
Ullah et al. Journal of Cloud Computing (2023) 12:112
https://doi.org/10.1186/s13677-023-00461-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Optimizing task offloading and resource
allocation in edge-cloud networks: a DRL
approach
Ihsan Ullah1, Hyun‑Kyo Lim2, Yeong‑Jun Seok2 and Youn‑Hee Han2*

Abstract

Edge‑cloud computing is an emerging approach in which tasks are offloaded from mobile devices to edge or cloud
servers. However, Task offloading may result in increased energy consumption and delays, and the decision to offload
the task is dependent on various factors such as time‑varying radio channels, available computation resources,
and the location of devices. As edge‑cloud computing is a dynamic and resource‑constrained environment, mak‑
ing optimal offloading decisions is a challenging task. This paper aims to optimize offloading and resource allocation
to minimize delay and meet computation and communication needs in edge‑cloud computing. The problem of opti‑
mizing task offloading in the edge‑cloud computing environment is a multi‑objective problem, for which we employ
deep reinforcement learning to find the optimal solution. To accomplish this, we formulate the problem as a Markov
decision process and use a Double Deep Q‑Network (DDQN) algorithm. Our DDQN‑edge‑cloud (DDQNEC) scheme
dynamically makes offloading decisions by analyzing resource utilization, task constraints, and the current status
of the edge‑cloud network. Simulation results demonstrate that DDQNEC outperforms heuristic approaches in terms
of resource utilization, task offloading, and task rejection.

Keywords Edge‑cloud computing, Task offloading, Resource allocation, Deep Reinforcement learning, Markov
decision process (MDP)

Introduction
The advent of IoT and 5G has enabled the development
of new applications in areas such as surveillance, aug-
mented/virtual reality, and facial recognition, which
heavily depend on both computational resources and
data storage for optimal performance. IoT and mobile
devices have limited resources so it is difficult for them
to support such intelligent, delay-sensitive applications
[1]. Hence, edge computing can help these devices by

offloading computation-intensive tasks to the cloud.
The cloud can cause delays in communication and data
transfer as a result of network congestion and high usage,
this can limit their use in real-time applications such as
autonomous driving, advanced navigation, augmented
reality (AR), and virtual reality (VR). Overall, edge-
cloud computing and 5G can work together to enable
new types of applications and services that require low-
latency, real-time processing. The use of edge computing
can reduce latency, enhance performance, and reduce
costs associated with cloud computing. The edge servers
can process computation-intensive tasks instead of send-
ing them to the cloud [2].

Edge-cloud computing is a distributed computing
model that utilizes both cloud computing resources
and edge devices, such as servers and IoT devices, to
process and transmit data. This model aims to improve

*Correspondence:
Youn‑Hee Han
yhhan@koreatech.ac.kr
1 Advanced Technology Research Center, Korea University of Technology
and Education, Cheonan, Republic of Korea
2 Future Convergence Engineering, Department of Computer Science
and Engineering, Korea University of Technology and Education,
Cheonan, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00461-3&domain=pdf

Page 2 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

processing speed decision-making and reduce latency
and bandwidth usage by bringing the cloud’s process-
ing power closer to the edge where data is generated and
collected. Edge and cloud computing can coexist and
work together to provide the necessary resources for
task execution. The integration of AI with edge-cloud
computing allows for the deployment of machine learn-
ing algorithms on edge devices, providing a high level of
intelligence to the edge-cloud network and enabling it to
understand its environment [3, 4]. Before offloading tasks
to the cloud or edge, it is essential to carefully consider
the requirements and available resources. However, edge-
cloud computing is a dynamic and resource-constrained
environment. Hence making an optimal decision for task
offloading based on the available resource is a critical
issue.

Task offloading is the process of transferring a task or
workload from a local device to a remote device, such as
a server or cloud resource, to improve the local device’s
performance and efficiency. Offloading tasks can result
in increased delay and energy consumption while edge
servers may have limited computational capacity, which
can lead to increased computing latency. It is important
to consider these trade-offs before making a decision.
5G networks with high densities may also experience
higher transmission delays. Cooperative task offloading
is a technique used in edge-cloud networks to improve
the performance of distributed systems. In the distrib-
uted approach, tasks are split among devices in the net-
work, such as edge devices and cloud servers, to optimize
resource usage and reduce the workload on individual
devices. In an edge-cloud computing environment, it can
be challenging to determine the optimal location for task
offloading, as there are many factors to consider, includ-
ing the computational capacity of edge servers, the trans-
mission delays of networks, and the diverse requirements
of end devices. Numerous research has been conducted
on the topic of computation offloading in edge-cloud net-
works [5–9]. However, due to the diverse requirements of
end devices and the limited information available about
wireless channels, bandwidth, and computing resources
in edge-cloud networks, it is challenging to design an
optimal offloading strategy.

Deep Reinforcement Learning is a subset of machine
learning that combines reinforcement learning and
deep learning techniques to handle high-dimensional
state-action spaces and accelerate training for complex
decision-making tasks. Many successful applications of
DRL have been demonstrated in a wide range of fields,
including gaming [7], robotics [8], and networking. The
application of DRL to edge-cloud-assisted networks
can optimize system performance by perceiving users’
mobility [10, 11]. Task offloading problems have been

addressed with DRL in [9, 12, 13], and [14]. It can be able
to find the best solutions to the optimization problems
of time-varying and dynamic network environments. In
the context of task offloading at the edge, Dueling-DQN
could potentially be used to learn the optimal decision-
making policy for offloading tasks to different locations in
a dynamic and resource-constrained edge-cloud environ-
ment. The DDQN architecture separates the estimator
into two streams, value, and advantage, and then aggre-
gates them to make the final estimation of the Q-value.
This allows for better generalization of the Q-value
estimation by decoupling the estimation of the value of
a state from the estimation of the advantage of taking a
specific action in that state. This could involve training
the DDQN to learn the optimal trade-offs between dif-
ferent factors, such as the task requirements, available
resources, latencies, and costs, to make informed deci-
sions about the best location for task offloading.

