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Abstract 

The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge 
computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. 
Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. 
Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction 
records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain 
control and manipulate transaction records of the blockchain network, which can compromise the reliability and 
security of edge computing. This paper proposes a blockchain node detection method named T 2A2vec that provides 
a more secure, credible, and reliable solution to address these challenges. In order to achieve T 2A2vec , a transaction 
dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a 
transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to 
extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract 
transaction features. The obtained account features and transaction features are fused to obtain account representa-
tion. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes.

Keywords Blockchain, Graph Embedding, Security, Edge Computing

Introduction
Edge computing is a novel computing paradigm that dis-
tributes computing and storage resources to the edge of 
the network, providing significant advantages for vari-
ous application scenarios, such as the Internet of Things 
[1–3], smart city [4, 5] and industrial Internet [6–8]. 
With the significant growth in the number of devices 
connected to the Internet of Things, the devices gener-
ate massive data at the network’s edge, making the pro-
tection of private data a critical task of edge computing 
[9–11]. However, traditional privacy protection methods 

require centralized control, which is not feasible due to 
the distributed nature of devices within the edge com-
puting environment. Thus, achieving decentralized pri-
vacy protection in edge computing is a challenging task. 
Nonetheless, blockchain technology’s decentralized char-
acteristics suggest a promising avenue for privacy protec-
tion in edge computing [12].

Blockchain, as a distributed ledger technology, can 
enable secure data exchange and sharing in an untrusted 
environment, thereby effectively protecting data privacy 
and security [13, 14]. Given its significant potential in 
ensuring data privacy protection, blockchain technology 
has been applied to edge computing as a solution for data 
privacy protection. Some studies have focused on how 
to secure data privacy and address the security issues 
of edge computing by applying blockchain solutions. 
In edge computing, devices share data and computing 
resources by connecting to cloud servers. However, tra-
ditional centralized storage methods no longer meet the 
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requirements due to the sensitivity, privacy and unbal-
anced data distribution. Liang et al. [15] Therefore, differ-
ent researchers have proposed blockchain-based privacy 
protection solutions as an alternative. Encrypted technol-
ogy and smart contracts have been employed to achieve 
data sharing and access control [16], while privacy pro-
tection and anonymity have been achieved through tech-
nologies such as zero-knowledge proof [17]. In addition, 
some studies have also proposed blockchain-based data 
ownership and license proof mechanisms to protect data 
privacy and ensure data security [18].

However, there are also security threats to using block-
chain in edge computing. Attackers may manipulate cer-
tain nodes in the blockchain network, thus tampering 
with transaction records or performing other improper 
operations. This type of attack may result in incorrect 
transactions or unauthorized operations, thus affect-
ing the reliability and security of edge computing [19]. 
Attackers may also attempt to steal data from the block-
chain network, thereby compromising the privacy of 
edge computing. Such attacks may lead to data breaches 
and privacy threats, thereby affecting the security and 
reliability of edge computing. Attackers may attack the 
blockchain network by creating a large number of fake 
nodes in order to gain control and manipulate transac-
tion records [20]. This type of attack may result in an 
imbalance in the number and capabilities of nodes, thus 
affecting the security and stability of edge computing 
[21].

In view of the aforementioned security issues, the rapid 
and accurate identification of various accounts on block-
chain platforms has become a hot topic in the field of 
blockchain security. Networks are a common language 
for describing interactive systems in the real world, and 
network representation learning is widely regarded as 
an effective tool for analyzing network systems [22, 23]. 
The current method for detecting illegal accounts on 
the blockchain is to learn the network representation of 
nodes and use methods such as node classification and 
link prediction to complete illegal account detection. 
These methods can be divided into three categories. One 
is to extract manual features based on transaction history 
rules or extract statistical features through automatic 
feature construction tools, and combine the extracted 
features with traditional machine learning methods to 
complete the detection of illegal accounts in blockchain. 
But this approach requires considerable manpower, and 
the use of experts to exhaustively list all the relevant 
characteristics, in the face of an almost infinite number 
of blockchain addresses, cannot rely on the manual way 
to mark all the addresses, and this marking cannot guar-
antee realtime results, for example, the exchange will 
occasionally change their own address, illegal activities 

often change their own address to avoid crackdown, 
this time you need to go to manually update. Another 
approach is to use the random walk method to mine deep 
features from the blockchain transaction network. The 
last approach is to apply graph neural networks, a type of 
neural network specifically designed to process graphs, to 
automatically learn representations from the blockchain 
transaction network. While each method has its advan-
tages and limitations, the use of random walk and graph 
neural networks shows promising results for accurate 
and efficient detection of illegal accounts on blockchain 
platforms.

Despite significant progress in detecting blockchain 
nodes, two critical issues remain unresolved. Firstly, 
existing methods suffer from an unbalanced spatial and 
temporal distribution of datasets, leading to a biased col-
lection of various account types over time. Consequently, 
such biases can result in incomplete or inaccurate con-
clusions, distorting understanding of the network’s 
behavior. Secondly, current methods lack transaction 
information, which is crucial in accurately representing 
a node’s characteristics. Without this information, these 
methods cannot capture the nuances and complexities of 
the network, leading to suboptimal node representations. 
Addressing these two challenges is critical in ensuring a 
comprehensive understanding of blockchain nodes. It 
requires developing novel data collection methods that 
consider spatial-temporal distribution and incorporate 
transaction information and account characteristics. By 
optimizing node representations, it is possible to obtain 
more precise and dependable information about the 
blockchain network, resulting in an improved compre-
hension of its intricacies.

