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Abstract 

With the rapid growth of cloud computing services, the high energy consumption of cloud data centers has become 
a critical concern of the cloud computing society. While virtual machine (VM) consolidation is often used to reduce 
energy consumption, excessive VM consolidation may lead to local hot spots and increase the risk of equipment 
failure. One possible solution to this problem is to utilize thermal-aware scheduling, but existing approaches have 
trouble realizing the balance between SLA and energy consumption. This paper proposes a novel method to man-
age cloud data center resources based on thermal management (TM-VMC), which optimizes total energy consump-
tion and proactively prevents hot spots from a global perspective. Its VM consolidation process includes four phases 
where the VMs scheduler uses an improved ant colony algorithm (UACO) to find appropriate target hosts for VMs 
based on server temperature and utilization status obtained in real-time. Experimental results show that the TM-VMC 
approach can proactively avoid data center hot spots and significantly reduce energy consumption while maintaining 
low Service Level Agreement (SLA) violation rates compared to existing mainstream VM consolidation algorithms with 
workloads from real-world data centers.
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Introduction
In recent years, the rapid development of cloud comput-
ing, big data, and the Internet of Things has driven the 
widespread construction [1] of data centers that serve 
as the physical platform and infrastructure of cloud 
computing. According to the statistics of the 2022 Data 
Center White Paper, although the number of new servers 
put into use in the world from 2015 to 2021 is relatively 
stable, the scale of data centers is expected to continue to 
grow in the future [2]. Today, data centers consume about 

2% of the world’s energy [3] while producing more than 
43 million tons of CO2 annually [4]. The rising energy 
consumption increases the operating cost of enterprises 
and pollutes the environment, which is not conducive to 
the development of green data centers. High energy con-
sumption has become the main challenge of data center 
management since most data centers experience rela-
tively low energy efficiency. Studies have shown that the 
effective resource utilization rate of worldwide data cent-
ers is only 20%-30% [5]. Therefore, Power Usage Effec-
tiveness (PUE) is still an important research topic in data 
center management.

Most of the energy consumption of cloud data centers 
comes from computing and cooling systems. In recent 
years, cloud data centers have adopted virtual machine 
consolidation (VMC) techniques to periodically migrate 
and reallocate virtual machines (VMs) to reduce the 
number of active hosts and hence reduce energy con-
sumption [6–9]. Although reducing the number of 
active hosts seems to reduce the energy consumption of 
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computing systems, excessive consolidation of VMs may 
overload the hosts, resulting in hot spots, thereby affect-
ing system performance. Furthermore, hot spots cause 
an increase in the workload and energy consumption of 
air conditioners. To avoid the hot spots, researchers pro-
posed thermal-aware scheduling methods for thermal 
management to optimize the workload distribution of 
computing systems and control data center temperature 
[10–14]. Thermal-aware scheduling balances the tem-
perature of hosts through resource reallocation to reduce 
thermal gradients and hot spots within the data center. 
These methods usually model the problem of minimizing 
data center energy consumption into a nonlinear opti-
mization problem with thermal constraints and propose 
a resource allocation algorithm to solve this problem. 
However, existing methods focus on algorithms for the 
virtual machine placement stage (VMP) in the VMC pro-
cess and often fail to balance the quality of services (QoS) 
and energy consumption. There is an urgent need for a 
new energy-saving solution that can satisfy the objectives 
of both cloud providers and users.

To this end, we propose a thermal management-based 
resource scheduling method for cloud data centers (TM-
VMC), which dynamically allocates virtual machines 
by modeling the data center with both temperature and 
resource utilization considered. This dynamic VMC 
process consists of four integrated parts: a host over-
load detection process (TU) based on CPU temperature 
and utilization, an underload host detection process 
(HOAVG) based on median average utilization, a virtual 
machine selection policy (MMR) based on maximum 
migrated memory, and a virtual machine placement pol-
icy (UACO) based on an improved ant colony algorithm. 
The goal of TM-VMC is not to minimize the number 
of hot spots in the data center but to actively avoid hot 
spots and reduce total energy consumption while ensur-
ing service quality for users. In addition, we design dif-
ferent algorithms in various stages of the VMC process 
to form a complete virtual machine consolidation process 
scheme. The main contributions of this work include:

(1) A thermal management-based resource schedul-
ing method (TM-VMC) for the optimization of the 
total energy consumption of the data center. This 
method includes four algorithms in the process of 
VMC. TM-VMC can proactively avoid data center 
hot spots and minimize the total energy consump-
tion of the data center while meeting SLAs (Service 
Level Agreements).
(2) An overload detection strategy (TU) based on 
host temperature and utilization. It determines 
whether a host is overloaded by detecting host tem-
perature and utilization status in real time. It relo-

cates redundant VMs away from the overloaded 
hosts, proactively avoiding data center hot spots.
(3) An underload host detection method (HOAVG) 
based on median average utilization. It selects under-
loaded hosts based on median average utilization and 
shuts them down, which avoids the overload problem 
caused by greedy server shutdown policies.
(4) A virtual machine selection policy (MMR) based 
on the memory allocated to the VMs. It migrates the 
virtual machines with the largest allocated memory, 
which reduces the frequent migration activities in the 
data center.
(5) An improved ant colony algorithm (UACO) used 
in the virtual machine placement stage. It includes a 
novel state transition rule and fitness function suit-
able for the thermal management resource schedul-
ing problem. It also uses an improved pheromone 
update method to avoid the problem of easily falling 
into local optima in traditional Ant Colony Optimi-
zation algorithm (ACO), allowing the algorithm to 
find the optimal virtual machine placement solution 
in a short time.

The remainder of this paper is organized as follows: 
After introducing recent studies on VMC and thermal-
aware scheduling for data centers in Sect. 2, we present 
the problem definition of VM resource scheduling based 
on thermal management in Sect. 3. We discuss the frame-
work of the TM-VMC method and the related design of 
each stage in the consolidation process in Sect. 4. After 
conducting performance studies of our proposed TM-
VMC method and several state-of-art VMC methods 
using the CloudSim simulation platform in Sect.  5, we 
present our conclusion and discuss the future work in 
Sect. 6. Table 1 lists the abbreviations used in this paper.