In this research, we propose an advanced edge-cloud
computing scheme that leverages the power of Double
Deep Q-Network (DDQN) to optimize the offloading
of computations and the allocation of resources for the
offloaded tasks. Our proposed scheme is an extension of
our previous work that employed DQN [9], but it goes
one step further by utilizing the DDQN algorithm to
improve the decision-making process and achieve a more
efficient and optimized solution for the edge-cloud com-
puting task offloading and resource allocation problem.
The goal of the proposed scheme is to minimize energy
consumption while satisfying the computation and com-
munication requirements of the offloading tasks at edge-
cloud computing. DDQN enables efficient and effective
offloading decisions in dynamic and resource-con-
strained environments, such as edge-cloud, by adapting
to changes and learning from past experiences. In terms
of training, DDQN separates the Q-value estimator into
two streams, value and advantage, and then aggregates
which improve the generalization. We present the task
offloading and resource allocation problem as an MDP
and use the DDQN algorithm to identify the optimal
policy. Our simulation results show that the proposed
method outperforms heuristic schemes and DQNEC in
terms of resource utilization, maximum task offloading,
and task rejection. The main contributions of our work
are:

• To optimize resource allocation for compute-inten-
sive and delay-sensitive tasks in the edge cloud
computing environment, we developed a scheme
based on the double DQN. Our scheme determines
the best actions to take in the current system state,
ultimately improving the overall performance of the
edge cloud

Page 3 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

• Considering the dynamics and unpredictability of
edge device environments, we modeled the task
offloading problem as a Markov Decision Process
(MDP) and applied Double-DQN to maximize the
long-term cumulative discounted reward. Our opti-
mization objective was to maximize resource utili-
zation, minimize task rejection, and minimize the
round-trip time to complete the task within the
deadline

• By using the proposed Double-DQNEC scheme, we
can reduce idle time and balance the workload of the
edge-cloud computing system. The simulation results
show that the DDQN-based algorithm significantly
outperforms the heuristic algorithm.

The rest of the paper is organized as follows: In Sect. 2
the work-related are reviewed, especially relative to
task offloading and resources allocation in the edge-
cloud computing environment; Sect. 3 provides the sys-
tem model and formulation of the proposed DDQNEC
scheme in detail; in Sect. 4 the simulation result and
comparison are discussed that validate our approach;
finally, the conclusion is made in Sect. 5.

Related work
DRL learns optimal policies and makes quick decisions
by interacting with a time-varying environment, which
is suitable for dynamic MEC systems. There are mainly
two research streams, including value-based and policy-
based methods.

Value‑based DRL methods
Huang et al. introduced DROO, an online offloading
algorithm for wireless-powered mobile edge computing
(MEC) networks, in their work published in [12]. To solve
the optimization problem, the algorithm splits it into two
sub-problems, namely resource allocation and offloading
decision. Through evaluation and simulation, the authors
observed that DROO surpassed existing methods in
terms of energy efficiency, task completion time, and net-
work congestion. This makes DROO a promising solu-
tion for enhancing the performance of wireless-powered
MEC networks. Li et al. [13] applied the deep Q-net-
work (DQN) to jointly handle computation offloading
and resource allocation in multiuser MEC, minimizing
the sum cost of delay and energy consumption. In [14],
an improved resource allocation policy was proposed
for IoT edge computing based on the deep Q-network
(DQN) approach. This policy aims to improve the effi-
ciency of resource utilization and reduce task completion
delays in the system. The DQN algorithm allows the sys-
tem to learn from the experience and make better deci-
sions for resource allocation in real-time.

Chen et al. [15] proposed the Deep-SARL algorithm to
address the computation offloading problem in a mobile
edge computing system by formulating it as a Markov
decision process. The algorithm uses deep reinforcement
learning with a self-attention mechanism to learn an
optimal offloading policy that maximizes the long-term
utility performance. The Deep-SARL algorithm was eval-
uated through simulations, and the results showed that
it outperformed existing offloading methods in terms
of average reward and energy efficiency. The proposed
algorithm can help improve the performance of mobile
edge computing systems, especially for applications that
require real-time processing and low latency. Lu et al.
[16] proposed a DQN algorithm for large-scale heteroge-
neous MEC, achieving good performance without prior
knowledge of environment statistics. However, value-
based methods are limited in handling continuous action
space, such as in the dynamic JCORA problem. In [10], a
DQN-based approach was introduced to solve the chal-
lenging problem of jointly optimizing task offloading and
bandwidth allocation in MEC networks. The proposed
solution effectively balances trade-offs between quality of
service, energy efficiency, and network congestion.

In [11], a comprehensive review was provided of the
current state-of-the-art techniques and computational
resources used for partitioning and offloading in MEC
networks. The challenges and opportunities of various
approaches were discussed and their pros and cons were
highlighted. In [17], a task offloading scheme based on
DQN was proposed to select the optimal edge server and
transmission mode for maximizing task offloading util-
ity. The proposed scheme achieved high performance
in terms of task completion time, energy consumption,
and network congestion. Liu et al. [18] proposed a novel
approach for allocating resources in a mobile edge com-
puting system, where vehicles were used as edge devices
to provide computational services to nearby users. The
proposed algorithm was based on deep reinforcement
learning (DRL) and aimed to maximize the overall system
utility by efficiently allocating resources among the vehi-
cles. In [19], an intelligent DRL-based resource allocation
scheme for wireless networks was proposed to minimize
service time and balance resources.

In [20], a migration algorithm was proposed to opti-
mize task migration using a multi-agent reinforcement
learning approach. The algorithm leveraged the collective
intelligence of multiple agents to make optimal migra-
tion decisions, taking into account various factors such
as network conditions, task requirements, and system
resources.

In [21], the authors introduced a DQN-based computa-
tion offloading scheme for mobile edge computing (MEC)
networks. The proposed scheme aimed to minimize the

Page 4 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

long-term cost of the system while ensuring a satisfactory
level of quality of service for the end-users. By leveraging
DQN, the scheme was able to learn an optimal offload-
ing decision policy in a data-driven manner, which could
adapt to the dynamic and uncertain network conditions
in MEC environments. [22] introduced a DDQN-based
backscatter-aided hybrid data offloading scheme that
significantly improved energy efficiency while maintain-
ing transmission rate and reliability. In [23], an approach
was proposed for making offloading decisions in a mobile
edge computing (MEC) environment by jointly optimiz-
ing CPU frequencies and transmit powers. This approach
aimed to minimize the energy consumption of mobile
devices while maintaining the quality of service for
offloaded tasks. The objective of [24] was to minimize the
costs associated with energy consumption and compu-
tation delay in mobile edge computing networks, which
are critical factors for their performance. To achieve
this, the authors presented the RL-SARSA algorithm as
a solution for resource management and optimal offload-
ing decisions. In [25] the authors proposed DDQNL-IST,
a game-learning algorithm that combined DDQN and
distributed LSTM with intermediate state transition to
lower the complexity of offloading computation under
time-varying conditions. DDQNL-IST used distributed
LSTM and double-Q learning to improve processing and
predicting time intervals and delays. The devices could
exploit information asymmetry to obtain a better game
learning outcome.

