on individual 
devices. In an edge-cloud computing environment, it can 
be challenging to determine the optimal location for task 
offloading, as there are many factors to consider, includ-
ing the computational capacity of edge servers, the trans-
mission delays of networks, and the diverse requirements 
of end devices. Numerous research has been conducted 
on the topic of computation offloading in edge-cloud net-
works [5–9]. However, due to the diverse requirements of 
end devices and the limited information available about 
wireless channels, bandwidth, and computing resources 
in edge-cloud networks, it is challenging to design an 
optimal offloading strategy.

Deep Reinforcement Learning is a subset of machine 
learning that combines reinforcement learning and 
deep learning techniques to handle high-dimensional 
state-action spaces and accelerate training for complex 
decision-making tasks. Many successful applications of 
DRL have been demonstrated in a wide range of fields, 
including gaming [7], robotics [8], and networking. The 
application of DRL to edge-cloud-assisted networks 
can optimize system performance by perceiving users’ 
mobility [10, 11]. Task offloading problems have been 

addressed with DRL in [9, 12, 13], and [14]. It can be able 
to find the best solutions to the optimization problems 
of time-varying and dynamic network environments. In 
the context of task offloading at the edge, Dueling-DQN 
could potentially be used to learn the optimal decision-
making policy for offloading tasks to different locations in 
a dynamic and resource-constrained edge-cloud environ-
ment. The DDQN architecture separates the estimator 
into two streams, value, and advantage, and then aggre-
gates them to make the final estimation of the Q-value. 
This allows for better generalization of the Q-value 
estimation by decoupling the estimation of the value of 
a state from the estimation of the advantage of taking a 
specific action in that state. This could involve training 
the DDQN to learn the optimal trade-offs between dif-
ferent factors, such as the task requirements, available 
resources, latencies, and costs, to make informed deci-
sions about the best location for task offloading.

In this research, we propose an advanced edge-cloud 
computing scheme that leverages the power of Double 
Deep Q-Network (DDQN) to optimize the offloading 
of computations and the allocation of resources for the 
offloaded tasks. Our proposed scheme is an extension of 
our previous work that employed DQN [9], but it goes 
one step further by utilizing the DDQN algorithm to 
improve the decision-making process and achieve a more 
efficient and optimized solution for the edge-cloud com-
puting task offloading and resource allocation problem. 
The goal of the proposed scheme is to minimize energy 
consumption while satisfying the computation and com-
munication requirements of the offloading tasks at edge-
cloud computing. DDQN enables efficient and effective 
offloading decisions in dynamic and resource-con-
strained environments, such as edge-cloud, by adapting 
to changes and learning from past experiences. In terms 
of training, DDQN separates the Q-value estimator into 
two streams, value and advantage, and then aggregates 
which improve the generalization. We present the task 
offloading and resource allocation problem as an MDP 
and use the DDQN algorithm to identify the optimal 
policy. Our simulation results show that the proposed 
method outperforms heuristic schemes and DQNEC in 
terms of resource utilization, maximum task offloading, 
and task rejection. The main contributions of our work 
are:

• To optimize resource allocation for compute-inten-
sive and delay-sensitive tasks in the edge cloud 
computing environment, we developed a scheme 
based on the double DQN. Our scheme determines 
the best actions to take in the current system state, 
ultimately improving the overall performance of the 
edge cloud
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• Considering the dynamics and unpredictability of 
edge device environments, we modeled the task 
offloading problem as a Markov Decision Process 
(MDP) and applied Double-DQN to maximize the 
long-term cumulative discounted reward. Our opti-
mization objective was to maximize resource utili-
zation, minimize task rejection, and minimize the 
round-trip time to complete the task within the 
deadline

• By using the proposed Double-DQNEC scheme, we 
can reduce idle time and balance the workload of the 
edge-cloud computing system. The simulation results 
show that the DDQN-based algorithm significantly 
outperforms the heuristic algorithm.

The rest of the paper is organized as follows: In Sect. 2 
the work-related are reviewed, especially relative to 
task offloading and resources allocation in the edge-
cloud computing environment; Sect. 3 provides the sys-
tem model and formulation of the proposed DDQNEC 
scheme in detail; in Sect.  4 the simulation result and 
comparison are discussed that validate our approach; 
finally, the conclusion is made in Sect. 5.

Related work
DRL learns optimal policies and makes quick decisions 
by interacting with a time-varying environment, which 
is suitable for dynamic MEC systems. There are mainly 
two research streams, including value-based and policy-
based methods.

