
Wang et al. Journal of Cloud Computing (2023) 12:88
https://doi.org/10.1186/s13677-023-00466-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Ensuring security in edge computing
through effective blockchain node detection
Shenqiang Wang1, Zhaowei Liu1*, Haiyang Wang2 and Jianping Wang3

Abstract

The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge
computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data.
Despite the advantages that blockchain technology offers, there are also security threats that must be addressed.
Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction
records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain
control and manipulate transaction records of the blockchain network, which can compromise the reliability and
security of edge computing. This paper proposes a blockchain node detection method named T 2A2vec that provides
a more secure, credible, and reliable solution to address these challenges. In order to achieve T 2A2vec , a transaction
dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a
transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to
extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract
transaction features. The obtained account features and transaction features are fused to obtain account representa-
tion. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes.

Keywords Blockchain, Graph Embedding, Security, Edge Computing

Introduction
Edge computing is a novel computing paradigm that dis-
tributes computing and storage resources to the edge of
the network, providing significant advantages for vari-
ous application scenarios, such as the Internet of Things
[1–3], smart city [4, 5] and industrial Internet [6–8].
With the significant growth in the number of devices
connected to the Internet of Things, the devices gener-
ate massive data at the network’s edge, making the pro-
tection of private data a critical task of edge computing
[9–11]. However, traditional privacy protection methods

require centralized control, which is not feasible due to
the distributed nature of devices within the edge com-
puting environment. Thus, achieving decentralized pri-
vacy protection in edge computing is a challenging task.
Nonetheless, blockchain technology’s decentralized char-
acteristics suggest a promising avenue for privacy protec-
tion in edge computing [12].

Blockchain, as a distributed ledger technology, can
enable secure data exchange and sharing in an untrusted
environment, thereby effectively protecting data privacy
and security [13, 14]. Given its significant potential in
ensuring data privacy protection, blockchain technology
has been applied to edge computing as a solution for data
privacy protection. Some studies have focused on how
to secure data privacy and address the security issues
of edge computing by applying blockchain solutions.
In edge computing, devices share data and computing
resources by connecting to cloud servers. However, tra-
ditional centralized storage methods no longer meet the

*Correspondence:
Zhaowei Liu
lzw@ytu.edu.cn
1 School of Computer Science and Control Engineering, Yantai University,
Yantai, China
2 Institute of Network Technology Yantai, Yantai, China
3 Shandong marine resources and environment Research Institute, Yantai,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00466-y&domain=pdf

Page 2 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

requirements due to the sensitivity, privacy and unbal-
anced data distribution. Liang et al. [15] Therefore, differ-
ent researchers have proposed blockchain-based privacy
protection solutions as an alternative. Encrypted technol-
ogy and smart contracts have been employed to achieve
data sharing and access control [16], while privacy pro-
tection and anonymity have been achieved through tech-
nologies such as zero-knowledge proof [17]. In addition,
some studies have also proposed blockchain-based data
ownership and license proof mechanisms to protect data
privacy and ensure data security [18].

However, there are also security threats to using block-
chain in edge computing. Attackers may manipulate cer-
tain nodes in the blockchain network, thus tampering
with transaction records or performing other improper
operations. This type of attack may result in incorrect
transactions or unauthorized operations, thus affect-
ing the reliability and security of edge computing [19].
Attackers may also attempt to steal data from the block-
chain network, thereby compromising the privacy of
edge computing. Such attacks may lead to data breaches
and privacy threats, thereby affecting the security and
reliability of edge computing. Attackers may attack the
blockchain network by creating a large number of fake
nodes in order to gain control and manipulate transac-
tion records [20]. This type of attack may result in an
imbalance in the number and capabilities of nodes, thus
affecting the security and stability of edge computing
[21].