Policy‑based DRLs methods
Lu et al. [26] presented the double-dueling deterministic
policy gradient (D3PG) algorithm for edge computing,
capable of optimizing three critical performance met-
rics: service latency, energy consumption, and task suc-
cess rate. The simultaneous optimization of these metrics
can lead to efficient resource allocation in dynamic edge
computing environments. The D3PG algorithm can
improve the overall performance of edge computing sys-
tems by reducing service latency, decreasing energy con-
sumption, and improving the task success rate.

Zhang et al. [27] proposed two DRL algorithms for
dynamic computation offloading in edge computing
to minimize service latency. The hybrid-AC algorithm
optimized resource allocation in single-device scenarios
using a decision-based actor-critic approach. The md-
Hybrid-AC algorithm achieved efficient resource allo-
cation in multi-device scenarios using the multidevice
actor-critic approach. These algorithms are significant
contributions to the field of edge computing, as they
reduce service latency and energy consumption, and
improve the task success rate. They have the potential

to enhance the performance of various edge computing
applications.

Chen and Wang [28] proposed a decentralized DDPG-
based mechanism called JCORA. It addresses the chal-
lenge of resource allocation in a decentralized MEC
system, where multiple users compete for limited com-
puting resources. By using DDPG agents, the JCORA
mechanism can learn the optimal computation offload-
ing policies for each user without relying on centralized
control or communication. This approach offers several
advantages, including improved scalability and reduced
overhead [29], presented a trustworthy DRL strategy for
computation offloading in IoT edge networks, designed
to handle selfish or forgery attacks in intelligent vehicle
networks. This strategy employs an intelligent system
model and a DPGAQ scheme to anticipate untrusted
vehicle attacks during IoT offloading. It evaluates device
trustworthiness for vehicle networks in mobile edge net-
works and uses the intelligent trusted system model and
DPGAQ scheme to prevent malicious vehicle attacks. The
strategy also uses a quantization algorithm to simplify
offloading decisions in high-dimensional action spaces.
In [30], a new policy-based multi-agent deep reinforce-
ment learning algorithm known as post-decision state
(GPDS) is introduced to address malicious interference
in wireless networks. By assessing the communication
quality, spectrum availability, and jammer’s strategy from
the post-decision state, the mobile users can optimize
their transmission power and frequency to increase their
SINR and channel throughput.

Liu and Liao [31] designed actor–critic-based approach
to optimize resource allocation and offloading decisions.
In their approach, the authors used a hybrid policy that
can handle both discrete and continuous actions. This
approach allows for efficient resource allocation and
computation offloading decisions in edge computing
systems. The DAC algorithm is capable of dynamically
adjusting the decision-making process according to the
system’s needs, ensuring that optimal resource allocation
is achieved at all times. Moreover, the DAC approach is
scalable and can be applied to various edge computing
scenarios, making it a valuable tool for addressing the
challenges of resource allocation and computation off-
loading in edge environments.

Qiu et al. [32] developed a distributed and collective
deep reinforcement learning (DRL) algorithm, called DC-
DRL, to address the challenges of computation offloading
in resource-intensive and deadline-sensitive applications.
The algorithm is capable of optimizing resource alloca-
tion and task scheduling in a distributed manner, ena-
bling efficient and scalable processing of complex tasks.
By leveraging the collective intelligence of multiple
agents, DC-DRL can achieve higher performance and

Page 5 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

better task completion rates compared to traditional cen-
tralized approaches.

In [33], a DDPG-based is algorithm is proposed for col-
laborative computation offloading in heterogeneous edge
computing. The offloading algorithm they propose is
designed to work across all three edge networks, despite
their heterogeneity. By doing so, they aim to improve
the overall efficiency and performance of the network,
by dynamically routing computation tasks to the most
appropriate network based on factors such as network
load, latency, and available resources.

In [34] a joint multi-task offloading and resource alloca-
tion scheme is suggested in satellite IoT. It involved mod-
eling tasks with dependencies as DAGs and using A-PPO
to optimize offloading strategy. The proposed approach
aimed to improve offloading efficiency and could have led
to better performance and faster task completion.

In [35] A DDPG-based scheme was proposed that con-
sidered energy consumption and task completion for a
multiuser scenario, utilizing simultaneous wireless infor-
mation and power transfer technology. It formulated an

optimization problem that jointly optimized task offload-
ing ratio, uplink channel bandwidth, power split ratio,
and computing resource allocation. The proposed algo-
rithm achieved optimal energy consumption and delay
and utilized an inverting gradient updating-based dual
actor-critic neural network design to improve the conver-
gence and stability of the training process.

System model
In this section, we present the system model and the
problem formulation for task offloading and resource
allocation. The network model with the edge-cloud sys-
tem of the DDQNEC scheme is shown in Fig. 1. Our
scheme involves connecting end devices such as sen-
sors, mobile devices, and IoT devices to base stations
through wireless links. The edge computing system is
connected to the core cloud via the backbone network,
allowing for the offloading of tasks and the utilization of
available resources in the public cloud. This batch pro-
cessing approach waits for a predefined number (N) of
task requests before determining the optimal location

Fig. 1 The system model and structure of edge‑cloud computing

Page 6 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

for each task, whether it be the edge or the cloud, tak-
ing into consideration the availability of resources and
the deadline. By evaluating a batch of task requests at a
time, this approach allows for better resource utilization
and decision-making. Both bandwidth and computing
resources are considered when making offloading deci-
sions, to optimize resource usage, minimize delay, and
reduce energy consumption. In the following section,
we provide a detailed description of the system model,
including the task, communication, and computation off-
loading models. Table 1 provides a list of the notations
used in our models.