Value‑based DRL methods
Huang et  al. introduced DROO, an online offloading 
algorithm for wireless-powered mobile edge computing 
(MEC) networks, in their work published in [12]. To solve 
the optimization problem, the algorithm splits it into two 
sub-problems, namely resource allocation and offloading 
decision. Through evaluation and simulation, the authors 
observed that DROO surpassed existing methods in 
terms of energy efficiency, task completion time, and net-
work congestion. This makes DROO a promising solu-
tion for enhancing the performance of wireless-powered 
MEC networks. Li et  al. [13] applied the deep Q-net-
work (DQN) to jointly handle computation offloading 
and resource allocation in multiuser MEC, minimizing 
the sum cost of delay and energy consumption. In [14], 
an improved resource allocation policy was proposed 
for IoT edge computing based on the deep Q-network 
(DQN) approach. This policy aims to improve the effi-
ciency of resource utilization and reduce task completion 
delays in the system. The DQN algorithm allows the sys-
tem to learn from the experience and make better deci-
sions for resource allocation in real-time.

Chen et al. [15] proposed the Deep-SARL algorithm to 
address the computation offloading problem in a mobile 
edge computing system by formulating it as a Markov 
decision process. The algorithm uses deep reinforcement 
learning with a self-attention mechanism to learn an 
optimal offloading policy that maximizes the long-term 
utility performance. The Deep-SARL algorithm was eval-
uated through simulations, and the results showed that 
it outperformed existing offloading methods in terms 
of average reward and energy efficiency. The proposed 
algorithm can help improve the performance of mobile 
edge computing systems, especially for applications that 
require real-time processing and low latency. Lu et  al. 
[16] proposed a DQN algorithm for large-scale heteroge-
neous MEC, achieving good performance without prior 
knowledge of environment statistics. However, value-
based methods are limited in handling continuous action 
space, such as in the dynamic JCORA problem. In [10], a 
DQN-based approach was introduced to solve the chal-
lenging problem of jointly optimizing task offloading and 
bandwidth allocation in MEC networks. The proposed 
solution effectively balances trade-offs between quality of 
service, energy efficiency, and network congestion.

In [11], a comprehensive review was provided of the 
current state-of-the-art techniques and computational 
resources used for partitioning and offloading in MEC 
networks. The challenges and opportunities of various 
approaches were discussed and their pros and cons were 
highlighted. In [17], a task offloading scheme based on 
DQN was proposed to select the optimal edge server and 
transmission mode for maximizing task offloading util-
ity. The proposed scheme achieved high performance 
in terms of task completion time, energy consumption, 
and network congestion. Liu et al. [18] proposed a novel 
approach for allocating resources in a mobile edge com-
puting system, where vehicles were used as edge devices 
to provide computational services to nearby users. The 
proposed algorithm was based on deep reinforcement 
learning (DRL) and aimed to maximize the overall system 
utility by efficiently allocating resources among the vehi-
cles. In [19], an intelligent DRL-based resource allocation 
scheme for wireless networks was proposed to minimize 
service time and balance resources.

In [20], a migration algorithm was proposed to opti-
mize task migration using a multi-agent reinforcement 
learning approach. The algorithm leveraged the collective 
intelligence of multiple agents to make optimal migra-
tion decisions, taking into account various factors such 
as network conditions, task requirements, and system 
resources.

In [21], the authors introduced a DQN-based computa-
tion offloading scheme for mobile edge computing (MEC) 
networks. The proposed scheme aimed to minimize the 
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long-term cost of the system while ensuring a satisfactory 
level of quality of service for the end-users. By leveraging 
DQN, the scheme was able to learn an optimal offload-
ing decision policy in a data-driven manner, which could 
adapt to the dynamic and uncertain network conditions 
in MEC environments. [22] introduced a DDQN-based 
backscatter-aided hybrid data offloading scheme that 
significantly improved energy efficiency while maintain-
ing transmission rate and reliability. In [23], an approach 
was proposed for making offloading decisions in a mobile 
edge computing (MEC) environment by jointly optimiz-
ing CPU frequencies and transmit powers. This approach 
aimed to minimize the energy consumption of mobile 
devices while maintaining the quality of service for 
offloaded tasks. The objective of [24] was to minimize the 
costs associated with energy consumption and compu-
tation delay in mobile edge computing networks, which 
are critical factors for their performance. To achieve 
this, the authors presented the RL-SARSA algorithm as 
a solution for resource management and optimal offload-
ing decisions. In [25] the authors proposed DDQNL-IST, 
a game-learning algorithm that combined DDQN and 
distributed LSTM with intermediate state transition to 
lower the complexity of offloading computation under 
time-varying conditions. DDQNL-IST used distributed 
LSTM and double-Q learning to improve processing and 
predicting time intervals and delays. The devices could 
exploit information asymmetry to obtain a better game 
learning outcome.