In order to solve these challenges, a novel method of 
blockchain node behavior detection is proposed that 
integrates the detection of account features, transaction 
Time, transaction Type and transaction Amount, called 
T2A2vec. This paper presents a novel method for iden-
tifying illicit nodes in the blockchain network. A trans-
action network is constructed by collecting a dataset of 
blockchain transactions that are uniformly distributed 
across space and time. In this network, nodes represent 
accounts, and edges describe transactions. To gener-
ate node representations, a random walk strategy is uti-
lized that takes into account transaction time, type, and 
amount. The resulting node representations are then 
input into different classifiers, and extensive experiments 
on the collected datasets validate the effectiveness of the 
algorithm. The method enables the identification and 
evaluation of transaction risk based on transaction type, 
providing users with the ability to make informed deci-
sions and prevent fraud. The main contributions of the 
paper are as follows:
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• This paper proposes a method to address the issue 
of uneven spatiotemporal distribution of blockchain 
labels. The proposed method captures transaction 
data based on time to obtain a blockchain transac-
tions dataset with a uniform distribution across space 
and time.

• To identify illicit accounts in the blockchain network, 
the paper introduces transaction feature extraction 
and account feature extraction components. These 
components use transaction information from the 
blockchain transaction network to generate valid 
node representations in the network.

• Extensive experiments were conducted on the block-
chain dataset collected in this paper. The experimen-
tal results show a higher prediction accuracy than 
the traditional blockchain phishing node prediction 
method.

The remaining portion of this paper is organized as fol-
lows. Section Related Work summarizes related work. 
Section Method Introduction specifies the method pro-
posed in this paper. Section Experiments conducts exper-
imental evaluation and analysis. Section Conclusion 
summarizes the work of this paper and provides direc-
tion for future work.

Related work
This section discusses related research by academic 
researchers on nodes detection in blockchain. Due to 
the popularity and widespread use of cryptocurrencies 
such as Bitcoin and Ethereum, complex network analysis 
for cryptocurrencies and their security applications have 
very important research and application value.

Boosting algorithms based on machine learning can 
realize blockchain network analysis [24]. Farrugia et al. 
[25] proposed a method to detect illegal accounts in 
Ethereum using XGBoost classifier. They analyzed 
three features that have the greatest impact on the out-
put of the illegal account detection model ‘time differ-
ence between the first and last transaction’, ‘total Ether 
balance’ and ‘minimum value received’, this method 
effectively used the features of Ethereum nodes but 
does not analyze the transaction information between 
nodes, which reduced the accuracy of prediction. 
Farimah et  al. [26] proposed a framework to identify 
illegal entities in the Ethereum blockchain network, 
which has good performance in integrated learning 
methods including random deep forest, stacked clas-
sifier and AdaBoost, and can effectively detect ille-
gal Ethereum entities. Zhang et  al. [27] proposed a 
method for detecting Ethereum Ponzi schemes based 
on an improved LightGBM algorithm. Chen et al. [28] 

proposed a graph-based cascading feature extraction 
method based on transaction records by kind of light-
GBM-based double sampling integrated framework 
identification can account. The analysis of blockchain 
network using the Boosting algorithm focuses on the 
node attribute information in the blockchain network 
while ignoring the transaction information between 
nodes.

In recent years, deep learning techniques have been 
introduced into graph representation learning due to 
their effectiveness in deep feature extraction, among 
which graph convolutional networks are more widely 
studied [29, 30]. Liu et  al. [31] proposed a blockchain 
identity inference method based on graph convolutional 
networks. Different types of accounts are collected and 
node transaction characteristics were analyzed, and 
some enhancement methods were proposed. Weber 
et  al. [32] proposed a bitcoin antimoney laundering 
method using graph convolutional networks, which 
provided a timeseries graph of over 200,000 bitcoin 
transactions and classifies illegal transactions using LR, 
RF, MLP, and variants of graph convolutional networks, 
and the results show the superiority of random forest. 
The analysis of blockchain networks using graph neural 
networks places greater emphasis on node features and 
requires a high-quality dataset.

Graph embedding is a process of steganography 
graph data into low-dimensional dense vectors, which 
can be an excellent solution to the problem that graph 
data is difficult to input into machine learning algo-
rithms efficiently [33, 34]. The data in the blockchain 
contains multiple information with high dimensional-
ity, and graph embedding can be an excellent solution 
to this problem. Yuan et  al. [35] used node2vec for 
phishing node classification. Wu et al. [36] proposed a 
method to detect phishing scams by digging through 
the transaction records of Ethereum. This method 
extracted address features by proposing a new net-
work embedding algorithm trans2vec, and then used 
One-Class SVM to classify Ethereum nodes into ordi-
nary nodes and phishing nodes. Yuan et  al. [37] used 
an improved Graph2Vec based implementation for 
classification prediction of the constructed transaction 
subgraphs. Lin et al. [38] proposed a temporal weighted 
multidigraph embedding method to analyze Ethereum 
transactions and perform node classification. Block-
chain network analysis based on graph embedding 
emphasizes transaction information and ignores the 
attributes of illegal nodes, which reduces the prediction 
accuracy. The analysis of blockchain networks based on 
graph embedding places greater emphasis on transac-
tion information while ignoring the attributes of illegal 
nodes.
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Method introduction
This section will discuss the blockchain node detection 
method based on graph representation learning. The 
overall framework is shown in Fig. 1, which is divided into 
three parts: data collection, accounts feature extraction 
and transaction feature extraction. The graph construc-
tion part mainly involves the transaction data collected 
from blockchain illegal accounts and normal accounts. In 
the account feature extraction part, statistical features of 
accounts are calculated and a BP neural network is used 
to extract the account features. In the transaction feature 
extraction part, transaction features are extracted using a 
random walk strategy based on transaction time, transac-
tion type, and transaction amount. The obtained account 
features and transaction features are fused to obtain a 
blockchain account representation and used for illegal 
account identification. The main notations used in this 
paper are summarized in Table 1.