Task model
A task tn is represented as a tuple of four variables,
(‡n, †n, cn, τn), (1 ≤ n ≤ N) where ‡n is the input data size
in bytes, †n is the resultant data size, cn is the required com-
putational resource in CPU units, and τn is the task latency
requirement. The value of xn is either 0 or 1, representing a
binary decision on whether to assign a task to the edge or
the cloud.

Typically, multiple resources are required for offloading
tasks; however, our scheme considers only CPU resources
required for the task [36–38].

where cn represent the total CPU units required to pro-
cess the task tn , ‡n represents the total size of input data,
while ς represents the computational resources required
to process a single unit of data in bytes.

Wireless bandwidth model
To offload the task from the end device to the edge or
cloud, the device must be connected to the nearest
base station by a wireless channel. Let’s B the set of all
base stations B = {b1, b2, . . . , bW } , and each base sta-
tion bw has a set of wireless channels that provides dif-
ferent data rates as βw

h ∈ βw
1
,βw

2
,βw

3
, . . . ,βw

Hw
. Each

channel serves different tasks and σwh represents the
remaining bandwidth of each channel as
{σw

1
, σw

2
, σw

3
, . . . , σw

Hw
} . Then at time step t , the band-

width utilization UW (t) of all the base stations can be
formulated as

where B represents the bandwidth of all base stations

(1)xn =

{

0 task tn is executed at edge,
1 task tn is executed at cloud,

(2)cn = zn × ς

(3)UW (t) =

∑W
w=1(

∑H
h=1 β

w
h)

B

Table 1 Notation and description

Symbol Definitions

T A set of tasks generated by edge
devices

tn Each task generated by the end device
n

zn The input data size of the task tn
cn Computation resource size required

for the task tn
τn Maximum tolerable latency of the task

tn

yn The resultant data of the task tn
xn A binary variable to indicate

whether the task tn is assigned to edge
or cloud, (0 indicates edge and 1
indicates cloud)

ς CPU unit to process the one byte
of data

B Set of base stations
(BS),B = {b1, b2, . . . , bW }

UB(t) The bandwidth utilization of all BSs
at time step t

Hw Set of wireless channels related
to the BS bw

βw
h

The bandwidth of each channel h bw

σw
h

Remaining bandwidth of the BS bw

P The set of computing servers
at the edge

p Computing server at the edge (p ∈ P)

cp The available computing capacity
of server p

T
proce
n

The processing time for the task tn
at the edge

M The set of computing servers
in the cloud

m Computing server at the edge
(m ∈ M)

T
procc
n

The processing time for the task tn
at the cloud server

cm T he computing capacity of a cloud
server m

Cc T he total computing capacity of cloud
servers

T
procc
n

The total computation time for the task
tn at cloud

UM(t) The computational resources utiliza‑
tion of cloud servers at time step t

T
transe
n

Transmission time for the task tn data
sent to the edge server

T
transc
n

Transmission time for the task tn data
to the cloud server

T
prope
n

The propagation time of the link
between the nodes and edge servers

T
propc
n

The propagation delay of the link
between the edge and cloud

rtten The total round‑trip time to the edge
for a task tn

rttcn The total round‑trip time to the cloud
for a task tn

Page 7 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

Computational model

 i. Edge computing:

 In our scheme, the set of edge servers is denoted as
P = {1, 2, 3 . . .P} , and cp denote the available com-
putational capacity of edge server p, (p ∈ P) . The
computation time TProce

n for task tn to compute at
edge server p is given by

 The utilization of the computational resources of
the edge server at time t is represented as

where Ce denotes the total available computing
capacity of all servers at the edge.

 ii. Cloud computing:
 The set of cloud servers is denoted as

M = {1, 2, 3 . . .M} , and cm denote the available
computational capacity of edge server m, (m ∈ M) .
The processing time Tprocc

n for task tn to compute it
at the cloud server m is given by

 The utilization of the computational resources of
the cloud server at time t is represented as

where Cc denotes the total available computing
capacity of all servers in the cloud.

Delay model
In computation offloading, tasks are sent to an edge or
cloud server for processing. The process involves three
types of delays: transmission delay, propagation delay,
and processing delay.

 i. Transmission Time

 For task tn , data transmission is required in both
directions: from the end device to the edge/cloud
server with a data size of ‡n , and from the edge/
cloud server back to the end device with a resultant
data size of †n.

(4)T
proce
n =

cn

cp

(5)UP(t) =

∑P
p=1(cp(t))

Ce

(6)T
procc
n =

cn

cm

(7)UM(t) =

∑M
m=1(cm(t))

Cc

 Hence, a specific amount of bandwidth βw
h

(

edge
)

 or
β(cloud) is required to fulfill the minimum latency
τn of task tn . Transmission time which needs to
send data of task tn to the edge Ttranse

n and cloud
Ttransc
n can be formulated as

 ii. Propagation Time
 In the given model, the propagation delay is assumed

to be constant, with a value of Tprope
n = 5ms for edge

server and Tpropc
n = 50ms for the cloud server. This

simplifying assumption is made for ease of calcula-
tion and analysis. The actual propagation delay may
vary depending on the location of the resource.

 iii. Processing delay:
 Processing delay for the task tn edge server Tprocc

n and
cloud server Tprocc

n can be obtained from Eq. (4)
and (6).

 Therefore, the overall time for a task to be com-
pleted by an edge rtten or cloud rttcn is the sum of
the delay caused by data transmission, propagation,
and processing which is represented as

 The total resources cost COtotal can be obtained
by adding the total utilization of bandwidth COW ,
edge server CPU COP , and cloud server CPU COM for
total task offloading as follows:

where each resource (bandwidth, edge, and cloud
computational resources) has been assigned a cost
weight, with Ww = 1 being assigned to bandwidth,
Wp = 5 for edge resources and WM = 10 for cloud
computational resources. The agent learns to pick
the cheapest resource for a task based on cost
weights. It assigns tasks to the best location (edge
or cloud) accordingly. If both resources are avail-
able, the agent assigns the task to the edge due to
lower cost.