Policy‑based DRLs methods
Lu et al. [26] presented the double-dueling deterministic 
policy gradient (D3PG) algorithm for edge computing, 
capable of optimizing three critical performance met-
rics: service latency, energy consumption, and task suc-
cess rate. The simultaneous optimization of these metrics 
can lead to efficient resource allocation in dynamic edge 
computing environments. The D3PG algorithm can 
improve the overall performance of edge computing sys-
tems by reducing service latency, decreasing energy con-
sumption, and improving the task success rate.

Zhang et  al. [27] proposed two DRL algorithms for 
dynamic computation offloading in edge computing 
to minimize service latency. The hybrid-AC algorithm 
optimized resource allocation in single-device scenarios 
using a decision-based actor-critic approach. The md-
Hybrid-AC algorithm achieved efficient resource allo-
cation in multi-device scenarios using the multidevice 
actor-critic approach. These algorithms are significant 
contributions to the field of edge computing, as they 
reduce service latency and energy consumption, and 
improve the task success rate. They have the potential 

to enhance the performance of various edge computing 
applications.

Chen and Wang [28] proposed a decentralized DDPG-
based mechanism called JCORA. It addresses the chal-
lenge of resource allocation in a decentralized MEC 
system, where multiple users compete for limited com-
puting resources. By using DDPG agents, the JCORA 
mechanism can learn the optimal computation offload-
ing policies for each user without relying on centralized 
control or communication. This approach offers several 
advantages, including improved scalability and reduced 
overhead [29], presented a trustworthy DRL strategy for 
computation offloading in IoT edge networks, designed 
to handle selfish or forgery attacks in intelligent vehicle 
networks. This strategy employs an intelligent system 
model and a DPGAQ scheme to anticipate untrusted 
vehicle attacks during IoT offloading. It evaluates device 
trustworthiness for vehicle networks in mobile edge net-
works and uses the intelligent trusted system model and 
DPGAQ scheme to prevent malicious vehicle attacks. The 
strategy also uses a quantization algorithm to simplify 
offloading decisions in high-dimensional action spaces. 
In [30], a new policy-based multi-agent deep reinforce-
ment learning algorithm known as post-decision state 
(GPDS) is introduced to address malicious interference 
in wireless networks. By assessing the communication 
quality, spectrum availability, and jammer’s strategy from 
the post-decision state, the mobile users can optimize 
their transmission power and frequency to increase their 
SINR and channel throughput.

Liu and Liao [31] designed actor–critic-based approach 
to optimize resource allocation and offloading decisions. 
In their approach, the authors used a hybrid policy that 
can handle both discrete and continuous actions. This 
approach allows for efficient resource allocation and 
computation offloading decisions in edge computing 
systems. The DAC algorithm is capable of dynamically 
adjusting the decision-making process according to the 
system’s needs, ensuring that optimal resource allocation 
is achieved at all times. Moreover, the DAC approach is 
scalable and can be applied to various edge computing 
scenarios, making it a valuable tool for addressing the 
challenges of resource allocation and computation off-
loading in edge environments.

Qiu et  al. [32] developed a distributed and collective 
deep reinforcement learning (DRL) algorithm, called DC-
DRL, to address the challenges of computation offloading 
in resource-intensive and deadline-sensitive applications. 
The algorithm is capable of optimizing resource alloca-
tion and task scheduling in a distributed manner, ena-
bling efficient and scalable processing of complex tasks. 
By leveraging the collective intelligence of multiple 
agents, DC-DRL can achieve higher performance and 
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better task completion rates compared to traditional cen-
tralized approaches.

In [33], a DDPG-based is algorithm is proposed for col-
laborative computation offloading in heterogeneous edge 
computing. The offloading algorithm they propose is 
designed to work across all three edge networks, despite 
their heterogeneity. By doing so, they aim to improve 
the overall efficiency and performance of the network, 
by dynamically routing computation tasks to the most 
appropriate network based on factors such as network 
load, latency, and available resources.

In [34] a joint multi-task offloading and resource alloca-
tion scheme is suggested in satellite IoT. It involved mod-
eling tasks with dependencies as DAGs and using A-PPO 
to optimize offloading strategy. The proposed approach 
aimed to improve offloading efficiency and could have led 
to better performance and faster task completion.