In view of the aforementioned security issues, the rapid
and accurate identification of various accounts on block-
chain platforms has become a hot topic in the field of
blockchain security. Networks are a common language
for describing interactive systems in the real world, and
network representation learning is widely regarded as
an effective tool for analyzing network systems [22, 23].
The current method for detecting illegal accounts on
the blockchain is to learn the network representation of
nodes and use methods such as node classification and
link prediction to complete illegal account detection.
These methods can be divided into three categories. One
is to extract manual features based on transaction history
rules or extract statistical features through automatic
feature construction tools, and combine the extracted
features with traditional machine learning methods to
complete the detection of illegal accounts in blockchain.
But this approach requires considerable manpower, and
the use of experts to exhaustively list all the relevant
characteristics, in the face of an almost infinite number
of blockchain addresses, cannot rely on the manual way
to mark all the addresses, and this marking cannot guar-
antee realtime results, for example, the exchange will
occasionally change their own address, illegal activities

often change their own address to avoid crackdown,
this time you need to go to manually update. Another
approach is to use the random walk method to mine deep
features from the blockchain transaction network. The
last approach is to apply graph neural networks, a type of
neural network specifically designed to process graphs, to
automatically learn representations from the blockchain
transaction network. While each method has its advan-
tages and limitations, the use of random walk and graph
neural networks shows promising results for accurate
and efficient detection of illegal accounts on blockchain
platforms.

Despite significant progress in detecting blockchain
nodes, two critical issues remain unresolved. Firstly,
existing methods suffer from an unbalanced spatial and
temporal distribution of datasets, leading to a biased col-
lection of various account types over time. Consequently,
such biases can result in incomplete or inaccurate con-
clusions, distorting understanding of the network’s
behavior. Secondly, current methods lack transaction
information, which is crucial in accurately representing
a node’s characteristics. Without this information, these
methods cannot capture the nuances and complexities of
the network, leading to suboptimal node representations.
Addressing these two challenges is critical in ensuring a
comprehensive understanding of blockchain nodes. It
requires developing novel data collection methods that
consider spatial-temporal distribution and incorporate
transaction information and account characteristics. By
optimizing node representations, it is possible to obtain
more precise and dependable information about the
blockchain network, resulting in an improved compre-
hension of its intricacies.

In order to solve these challenges, a novel method of
blockchain node behavior detection is proposed that
integrates the detection of account features, transaction
Time, transaction Type and transaction Amount, called
T2A2vec. This paper presents a novel method for iden-
tifying illicit nodes in the blockchain network. A trans-
action network is constructed by collecting a dataset of
blockchain transactions that are uniformly distributed
across space and time. In this network, nodes represent
accounts, and edges describe transactions. To gener-
ate node representations, a random walk strategy is uti-
lized that takes into account transaction time, type, and
amount. The resulting node representations are then
input into different classifiers, and extensive experiments
on the collected datasets validate the effectiveness of the
algorithm. The method enables the identification and
evaluation of transaction risk based on transaction type,
providing users with the ability to make informed deci-
sions and prevent fraud. The main contributions of the
paper are as follows:

Page 3 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

• This paper proposes a method to address the issue
of uneven spatiotemporal distribution of blockchain
labels. The proposed method captures transaction
data based on time to obtain a blockchain transac-
tions dataset with a uniform distribution across space
and time.

• To identify illicit accounts in the blockchain network,
the paper introduces transaction feature extraction
and account feature extraction components. These
components use transaction information from the
blockchain transaction network to generate valid
node representations in the network.

• Extensive experiments were conducted on the block-
chain dataset collected in this paper. The experimen-
tal results show a higher prediction accuracy than
the traditional blockchain phishing node prediction
method.

The remaining portion of this paper is organized as fol-
lows. Section Related Work summarizes related work.
Section Method Introduction specifies the method pro-
posed in this paper. Section Experiments conducts exper-
imental evaluation and analysis. Section Conclusion
summarizes the work of this paper and provides direc-
tion for future work.

Related work
This section discusses related research by academic
researchers on nodes detection in blockchain. Due to
the popularity and widespread use of cryptocurrencies
such as Bitcoin and Ethereum, complex network analysis
for cryptocurrencies and their security applications have
very important research and application value.

Boosting algorithms based on machine learning can
realize blockchain network analysis [24]. Farrugia et al.
[25] proposed a method to detect illegal accounts in
Ethereum using XGBoost classifier. They analyzed
three features that have the greatest impact on the out-
put of the illegal account detection model ‘time differ-
ence between the first and last transaction’, ‘total Ether
balance’ and ‘minimum value received’, this method
effectively used the features of Ethereum nodes but
does not analyze the transaction information between
nodes, which reduced the accuracy of prediction.
Farimah et al. [26] proposed a framework to identify
illegal entities in the Ethereum blockchain network,
which has good performance in integrated learning
methods including random deep forest, stacked clas-
sifier and AdaBoost, and can effectively detect ille-
gal Ethereum entities. Zhang et al. [27] proposed a
method for detecting Ethereum Ponzi schemes based
on an improved LightGBM algorithm. Chen et al. [28]

proposed a graph-based cascading feature extraction
method based on transaction records by kind of light-
GBM-based double sampling integrated framework
identification can account. The analysis of blockchain
network using the Boosting algorithm focuses on the
node attribute information in the blockchain network
while ignoring the transaction information between
nodes.