(8)Ttranse
n =

zn

βw
h

+
yn

βw
h

(9)Ttransc
n = Ttranse

n +
zn

β
+

yn

β

(10)rtten = Ttranse
n + T

prope
n + T

proce
n

(11)rttcn = Ttransc
n + T

propc
n + T

procc
n

COW = WW • UW

COP = WP • UP

COM = WM • UM

(12)COtotal = COW + COP + COM

Page 8 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

Formal problem formulation
The multi-objective problem solved in this paper is
described formally as follows:

Optimization:

Equation (13) aims to achieve the optimization objective
of maximizing resource utilization in both the edge and
cloud, while minimizing the cost of task offloading speci-
fied in Eq. (14). For more details on resource utilization and
cost, please refer to Eqs. (3), (5), (7), and (12).

Subject to the constraints:

DDQN‑based task offloading and resource
allocation
In this section, we introduce DQNEC, a proposed
scheme that utilizes the DDQN algorithm to make opti-
mal decisions and select the best location for task execu-
tion by analyzing the current state of the edge-cloud
environment. It aims to improve resource utilization and
balance the trade-off between delay and resource cost,
to maximize the performance of edge-cloud computing
systems. This is achieved by maximizing task offloading
while minimizing delay and cost as defined in Eq. (12),
(13), and (14). We formulate this multi-objective problem
using a Markov Decision Process (MDP).

Markov decision process
A Markov decision process (MDP) models sequential
decision-making problems where an agent makes deci-
sions to maximize reward. It includes elements such as
agent, state, action, policy, and reward. We formulate
task offloading and resource optimization problems
as an MDP to find the optimal policy π∗ . The policy is
a mapping of states to action probabilities, represented

(13)maximize (UW + UP + UM)

(14)minimize (COW + COP + COM)

(15)
W
∑

w=1

H
∑

h=1

chwh • µw
h ≤ B

(16)
N
∑

n=1

cn • (1− xn) ≤ Ce

(17)
N
∑

n=1

cn•xn ≤ Cc

(18)rtten • (1− xn)+ rttcn•xn ≤ τn

by π(a|s) for all possible actions a for each state s . RL
algorithms are often used to solve MDPs, as they allow
an agent to learn the optimal behavior for a given MDP
through trial and error. In the DDQN-based framework,
the agent observes the state st by attracting to the edge-
cloud environment and taking an action at as computing
server selection via a deterministic policy and receives
an immediate reward rt . The agent uses the action-value
function Q(st , at) to update the agent policy. The goal of
the agent is to maximize the long-term reward by find-
ing an optimal resource allocation policy. In the follow-
ing section, the state, action, and reward of the proposed
scheme are explained in more detail.

State
The state st includes full information on the edge-cloud
network. It includes the number of remaining tasks (Nt),
I t is from 1 to N (that is I t = t), which specifies the task
which should be currently determined by the agent, the
total remaining computational capacity of edge servers
and cloud servers (Cc + Ce), total remaining bandwidth
at edge and cloud (Be + Bc), the number of cloud-server
(Nc), the remaining CPU of each server (αm) . In addition,
information on edge such as the number of edge servers
(Ne), and the remaining total CPU of the edge server (αpw)
exists. CPU (Um , Up) and bandwidth information allo-
cated to each cloud and edge is added. Finally, each task’s
information t1, t2, . . . , tN is included. State st ∈ S can be
defined as

Action
In our model, the agent takes action by observing the cur-
rent state of the environment. The goal of the agent is to
make the optimal decision to maximize resource utiliza-
tion and minimize the overall average service delay with
the minimum rejection of tasks. Action at ∈ A at each
time step t can be defined as the action to offload the t-th
task (1 ≤ t ≤ N) and allocate the resources (Bandwidth
and CPU) to the task for execution within the task dead-
line. Action at can be defined as

where η represents the computation server, and xn
selects the edge or cloud location for a task sn , with η
belonging to {1,2,…,P} (edge server) when xn = 0, and

st = {Nt , I t ,Cc + Ce,Bc + Be ,

Nc ,Cc ,Bc , �1, �2,… , �m,… , �M ,U1,U2,… ,Um,…UM ,

Ne,Ce ,Be , �1, �2,… , �p,… , �P ,U1,U2,… ,Up,…UP ,

t1, t2,… , tN}

(19)at = {η, xn}

Page 9 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

η ∈ {1, 2, . . . ,M} (cloud server) xn = 1 . The agent will
take actions based on the task offloading strategy in each
time step and receive rewards from the environment in
the following time step.

Reward
In RL, the agent’s objective is to maximize the sum of
rewards from good actions. Our reward function is
designed to optimize resource utilization, minimize cost,
and satisfy delay constraints. The reward rt can be calcu-
lated by the total resource utilization ρ(t) at time step t in
Eq. (20), the total cost σ(t) at time step t in Eq. (21) and
delay constraint satisfaction for the task st at time step t
in Eq. (22).

DDQN Framework for task offloading
In our model, we used the DDQN algorithm for the
learning process. The DDQN algorithm is an off-policy
algorithm and is applied to environments with dis-
crete action spaces. The learning process for DDQN is
described in Algorithm 1 and also depicted in Fig. 2.

As shown in Fig. 2, the proposed learning process based
on DDQN applies replay memory M , which can store a set
of recent experience (si, ai, ri, si+1) which an agent gath-
ers by interacting with the environment, and then uses
for DDQN learning. In particular, the system records the
experience for every step. During the network training, a
mini-batch (size: b) is extracted from the replay memory
M , and the Q network can learn from the previous expe-
rience. DDQN uses two neural networks, i) the prediction
network Qπ (s, a|θ) as a function approximator to estimate
the action-value function Eq. (15), where θ is the weight
of the neural network, ii) the target network Qπ (s, a; θ)
to estimate the target value yi . The target network has the
same structure as the prediction network. However, its
weights θ are copied from θ every fixed number of itera-
tions (K) instead of every training epoch. The following
Eq. (23), (24), and (25) are the main equations for calculat-
ing the loss value.