In [35] A DDPG-based scheme was proposed that con-
sidered energy consumption and task completion for a 
multiuser scenario, utilizing simultaneous wireless infor-
mation and power transfer technology. It formulated an 

optimization problem that jointly optimized task offload-
ing ratio, uplink channel bandwidth, power split ratio, 
and computing resource allocation. The proposed algo-
rithm achieved optimal energy consumption and delay 
and utilized an inverting gradient updating-based dual 
actor-critic neural network design to improve the conver-
gence and stability of the training process.

System model
In this section, we present the system model and the 
problem formulation for task offloading and resource 
allocation. The network model with the edge-cloud sys-
tem of the DDQNEC scheme is shown in Fig.  1. Our 
scheme involves connecting end devices such as sen-
sors, mobile devices, and IoT devices to base stations 
through wireless links. The edge computing system is 
connected to the core cloud via the backbone network, 
allowing for the offloading of tasks and the utilization of 
available resources in the public cloud. This batch pro-
cessing approach waits for a predefined number (N ) of 
task requests before determining the optimal location 

Fig. 1 The system model and structure of edge‑cloud computing
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for each task, whether it be the edge or the cloud, tak-
ing into consideration the availability of resources and 
the deadline. By evaluating a batch of task requests at a 
time, this approach allows for better resource utilization 
and decision-making. Both bandwidth and computing 
resources are considered when making offloading deci-
sions, to optimize resource usage, minimize delay, and 
reduce energy consumption. In the following section, 
we provide a detailed description of the system model, 
including the task, communication, and computation off-
loading models. Table  1 provides a list of the notations 
used in our models.

Task model
A task tn is represented as a tuple of four variables, 
(‡n, †n, cn, τn), (1 ≤ n ≤ N ) where ‡n is the input data size 
in bytes, †n is the resultant data size, cn is the required com-
putational resource in CPU units, and τn is the task latency 
requirement. The value of xn is either 0 or 1, representing a 
binary decision on whether to assign a task to the edge or 
the cloud.

Typically, multiple resources are required for offloading 
tasks; however, our scheme considers only CPU resources 
required for the task [36–38].

where cn represent the total CPU units required to pro-
cess the task tn ,  ‡n represents the total size of input data, 
while ς represents the computational resources required 
to process a single unit of data in bytes.

Wireless bandwidth model
To offload the task from the end device to the edge or 
cloud, the device must be connected to the nearest 
base station by a wireless channel. Let’s B the set of all 
base stations B = {b1, b2, . . . , bW } , and each base sta-
tion bw has a set of wireless channels that provides dif-
ferent data rates as βw

h ∈ βw
1
,βw

2
,βw

3
, . . . ,βw

Hw
. Each 

channel serves different tasks and σwh  represents the 
remaining bandwidth of each channel as 
{σw

1
, σw

2
, σw

3
, . . . , σw

Hw
} . Then at time step t , the band-

width utilization UW (t) of all the base stations can be 
formulated as

where B represents the bandwidth of all base stations

(1)xn =

{

0 task tn is executed at edge,
1 task tn is executed at cloud,

(2)cn = zn × ς

(3)UW (t) =

∑W
w=1(

∑H
h=1 β

w
h )

B

Table 1 Notation and description

Symbol Definitions

T A set of tasks generated by edge 
devices

tn Each task generated by the end device 
n

zn  The input data size of the task tn
cn Computation resource size required 

for the task tn
τn Maximum tolerable latency of the task 

tn

yn  The resultant data of the task tn
xn A binary variable to indicate 

whether the task tn is assigned to edge 
or cloud, (0 indicates edge and 1 
indicates cloud)

ς CPU unit to process the one byte 
of data

B Set of base stations 
(BS),B = {b1, b2, . . . , bW }

UB(t) The bandwidth utilization of all BSs 
at time step t

Hw Set of wireless channels related 
to the BS bw

βw
h

The bandwidth of each channel h bw

σw
h

Remaining bandwidth of the BS bw

P The set of computing servers 
at the edge

p Computing server at the edge (p ∈ P)

cp The available computing capacity 
of server p

T
proce
n

The processing time for the task tn 
at the edge

M The set of computing servers 
in the cloud

m Computing server at the edge 
(m ∈ M)

T
procc
n

The processing time for the task tn 
at the cloud server

cm T he computing capacity of a cloud 
server m

Cc T he total computing capacity of cloud 
servers

T
procc
n

The total computation time for the task 
tn at cloud

UM(t) The computational resources utiliza‑
tion of cloud servers at time step t

T
transe
n

Transmission time for the task tn data 
sent to the edge server

T
transc
n

Transmission time for the task tn data 
to the cloud server

T
prope
n

The propagation time of the link 
between the nodes and edge servers

T
propc
n

The propagation delay of the link 
between the edge and cloud

rtten The total round‑trip time to the edge 
for a task tn

rttcn The total round‑trip time to the cloud 
for a task tn
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Computational model

 i. Edge computing:

        In our scheme, the set of edge servers is denoted as 
P = {1, 2, 3 . . .P} , and cp denote the available com-
putational capacity of edge server p, (p ∈ P) . The 
computation time TProce

n  for task tn to compute at 
edge server p is given by

      The utilization of the computational resources of 
the edge server at time t is represented as

where Ce denotes the total available computing 
capacity of all servers at the edge.

 ii. Cloud computing:
      The set of cloud servers is denoted as 

M = {1, 2, 3 . . .M} , and cm denote the available 
computational capacity of edge server m, (m ∈ M) . 
The processing time Tprocc

n  for task tn to compute it 
at the cloud server m is given by

      The utilization of the computational resources of 
the cloud server at time t is represented as

where Cc denotes the total available computing 
capacity of all servers in the cloud.

Delay model
In computation offloading, tasks are sent to an edge or 
cloud server for processing. The process involves three 
types of delays: transmission delay, propagation delay, 
and processing delay.

 i. Transmission Time

      For task tn , data transmission is required in both 
directions: from the end device to the edge/cloud 
server with a data size of ‡n , and from the edge/
cloud server back to the end device with a resultant 
data size of †n.

(4)T
proce
n =

cn

cp

(5)UP(t) =

∑P
p=1(cp(t))

Ce

(6)T
procc
n =

cn

cm

(7)UM(t) =

∑M
m=1(cm(t))

Cc

      Hence, a specific amount of bandwidth βw
h

(

edge
)

 or 
β(cloud) is required to fulfill the minimum latency 
τn of task tn . Transmission time which needs to 
send data of task tn to the edge Ttranse

n  and cloud 
Ttransc
n  can be formulated as

 ii. Propagation Time
      In the given model, the propagation delay is assumed 

to be constant, with a value of Tprope
n = 5ms for edge 

server and Tpropc
n = 50ms for the cloud server. This 

simplifying assumption is made for ease of calcula-
tion and analysis. The actual propagation delay may 
vary depending on the location of the resource.

 iii. Processing delay:
       Processing delay for the task tn edge server Tprocc

n  and  
cloud server Tprocc

n  can be obtained from Eq.  (4)  
and (6).

      Therefore, the overall time for a task to be com-
pleted by an edge rtten or cloud rttcn is the sum of 
the delay caused by data transmission, propagation, 
and processing which is represented as

 The total resources cost COtotal can be obtained 
by adding the total utilization of bandwidth COW  , 
edge server CPU COP , and cloud server CPU COM for 
total task offloading as follows:

where each resource (bandwidth, edge, and cloud 
computational resources) has been assigned a cost 
weight, with Ww = 1 being assigned to bandwidth, 
Wp = 5 for edge resources and WM = 10 for cloud 
computational resources. The agent learns to pick 
the cheapest resource for a task based on cost 
weights. It assigns tasks to the best location (edge 
or cloud) accordingly. If both resources are avail-
able, the agent assigns the task to the edge due to 
lower cost.

(8)Ttranse
n =

zn

βw
h

+
yn

βw
h

(9)Ttransc
n = Ttranse

n +
zn

β
+

yn

β

(10)rtten = Ttranse
n + T

prope
n + T

proce
n

(11)rttcn = Ttransc
n + T

propc
n + T

procc
n

COW = WW • UW

COP = WP • UP

COM = WM • UM

(12)COtotal = COW + COP + COM
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Formal problem formulation
The multi-objective problem solved in this paper is 
described formally as follows:

Optimization:

Equation (13) aims to achieve the optimization objective 
of maximizing resource utilization in both the edge and 
cloud, while minimizing the cost of task offloading speci-
fied in Eq. (14). For more details on resource utilization and 
cost, please refer to Eqs. (3), (5), (7), and (12).

Subject to the constraints:

DDQN‑based task offloading and resource 
allocation
In this section, we introduce DQNEC, a proposed 
scheme that utilizes the DDQN algorithm to make opti-
mal decisions and select the best location for task execu-
tion by analyzing the current state of the edge-cloud 
environment. It aims to improve resource utilization and 
balance the trade-off between delay and resource cost, 
to maximize the performance of edge-cloud computing 
systems. This is achieved by maximizing task offloading 
while minimizing delay and cost as defined in Eq.  (12), 
(13), and (14). We formulate this multi-objective problem 
using a Markov Decision Process (MDP).