In recent years, deep learning techniques have been
introduced into graph representation learning due to
their effectiveness in deep feature extraction, among
which graph convolutional networks are more widely
studied [29, 30]. Liu et al. [31] proposed a blockchain
identity inference method based on graph convolutional
networks. Different types of accounts are collected and
node transaction characteristics were analyzed, and
some enhancement methods were proposed. Weber
et al. [32] proposed a bitcoin antimoney laundering
method using graph convolutional networks, which
provided a timeseries graph of over 200,000 bitcoin
transactions and classifies illegal transactions using LR,
RF, MLP, and variants of graph convolutional networks,
and the results show the superiority of random forest.
The analysis of blockchain networks using graph neural
networks places greater emphasis on node features and
requires a high-quality dataset.

Graph embedding is a process of steganography
graph data into low-dimensional dense vectors, which
can be an excellent solution to the problem that graph
data is difficult to input into machine learning algo-
rithms efficiently [33, 34]. The data in the blockchain
contains multiple information with high dimensional-
ity, and graph embedding can be an excellent solution
to this problem. Yuan et al. [35] used node2vec for
phishing node classification. Wu et al. [36] proposed a
method to detect phishing scams by digging through
the transaction records of Ethereum. This method
extracted address features by proposing a new net-
work embedding algorithm trans2vec, and then used
One-Class SVM to classify Ethereum nodes into ordi-
nary nodes and phishing nodes. Yuan et al. [37] used
an improved Graph2Vec based implementation for
classification prediction of the constructed transaction
subgraphs. Lin et al. [38] proposed a temporal weighted
multidigraph embedding method to analyze Ethereum
transactions and perform node classification. Block-
chain network analysis based on graph embedding
emphasizes transaction information and ignores the
attributes of illegal nodes, which reduces the prediction
accuracy. The analysis of blockchain networks based on
graph embedding places greater emphasis on transac-
tion information while ignoring the attributes of illegal
nodes.

Page 4 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

Method introduction
This section will discuss the blockchain node detection
method based on graph representation learning. The
overall framework is shown in Fig. 1, which is divided into
three parts: data collection, accounts feature extraction
and transaction feature extraction. The graph construc-
tion part mainly involves the transaction data collected
from blockchain illegal accounts and normal accounts. In
the account feature extraction part, statistical features of
accounts are calculated and a BP neural network is used
to extract the account features. In the transaction feature
extraction part, transaction features are extracted using a
random walk strategy based on transaction time, transac-
tion type, and transaction amount. The obtained account
features and transaction features are fused to obtain a
blockchain account representation and used for illegal
account identification. The main notations used in this
paper are summarized in Table 1.

Data collection
The blockchain’s transparency and openness make trans-
action data containing rich information and complete
traces of financial activities available to the public. The
most simplest way to obtain blockchain transaction data
is to access the blockchain network and synchronize
block data through blockchain clients (such as Bitcoin
Core1 and Geth2) in order to obtain the original data of
the blockchain. Another way is to retrieve transaction
data through the blockchain browser.

The problem of identifying addresses on the block-
chain, studied in this article, can be modeled as a multi-
class problem, requiring a classification model trained
through supervised learning. To achieve this goal,

sufficient labeled data is needed as the training set, as
well as a large dataset as the basis for the research work.
Only with enough sample data can the model learn the
relationships between features within the data and ulti-
mately achieve a better performance in classification.

Due to the lack of a dataset of illegal nodes in edge
computing based on blockchain, this study chose to use
the Ethereum transaction dataset to verify the effective-
ness of the proposed method. Although there are certain
differences between Ethereum transaction data and edge
computing data, they share some similarities, including
structural similarity, temporal similarity, massive scale,
and heterogeneity [39, 40]. Firstly, both can be repre-
sented as graph structures. Secondly, since edge comput-
ing data typically includes the start and end times of the
data, each transaction in Ethereum has a fixed transac-
tion timestamp and also possesses temporal attributes.
Thirdly, another characteristic of the data appearing
simultaneously in edge computing is its large volume,
which requires a considerable amount of storage space.
According to statistics, the majority of the data in block-
chain transactions are in the tens of millions or more.
Lastly, due to the differences between the sending and
receiving devices, most edge computing data is repre-
sented as heterogeneous data, while Ethereum transac-
tion data includes user types such as traders and miners,
as well as transaction types such as calling contract trans-
fers, which also demonstrate heterogeneity. Therefore,
the effectiveness of the proposed method is verified by
accessing Ethereum transaction records and collecting
the necessary information independently.