(20)ρ(t) = UW (t)+ UP(t)+ UM(t)

(21)σ(t) = COW (t)+ COP(t)+ COM(t)

(22)

rt(st , at) =
ρ(t)

σ (t)

[

τt − (rttet • (1− xt)+ rttct • xt)
]

(23)qi ≈ Qπ (si, ai|θ)

(24)yt = r + γ ×max
a

Qπ (st+1, a|θ)

DDQN updates the Q-function network’s parameters, θ ,
using the loss value and stochastic gradient descent (SGD)
with each mini-batch.

where α is the learning rate.

Algorithm 1. Training Stage of the DDQNEC algorithm

Performance evaluation
This section evaluates the DDQNEC scheme’s perfor-
mance through computer simulation. The focus is on
resource utilization, task acceptance ratio, task rejec-
tion ratio, and cost ratio using a simulation environment
based on i9-10900 K CPU, 64 GB RAM, RTX 3090 GPU,
Linux Ubuntu 20.04.02 LTS, Python 3.8, and PyTorch

(25)loss =
(

yt − Qπ (s, a)
)2

(26)θ = θ − α�θ

b
∑

i=1

(

qi − yi
)2

b

Page 10 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

Fig. 2 The architecture of the DDQNEC scheme for task offloading and resource allocation

Page 11 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

1.9.0 to reflect real-world edge-cloud computing envi-
ronments and analyze and compare the results to exist-
ing methods. The DDQNEC is evaluated and compared
to three heuristic methods (heuristic1, heuristic2, heu-
ristic3) and DQNEC [9] using a simulated edge-cloud
environment (as shown in Fig. 2) to measure its effi-
ciency. Heuristic1 uses FIFO for tasks and prefers edge
resources if available, Heuristic2 prioritizes tasks with
high resource demands, and Heuristic3 uses the 0/1
knapsack algorithm to maximize utilization as profit. We
conducted tests in two different types of environments,
(small and large). In both the small and large environ-
ments, the number of tasks is distributed as: 50, 100,
150, 200, 250, and 300. However, the available resources
at the edge and cloud, and task requirements are differ-
ent in both environments. The small environment has
fewer resources, whereas the large environment has more
resources.

• In the small environments, the task parameters are
as CPU requirement:10~20, data size:10~20, band-
width:100*15, deadline:5~10 ms, and the available
resources in the small environments are as the num-
ber of edge servers:30 with CPU capacity of 40~60,
cloud servers:20 with CPU capacity of 60~80, and
bandwidth: 100 Mbps.

• In large environments, the task requirements are
higher than the small environments as CPU:20~30,
data size:20~30, bandwidth:100*30, and dead-
line:10~15 ms, and the edge-cloud resources are,
edge-servers:50 with CPU capacity of 50~80, cloud
servers:30 with CPU capacity 60~100 and available
bandwidth: 100 Mbps.

The simulation parameters used in our study are pre-
sented in Table 2, while Table 3 shows the configuration
of the environment in which we conducted our experi-
ments. Our scheme uses DDQN to decide whether to
offload or reject a task based on resource availability and
waiting tasks. It considers network information when
selecting the computing server for offloading to optimize
network performance. We compare our scheme’s perfor-
mance with heuristic algorithms in both environments in
the following section.

Figure 3 presents a comprehensive comparison of the
task rejection ratios of five different schemes. As the
number of tasks increases, it can be observed that the
rejection ratio for all five schemes also increases. How-
ever, the DDQNEC scheme exhibits a significantly lower
increase when compared to the other four schemes,
thereby indicating a superior performance in terms of
task acceptance ratio and a lower rejection rate. The abil-
ity of DDQNEC to accept more tasks is a result of its

ability to intelligently assign tasks to servers that are opti-
mally matched in terms of resource requirements and
availability. This not only saves and preserves resources
for future utilization but also allows for more tasks to be
accepted. A high acceptance rate is beneficial as it leads
to higher resource utilization and reduces idle time in the
system. As a result, DDQNEC outperforms other meth-
ods in terms of resource utilization, indicating its effec-
tiveness in improving the proposed edge-cloud system.

Figure 4 shows the comparison of the average uti-
lization of the proposed scheme DDQNEC with four
other heuristic schemes: heuristic1, heuristic2, heuris-
tic3, and DQNEC. As the number of tasks increases,

Table 2 Simulation environment configuration

Small environments

 Number of cloud server 20

 Cloud server CPU capacity 60 ~ 80 (uniform distribution)

 Edge link bandwidth 100 (Mbps)

 Cloud link bandwidth 200 (Mbps)

 Number of the edge server 30

 Edge server CPU capacity 40 ~ 60 (uniform distribution)

 Task CPU request 10 ~ 20

 Task data size 10 ~ 20 MB

 Task tolerable delay 10 ~ 15 ms

 Number of offloading tasks 50, 100, 150, 200, 250, 300

Large environments

 Number of cloud server 30

 Cloud server CPU capacity 60 ~ 100 (uniform distribution)

 Edge link bandwidth 200 (Mbps)

 Cloud link bandwidth 300 (Mbps)

 Number of the edge server 50

 Edge server CPU capacity 50 ~ 80 (uniform distribution)

 Task CPU request 20 ~ 30

 Task data size 20 ~ 30 MB

 Task tolerable delay 5 ~ 10 ms

 Number of offloading tasks 50, 100, 150, 200, 250, 300

Table 3 Learning parameters of the DDQNEC algorithm

Definitions and description Values

Dense‑layer setup (Hidden) 256

N‑step for Q‑learning 1

Replay Buffer Capacity (Size of the replay buffer) 10,000

The target network smoothly copies the parameter 0.005

Initial epsilon (Exploration) 1.0

Final epsilon (Exploration) 0.1

Target synchronization interval training steps 1000

Learning rate 0.001

Training batch size 32

Discount factor 0.99

Page 12 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

the average resource utilization for all five schemes
also increases. However, it is observed that DDQNEC
consistently demonstrates a higher utilization rate
when compared to the other four algorithms in both
environments, as depicted in Figs. 5(a) and (b). The
task rejection ratio is a crucial metric that has a direct
impact on resource utilization. A low task rejection
ratio implies high resource utilization. DDQNEC
employs a robust mechanism for selecting the best
servers based on task requirements, thereby improving
the efficiency of the edge-cloud system. Additionally,
DDQNEC makes use of intelligent resource allocation

strategies, resulting in an increased acceptance rate of
tasks while maintaining resource utilization. A high
acceptance rate generally leads to a higher average
utilization compared to cost. The results demonstrate
that DDQNEC achieves a higher utilization rate than
the other algorithms, thus highlighting the effective-
ness of the DDQN approach in enhancing the perfor-
mance of the edge-cloud system.