Markov decision process
A Markov decision process (MDP) models sequential 
decision-making problems where an agent makes deci-
sions to maximize reward. It includes elements such as 
agent, state, action, policy, and reward. We formulate 
task offloading and resource optimization problems 
as an MDP to find the optimal policy π∗ . The policy is 
a mapping of states to action probabilities, represented 

(13)maximize (UW + UP + UM)

(14)minimize (COW + COP + COM)

(15)
W
∑

w=1

H
∑

h=1

chwh • µw
h ≤ B

(16)
N
∑

n=1

cn • (1− xn) ≤ Ce

(17)
N
∑

n=1

cn•xn ≤ Cc

(18)rtten • (1− xn)+ rttcn•xn ≤ τn

by π(a|s) for all possible actions a for each state s . RL 
algorithms are often used to solve MDPs, as they allow 
an agent to learn the optimal behavior for a given MDP 
through trial and error. In the DDQN-based framework, 
the agent observes the state st by attracting to the edge-
cloud environment and taking an action at as computing 
server selection via a deterministic policy and receives 
an immediate reward rt . The agent uses the action-value 
function Q(st , at) to update the agent policy. The goal of 
the agent is to maximize the long-term reward by find-
ing an optimal resource allocation policy. In the follow-
ing section, the state, action, and reward of the proposed 
scheme are explained in more detail.

State
The state st includes full information on the edge-cloud 
network. It includes the number of remaining tasks ( Nt ),  
I t is from 1 to N  (that is I t = t ), which specifies the task 
which should be currently determined by the agent, the 
total remaining computational capacity of edge servers 
and cloud servers ( Cc + Ce ), total remaining bandwidth 
at edge and cloud ( Be + Bc ), the number of cloud-server 
( Nc ), the remaining CPU of each server (αm) . In addition, 
information on edge such as the number of edge servers 
( Ne ), and the remaining total CPU of the edge server (αpw ) 
exists. CPU ( Um , Up ) and bandwidth information allo-
cated to each cloud and edge is added. Finally, each task’s 
information t1, t2, . . . , tN is included. State st ∈ S can be 
defined as

Action
In our model, the agent takes action by observing the cur-
rent state of the environment. The goal of the agent is to 
make the optimal decision to maximize resource utiliza-
tion and minimize the overall average service delay with 
the minimum rejection of tasks. Action  at ∈ A at each 
time step t can be defined as the action to offload the t-th 
task ( 1 ≤ t ≤ N  ) and allocate the resources (Bandwidth 
and CPU) to the task for execution within the task dead-
line. Action  at can be defined as

where η represents the computation server, and xn 
selects the edge or cloud location for a task sn , with η 
belonging to {1,2,…,P} (edge server) when xn = 0, and 

st = {Nt , I t ,Cc + Ce,Bc + Be ,

Nc ,Cc ,Bc , �1, �2,… , �m,… , �M ,U1,U2,… ,Um,…UM ,

Ne,Ce ,Be , �1, �2,… , �p,… , �P ,U1,U2,… ,Up,…UP ,

t1, t2,… , tN}

(19)at = {η, xn}
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η ∈ {1, 2, . . . ,M} (cloud server) xn = 1 . The agent will 
take actions based on the task offloading strategy in each 
time step and receive rewards from the environment in 
the following time step.

Reward
In RL, the agent’s objective is to maximize the sum of 
rewards from good actions. Our reward function is 
designed to optimize resource utilization, minimize cost, 
and satisfy delay constraints. The reward rt can be calcu-
lated by the total resource utilization ρ(t) at time step t in 
Eq. (20), the total cost σ(t) at time step t in Eq. (21) and 
delay constraint satisfaction for the task st at time step t 
in Eq. (22).

DDQN Framework for task offloading
In our model, we used the DDQN algorithm for the 
learning process. The DDQN algorithm is an off-policy 
algorithm and is applied to environments with dis-
crete action spaces. The learning process for DDQN is 
described in Algorithm 1 and also depicted in Fig. 2.

As shown in Fig. 2, the proposed learning process based 
on DDQN applies replay memory M , which can store a set 
of recent experience (si, ai, ri, si+1) which an agent gath-
ers by interacting with the environment, and then uses 
for DDQN learning. In particular, the system records the 
experience for every step. During the network training, a 
mini-batch (size: b ) is extracted from the replay memory 
M , and the Q network can learn from the previous expe-
rience. DDQN uses two neural networks, i) the prediction 
network Qπ (s, a|θ) as a function approximator to estimate 
the action-value function Eq.  (15), where θ is the weight 
of the neural network, ii) the target network Qπ (s, a; θ) 
to estimate the target value yi . The target network has the 
same structure as the prediction network. However, its 
weights θ  are copied from θ every fixed number of itera-
tions (K) instead of every training epoch. The following 
Eq. (23), (24), and (25) are the main equations for calculat-
ing the loss value.