Related work
Virtual machine consolidation is a common method for 
optimizing computing power consumption. Dynamic 
virtual machine consolidation minimizes power con-
sumption by distributing computing resources among 
fewer hosts and shutting down underutilized servers. 
There have been numerous studies addressing the prob-
lem of VMC [15–18]. Virtual machine placement (VMP) 
is the most important stage in the VMC process, that is, 
the process of reassigning n virtual machines to m hosts. 
In the early stage, researchers regarded the VMP prob-
lem as a box-packing problem with NP-hard properties, 
and usually used heuristic algorithms to solve its optimal 
allocation scheme, such as first-fit algorithm (FF), best-
fit algorithm (BF), descending first-fit algorithm (FFD), 
descending best-fit algorithm (BFD), etc. [19]. Reference 
[7] proposed two new heuristic algorithms for the VMC 
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process based on Beloglazov et al. [6]. The authors pro-
posed a unique method for underloaded host detection: 
if the CPU utilization of two hosts is equal, the host with 
fewer VMs has a better chance to switch to sleep mode. 
The method effectively reduces SLA violation rates. In 
the virtual machine placement phase, they introduced 
an efficient QoS-aware algorithm based on the mini-
mum correlation between host utilization and virtual 
machines. With the wide application of reinforcement 
learning (RL) in optimization problems, some research-
ers have proposed RL-based virtual machine consolida-
tion methods [20–23].

In recent years, swarm intelligence algorithms have 
been widely used in virtual machine scheduling prob-
lems [24]. For example, Kansal et al. [8] first applied the 
Firefly algorithm (FA) to the energy-aware data center 
VM scheduling problem. Since the traditional particle 
swarm algorithm (PSO) is applicable to continuous prob-
lems, Ibrahim et al. [9] used a discrete version of particle 
swarm optimization algorithm (PAPSO) based on deci-
mal coding to map the migrated VMs to the most suitable 
physical machines, which can reduce energy consump-
tion without violating SLAs. In [25], a gene aggregation 
genetic based VM migration algorithm VMM-GAGA 
was designed by improving the genetic algorithm (GA) 
encoding. The authors synthesized a set of chromo-
somes as genes in two virtual machines with small foot-
print but high communication and migrated them to the 

same host with low utilization. Liu et al. [26] used a low 
complexity Extreme Learning Machine (ELM) predic-
tion based Multiple Swarm Ant Colony System algorithm 
(ELM-MPACS) to schedule virtual machines. The algo-
rithm first uses ELM to predict the host state and then 
moves the VMs on the overloaded hosts out of the host 
while the VMs on the underloaded hosts are merged to 
another under-utilized host with higher utilization. In 
[27], a multi-objective algorithm for VM placement was 
proposed. The algorithm is based on a flower pollination-
based nondominated sorting optimization (FP-NSO) 
algorithm and aims to improve resource utilization, 
reduce energy consumption, and lower carbon emissions.

In order to reduce the local hot spots problem caused 
by virtual machine consolidation, researchers have incor-
porated data center thermal effects into the scheduling 
method [28]. By developing and evaluating fine-grained 
models of Computer Room Air Conditioning (CRAC), 
room temperature, humidity, and servers, and integrat-
ing these models into scheduling algorithms, minimizing 
the total energy consumption using the characteristics 
of the data center is a basic solution for thermal-aware 
scheduling [29]. The method transforms the data center 
energy minimization problem into a nonlinear program-
ming problem with thermal constraints, and usually uses 
heuristic algorithms to solve the suboptimal solution 
of the programming problem. Ilager et  al. [10] formu-
lated the energy minimization problem as an optimiza-
tion problem with thermal constraints and proposed a 
thermal-aware scheduling algorithm (ETAS) that was 
able to control data center temperature and dynamically 
integrate virtual machines so that the total energy con-
sumption is minimized. Similarly, Feng et  al. [11] pro-
posed a global energy-aware VMP strategy, but different 
from the literature [10], the energy consumption model 
established by the authors includes computing systems, 
cooling systems and network equipment. Arroba et  al. 
[12] designed a meta-heuristic optimization strategy that 
relies on a simulated annealing algorithm (SA) to achieve 
joint optimization of IT and cooling energy consump-
tion. To control server temperature, the authors defined 
a maximum cooling set point (maxCooling Set Point) for 
each host, and the final cooling setpoint is set as the min-
imum value among the maximum cooling setpoints of 
all servers. Reference [13] proposed a simulated anneal-
ing based algorithm (SABA) to solve the VM placement 
problem. SABA achieves an approximate optimal value 
with fewer iterations than SA and reduces energy con-
sumption by considering thermal recirculation. Van 
et  al. [14] proposed an optimized thermal-aware work 
scheduling and control model with the aim of finding 
the optimal setpoints for host temperature and workload 

Table 1  Table of abbreviations used in this paper

abbreviation Definition

VM Virtual machine

VMC Virtual machine consolidation

TM-VMC A Thermal Management-based Vir-
tual Machine Consolidation Method

VMP Virtual machine placement

MMR A virtual machine selection policy 
based on maximum migrated 
memory

TU An overload detection strategy 
based on host temperature and 
utilization

HOAVG an underload host detection 
method based on median average 
utilization

SLA Service Level Agreement

CRAC​ Computer Room Air Conditioning

COP Coefficient of Performance

ACO Ant Colony Optimization algorithm

UACO A virtual machine placement policy 
based on improved ant colony 
algorithm
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distribution to minimize data center energy consump-
tion. In this model, the authors assumed that the servers 
in the data center are isomorphic, thereby transforming 
the complex energy minimization optimization problem 
into a simple equivalence optimization problem for a 
homogeneous data center, but the assumption of server 
isomorphism limits the practical scope of this approach.