Data collection
The blockchain’s transparency and openness make trans-
action data containing rich information and complete 
traces of financial activities available to the public. The 
most simplest way to obtain blockchain transaction data 
is to access the blockchain network and synchronize 
block data through blockchain clients (such as Bitcoin 
Core1 and Geth2) in order to obtain the original data of 
the blockchain. Another way is to retrieve transaction 
data through the blockchain browser.

The problem of identifying addresses on the block-
chain, studied in this article, can be modeled as a multi-
class problem, requiring a classification model trained 
through supervised learning. To achieve this goal, 

sufficient labeled data is needed as the training set, as 
well as a large dataset as the basis for the research work. 
Only with enough sample data can the model learn the 
relationships between features within the data and ulti-
mately achieve a better performance in classification.

Due to the lack of a dataset of illegal nodes in edge 
computing based on blockchain, this study chose to use 
the Ethereum transaction dataset to verify the effective-
ness of the proposed method. Although there are certain 
differences between Ethereum transaction data and edge 
computing data, they share some similarities, including 
structural similarity, temporal similarity, massive scale, 
and heterogeneity [39, 40]. Firstly, both can be repre-
sented as graph structures. Secondly, since edge comput-
ing data typically includes the start and end times of the 
data, each transaction in Ethereum has a fixed transac-
tion timestamp and also possesses temporal attributes. 
Thirdly, another characteristic of the data appearing 
simultaneously in edge computing is its large volume, 
which requires a considerable amount of storage space. 
According to statistics, the majority of the data in block-
chain transactions are in the tens of millions or more. 
Lastly, due to the differences between the sending and 
receiving devices, most edge computing data is repre-
sented as heterogeneous data, while Ethereum transac-
tion data includes user types such as traders and miners, 
as well as transaction types such as calling contract trans-
fers, which also demonstrate heterogeneity. Therefore, 
the effectiveness of the proposed method is verified by 
accessing Ethereum transaction records and collecting 
the necessary information independently.

In this study, collected an Ethereum transaction dataset 
consisting of two parts: illegal and normal nodes, which 
illegal nodes represent the attacking nodes in the block-
chain. This dataset provides the labeled data necessary 
for training the classification model and enables us to 
study the features that distinguish illicit addresses from 
non-illicit ones. Using this dataset, it is possible to accu-
rately identify illegal addresses.

All illicit nodes were collected from Etherscan3, a block 
explorer and analytics platform for Ethereum, a decen-
tralized smart contracts platform. This website also pro-
vides Etherscan account addresses, which show not only 
the content of the scam but also the accounts suspected 
of being involved in the scam.

All normal nodes are obtained through Infura4, an 
excellent open Ethereum node that provides a stand-
ard RPC API for developers to call. To address the issue 
of uneven distribution in the dataset, it is necessary to 

Table 1 Notations

Symbol Explanation

G The blockchain transaction network.

V The set of nodes.

E The set of edges.

VL The set of nodes with attributes.

yi Embedding of the node vi.

πν ,x The unnormalized transition probability from node v to x.

PAux Transaction amount based random walk strategy.

PTux Transaction time-based random walk strategy.

PEux Transaction types based random walk strategy.

Z The embedding results.

1 Bitcoin Core, https:// bitco incore. org/
2 Geth, https:// geth. ether eum. org/

3 Etherscan labelcloud, https:// ether scan. io/ label cloud
4 Infura, https:// infura. io/

https://bitcoincore.org/
https://geth.ethereum.org/
https://etherscan.io/labelcloud
https://infura.io/
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first analyze the active dates of each illegal account and 
randomly extract Ethereum accounts based on their 
active dates before obtaining normal accounts. During 
the extraction process, to avoid having duplicate, non-
unique, and smart contract accounts, they will be filtered 
out. A check is performed to determine if the collected 
normal accounts have been flagged on the Etherscan 
website. If a flagged address is found, it will be removed 
from consideration. Since most accounts on the block-
chain are honest, the remaining unflagged accounts that 
were randomly selected are considered normal accounts. 
This method of random selection based on active dates 
helps solve the issue of uneven distribution in the data 
while improving the accuracy and stability of the illegal 
account identification algorithm.

Finally, the API provided by Etherscan was used to 
query the transaction information for each account, 
obtaining first-order transaction data for each account, 
which was then saved. The transaction timestamp, trans-
action amount, and transaction type were all considered 
as edge attributes, with transaction type being considered 
as the edge type. Transaction types include transfers, 
contract creation, and invocation contracts.

By performing the above operations, a comprehen-
sive dataset was obtained. This dataset includes the rel-
evant transaction information and node features for each 
account. This dataset enables us to accurately identify 
illegal addresses and gain a deeper understanding of the 
transaction patterns on the blockchain network.

Graph construction
Construct the blockchain transaction network as a multi-
directed graph G = (V ,E) , where V is the set of nodes 
and E is the set of edges. The total number of accounts 
is N = |V | . Each node v ∈ V represents an externally 
owned accounts (EOA) or a contract account (CA). A 
node represents an Ethereum account, and the rest of 
this paper will use nodes and accounts interchangeably 
for representation.

The set VL is the set of nodes with attrib-
utes. The set Vu is the set of nodes connected 
to node u. The set E contains edges, and each 
edge can be represented as a quintuplet, i.e., 
E = {(vi, vj ,w, t, r)|vi, vj ∈ V ,w ∈ R

+ ∪ 0, t ∈ Z, r ∈ R}  , 
where (vi, vj) denotes the transaction from vi to vj ,w 
denotes the transaction amount, t denotes the timestamp 
of the transaction, and r denotes the transaction type. 
The final transaction network is shown in Fig.  2, where 
n1, n2, n3 are EOA, n4, n5 are CA. Each account contains 
a feature vector, and each transaction contains three fea-
tures: transaction time, transaction type, and transaction 
amount.