(20)ρ(t) = UW (t)+ UP(t)+ UM(t)

(21)σ(t) = COW (t)+ COP(t)+ COM(t)

(22)

rt(st , at) =
ρ(t)

σ (t)

[

τt − (rttet • (1− xt)+ rttct • xt)
]

(23)qi ≈ Qπ (si, ai|θ)

(24)yt = r + γ ×max
a

Qπ (st+1, a|θ)

DDQN updates the Q-function network’s parameters, θ , 
using the loss value and stochastic gradient descent (SGD) 
with each mini-batch.

where α is the learning rate.

Algorithm 1. Training Stage of the DDQNEC algorithm

Performance evaluation
This section evaluates the DDQNEC scheme’s perfor-
mance through computer simulation. The focus is on 
resource utilization, task acceptance ratio, task rejec-
tion ratio, and cost ratio using a simulation environment 
based on i9-10900 K CPU, 64 GB RAM, RTX 3090 GPU, 
Linux Ubuntu 20.04.02 LTS, Python 3.8, and PyTorch 

(25)loss =
(

yt − Qπ (s, a)
)2

(26)θ = θ − α�θ

b
∑

i=1

(

qi − yi
)2

b
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Fig. 2 The architecture of the DDQNEC scheme for task offloading and resource allocation



Page 11 of 15Ullah et al. Journal of Cloud Computing          (2023) 12:112  

1.9.0 to reflect real-world edge-cloud computing envi-
ronments and analyze and compare the results to exist-
ing methods. The DDQNEC is evaluated and compared 
to three heuristic methods (heuristic1, heuristic2, heu-
ristic3) and DQNEC [9] using a simulated edge-cloud 
environment (as shown in Fig.  2) to measure its effi-
ciency. Heuristic1 uses FIFO for tasks and prefers edge 
resources if available, Heuristic2 prioritizes tasks with 
high resource demands, and Heuristic3 uses the 0/1 
knapsack algorithm to maximize utilization as profit. We 
conducted tests in two different types of environments, 
(small and large). In both the small and large environ-
ments, the number of tasks is distributed as: 50, 100, 
150, 200, 250, and 300. However, the available resources 
at the edge and cloud, and task requirements are differ-
ent in both environments. The small environment has 
fewer resources, whereas the large environment has more 
resources.

• In the small environments, the task parameters are 
as CPU requirement:10~20, data size:10~20, band-
width:100*15, deadline:5~10 ms, and the available 
resources in the small environments are as the num-
ber of edge servers:30 with CPU capacity of 40~60, 
cloud servers:20 with CPU capacity of 60~80, and 
bandwidth: 100 Mbps.

• In large environments, the task requirements are 
higher than the small environments as CPU:20~30, 
data size:20~30, bandwidth:100*30, and dead-
line:10~15 ms, and the edge-cloud resources are, 
edge-servers:50 with CPU capacity of 50~80, cloud 
servers:30 with CPU capacity 60~100 and available 
bandwidth: 100 Mbps.

The simulation parameters used in our study are pre-
sented in Table 2, while Table 3 shows the configuration 
of the environment in which we conducted our experi-
ments. Our scheme uses DDQN to decide whether to 
offload or reject a task based on resource availability and 
waiting tasks. It considers network information when 
selecting the computing server for offloading to optimize 
network performance. We compare our scheme’s perfor-
mance with heuristic algorithms in both environments in 
the following section.

Figure  3 presents a comprehensive comparison of the 
task rejection ratios of five different schemes. As the 
number of tasks increases, it can be observed that the 
rejection ratio for all five schemes also increases. How-
ever, the DDQNEC scheme exhibits a significantly lower 
increase when compared to the other four schemes, 
thereby indicating a superior performance in terms of 
task acceptance ratio and a lower rejection rate. The abil-
ity of DDQNEC to accept more tasks is a result of its 

ability to intelligently assign tasks to servers that are opti-
mally matched in terms of resource requirements and 
availability. This not only saves and preserves resources 
for future utilization but also allows for more tasks to be 
accepted. A high acceptance rate is beneficial as it leads 
to higher resource utilization and reduces idle time in the 
system. As a result, DDQNEC outperforms other meth-
ods in terms of resource utilization, indicating its effec-
tiveness in improving the proposed edge-cloud system.