For a long time, researchers have made many attempts 
to optimize energy consumption in data centers. Virtual 
machines are dynamically consolidated to save energy 
but violate thermal regulations, while thermal-aware 
scheduling is difficult to guarantee SLA and energy con-
sumption at the same time. Some of the previous thermal 
-aware scheduling studies were only applicable to small 
data center scenarios, some optimized data center energy 
consumption from a local perspective, and some were 
based on homogeneous server applications and were not 
applicable to heterogeneous environments. To address 
the above issues, we model the total data center power 
consumption and propose a thermal management-based 
heterogeneous data center resource scheduling method 
(TM-VMC) for total energy consumption optimization. 
The proposed approach optimizes data center energy 
consumption from a global perspective and can prevent 
data centers from generating hot spots and reduce energy 
consumption on the basis of guaranteed SLAs.

Overall architecture based on thermal 
management resource scheduling
Overall framework
In this work, we first abstract a resource scheduling frame-
work based on thermal management (Fig. 1). In a virtual-
ized data center, tasks are encapsulated into one or more 
virtual machines, and after users submit load tasks, the vir-
tual machine broker allocates resources to suitable hosts. 

The system monitors the host status in real time, selects 
overloaded hosts, and migrates some VMs in overloaded 
hosts and all VMs in underloaded hosts to other suitable 
hosts. The scheduling system minimizes energy consump-
tion by dynamically consolidating virtual machines. The 
decision of the scheduling system is based on the models 
established in the paper, including the computing system 
power consumption model, cooling system power con-
sumption model, and temperature model.

Problem definition
To facilitate the definition of the problem, Table 2 gives 
the variables and the corresponding explanations com-
monly used in this paper. An efficient scheduling method 
should guarantee QoS while minimizing energy con-
sumption. In the process of consolidating allocations, 
different deployment results will be obtained depending 
on the optimization objectives. The strategy of this paper 
is to avoid hot spots and simultaneously reduce the total 
energy consumption of the data center without compro-
mising the quality of service. To this end, we add temper-
ature constraints and utilization constraints to the virtual 
machine scheduling model, with the primary optimiza-
tion goal of minimizing the total power consumption 
of the data center. In summary, the resource scheduling 
problem based on thermal management is summarized 
as follows:

(1)MinimizePtotal = PIT + PCRAC =

(

1 +
1

COP
(

Tsup

)

)

PIT

subject to U
j
cpu ≤ Umax (Constraint1)

T
j
cpu(t) < Tmax (Constraint2)

∑n

i=0
VMi,j (Rcpu ,Rmem ,Rbw) ≤ Hostj (Rcpu ,Rmem ,Rbw) (Constraint3)

∑m

j=0
xi,j = 1, xi,j ∈ {0, 1} (Constraint4)

Fig. 1  Overall framework of thermal management-based resource scheduling
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Among them, constraint 2 ensures that the host CPU 
utilization does not conflict with the threshold due to the 
increase of workload, and constraint 3 ensures that the 
server temperature does not exceed the safety thresh-
old. Constraint 4 limits that the sum of VM resource 
requests cannot exceed the resource availability of physi-
cal machines, n is the number of virtual machines placed 
on Hostj . Constraint 5 restricts a virtual machine to be 
placed on only one host, xi,j is a binary variable that indi-
cates whether the VMi is placed on the Hostj , m is the 
total number of hosts.

Data center modeling
IT energy consumption model
A large number of scholars have studied data center com-
puting device energy consumption modeling methods 
[30–32]. Unlike these works, instead of using a server 
power consumption model based on a simple linear 
model, we use actual power consumption data provided 
by SPECpower[33] benchmarking results for server 
energy consumption modeling. SPECpower provides 
researchers with data on the power consumption of serv-
ers under different load levels, which can be used to cal-
culate real-time server power. The real-time power Pi(t) 
of a single server can be obtained according to the CPU 
utilization in different ranges, and the piecewise function 
related to time t can be obtained by using the linear inter-
polation method for the server data of SPECpower:

(2)Pi(t) =

α1ui(t)+ b1, 0 ≤ ui(t) < 0.1

α2ui(t)+ b2, 0.1 ≤ ui(t) < 0.2

α3ui(t)+ b3, 0.2 ≤ ui(t) < 0.3

. . .

α10ui(t)+ b10, 0.9 ≤ ui(t) ≤ 1

In this formula, ui(t) is the CPU utilization of hosti at 
time t, { α1 , α2,…, α10 } and { b1 , b2,…, b10 } are the slopes 
and intercepts of each line in the segment function, 
respectively, and they are obtained by segmented linear 
interpolation. Integrating Pi(t) can obtain the energy 
consumption of hosti in the time period t1 ∼ t2 , as shown 
in formula (3). The total energy consumption of IT equip-
ment in the data center is the sum of the energy con-
sumption of all servers, as shown in Eq. (4).

Cooling system energy consumption model
The refrigeration control system is used to control the 
humidity and temperature of the data center, and it also 
consumes energy during operation, including air condi-
tioners and fans. CRAC is the workhorse of the refrigera-
tion system, optimizing the control of the CRAC system 
is crucial to the optimization of the energy consump-
tion of the cooling system of the data center [34]. The 
efficiency of a data center cooling system is often meas-
ured using the coefficient of performance (COP), which 
depends on the physical layout and thermodynamic char-
acteristics of the data center. It is generally defined as the 
ratio of the total power consumed by the computing sys-
tem to the total power consumed by the cooling system 
to extract heat, for which the CRAC power consumption 
can be modeled as:

Regarding the COP, we use the empirical model pro-
posed by Zhan et al. [35]:

Therefore, the power consumption of the cooling sys-
tem is defined as:

Temperature model
In a traditional air-cooling system, the cold air from the 
data center air conditioner enters the rack, flows through 
the server, and exits the rear of the rack. In such a data 