In this study, collected an Ethereum transaction dataset
consisting of two parts: illegal and normal nodes, which
illegal nodes represent the attacking nodes in the block-
chain. This dataset provides the labeled data necessary
for training the classification model and enables us to
study the features that distinguish illicit addresses from
non-illicit ones. Using this dataset, it is possible to accu-
rately identify illegal addresses.

All illicit nodes were collected from Etherscan3, a block
explorer and analytics platform for Ethereum, a decen-
tralized smart contracts platform. This website also pro-
vides Etherscan account addresses, which show not only
the content of the scam but also the accounts suspected
of being involved in the scam.

All normal nodes are obtained through Infura4, an
excellent open Ethereum node that provides a stand-
ard RPC API for developers to call. To address the issue
of uneven distribution in the dataset, it is necessary to

Table 1 Notations

Symbol Explanation

G The blockchain transaction network.

V The set of nodes.

E The set of edges.

VL The set of nodes with attributes.

yi Embedding of the node vi.

πν ,x The unnormalized transition probability from node v to x.

PAux Transaction amount based random walk strategy.

PTux Transaction time-based random walk strategy.

PEux Transaction types based random walk strategy.

Z The embedding results.

1 Bitcoin Core, https:// bitco incore. org/
2 Geth, https:// geth. ether eum. org/

3 Etherscan labelcloud, https:// ether scan. io/ label cloud
4 Infura, https:// infura. io/

https://bitcoincore.org/
https://geth.ethereum.org/
https://etherscan.io/labelcloud
https://infura.io/

Page 5 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

first analyze the active dates of each illegal account and
randomly extract Ethereum accounts based on their
active dates before obtaining normal accounts. During
the extraction process, to avoid having duplicate, non-
unique, and smart contract accounts, they will be filtered
out. A check is performed to determine if the collected
normal accounts have been flagged on the Etherscan
website. If a flagged address is found, it will be removed
from consideration. Since most accounts on the block-
chain are honest, the remaining unflagged accounts that
were randomly selected are considered normal accounts.
This method of random selection based on active dates
helps solve the issue of uneven distribution in the data
while improving the accuracy and stability of the illegal
account identification algorithm.

Finally, the API provided by Etherscan was used to
query the transaction information for each account,
obtaining first-order transaction data for each account,
which was then saved. The transaction timestamp, trans-
action amount, and transaction type were all considered
as edge attributes, with transaction type being considered
as the edge type. Transaction types include transfers,
contract creation, and invocation contracts.

By performing the above operations, a comprehen-
sive dataset was obtained. This dataset includes the rel-
evant transaction information and node features for each
account. This dataset enables us to accurately identify
illegal addresses and gain a deeper understanding of the
transaction patterns on the blockchain network.

Graph construction
Construct the blockchain transaction network as a multi-
directed graph G = (V ,E) , where V is the set of nodes
and E is the set of edges. The total number of accounts
is N = |V | . Each node v ∈ V represents an externally
owned accounts (EOA) or a contract account (CA). A
node represents an Ethereum account, and the rest of
this paper will use nodes and accounts interchangeably
for representation.

The set VL is the set of nodes with attrib-
utes. The set Vu is the set of nodes connected
to node u. The set E contains edges, and each
edge can be represented as a quintuplet, i.e.,
E = {(vi, vj ,w, t, r)|vi, vj ∈ V ,w ∈ R

+ ∪ 0, t ∈ Z, r ∈ R} ,
where (vi, vj) denotes the transaction from vi to vj ,w
denotes the transaction amount, t denotes the timestamp
of the transaction, and r denotes the transaction type.
The final transaction network is shown in Fig. 2, where
n1, n2, n3 are EOA, n4, n5 are CA. Each account contains
a feature vector, and each transaction contains three fea-
tures: transaction time, transaction type, and transaction
amount.