Account features extraction
In this paper, the account feature set is constructed 
based on the transaction history of the account. It 
includes data such as the number, value, and frequency 
of transactions that are easy to calculate. It further 
reveals the correlation between trading behavior and 
accounts to discover the variability of trading pat-
terns among different accounts. In this paper, a total 
of 18 transaction features are extracted. The details are 
shown in Table 2. Some of the features are described as 
follows.

Number of Transactions of Send (NTS): the number of 
transactions sent from an account, NTSi represents the 
number of transactions sent from account i.

Total Value of Send (TVS): the sum of the transaction 
values sent by the account, TVSi represents the sum of 
the transaction values sent from account i.

Average Value of Send (AVS): represents the average 
value of transactions sent by an account, which can be 
calculated from the current account NTS and TVS, cal-
culated as:

where TVSi represents the average value of transactions 
sent from account i.

Maximum Value of Send (max_VS) and Minimum 
Value of Send (min_VS), which represent the maximum 
and minimum time interval between two transactions for 
a given account, respectively. Ti,k denotes the timestamp 

(1)SAVi =
STVi

NTSi

Table 2 Complete list of the 18 extracted features

Feature Description

1 NTS The number of transactions of send.

2 max_VS The maximum value of send.

3 min_VS The minimum value of send.

4 TVS The total value of send.

5 AVS The average value of send.

6 avg_TIS The average time interval of send.

7 NTR The number of transactions of receive.

8 max_VR The maximum value of receive.

9 min_VR The minimum value of receive.

10 TVR The total value of receive.

11 AVR The average value of receive.

12 avg_TIR The average time interval of receive.

13 TETF The total ether transaction fee.

14 AETF The average ether transaction fee.

15 TDFL The time difference between the first and last.

16 TEB The total ether balance.

17 UAS The unique address of send.

18 UAR The unique address of receive.
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of the k-th transaction sent by account i. The max_VS 
and min_VS are calculated as:

(2)max _VSi =max
k

(∣

∣Ti,k − Ti,k+1

∣

∣

) Average Time Interval of Send (avg_TIS): represents 
the average time interval of sending transactions for an 
account, which can be calculated from the time interval 
of each transaction and NTS. avg_TISi represents the 

(3)min _VSi =min
k

Ti,k − Ti,k+1

Fig. 1 The overall framework for account detection on the blockchain

Fig. 2 The blockchain transaction network
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average time interval of sending for account i,  k is the 
total number of transactions for account i and is calcu-
lated as:

Number of Transactions of Receive, Maximum Value 
of Receive, Minimum Value of Receive, Total Value of 
Receive, Average Value of Receive, Average Time Interval 
of Receive features are calculated in a manner similar to 
the features of sending transaction accounts, and are cal-
culated as in Eqs. (1) to (4).

Total Ether Transaction Fee (TETF): the sum of trans-
action fees for each account, which can be calculated 
from the price of gas and gas used in the transaction, 
calculated as:

where k is the number of transactions for the i-th 
account. PGi,j and GUi,j represent the price of gas and gas 
used in the j-th transaction for the i-th account, respec-
tively. And uniformly convert Wei to Ether.

Average Ether Transaction Fee (AETF): the average of 
transaction fees for an account, which can be obtained 
from the TETF and the number of transactions, calcu-
lated as:

Total Ether Balance (TEB): the account balance calcu-
lated based on the collected transaction records, which 
can be obtained from the TVS and TVR, calculated as:

Each account possesses unique features, such as bal-
ance, transaction frequency, transaction type, and 
transaction amount. However, individual account char-
acteristics alone are insufficient for identifying illegal 
accounts. Therefore, it is necessary to extract deeper 
information based on these features in addition to 
extracting account features. By extracting and analyz-
ing account features, it is possible to more accurately 
identify illegal accounts.

To achieve this, after collecting account transac-
tion features, a BP neural network is used to extract 
feature vectors from the collected data. Specifically, 
transaction features are normalized and passed to the 

(4)avg_TISi =

∑k
j=1 Ti,j+1 − Ti,j

NTSi

(5)k = NTSi + NTRi

(6)TETFi =

k
∑

j=1

(

GUi,j × PGi,j

)

× 10−18

(7)AETFi =
TETFi

k

(8)TEBi = TVRi − TVSi

BP neural network to learn the hidden relationships 
between accounts. The resulting account feature vector 
is represented as VL , and the calculation formula is as 
follows:

where Wst is the weight matrix of the BP neural network, 
fs is the feature vectors from the collected data, bst is the 
bias term, and f() is the activation function.

Transaction feature extraction
Existing methods for identifying illegal accounts on the 
blockchain have not considered the various types of trans-
actions on the blockchain comprehensively. Instead, differ-
ent types of transactions have been grouped as one type, 
without taking into account transaction types like calling 
and creating smart contracts. In order to address the need 
for a comprehensive approach to different transaction 
types, this paper proposes three random walk strategies to 
transform blockchain nodes into low-dimensional vectors 
and extract transaction features of blockchain accounts.

To gain a more comprehensive understanding of the 
characteristics of the transaction network and to effec-
tively sample node neighborhoods, this method fully 
considers the sampling strategy based on transaction 
time, transaction type, and transaction amount. The sam-
pling strategy can be defined as follows: Given a source 
node u, sample a random walk sequence of length l, with 
the starting vertex c0 = u . To sample ci , the following 
strategy is used:

where πν,x is the unnormalized transition probability 
from node v to x, and Z is the normalizing constant.