(3)Ei =

t2
∫

t1

Pi(t)dt

(4)E =

m
∑

i=1

Ei

(5)PCRAC =
PIT

COP
(

Tsup

)

(6)COP = 0.0068Tsup
2 + 0.0008Tsup + 0.458

(7)PCRAC =
PIT

0.0068Tsup
2 + 0.0008Tsup + 0.458

Table 2  List of variables

Variable Description

Ptotal Total data center power consumption

PIT Computing system power consumption

PCRAC Cooling system power consumption

Umax Upper threshold of the host CPU utilization

Tmax Upper threshold for the CPU temperature of the host

T
j
cpu

CPU temperature of host j

R Server heat resistance

C Server heat capacity

Rcpu CPU capacity

Rmem Memory resource capacity

U
j
cpu

CPU utilization of host j

Rbw Bandwidth resource capacity

Pi Power consumption of a single node i

Tsup CRAC air supply temperature
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center, it is necessary to focus on the airflow inlet temper-
ature Tin and the server CPU temperature Tcpu . For both 
temperature metrics, we use existing methods to model 
and incorporate them into our temperature model. The 
host inlet temperature is defined as a linear combination 
of the air conditioning supply air temperature Tsup and 
the temperature rise due to the heat recirculation [36].

Considering the heat recirculation effect in a specific 
region based on the current physical layout of the data 
center, the recirculation effect can be quantified as the 
heat distribution matrix di,j . It represents the degree to 
which the inlet temperature of host i is affected by host 
j, and N is the number of hosts in the recirculation zone. 
The heat distribution matrix of this experiment comes 
from the literature [10]. According to the suggestion of 
ASHRAE [37], we set the supply temperature Tsup of the 
CRAC to 25 °C.

The server inlet temperature cannot represent the serv-
er’s operating state. The ultimate purpose of data center 
cooling is to control the server CPU temperature. We use 
the RC model [38] to define it as:

where T is the server CPU temperature, P is the server 
power, R and C are the thermal resistance and ther-
mal capacity of the server, respectively, T0 is the initial 
temperature of the system, and Tin is the server inlet 
temperature.

Thermal management‑based virtual machine 
consolidation
VM consolidation process
Dynamic virtual machine consolidation minimizes 
power consumption by distributing computing resources 
among a small number of hosts and shutting down 
underutilized servers. In virtual machine consolidation, 
there are several key issues to address. For example, 
when to trigger a VM migration (host overload or under-
load), which VMs are selected to perform the migration 
task (select VMs to migrate), which target hosts should 
be selected to redeploy the selected VMs (target host 
selection).

To solve the above problems, we propose a thermal 
management-based virtual machine scheduling method 
(TM-VMC). It includes: a host overload detection 

(8)Ti
in(t) = Tsup +

N
∑

j=1

di,j × Pj(t)

(9)T = PR+ Tin + (T0 − PR − Tin) • e
−t
RC

method (TU) based on CPU temperature and utilization, 
an underload host detection method (HOAVG) based 
on median average utilization, a VM selection policy 
(MMR) based on maximum migrated memory, and a 
VM placement policy (UACO) based on improved ant 
colony algorithm. As shown in Figs. 2 and 3, all hosts in 
the data center are divided into three groups: the over-
loaded host set Hol , the underloaded host set Hul , and the 
normal host set Hn . Specifically, the TM-VMC policy first 
uses the TU algorithm to consider hosts with high utili-
zation or temperature as overloaded and add them to the 
Hol set. Then, MMR is used to select VMs to be migrated 
from the Hol set, and together with all VMs in the under-
loaded host Hul , they form the list of VMs to be migrated 
VMM_list , and the underloaded host detection is based on 
the HOAVG method. Finally, the improved ant colony 
algorithm (UACO) proposed in this paper is used to find 
suitable target hosts in the normal host Hn for each VM 
to be migrated.

Host overload detection policy
Most existing virtual machine consolidation meth-
ods rely solely on CPU utilization to detect whether a 
host is overloaded. By establishing a thermal analysis 
model, we design an overloaded host detection strat-
egy (TU) based on CPU temperature and utilization, 
which utilizes the combination of host utilization and 
server CPU temperature to achieve host overload 
detection. The key to the overload detection algorithm 
is to determine the reasonable upper threshold of the 
host. We propose a method for AMD to determine 
the upper utilization threshold, which is expressed as 
follows:

Among them, AMD is the average difference between 
each record and the median in the historical server uti-
lization records, representing the average dispersion of 
server utilization history. Uhistoryi

 represents the i-th item 
of the host utilization history, and s is the safety factor, 
which is used to adjust the evaluation level.

In a real physical machine, server status is not only 
determined by CPU utilization, but host temperature 
is also an important factor. Excessive host temperature 
will affect system performance and increase the risk 
of machine failure. Therefore, we detect the host status 
by considering both utilization and temperature. The 

(10)AMD = Avg(|Uhistoryi
−Median(Uhistory)|)

(11)Umax = 1− s ∗ AMD
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temperature measurement in this paper is based on the 
server CPU temperature model (Eq.  13) described in 
Sect.  3.3.3, and the upper temperature threshold is set 
to the static threshold Tmax . We set this value to 95  °C 
according to the recommendation of the literature [10]. 
When the utilization rate of the host to be detected is 

greater than Umax or the temperature exceeds the static 
temperature upper threshold Tmax , the host is consid-
ered to be overloaded and added to the list of over-
loaded hosts. Algorithm 1 shows the pseudocode of the 
algorithm.

Fig. 2  TM-VMC dynamic virtual machine consolidation process

Fig. 3  Underload server processing method HOAVG
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Algorithm 1. TU Host Overload Detection

Host underload detection policy
In an enterprise-level data center, even a host with zero 
load still consumes about 70% of its peak power con-
sumption. Research shows that the effective resource 
utilization rate of the data center is only 20%-30% [5], 
which leads to a large amount of unnecessary energy 
power consumption, turning off these low-load hosts can 
save power. The commonly used method to determine 
underloaded hosts is the greedy method based on mini-
mum utilization. Unlike previous work, we propose an 
underloaded host detection method (HOAVG) based on 
median average utilization.