Account features extraction
In this paper, the account feature set is constructed
based on the transaction history of the account. It
includes data such as the number, value, and frequency
of transactions that are easy to calculate. It further
reveals the correlation between trading behavior and
accounts to discover the variability of trading pat-
terns among different accounts. In this paper, a total
of 18 transaction features are extracted. The details are
shown in Table 2. Some of the features are described as
follows.

Number of Transactions of Send (NTS): the number of
transactions sent from an account, NTSi represents the
number of transactions sent from account i.

Total Value of Send (TVS): the sum of the transaction
values sent by the account, TVSi represents the sum of
the transaction values sent from account i.

Average Value of Send (AVS): represents the average
value of transactions sent by an account, which can be
calculated from the current account NTS and TVS, cal-
culated as:

where TVSi represents the average value of transactions
sent from account i.

Maximum Value of Send (max_VS) and Minimum
Value of Send (min_VS), which represent the maximum
and minimum time interval between two transactions for
a given account, respectively. Ti,k denotes the timestamp

(1)SAVi =
STVi

NTSi

Table 2 Complete list of the 18 extracted features

Feature Description

1 NTS The number of transactions of send.

2 max_VS The maximum value of send.

3 min_VS The minimum value of send.

4 TVS The total value of send.

5 AVS The average value of send.

6 avg_TIS The average time interval of send.

7 NTR The number of transactions of receive.

8 max_VR The maximum value of receive.

9 min_VR The minimum value of receive.

10 TVR The total value of receive.

11 AVR The average value of receive.

12 avg_TIR The average time interval of receive.

13 TETF The total ether transaction fee.

14 AETF The average ether transaction fee.

15 TDFL The time difference between the first and last.

16 TEB The total ether balance.

17 UAS The unique address of send.

18 UAR The unique address of receive.

Page 6 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

of the k-th transaction sent by account i. The max_VS
and min_VS are calculated as:

(2)max _VSi =max
k

(∣

∣Ti,k − Ti,k+1

∣

∣

) Average Time Interval of Send (avg_TIS): represents
the average time interval of sending transactions for an
account, which can be calculated from the time interval
of each transaction and NTS. avg_TISi represents the

(3)min _VSi =min
k

Ti,k − Ti,k+1

Fig. 1 The overall framework for account detection on the blockchain

Fig. 2 The blockchain transaction network

Page 7 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

average time interval of sending for account i, k is the
total number of transactions for account i and is calcu-
lated as:

Number of Transactions of Receive, Maximum Value
of Receive, Minimum Value of Receive, Total Value of
Receive, Average Value of Receive, Average Time Interval
of Receive features are calculated in a manner similar to
the features of sending transaction accounts, and are cal-
culated as in Eqs. (1) to (4).

Total Ether Transaction Fee (TETF): the sum of trans-
action fees for each account, which can be calculated
from the price of gas and gas used in the transaction,
calculated as:

where k is the number of transactions for the i-th
account. PGi,j and GUi,j represent the price of gas and gas
used in the j-th transaction for the i-th account, respec-
tively. And uniformly convert Wei to Ether.

Average Ether Transaction Fee (AETF): the average of
transaction fees for an account, which can be obtained
from the TETF and the number of transactions, calcu-
lated as:

Total Ether Balance (TEB): the account balance calcu-
lated based on the collected transaction records, which
can be obtained from the TVS and TVR, calculated as:

Each account possesses unique features, such as bal-
ance, transaction frequency, transaction type, and
transaction amount. However, individual account char-
acteristics alone are insufficient for identifying illegal
accounts. Therefore, it is necessary to extract deeper
information based on these features in addition to
extracting account features. By extracting and analyz-
ing account features, it is possible to more accurately
identify illegal accounts.

To achieve this, after collecting account transac-
tion features, a BP neural network is used to extract
feature vectors from the collected data. Specifically,
transaction features are normalized and passed to the

(4)avg_TISi =

∑k
j=1 Ti,j+1 − Ti,j

NTSi

(5)k = NTSi + NTRi

(6)TETFi =

k
∑

j=1

(

GUi,j × PGi,j

)

× 10−18

(7)AETFi =
TETFi

k

(8)TEBi = TVRi − TVSi

BP neural network to learn the hidden relationships
between accounts. The resulting account feature vector
is represented as VL , and the calculation formula is as
follows:

where Wst is the weight matrix of the BP neural network,
fs is the feature vectors from the collected data, bst is the
bias term, and f() is the activation function.