Figure 5 presents a comprehensive comparison of the
cost ratios of five different schemes as the number of
tasks increases. As the number of tasks increases, it can
be observed that the cost ratio for all five schemes also

Fig. 3 Task rejection comparison a: Small Environment b: Large Environment

Page 13 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

increases. However, the proposed scheme DDQNEC
exhibits a significantly lower increase in comparison
to the other four schemes, both in small and large envi-
ronments, thereby indicating a superior performance
in terms of cost ratio. Additionally, DDQNEC has a sig-
nificantly lower task rejection rate when compared to
the three heuristics and DQNEC, which implies that it
accepts more tasks for offloading and increases the uti-
lization of the edge-cloud system. The key factor that
enables DDQNEC to achieve this is its ability to intelli-
gently assign tasks to servers that are optimally matched
in terms of resource requirements and availability, thus
minimizing the overall cost and maximizing the utiliza-
tion of the edge-cloud system.

Conclusion
The task offloading and resource allocation in edge-cloud
dynamic environments is a difficult problem. A solution
is proposed by formulating it as an MDP optimization
problem and using the DDQN algorithm to find an opti-
mal solution for task offloading. The DDQNEC model
uses an agent to make better decisions for end devices
and offload their computation-intensive and low-latency
task to the edge or cloud server. This improves the per-
formance in terms of average cost, average utilization,
and task rejection rate, and also improves resource utili-
zation compared to other algorithms.

In the future, we aim to improve the DDQNEC
scheme for task offloading and resource allocation by

Fig. 4 Resource utilization comparison a: Small Environment b: Large Environment

Page 14 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

using advanced machine learning and AI algorithms.
We will analyze the edge-cloud network by considering
various factors, such as the characteristics and capabili-
ties of end devices, to optimize task offloading. Further-
more, we will explore the use of reinforcement learning
techniques for managing a significant number of IoT
devices with varying task requirements, with a focus on
techniques suitable for continuous action spaces.

Acknowledgements
This research was supported by Basic Science Research Programs through the
National Research Foundation of Korea (NRF) funded by the Ministry of Educa‑
tion (No. NRF‑2023R1A2C1003143 and NRF‑2018R1A6A1A03025526).

Authors’ contributions
Methodology: Ihsan Ullah; Resources: Ihsan Ullah and Hyun‑Kyo Lim; Software:
Hyun‑Kyo Lim, Yeong‑Jun Seok; Supervision: Youn‑Hee Han; Writing original
draft: Ihsan Ullah; Writing review editing: Ihsan Ullah, Hyun‑Kyo Lim; All
authors read and approved the final manuscript.

Funding
This study was supported by the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant No. NRF‑2023R1A2C1003143
and NRF‑2018R1A6A1A03025526.

Availability of data and materials
The data used to support the findings of this study are available from the cor‑
responding author upon request.

Fig. 5 Average cost comparison a: small environment b: large environment

Page 15 of 15Ullah et al. Journal of Cloud Computing (2023) 12:112

Declarations

Competing interests
The authors declare no competing interests.

Received: 28 January 2023 Accepted: 23 May 2023

References
 1. Singh A, Satapathy SC, Roy A, Gutub A (2022) AI‑based mobile

edge computing for IoT: applications, challenges, and future scope.
Arabian J Sci Engin (AJSE) 47(8):9801–9831. https:// doi. org/ 10. 1007/
s13369‑ 021‑ 06348‑2

 2. Dai B, Niu J, Ren T, Atiquzzaman M (2022) Towards mobility‑aware
computation offloading and resource allocation in end‑edge‑cloud
orchestrated computing. IEEE Internet Things J 9(19):19450–62

 3. Dai Y, Xu D, Maharjan S, Qiao G, Zhang Y (2019) Artificial intelligence
empowered edge computing and caching for internet of vehicles. IEEE
Wirel Commun 26(3):12–18

 4. Rodrigues TK, Suto K, Nishiyama H, Liu J, Kato N (2019) Machine learning
meets computation and communication control in evolving edge and
cloud: challenges and future perspective. IEEE Commun Surv Tutor
22(1):38–67

 5. Rodrigues TG, Suto K, Nishiyama H, Kato N, Temma K (2018) Cloudlets activa‑
tion scheme for scalable mobile edge computing with transmission power
control and virtual machine migration. IEEE Trans Comput 67(9):1287–1300

 6. Zhao J, Li Q, Gong Y, Zhang K (2019) Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicu‑
lar networks. IEEE Trans Veh Technol 68(8):7944–7956

 7. Nguyen TT, Le LB, Le‑Trung Q (2019) Computation offloading in MIMO
based mobile edge computing systems under perfect and imperfect CSI
estimation. IEEE Trans Serv Comput 14(6):2011–2025

 8. Dai Y, Xu D, Maharjan S, Zhang Y (2018) Joint computation offloading and
user association in multi‑task mobile edge computing. IEEE Trans Veh
Technol 67(12):12313–12325

 9. Ullah I, Lim H.‑K., Seok Y.‑J., and Han Y.‑H (2022) “Optimal task offloading
with deep Q‑network for edge‑cloud computing environment,” pre‑
sented at the 2022 13th International Conference on Information and
Communication Technology Convergence (ICTC), IEEE, pp. 406–411

 10. Huang L, Feng X, Zhang C, Qian L, Wu Y (2019) Deep reinforcement
learning‑based joint task offloading and bandwidth allocation for multi‑
user mobile edge computing. Digit Commun Netw 5(1):10–17

 11. Gu F, Niu J, Qi Z, Atiquzzaman M (2018) Partitioning and offloading in
smart mobile devices for mobile cloud computing: State of the art and
future directions. J Netw Comput Appl 119:83–96

 12. Huang L, Bi S, Zhang Y‑JA (2019) Deep reinforcement learning for online
computation offloading in wireless powered mobile‑edge computing
networks. IEEE Trans Mob Comput 19(11):2581–2593