Transaction time‑based random walk
In blockchain when a new block is created, the transac-
tions contained in the block are sorted according to spe-
cific rules, and then the transactions are packed into the 
block and a timestamp is generated, which is the time of 
the transaction. For illegal nodes, the last few transac-
tions are usually the transfer of funds obtained from ille-
gal activities, so this sampling strategy is biased towards 
the time of the last few transactions. Also under time-
based biased sampling, the transfer probability from 
node u to neighboring nodex ∈ Vu is

where MaxT (u, x) denotes the latest timestamp of the 
transaction between node u and x, and SumT

(

u, x′
)

 

(9)VL = f
(

Wst • fs + bst
)

(10)P(ci = x | ci−1 = v) =

{

πv,x

Z , if (v, x) ∈ E
0, else

(11)PTux =
MaxT (u, x)

�x′∈Vu
SumT (u, x′)
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denotes the sum of the timestamps of the transactions 
between node u and other nodes.

Transaction type‑based random walk
Blockchain transactions have different types, such as 
money transfers, calling smart contracts, and creating 
smart contracts. The majority of illegitimate accounts 
involve transfer transactions, while legitimate accounts 
perform more transfers and contract calls. Setting dif-
ferent weights for each transaction type can be helpful 
in restricting the sampling process to specific kinds of 
transactions. For instance, weights of 1, 2, and 3 can be 
set for transfers, smart contract calls, and smart contract 
creations, respectively. This strategy can increase the 
accuracy of estimating the transfer probability between 
connecting nodes. The transfer probability from node u 
to neighboring nodex ∈ Vu is

where MaxE(u, x) denotes the edge with the largest 
weight between node u and x, and SumE

(

u, x′
)

 denotes 
the sum of the transaction type weights between node u 
and other nodes.

Transaction amount‑based random walk
The larger the transaction amount between blockchain 
accounts, the closer the relationship between the two 
nodes. Therefore, this sampling strategy tends to favor 
the transactions with the amount-based biased sampling, 
the transfer probability from node u to neighboring node 
x ∈ Vu is

where MaxA(u, x) denotes the maximum amount of 
transactions between node u and x, and SumA

(

u, x′
)

 
denotes the sum of transaction amounts between node u 
and other nodes.

When using different random walk strategies for ran-
dom walk, the non-normalized transition probabil-
ity πv,x from node u to x is defined as PTux ,PEux ,PAux , 
respectively.

Then a random walk is performed using the calculated 
transfer probabilities, and finally the node embedding is 
optimized using the stochastic gradient descent method 
to obtain the objective function f. The objective function f 
maximizes the log probability of the occurrence of nodes 
from the neighborhood NS(u) for a node u conditioned 
on its node embedding, i.e.,

(12)PEux =
MaxE(u, x)

�x′∈Vu
SumE(u, x′)

(13)PAux =
MaxA(u, x)

�x′∈Vu
SumA(u, x′)

Specifically, on the basis of the constructed transaction 
network, in order to take into account the transaction 
timestamp, transaction amount, transaction type and 
original graph structure, this paper propose a method 
that uses the hyperparameters α,β , γ ((α,β , γ ) ∈ [0, 1]) 
to balance the effects of the multiple embeddings, and 
the embedding results can be expressed as

where Ze is the embedding result after combining multi-
ple cases, Z0 is the embedding result of the random walk 
strategy based on transaction amount, Z1 is the embed-
ding result of the random walk strategy based on time, 
Z2 is the embedding result of the random walk strategy 
based on transaction type, and Z3 is the unbiased embed-
ding result.

Feature fusion
Finally, the embedding results are combined with labeled 
nodes to consider node information. The final embedding 
result is obtained as

where || represents the vector splice between Ze and VL.
In conclusion, the pseudocode for T2A2vec is presented 

in Algorithm  1 and Algorithm  2. Algorithm  1 aims to 
generate a random walk sequence based on the calculated 
transition probabilities of the graph. The input consists of 
the graph with the transition probabilities, the starting 
node u of the walk, and the length l of the random walk 
sequence. The output is a random walk sequence with a 
length of l. First, initialize the walk result list walk. Then, 
the iterative process of randomly selecting the next node 
s, via iterating through the current node v and its neigh-
boring nodes bv , is executed. Finally, the selected node s 
is added to the walk result sequence. After each iteration 
is completed, the walk sequence is returned.

Algorithm  2 applies different sampling strategies to 
the constructed blockchain transaction graph, extracts 
account features and transaction features, and fuses 
the account features and transaction features to obtain 
the fused embedding results. The inputs of the algo-
rithm are the constructed transaction graph G, embed-
ding dimension d, walk length l, neighborhood size k, 
number of random walk sequences starting from each 
source node r, bias parameters α,β , γ , and node attrib-
utes VL , and the output is the most embedding result Z. 
First, the account features are extracted using Eq. 9, and 
the transfer probabilities are calculated using Eqs.  11 
to  13. Then, iterative sampling is performed using 

(14)max
f

∑

u∈V

log Pr
(

NS(u) | f (u)
)

(15)Ze = αZ0 + βZ1 + γZ2 + Z3

(16)Z = Ze || VL
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different transfer probabilities, and the specific itera-
tive process is to set weights for the edges based on the 
calculated transfer probabilities, reconstruct the new 
graph G′ , and initialize the list walks to be empty. For 
each node, a sequence of r random walks of length l is 
generated starting at that node. The computational pro-
cedure is to execute Algorithm  1 for each node u ∈ V  
and add the result to walks. Then, stochastic gradient 
descent is executed to solve for the transaction char-
acteristics of the node. The algorithm finally fuses the 
account features and transaction features to obtain the 
feature representation of the node.