Transaction feature extraction
Existing methods for identifying illegal accounts on the
blockchain have not considered the various types of trans-
actions on the blockchain comprehensively. Instead, differ-
ent types of transactions have been grouped as one type,
without taking into account transaction types like calling
and creating smart contracts. In order to address the need
for a comprehensive approach to different transaction
types, this paper proposes three random walk strategies to
transform blockchain nodes into low-dimensional vectors
and extract transaction features of blockchain accounts.

To gain a more comprehensive understanding of the
characteristics of the transaction network and to effec-
tively sample node neighborhoods, this method fully
considers the sampling strategy based on transaction
time, transaction type, and transaction amount. The sam-
pling strategy can be defined as follows: Given a source
node u, sample a random walk sequence of length l, with
the starting vertex c0 = u . To sample ci , the following
strategy is used:

where πν,x is the unnormalized transition probability
from node v to x, and Z is the normalizing constant.

Transaction time‑based random walk
In blockchain when a new block is created, the transac-
tions contained in the block are sorted according to spe-
cific rules, and then the transactions are packed into the
block and a timestamp is generated, which is the time of
the transaction. For illegal nodes, the last few transac-
tions are usually the transfer of funds obtained from ille-
gal activities, so this sampling strategy is biased towards
the time of the last few transactions. Also under time-
based biased sampling, the transfer probability from
node u to neighboring nodex ∈ Vu is

where MaxT (u, x) denotes the latest timestamp of the
transaction between node u and x, and SumT

(

u, x′
)

(9)VL = f
(

Wst • fs + bst
)

(10)P(ci = x | ci−1 = v) =

{

πv,x

Z , if (v, x) ∈ E
0, else

(11)PTux =
MaxT (u, x)

�x′∈Vu
SumT (u, x′)

Page 8 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

denotes the sum of the timestamps of the transactions
between node u and other nodes.

Transaction type‑based random walk
Blockchain transactions have different types, such as
money transfers, calling smart contracts, and creating
smart contracts. The majority of illegitimate accounts
involve transfer transactions, while legitimate accounts
perform more transfers and contract calls. Setting dif-
ferent weights for each transaction type can be helpful
in restricting the sampling process to specific kinds of
transactions. For instance, weights of 1, 2, and 3 can be
set for transfers, smart contract calls, and smart contract
creations, respectively. This strategy can increase the
accuracy of estimating the transfer probability between
connecting nodes. The transfer probability from node u
to neighboring nodex ∈ Vu is

where MaxE(u, x) denotes the edge with the largest
weight between node u and x, and SumE

(

u, x′
)

 denotes
the sum of the transaction type weights between node u
and other nodes.

Transaction amount‑based random walk
The larger the transaction amount between blockchain
accounts, the closer the relationship between the two
nodes. Therefore, this sampling strategy tends to favor
the transactions with the amount-based biased sampling,
the transfer probability from node u to neighboring node
x ∈ Vu is

where MaxA(u, x) denotes the maximum amount of
transactions between node u and x, and SumA

(

u, x′
)

denotes the sum of transaction amounts between node u
and other nodes.

When using different random walk strategies for ran-
dom walk, the non-normalized transition probabil-
ity πv,x from node u to x is defined as PTux ,PEux ,PAux ,
respectively.

Then a random walk is performed using the calculated
transfer probabilities, and finally the node embedding is
optimized using the stochastic gradient descent method
to obtain the objective function f. The objective function f
maximizes the log probability of the occurrence of nodes
from the neighborhood NS(u) for a node u conditioned
on its node embedding, i.e.,

(12)PEux =
MaxE(u, x)

�x′∈Vu
SumE(u, x′)

(13)PAux =
MaxA(u, x)

�x′∈Vu
SumA(u, x′)

Specifically, on the basis of the constructed transaction
network, in order to take into account the transaction
timestamp, transaction amount, transaction type and
original graph structure, this paper propose a method
that uses the hyperparameters α,β , γ ((α,β , γ) ∈ [0, 1])
to balance the effects of the multiple embeddings, and
the embedding results can be expressed as

where Ze is the embedding result after combining multi-
ple cases, Z0 is the embedding result of the random walk
strategy based on transaction amount, Z1 is the embed-
ding result of the random walk strategy based on time,
Z2 is the embedding result of the random walk strategy
based on transaction type, and Z3 is the unbiased embed-
ding result.