 13. Li J, Gao H, Lv T, Lu Y (2018) “Deep reinforcement learning based com‑
putation offloading and resource allocation for MEC”, presented at the,
2018 IEEE wireless communications and networking conference (WCNC)
IEEE, pp. 1–6

 14. Xiong X, Zheng K, Lei L, Hou L (2020) Resource allocation based on deep
reinforcement learning in IoT edge computing. IEEE J Sel Areas Commun
38(6):1133–1146

 15. Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Optimized computa‑
tion offloading performance in virtual edge computing systems via deep
reinforcement learning. IEEE Internet Things J 6(3):4005–4018

 16. Lu H, Gu C, Luo F, Ding W, Liu X (2020) Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforce‑
ment learning. Future Gener Comput Syst 102:847–861

 17. Zhang K, Zhu Y, Leng S, He Y, Maharjan S, Zhang Y (2019) Deep learning
empowered task offloading for mobile edge computing in urban infor‑
matics. IEEE Internet Things J 6(5):7635–7647

 18. Liu Y, Yu H, Xie S, Zhang Y (2019) Deep reinforcement learning for offload‑
ing and resource allocation in vehicle edge computing and networks.
IEEE Trans Veh Technol 68(11):11158–11168

 19. Wang J, Zhao L, Liu J, Kato N (2019) Smart resource allocation for mobile
edge computing: a deep reinforcement learning approach. IEEE Trans
Emerg Top Comput 9(3):1529–1541

 20. Liu C, Tang F, Hu Y, Li K, Tang Z, Li K (2020) Distributed task migration opti‑
mization in MEC by extending multi‑agent deep reinforcement learning
approach. IEEE Trans Parallel Distrib Syst 32(7):1603–1614

 21. Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) “Performance
optimization in mobile‑edge computing via deep reinforcement learn‑
ing”, presented at the, 2018 IEEE 88th Vehicular Technology Conference
(VTC‑Fall) IEEE , pp. 1–6

 22. Xie Y, Xu Z, Xu J, Gong S, and Wang Y (2019) “Backscatter‑aided hybrid
data offloading for mobile edge computing via deep reinforcement
learning,” presented at the International Conference on Machine Learning
and Intelligent Communications, Springer, pp. 525–537

 23. Tian K, Chai H, Liu Y, Liu B (2022) Edge Intelligence empowered dynamic
offloading and resource management of MEC for Smart City internet of
things. Electronics 11(6):879

 24. Alfakih T, Hassan MM, Gumaei A, Savaglio C, Fortino G (2020) Task
offloading and resource allocation for mobile edge computing by deep
reinforcement learning based on SARSA. IEEE Access 8:54074–54084

 25. Chen M, Liu W, Wang T, Zhang S, Liu A (2022) A game‑based deep rein‑
forcement learning approach for energy‑efficient computation in MEC
systems. Knowl.‑Based Syst 235:107660

 26. Lu H, He X, Du M, Ruan X, Sun Y, Wang K (2020) Edge QoE: Computation
offloading with deep reinforcement learning for Internet of Things. IEEE
Internet Things J 7(10):9255–9265

 27. Chen J, Wu Z (2021) Dynamic computation offloading with energy har‑
vesting devices: a graph‑based deep reinforcement learning approach.
IEEE Commun Lett 25(9):2968–2972

 28. Chen Z, Wang X (2020) Decentralized computation offloading for multi‑
user mobile edge computing: a deep reinforcement learning approach.
EURASIP J Wirel Commun Netw 2020(1):1–21

 29. Chen M, Yi M, Huang M, Huang G, Ren Y, Liu A (2023) A novel deep policy
gradient action quantization for trusted collaborative computation in
intelligent vehicle networks. Expert Syst Appl 221:119743

 30. Chen M et al (2022) GPDS: a multi‑agent deep reinforcement learning
game for anti‑jamming secure computing in MEC network. Expert Syst
Appl 210:118394

 31. Liu K.‑H, and Liao W (2020) “Intelligent offloading for multi‑access
edge computing: A new actor‑critic approach,” presented at the ICC
2020–2020 IEEE International Conference on Communications (ICC),
IEEE, pp. 1–6

 32. Qiu X, Zhang W, Chen W, Zheng Z (2020) Distributed and collective deep
reinforcement learning for computation offloading: a practical perspec‑
tive. IEEE Trans Parallel Distrib Syst 32(5):1085–1101

 33. Li Y, Qi F, Wang Z, Yu X, Shao S (2020) Distributed edge computing
offloading algorithm based on deep reinforcement learning. IEEE Access
8:85204–85215

 34. Chai F, Zhang Q, Yao H, Xin X, Gao R, Guizani, M (2023) Joint multi‑task
offloading and resource allocation for mobile edge computing systems
in satellite IoT. IEEE Trans Veh Technol 1–15

 35. Chen S, Ge X, Wang Q, Miao Y, Ruan X (2022) DDPG‑based intel‑
ligent rechargeable fog computation offloading for IoT. Wirel Netw
28(7):3293–3304

 36. Cheng M, Li J, Nazarian S (2018) “DRL‑cloud: Deep reinforcement
learning‑based resource provisioning and task scheduling for cloud ser‑
vice providers”, presented at the, 2018 23rd Asia and South pacific design
automation conference (ASP‑DAC) IEEE ,129:134

 37. Nath S, and Wu J (2020) “Dynamic Computation Offloading and
Resource Allocation for Multi‑user Mobile Edge Computing,” presented
at the GLOBECOM 2020–2020 IEEE Global Communications Conference,
IEEE, pp. 1–6

 38. Chen J, Xing H, Xiao Z, Xu L, Tao T (2021) A DRL agent for jointly optimiz‑
ing computation offloading and resource allocation in MEC. IEEE Internet
Things J 8(24):17508–17524

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s13369-021-06348-2
https://doi.org/10.1007/s13369-021-06348-2

	Optimizing task offloading and resource allocation in edge-cloud networks: a DRL approach
	Abstract
	Introduction
	Related work
	Value-based DRL methods
	Policy-based DRLs methods
	System model
	Task model
	Wireless bandwidth model
	Computational model
	Delay model
	Formal problem formulation

	DDQN-based task offloading and resource allocation
	Markov decision process
	State
	Action
	Reward
	DDQN Framework for task offloading

	Performance evaluation
	Conclusion
	Acknowledgements
	References