Algorithm 1 T 2A2walk

Algorithm 2 T2A2vec AlgorithmExperiments
In this section an experimental evaluation is performed 
to assess the effectiveness of the proposed T2A2vec 
algorithm using the dataset of Ethereum transactions 
collected in this paper. Specifically, the goal of this 
paper is to answer the following research questions: 
RQ1) Is there a difference between the node charac-
teristics of normal and illicit accounts? RQ2) Does T2

A2vec effectiveness in detecting illicit accounts outper-
form the state-of-the-art benchmark algorithm? How 
much different classifiers affect the performance? RQ3) 
How much different random walk strategies and differ-
ent embedding dimensions affect the performance of 
the method? RQ4) How much different parameter set-
tings affect the performance of the method?

Dataset and evaluation Criteria
Experiments were conducted using the data set col-
lected in Section III-A. This dataset has 4,986 illicit 
nodes, 5,000 normal nodes, and 312,751 accounts 
transacting with illicit and normal nodes, for a total of 
1,129,542 transaction records.

To comprehensively evaluate the effectiveness of 
the method, the dataset is divided into three ways, as 
shown in Table  3. The training sets of D1,D2 , and D3 
contain 50%, 70%, and 80% of randomly selected label 
nodes, respectively. During the training, validation, and 
testing of different models, only the classification per-
formance of labeled nodes is considered.

By analyzing baseline methods compared with simi-
lar work, the T2A2vec method is compared with several 
methods, including: (1) some random walk methods 
(i.e., DeepWalk [41], Node2Vec [42], LINE [43]), (2) 
some popular deep learning network-based despicable 
methods (i.e., GCN [44], GAT [45], GraphSAGE [46]), 
(3) some of our replicated Blockchain node detection 
methods (i.e., trans2vec [36]).

• DeepWalk [41]: DeepWalk learns the social repre-
sentation of a network by truncated random walk, 
which gives better results even when the network 
has few labeled vertices. The method also has 
the advantage of being scalable and can adapt to 
changes in the network.

• Node2vec [42]: Node2vec belongs to the class of 
graph neural network random walk models, which 
generate a random walk, sample the random walk, 
get a combination of nodes, context, and then 
model this combination, and get a representation of 
the network nodes by processing word vectors.

• LINE [43]: By optimizing the first-order similarity 
and second-order similarity, two representation 
vectors of the vertex, the source vector and the tar-
get vector, can be obtained, and when used, the two 
vectors are combined as the final representation of 
the vertex.

• GCN [44]: GCN is a neural network architecture that 
operates on graph data, it is so powerful that even a 
randomly initialized two-layer GCN can generate 
feature representations of nodes in a graph network.

• GAT  [45]: GAT is a representative graph convolu-
tional network that introduces an attention mecha-
nism to achieve better neighbor aggregation, and the 
attention mechanism also endows the model with a 
certain degree of interpretability.

• GraphSAGE [46]: GraphSAGE uses a multi-layer 
aggregation function, where each layer aggregates 
the information of nodes and their neighbors to get 
the feature vector of the next layer. GraphSAGE uses 
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the neighborhood information of nodes and does not 
depend on the global graph structure.

• trans2vec [36]: trans2vec is a method to detect 
Blockchain phishing scams by mining Blockchain 
transaction records, taking into account the transac-
tion amount and timestamp.

The embedding dimensions of DeepWalk, Node2Vec, 
LINE, and trans2vec methods are all set to 64, and the 
rest of the parameters are set according to the optimal 
parameters in the paper.

This paper implements the proposed algorithm using 
the graph deep learning toolkit CogDL [47]. All experi-
ments were conducted on a Linux server with GPU 
(GeForce GTX 3090) and CPU (Intel Xeon E5-2620), 
running Ubuntu 16.04.1. Python v3.8.6 and CogDL v0.5.3 
were the versions used for the implementation of the 
proposed algorithm. The following parameters need to 
be specified in this paper: embedding size d, number of 
walks per node r, walk length l, context size k, and hyper-
parameters α,β , and γ . For the experiments conducted 
in this paper, the parameters were set as follows: d=64, 

r=20, l=5, k=10, and α=β=γ=0.5. Each experiment in 
this paper was repeated 10 times.

In order to evaluate the classification effect of different 
classification methods, three evaluation indicators are 
selected: Precision, Recall and F1-score. These three indi-
cators are set as follows.

Node feature analysis (RQ1)
To answer RQ1, the node characteristics of different 
types of nodes are analyzed. Fig. 3 and Table 4 report the 
corresponding results. The following conclusions can be 
drawn:

(1) Compared with normal nodes, the degree of illicit 
nodes is generally concentrated at 102 . The main reason 
for this is that as the volume of transactions increases, 
the more likely it is to be added to the database of illicit 
nodes. When it is marked as an illicit node, ordinary 
users will not transact with it, resulting in a small degree 
of illicit nodes.

(17)Precision =
TP

TP + FP

(18)Recall =
TP

TP + FN

(19)F1− score = 2 ∗
Precision ∗ Reacll

Precision+ Recall

Fig. 3 Degree distribution of all/illicit nodes

Table 3 Three training-validation-test set division methods

Dataset Train set Validation set Test set

D1 50% 10% 40%

D2 70% 10% 20%

D3 80% 10% 10%
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(2) The mean and standard deviation of certain 
characteristics of illegal accounts (i.e., min_VS, AVS, 
min_RA, AVR, TEB) are greater than those of normal 
accounts, and the median difference is smaller. The 
minimum amount sent and received by illegal accounts 
is greater than that of normal users, and the average 
amount received and sent is approximately that of nor-
mal accounts. This means that compared to the average 
account, the illegal account entices the victim to make a 
large amount of transfer transactions and then to cash 
out a large amount of money.