As shown in Fig. 3, HOAVG first divides all active hosts 
into two parts, with the underutilized half as the pending 
host Hp and the remaining hosts as the higher-utilized 
part Hhigh . Then calculate the average utilization value 
Uavg of all Hp , take the part of hosts with CPU utilization 
less than Uavg as underloaded hosts, and the part of hosts 
with CPU utilization greater than Uavg together with 
Hhigh to form the target host Htarget , as the target host for 
placing the virtual machines to be migrated.

VM selection policy
Once a host is detected as being overloaded, the VM 
selector will select specific virtual machines from this 
host and migrate them to other suitable hosts. An efficient 
VM selection strategy can minimize the cost of migra-
tion and SLA violations. We design a maximum migrated 

memory-based policy (MMR) that always selects the VM 
with the largest memory among the candidate VMs for 
migration. MMR first obtains the list of virtual machines 
from the overloaded host, and then greedily selects the 
virtual machine with the largest memory and puts it 
into the list of virtual machines to be migrated. After the 
selected virtual machine is migrated, it is necessary to re-
detect whether the host is overloaded. If the host is still 
overloaded, the MMR migration policy will be applied to 
the host again to select another virtual machine until the 
host is considered not to be overloaded. This strategy can 
effectively reduce the number of virtual machine migra-
tions, thereby reducing energy consumption.

VM placement policy
The virtual machine placement strategy in this paper is 
based on the improved ant colony algorithm UACO. Ant 
Colony Optimization algorithm (ACO) is a heuristic 
optimization algorithm proposed by Marco Dorigo [39] 
in 1996 to simulate the behavior of ant colonies seeking 
the optimal path in the foraging process, which has been 
widely used in the virtual machine scheduling problem.

Initial pheromone and heuristic information
As with any ACO implementation, the definition of 
pheromone and heuristic information is critical to build-
ing high-quality solutions. In the VMP problem, if there 
are n virtual machines to be assigned to m normally run-
ning hosts, the pheromone τij represents the support rate 
of VMi placed on the specified PMj . Each time a path is 
selected by an ant, the pheromone concentration of that 
path is increased. In the initial stage of the algorithm, the 
initial pheromone is set in this paper as follows:

where Ha represents the number of active hosts in the 
data center and Mvm represents the number of virtual 
machines to be migrated.

The heuristic information is a problem-specific value 
that represents the expectation of assigning a virtual 
machine VMi to a host Hostj . In general, the heuristic 
function is determined based on different objectives for 
different problems, and heuristic information may vary 
significantly even in ACO implementations of the same 
problem [40]. The definition of heuristic information in 
this paper aims to minimize the total energy consump-
tion of the data center after each virtual machine is 
assigned to a host by considering the resource utilization 
balance and the total resource utilization. Therefore, we 
define the heuristic information as:

(12)τ0 = (
1

Ha •Mvm
)
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where Pj_after indicates the power consumption after 
Hostj is put into the virtual machine.

State transition rule
The ants decide the computational node to be selected by 
the current VM through the state transfer rule, and we 
adopt the dynamic pseudo-random proportion rule to 
design the state transfer probability formula of the VM. 
When choosing a target host for the virtual machine 
VMi , each ant makes a decision in the following way:

In the above formula, each ant generates a random 
number c in the [0,1] interval before selecting the tar-
get host for the virtual machine. c0 is a fixed parameter 
whose value is between 0 and 1. If the value is too large, 
the algorithm will easily converge to a local optimal value 
prematurely, resulting in stagnation. If the value is too 
small, the solution time of the algorithm will increase. 
In each iteration, if the generated random number is less 
than or equal to c0 , the virtual machine is assigned to the 
host with the highest pheromone concentration and heu-
ristic information in the target host set, which helps the 
ants to quickly converge to a high-quality solution, that 
is, the ant selects the target as follows:

Among them, Jk(i) is the set of possible target hosts 
for VMi , α is the pheromone influence coefficient, which 
represents the importance of the pheromone in the pro-
cess of placing the virtual machine, and β is the influence 
coefficient of the heuristic information. When c is greater 
than c0 , the virtual machine selects the target physical 
machine according to the roulette, and calculates the 
probability of the roulette according to the following for-
mula. At this time, the ants will conduct a wider search to 
avoid the premature stagnation of the algorithm.

Pheromone update rule
For the pheromone update of UACO algorithm, the local 
pheromone update rule and global pheromone update 
rule are proposed in this paper. Local pheromone update 
is used to evaporate pheromones to reduce the impact of 

(13)ηij =
1

Pj_after

(14)Ai =

{

argmaxj∈Jk(i)

(

ατij + βηij
)

ifc ≤ c0

Pk
ijotherwise

(15)argmaxj∈Jk(i)

(

ατij + βηij
)

(16)pkij(t) =







[τij(t)
α]•[ηij(t)

β ]
�

s∈Jk(i)
[τis(t)

α
]•[ηis(t)

β ]
, ifj ∈ Jk(i)

0, otherwise

low-quality solutions. In this paper, ants use the follow-
ing local update rule to update pheromones:

Among them, ρ is the local pheromone volatiliza-
tion factor, and its value is between 0 and 1, indicating 
the degree of pheromone evaporation. The larger the ρ , 
the less pheromone remains. τ0 is the initial pheromone 
amount, in this paper, it is calculated according to for-
mula (12).