Figure  4 shows the comparison of the average uti-
lization of the proposed scheme DDQNEC with four 
other heuristic schemes: heuristic1, heuristic2, heuris-
tic3, and DQNEC. As the number of tasks increases, 

Table 2 Simulation environment configuration

Small environments

    Number of cloud server 20

    Cloud server CPU capacity 60 ~ 80 (uniform distribution)

    Edge link bandwidth 100 (Mbps)

    Cloud link bandwidth 200 (Mbps)

    Number of the edge server 30

    Edge server CPU capacity 40 ~ 60 (uniform distribution)

    Task CPU request 10 ~ 20

    Task data size 10 ~ 20 MB

    Task tolerable delay 10 ~ 15 ms

    Number of offloading tasks 50, 100, 150, 200, 250, 300

Large environments

    Number of cloud server 30

    Cloud server CPU capacity 60 ~ 100 (uniform distribution)

    Edge link bandwidth 200 (Mbps)

    Cloud link bandwidth 300 (Mbps)

    Number of the edge server 50

    Edge server CPU capacity 50 ~ 80 (uniform distribution)

    Task CPU request 20 ~ 30

    Task data size 20 ~ 30 MB

    Task tolerable delay 5 ~ 10 ms

    Number of offloading tasks 50, 100, 150, 200, 250, 300

Table 3 Learning parameters of the DDQNEC algorithm

Definitions and description Values

Dense‑layer setup (Hidden) 256

N‑step for Q‑learning 1

Replay Buffer Capacity ( Size of the replay buffer) 10,000

The target network smoothly copies the parameter 0.005

Initial epsilon (Exploration) 1.0

Final epsilon (Exploration) 0.1

Target synchronization interval training steps 1000

Learning rate 0.001

Training batch size 32

Discount factor 0.99
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the average resource utilization for all five schemes 
also increases. However, it is observed that DDQNEC 
consistently demonstrates a higher utilization rate 
when compared to the other four algorithms in both 
environments, as depicted in Figs.  5(a) and (b). The 
task rejection ratio is a crucial metric that has a direct 
impact on resource utilization. A low task rejection 
ratio implies high resource utilization. DDQNEC 
employs a robust mechanism for selecting the best 
servers based on task requirements, thereby improving 
the efficiency of the edge-cloud system. Additionally, 
DDQNEC makes use of intelligent resource allocation 

strategies, resulting in an increased acceptance rate of 
tasks while maintaining resource utilization. A high 
acceptance rate generally leads to a higher average 
utilization compared to cost. The results demonstrate 
that DDQNEC achieves a higher utilization rate than 
the other algorithms, thus highlighting the effective-
ness of the DDQN approach in enhancing the perfor-
mance of the edge-cloud system.

Figure  5 presents a comprehensive comparison of the 
cost ratios of five different schemes as the number of 
tasks increases. As the number of tasks increases, it can 
be observed that the cost ratio for all five schemes also 

Fig. 3 Task rejection comparison a: Small Environment b: Large Environment
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increases. However, the proposed scheme DDQNEC 
exhibits a significantly lower increase in comparison 
to the other four schemes, both in small and large envi-
ronments, thereby indicating a superior performance 
in terms of cost ratio. Additionally, DDQNEC has a sig-
nificantly lower task rejection rate when compared to 
the three heuristics and DQNEC, which implies that it 
accepts more tasks for offloading and increases the uti-
lization of the edge-cloud system. The key factor that 
enables DDQNEC to achieve this is its ability to intelli-
gently assign tasks to servers that are optimally matched 
in terms of resource requirements and availability, thus 
minimizing the overall cost and maximizing the utiliza-
tion of the edge-cloud system.

Conclusion
The task offloading and resource allocation in edge-cloud 
dynamic environments is a difficult problem. A solution 
is proposed by formulating it as an MDP optimization 
problem and using the DDQN algorithm to find an opti-
mal solution for task offloading. The DDQNEC model 
uses an agent to make better decisions for end devices 
and offload their computation-intensive and low-latency 
task to the edge or cloud server. This improves the per-
formance in terms of average cost, average utilization, 
and task rejection rate, and also improves resource utili-
zation compared to other algorithms.

In the future, we aim to improve the DDQNEC 
scheme for task offloading and resource allocation by 

Fig. 4 Resource utilization comparison a: Small Environment b: Large Environment
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using advanced machine learning and AI algorithms. 
We will analyze the edge-cloud network by considering 
various factors, such as the characteristics and capabili-
ties of end devices, to optimize task offloading. Further-
more, we will explore the use of reinforcement learning 
techniques for managing a significant number of IoT 
devices with varying task requirements, with a focus on 
techniques suitable for continuous action spaces.
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