(3) The average number of sending transactions for a 
normal account is 513.4, with 78.92 receiving transac-
tions, while for illegal accounts, the average number of 
sending transactions is 22.91, with 34.61 receiving trans-
actions. This suggests that illegal accounts conduct a 
small number of transactions to reduce the probability of 
detection. Low transaction volume can make it difficult 
to imitate the transaction patterns of normal accounts, 
reducing the risk of being caught.

(4) The average transaction amount for normal 
accounts is 125.29 ether, while for illegal accounts it is 
only 3.46 ether. This suggests that illegal accounts tend 
to have much smaller transaction amounts, possibly to 
evade regulation or make tracing more difficult. Mean-
while, the transaction amounts for normal accounts are 
much higher, which is also in line with their typical use 
cases, such as daily consumption and investment.

(5) Normal accounts have a balanced number of send-
ing and receiving transactions, while illegal accounts are 
more likely to send transactions than to receive them. 
This may indicate that illegal accounts are mainly used 
for sending funds rather than receiving them, consistent 
with the typical feature of illegal activities involving fund 
transfers.

Classification performance (RQ2)
To answer RQ2, the performance of different algorithms 
was firstly evaluated, and secondly evaluate the effective-
ness of the method when using different classifiers for 
classification, and the results are shown in Tables  5, 6. 
The following conclusions can be drawn:

(1) For all the compared methods, our method T2

A2vec achieves significant advantages under different 
evaluation metrics. Under the D2 dataset, our method 
achieves 93.21% precision, 92.96% recall, and 93.08% 
F1. Under the D1 dataset, the precision of this method 
reaches 88.09%, which exceeds our method by 0.83%. The 
performance of deep learning based methods fluctuates 
between 76% and 89%. The performance gap between the 
methods based on random walk is obvious, and the per-
formance of LINE and Node2vec is 10%-15% higher than 
that of DeepWalk. The worst performer is Deepwalk, 
whose lowest recall rate is only 69.52%.

(2) An interesting phenomenon emerges with the 
increase of training samples. As the number of training 

Table 4 Analysis of dataset account attributes

a  The negative values are present because this paper only collected the last 10,000 transactions, so the old ones are ignored

Feature Normal accounts Illicit accounts

mean median std mean median std

NTS 513.40 90.00 1340.54 22.91 2.00 198.20

max_VS 135.67 4.90 2329.42 75.38 4.00 856.16

min_VS 0.61 0.00 41.00 17.49 0.10 434.24

TVS 2963.54 28.20 85792.10 133.99 5.99 1203.30

AVS 3.02 0.30 47.40 27.60 1.57 485.83

avg_TIS 13491.97 2550.67 36591.24 17332.89 111.55 77438.72

NTR 78.92 14.00 381.46 34.61 6.00 248.60

max_VR 114.98 3.46 2545.93 58.31 2.41 747.65

min_VR 1.04 0.00 41.75 21.52 0.02 607.25

TVR 1906.49 14.24 77983.87 103.57 6.00 949.58

AVR 8.48 0.73 80.15 30.36 0.90 623.45

avg_TIR 17083.43 5830.90 34763.81 6684.79 247.67 28455.29

TETF 4.83 0.61 16.99 0.14 0.01 1.16

AETF 8.25E-03 7.12E-03 8.00E-03 1.66E-03 5.93E-04 1.18E-02

TDFL 9.06E+05 7.78E+05 7.57E+05 2.07E+05 2.38E+04 4.26E+05

TEB -1057.05a -3.24a 24067.01 -30.42a 0.00 572.08

UAS 88.66 21.00 328.15 9.47 2.00 57.37

UAR 26.19 6.00 240.67 23.55 5.00 188.21
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samples increases, the metrics of deep learning-based 
methods are improved. GraphSAGE has the most obvi-
ous improvement, and its precision rate has increased by 
about 6%. However, the random walk-based method and 
our method show a performance drop when the training 
set ratio is increased from 70% to 80%. Among them, the 
performance of our method drops by about 1.5%-2.7%.

(3) Compared with random walk-based methods, our 
method outperforms by 3%-20% on different evalua-
tion metrics. Among them, Deepwalk has the worst per-
formance, and the precision index in the D2 dataset is 
21.48% lower than our method. Node2vec has the best 
performance, and the precision index in the D3 dataset 
is only 2.93% lower than our method. Node2vec obtains 
better node representation through different transfer 
strategies, however, this method ignores transaction 
time, transaction amount and transaction type, result-
ing in incomplete representation learning of nodes. 
Our T2A2vec learns a more efficient node representa-
tion through a random walk strategy based on transac-
tion time, transaction amount, and transaction type, and 
achieves better results.

(4) Significant differences in performance have also 
emerged for deep learning-based graph representation 
learning methods. Among them, the performance gap of 
GCN reaches 10%-20%, and GCN performs neighbor-
hood information aggregation in the process of neural 
network learning, which may cause the error to enlarge 
as the neural network deepens. GAT and GarphSAGE 
enrich the features of nodes and enhance the representa-
tion ability of nodes by sampling and aggregating neigh-
bors with statistical characteristics.

(5) By comparing several widely selected classifiers, 
it is found that the classifier is also an important factor 
affecting the detection performance of malicious nodes. 
The performance gap of different classifiers is obvious. 
For dataset D1 , the highest F1 score was achieved by the 
random forest method with a score of 88.27%, followed 

by logistic regression with a score of 85.66%. Naïve 
Bayes had the lowest F1 score of 72.13%. For dataset D2 , 
the random forest method had the highest F1 score of 
93.08%, followed by SVM with a score of 79.75%. Naïve 
Bayes had the lowest F1 score of 72.17%. For dataset D3 , 
the logistic regression method had the highest F1 score 
of 87.08%, followed by random forest with a score of 
90.83%. Naïve Bayes had the lowest F1 score of 73.22%. 
Overall, the random forest method performed the best 
across all three datasets, while Naïve Bayes had the low-
est performance. The logistic regression and SVM meth-
ods also had strong performance across the datasets. The 
decision tree method had moderate performance, rank-
ing fourth out of five methods.