ACO is easy to fall into local optimum due to its posi-
tive feedback characteristics. To address this issue, we 
have designed a global pheromone update method for the 
ants, wherein the pheromone concentration increment of 
each ant is modified based on its fitness function value. 
The higher the fitness value, the larger the pheromone 
increment. This method makes the search of the algo-
rithm have a certain direction and gradually approach the 
optimal solution. In order to evaluate the quality of the 
solution, we define the fitness function as:

Among them, the parameter ε is a number between 0 
and 1, which is used to adjust the weight of the solution. 
Pant_max represents the maximum power consumption 
that may be generated by the target host in the alloca-
tion scheme generated by the ant. Tempant_sum represents 
the sum of all target host temperatures in the allocation 
scheme generated by this ant.

Specifically, in our method, after completing one 
iteration, the ants first calculate their respective fitness 
values and then sort all ants in ascending order accord-
ing to the fitness value Fc . Then, the top 20% ants were 
selected to increase the pheromone concentration and 
recorded as the better ants Antbetter . The remaining ants 
didn’t increase the pheromone concentration, they only 
had the effect of pheromone volatilization. In order to 
prevent the optimal solution from being forgotten due 
to insufficient initial advantages, our method adaptively 
adjusts the pheromone concentration of the ants in this 
part of Antbetter according to their own fitness function 
values. Specifically, according to the position of each ant 
in the ranking, the weight of increasing pheromone con-
centration is set. The global pheromone update rule is as 
follows:

where σ is the global pheromone volatility factor, �τmax 
is the maximum proportion of pheromone concentration 

(17)τi,j = (1− ρ) • τi,j + ρ • τ0

(18)Fc = � ∗
Pant_max

∑Nant

1
Pant_max

+ (1 − �) ∗
Tempant_sum

∑Nant

1
Tempant_sum

(19)

�ij(t + n) =

{

�ij(t) ∙
(

Δ�max − l ∙
(

rankk − 1
))

ifAnt ∈ Antbetter

(1 − �) ∙ � ij(t)otherwise
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that can be increased, rankk denotes the ant ranked k-th, 
and l is defined as:

Here, K is the number of Antbetter ants. According to 
this rule, the first ant updates the pheromone concentra-
tion to the original �τmax , while the last ant, that is, the 
ant at the 20% edge, the proportion of increase in phero-
mone concentration of its corresponding path tends to be 
close to 0. The following algorithm 2 shows the pseudo-
code of the UACO algorithm.

Algorithm 2. UACO VM Placement

Experiment setup and analysis of results
Experiment setup
In this paper, we use CloudSim 3.0.3 [41] as the simula-
tion experiment platform to verify the performance of 
the TM-VMC method. Experiments build cloud data 
center simulations to evaluate the feasibility and effec-
tiveness of the TM-VMC strategy. The data center set in 
this experiment contains 10 areas, each area consists of 
10 racks, the racks are arranged in a 5 × 2 layout, and each 
rack is placed with 10 servers. The experiment consists of 
1000 heterogeneous servers, half of which are Intel Xeon 
X5670 and the other half are Intel Xeon X5675. The host 
configuration details are shown in Table 3. Four types of 
single-core virtual machine instances were selected in the 
experiment, as shown in Table 4.

(20)l =
�τmax − 1

K

The workload used in the experiment is derived from 
the CoMon project, which monitors the operation of the 
PlanetLab infrastructure [42]. The data of the project 
includes the CPU utilization of more than 1000 virtual 
machines in 500 different regions around the world, and 
the data recording period is five minutes. Table 5 lists the 
workload data characteristics.

To evaluate the performance of the TM-VMC method, 
the experiment is conducted in two parts. Firstly, the 
TU-MMR-HOAVG combination strategy formed by the 
combination of the overloaded host detection strategy 
TU, the virtual machine selection strategy MMR and the 
underloaded host detection strategy HOAVG in the TM-
VMC method is compared and tested to verify the per-
formance of the proposed algorithm. Subsequently, the 
UACO method is compared with other virtual machine 
placement methods to verify the performance of UACO. 
At the same time, in order to evaluate the performance 
of the method, we set the following evaluation indicators:

(1) Total Energy Consumption: reducing the total 
energy consumption of the data center is the primary 
goal of this paper. In this experiment, the total energy 
consumption is expressed as the sum of the energy 
consumption of the computing system and the cool-
ing system.
(2) Number of Hot Spots: high server temperatures 
may affect the overall operational implementation of 
the data center, which can lead to server downtime 
with serious consequences. This metric indicates the 
number of times the host exceeds the temperature 
threshold throughout the simulation.
(3) SLA Violation Rate: this metric captures the sys-
tem performance overhead due to dynamic consoli-
dation, which mainly includes performance degrada-
tion due to full load in the data center SLATAH and 

Table 3  Server characteristics

Type CPU Type Frequency 
(GHz)

Core RAM (GB)

IBM × 3550 M3 Intel Xeon X5670 2.93 6 4

IBM × 3550 M3 Intel Xeon X5675 3.07 6 4

Table 4  Virtual machine instance types

Type CPU frequency (MIPS) RAM (MB)

Extra large instance 2500 900

Large instance 2000 1700

Small instance 1000 1400

Micro instance 500 600
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performance degradation due to virtual machine 
migration PDM, and is calculated by the following 
equation:

	 Here, SLATAH indicates the SLA violation time 
per host, calculated according to the following equa-
tion:

where N is the total number of hosts, timax is the total 
time for Hosti to reach full load state, and tiactive is 
the total active time of Hosti . In addition, the perfor-
mance overhead PDM generated by VM migration is 
defined as:

	 Among them, M is the total number of VMs, 
pdmj is the performance degradation due to the 
dynamic migration of VMj , which is set to 10% in this 
experiment with reference to the suggestion of litera-
ture [43]. demandj indicates the total amount of CPU 
resources requested by VMj during its lifetime.
(4) Number of VM Migrations: it indicates the total 
number of migrations per scheduling cycle through-
out the runtime. In enterprise-class data centers, VM 
migrations take a certain amount of time, consume a 
lot of resources, and lead to system performance deg-
radation, so it is necessary to reduce the number of 
data center migrations.
(5) Number of Hosts Shut Down: the VMC method 
runs more workloads in a small number of physical 

(21)SLAviolation = SLATAH × PDM

(22)SLATAH =
1

N

N
∑

i=1

timax

tiactive

(23)PDM =
1

M

M
∑

j=1

pdmj

Cdemandj

machines to shut down underloaded hosts. The vir-
tual machine scheduling method should bring more 
low-load hosts off to reduce energy consumption.

Results analysis
For the evaluation of the combined TU-MMR-HOAVG 
policy, the IQR, MAD, and THR overload server detec-
tion policies, MC and MU virtual machine selection poli-
cies, and greedy underload host policy proposed in the 
literature [6] are selected in the paper and combined 
into six different VMC methods for comparison experi-
ments. We select three days of data in load as the test 
(2011/03/06, 2011/04/11, 2011/04/03). The data from 
these days are chosen because they can represent differ-
ent data center cluster sizes respectively. The VM alloca-
tion policies used are all PABFD algorithms as a way to 
ensure the consistency of the placement algorithm.

The ultimate goal of the approach in this paper is to 
make the total energy consumption of the data center the 
least in order to achieve a balanced state of the comput-
ing and cooling systems. As shown in Fig.  4, the com-
bined TU-MMR-HOAVG strategy has a clear advantage 
in energy saving, and the TU-MMR-HOAVG strategy is 
always the best in terms of energy consumption, regard-
less of the cluster size. Compared with other methods, 
TU-MMR-HOAVG reduces the total data center energy 
consumption by 7.87% on average, 2.73% on average 
compared to the best method MAD-MC-GREEDY, 
and 14.61% on average compared to the worst method 
THR-MU-GREEDY.

As seen in Fig. 5(a), TU-MMR-HOAVG is able to shut 
down more underloaded hosts compared to other meth-
ods. HOAVG selects underloaded hosts based on the 
median average utilization and shuts them down, which 
avoids the overload problem caused by the greedy server 

Table 5  Workload characteristics

Load instance Date Number of VMs Average utilization rate(%) The standard 
deviation(%)

P1 2011/03/03 1052 12.31 17.09

P2 2011/03/06 898 11.44 16.83

P3 2011/03/09 1061 10.70 15.57

P4 2011/03/22 1516 9.26 12.78

P5 2011/03/25 1078 10.56 14.14

P6 2011/04/03 1463 12.39 16.55

P7 2011/04/09 1358 11.12 15.09

P8 2011/04/11 1233 11.56 15.07

P9 2011/04/12 1054 11.54 15.15

P10 2011/04/20 1033 10.43 15.21
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shutdown policy that over shuts down servers. Among 
all approaches, the combined TU-MMR-HOAVG policy 
consistently produces the lowest number of VM migra-
tions for different sizes of workload data (Fig. 5(b)), which 
is due to the fact that the MMR policy selects VMs with 
the largest memory to migrate out. In other words, the 
MMR policy tends to select one VM with large requested 
resources rather than several VMs with small requested 
resources, reducing unnecessary migration activities in 
the data center by this way.

Another objective of the combined TU-MMR-
HOAVG strategy in this paper is to avoid hot spots 
in the data center. For this purpose, we counted 
the number of hot spots generated by various poli-
cies. According to Fig.  5(c), the TU-MMR-HOAVG 
approach has no hot spots and ensures that the tem-
peratures of all hosts are within the safety threshold, 
avoiding the thermal potential danger in the data 
center. All other policies in the platform have multi-
ple hot spots due to high load on some hosts caused 
by considering only host utilization without consider-
ing temperature. On the other hand, while the TU-
MMR-HOAVG policy has a higher SLA violation rate 
than the other policies (Fig.  5(d)), all other policies 
have higher energy consumption values than TU-
MMR-HOAVG, and they generate more hot spots and 
thermal violations. The combination of TU-MMR-
HOAVG policy results in the lowest energy consump-
tion and avoids hot spots in the data center. Overall, 
the combined TU-MMR-HOAVG strategy can keep 
the SLA violation rate below 0.005%, which can guar-
antee the quality of service for users.

In terms of VM placement algorithms, to verify the 
effectiveness of UACO algorithm, we compare UACO 
with the six other common VM placement algorithms 
(FFD, MBFD, TAS, GRANITE [44], ACS_VMC [45], 
EVMCACS [46]). Among them, FFD, MBFD are heuristic 
algorithms which place VMs based on greedy heuristic 
policy. TAS is a thermal-aware scheduling policy which 
selects hosts with low temperature as the target host. 
GRANITE method predicts the temperature of future 
hosts and moves VMs out of the hosts which are most 
likely to exceed the temperature threshold and selects 
target hosts based on greedy policy. ACS_VMC and 
EVMCACS are both intelligent algorithms based on ant 
colony algorithm. These swarm intelligence algorithms 
contain more parameters, and the settings of the algo-
rithm parameters are shown in Table 6.

Figure 6 shows the energy consumption trend of each 
VMP algorithm under different workloads. It can be seen 
that as the number of virtual machines increases, the 
search space of the solution increases, and the energy 
consumption of all algorithms increases. In all load 
instances, the UACO algorithm excels in energy con-
sumption. In general, the swarm intelligence algorithm is 
generally more energy-efficient than the traditional heu-
ristic VMP algorithms (FFD, MBFD), and the thermal-
aware scheduling method is not much different from the 
traditional heuristic algorithm. Compared with the worst 
FFD algorithm, UACO reduces energy consumption by 
an average of 28.93%, compared with the best EVMCACS 
algorithm by an average of 16.53%, and compared with 
all other virtual machine placement methods by an aver-
age of 24.05%. This is due to UACO’s preference for host 

Fig. 4  Energy consumption comparison of TU-MMR-HOAVG combination strategy
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Fig. 5  Comparison of different VMC strategies under different loads