Random walk strategy and embedding dimension analysis 
(RQ3)
To answer RQ3, when the node embedding dimension d 
is equal to 4, 8, 16, 32 and 64, the classification effects of 
different walking strategies are tested, and the final classi-
fication results are shown in Fig. 4. The following conclu-
sions can be drawn:

(1) Different random strategies behave differently in 
different situations. The method proposed in this paper 
outperforms the other three random walk strategies. The 
random walk strategy based on transaction time outper-
forms the random walk strategy based on transaction 
type.

(2) Different embedding dimensions significantly 
impact the classification effect. With the increase of the 
embedding dimension, the performance of the algorithm 
is obviously improved. The most obvious improvement in 
overall performance is the time-based random walk strat-
egy, whose recall rate has increased from 68% to 87%. 
Our algorithm achieves excellent results even when the 
embedding dimension is 4, with an overall performance 
of 86%. The most obvious performance improvement is 
that the embedding dimension is increased from 4 to 8. 

Table 5 The classification results (%) over the methods

Method Dataset D1 D2 D3

Metric Pre. Recall F1 Pre. Recall F1 Pre. Recall F1

Random walk DeepWalk 71.72 69.52 70.60 71.73 73.74 72.73 71.49 73.55 72.51

LINE 81.89 86.28 84.03 83.42 87.11 85.22 82.59 86.91 84.69

Node2Vec 81.31 81.86 81.58 86.85 81.98 84.34 87.52 81.96 84.65

Deep learning GCN 76.21 76.21 76.22 77.75 73.64 75.65 77.72 74.18 75.91

GAT 83.31 86.58 84.92 84.76 86.69 85.71 84.83 87.23 86.01

GraphSAGE 83.28 87.12 85.16 84.45 88.00 86.19 89.21 88.38 86.52

Blockchain method trans2vec 88.09 84.47 86.25 88.6 85.19 86.86 89.21 85.79 87.47

Ours T
2A2vec 87.26 89.33 88.27 93.21 92.96 93.08 90.45 91.23 90.83
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Fig. 4 Performance comparison of different random walk strategies under different embedding dimensions

Fig. 5 Results of parameters analysis

Table 6 Classification results(%) of different classification methods

Method D1 D2 D3

Pre. Recall F1 Pre. Recall F1 Pre. Recall F1

Naïve Bayes 72.72 71.55 72.13 72.72 71.63 72.17 73.81 72.64 73.22

SVM 78.59 78.50 78.54 79.82 79.70 79.75 79.81 79.92 79.86

Logistic regression 85.76 85.57 85.66 86.21 86.27 86.23 87.06 87.12 87.08

Decision tree 80.67 80.76 80.71 83.26 83.23 83.24 82.44 82.55 82.49

Random forest 87.23 89.33 88.27 93.21 92.93 93.08 90.45 91.20 90.83
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Afterwards, with the increase of the embedding dimen-
sion, the speed of the algorithm performance improve-
ment decreases. When the embedding dimension reaches 
64, the performance gap is generally around 2%-3%. This 
is because the larger the node vector dimension is, the 
richer the network structure and node information can 
be retained. When a high accuracy embedding result is 
needed, a larger embedding dimension should be chosen.

Parameter sensitivity analysis (RQ4)
To answer RQ4, the parameters l, r, k ,α,β and γ in the D2 
dataset were analyzed. When analyzing parameters, all 
other parameters are set to default values. The final clas-
sification results are shown in Fig. 5. The following con-
clusions can be drawn:

(1) The parameters l, r and k all achieve the best results 
at 10. Among them, the parameter l has the least impact 
on the algorithm performance, and the algorithm perfor-
mance on the D2 dataset fluctuates between 91.58% and 
93.03%. The parameter r has a greater impact on the algo-
rithm performance than the parameter l, and the algo-
rithm performance of the D2 dataset fluctuates between 
90.97% and 93.03%. The parameter k has the greatest 
impact on the performance of the algorithm. When k is 
equal to 6, the F1 of the D2 dataset is only 82%. When 
k is increased from 6 to 8, the performance improve-
ment is the most obvious, and the overall performance is 
improved by about 8%.

(2) The effect of the hyperparameter α,β , γ on the 
experimental results in the D2 dataset can be seen in 
Fig.  5(d)-(f ) that the optimal results are achieved when 
α,β , γ is taken as (0.1, 0.05, 0.1) and (0.1, 0.7, 0.8), 
respectively.

Conclusion and future work
In this paper, a method called T2A2vec is proposed 
to handle the task of classifying nodes in blockchain. 
Through the analysis of blockchain transaction data, this 
paper designed a node feature collection strategy , which 
can completely and accurately describe the node’s trans-
action behavior. T2A2vec proposes three random walk 
strategies, based on transaction time, transaction type, 
and transaction amount to solve the problem of account 
classification in blockchain. Using these three strate-
gies, more efficient graph learning can be performed on 
graphs, resulting in stronger node representations. By 
obtaining node representations from node features and 
graph learning, this paper improves the performance of 
account classification detection on blockchain. Extensive 
experiments demonstrate that our proposed T2A2vec 
outperforms state-of-the-art algorithms in performance 
and utility.

In future work, the openness of blockchain technology 
will be considered to propose a detection method for spe-
cific categories of illegitimate behavior accounts. Instead, 
this work only targets the detection of nodes on the block-
chain and cannot identify the type of nodes.
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