Table 6  Algorithm parameter settings

Algorithm UACO ACS_VMC EVMCACS

Number of ants:Nant 15 15 15

Number of iterations:Nc 10 10 10

Critical number:c0 0.7 0.7 0.7

Local pheromone volatile factor:ρ 0.3 0.3 -

Global pheromone volatile factor:σ 0.4 0.4 0.4

Pheromone importance factor:α 0.9 - -

Importance factor of heuristic information:β 0.9 0.9 0.9

The maximum proportion of increase in pheromone concentration:�τmax 1.5 - -

Weight of power consumption in fitness function:ε 0.5 - -

Weight of the number of hosts closed in fitness function:γ - 5 5



Page 14 of 18Mao et al. Journal of Cloud Computing           (2023) 12:84 

physical machines with balanced energy and temperature 
after migration, and has improved the method of updat-
ing pheromones, which allows the algorithm to find the 
global optimal solution. In addition, UACO is able to 
keep the SLA violation rate within 0.002%, which is a 
relative balance between energy consumption and QoS 
compared to other methods.

In terms of the number of virtual machine migra-
tions, as shown in Fig.  7, UACO’s performance is not 

very outstanding, inferior to the traditional heuristic 
algorithm, but better than other swarm intelligence 
algorithms. It is because the algorithm has blindness 
in searching at the primary stage, which makes the 
VMs migrate frequently in the preliminary stage, while 
at the later stage, due to the improved pheromone 
update method of ACO, the algorithm can eventually 
jump out of the local optimal solution and search for 
the global optimal solution of energy consumption. 

Fig. 6  Comparison of the total energy consumption of the data center under different loads

Fig. 7  Comparison of virtual machine migration counts under different loads
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the FFD and MBFD greedily choose the hosts with less 
incremental energy consumption, which avoids unnec-
essary migration of data centers. the TAS algorithm 
aims to reduce data center hot spots while ignoring 
the energy consumption problem, the frequent migra-
tion of virtual machines leads to an increase in energy 
consumption.

To further validate the performance of the UACO algo-
rithm, the experiments counted the number of active 
hosts per hour of various placement algorithms under 
the PlanetLab load data (2011/03/03), as shown in Fig. 8 
below, the number of active hosts in the cluster is basi-
cally maintained between 20–40 under the UACO 
algorithm, which is smaller than any other placement 
algorithms. GRANITE and FFD algorithms exhibit a high 
number of active hosts, around 80. FFD and MBFD tend 
to place VMs on the optimal server under the heuristic 
rule in the VM placement process. However, when the 
number of VMs increases, the order of VM placement 
affects the resource status of the server and the deter-
mination of the heuristic rule, which tends to make the 
algorithm fall into a local optimum, thus making it dif-
ficult to further reduce the number of active servers. 
ACS_VMC can keep fewer active hosts at the beginning 
of the algorithm, but as time increases, the ants select 
hosts with sufficient resource capacity when determin-
ing the target hosts, which may start the dormant hosts, 
resulting in more active hosts than UACO. The UACO 
algorithm tends to assign the newly arrived workload to 
a host that is not idle and not overloaded after migration, 
and try not to start a new host, which reduces the number 
of active servers.

To deeply analyze the efficiency of UACO, we further 
compared the execution time of seven VM placement 
algorithms. Table  7 and Fig.  9 below show the perfor-
mance of the various algorithms in terms of execution 
time. Since the swarm intelligence algorithm requires 
multiple iterations to update the population and has mul-
tiple individuals to traverse, the UACO, ACS_VMC, and 
EVMCACS algorithms are higher than the other algo-
rithms in terms of time overhead. The thermal-aware 
scheduling algorithm needs to iterate over the host tem-
perature and sort the temperature, which increases the 
running time of the algorithm. According to Fig. 9, it can 
be seen that the improved ant colony algorithm (UACO) 
proposed in this paper has a slightly lower time overhead 
than the other two swarm intelligence algorithms, which 
is due to the improved pheromone update method of 
UACO, making the algorithm have certain directionality 
in the later solving process, thus accelerating the algo-
rithm solving speed.

Conclusion and future work
In this paper, we focus on the optimization problem of 
data center resource scheduling, from power consump-
tion modeling to virtual machine consolidation method, 
and propose a resource scheduling method based on 
thermal management (TM-VMC). This method includes 
a host overload detection method based on CPU temper-
ature and utilization (TU), an underload host detection 
method based on median average utilization (HOAVG), 
a virtual machine selection policy based on maximum 
migration memory (MMR), and a virtual machine place-
ment policy based on an improved ant colony algorithm 

Fig. 8  Comparison of the number of active hosts per hour under the PlanetLab load data (2011/03/03) for the VMP algorithms
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(UACO). TU determines whether a host is overloaded 
by detecting host utilization and temperature status 
in real-time. It proactively relocates a few VMs off the 
overloaded hosts to avoid the data center hot spots. The 
MMR policy migrates VMs having the most memory 
to minimize the number of VMs selected for migration 
in the data center. HOAVG detects underloaded hosts 
based on server CPU utilization and shuts them down, 
which reduces the number of active servers. UACO 
places VMs on hosts with a balanced temperature and 
energy consumption using a fitness function based on the 
temperature and energy consumption after placement. 
Extensive performance studies show that TM-VMC can 
avoid data center hot spots and minimize the data center 
energy consumption while meeting SLAs.

In the future, we plan to build more refined tempera-
ture models to quantify the impact of temperature on 
data center energy consumption and collect relevant 
data from the real world through physical inspection 

equipment to better fit the model parameters to obtain 
more accurate temperature models that can better guide 
the resource scheduling experiments. In addition, the 
proposed method should be further validated and tested 
in an existing data center environment.
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P9 1229.14 745.14 28.81 32.50 23.72 1112.72 1164.21

P10 997.84 746.38 27.73 31.89 36.76 1013.06 1006.03

Fig. 9  Comparison of average execution time of VMP algorithms
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