Feature fusion
Finally, the embedding results are combined with labeled
nodes to consider node information. The final embedding
result is obtained as

where || represents the vector splice between Ze and VL.
In conclusion, the pseudocode for T2A2vec is presented

in Algorithm 1 and Algorithm 2. Algorithm 1 aims to
generate a random walk sequence based on the calculated
transition probabilities of the graph. The input consists of
the graph with the transition probabilities, the starting
node u of the walk, and the length l of the random walk
sequence. The output is a random walk sequence with a
length of l. First, initialize the walk result list walk. Then,
the iterative process of randomly selecting the next node
s, via iterating through the current node v and its neigh-
boring nodes bv , is executed. Finally, the selected node s
is added to the walk result sequence. After each iteration
is completed, the walk sequence is returned.

Algorithm 2 applies different sampling strategies to
the constructed blockchain transaction graph, extracts
account features and transaction features, and fuses
the account features and transaction features to obtain
the fused embedding results. The inputs of the algo-
rithm are the constructed transaction graph G, embed-
ding dimension d, walk length l, neighborhood size k,
number of random walk sequences starting from each
source node r, bias parameters α,β , γ , and node attrib-
utes VL , and the output is the most embedding result Z.
First, the account features are extracted using Eq. 9, and
the transfer probabilities are calculated using Eqs. 11
to 13. Then, iterative sampling is performed using

(14)max
f

∑

u∈V

log Pr
(

NS(u) | f (u)
)

(15)Ze = αZ0 + βZ1 + γZ2 + Z3

(16)Z = Ze || VL

Page 9 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

different transfer probabilities, and the specific itera-
tive process is to set weights for the edges based on the
calculated transfer probabilities, reconstruct the new
graph G′ , and initialize the list walks to be empty. For
each node, a sequence of r random walks of length l is
generated starting at that node. The computational pro-
cedure is to execute Algorithm 1 for each node u ∈ V
and add the result to walks. Then, stochastic gradient
descent is executed to solve for the transaction char-
acteristics of the node. The algorithm finally fuses the
account features and transaction features to obtain the
feature representation of the node.

Algorithm 1 T 2A2walk

Algorithm 2 T2A2vec AlgorithmExperiments
In this section an experimental evaluation is performed
to assess the effectiveness of the proposed T2A2vec
algorithm using the dataset of Ethereum transactions
collected in this paper. Specifically, the goal of this
paper is to answer the following research questions:
RQ1) Is there a difference between the node charac-
teristics of normal and illicit accounts? RQ2) Does T2

A2vec effectiveness in detecting illicit accounts outper-
form the state-of-the-art benchmark algorithm? How
much different classifiers affect the performance? RQ3)
How much different random walk strategies and differ-
ent embedding dimensions affect the performance of
the method? RQ4) How much different parameter set-
tings affect the performance of the method?

Dataset and evaluation Criteria
Experiments were conducted using the data set col-
lected in Section III-A. This dataset has 4,986 illicit
nodes, 5,000 normal nodes, and 312,751 accounts
transacting with illicit and normal nodes, for a total of
1,129,542 transaction records.

To comprehensively evaluate the effectiveness of
the method, the dataset is divided into three ways, as
shown in Table 3. The training sets of D1,D2 , and D3
contain 50%, 70%, and 80% of randomly selected label
nodes, respectively. During the training, validation, and
testing of different models, only the classification per-
formance of labeled nodes is considered.

By analyzing baseline methods compared with simi-
lar work, the T2A2vec method is compared with several
methods, including: (1) some random walk methods
(i.e., DeepWalk [41], Node2Vec [42], LINE [43]), (2)
some popular deep learning network-based despicable
methods (i.e., GCN [44], GAT [45], GraphSAGE [46]),
(3) some of our replicated Blockchain node detection
methods (i.e., trans2vec [36]).

• DeepWalk [41]: DeepWalk learns the social repre-
sentation of a network by truncated random walk,
which gives better results even when the network
has few labeled vertices. The method also has
the advantage of being scalable and can adapt to
changes in the network.

• Node2vec [42]: Node2vec belongs to the class of
graph neural network random walk models, which
generate a random walk, sample the random walk,
get a combination of nodes, context, and then
model this combination, and get a representation of
the network nodes by processing word vectors.

• LINE [43]: By optimizing the first-order similarity
and second-order similarity, two representation
vectors of the vertex, the source vector and the tar-
get vector, can be obtained, and when used, the two
vectors are combined as the final representation of
the vertex.

• GCN [44]: GCN is a neural network architecture that
operates on graph data, it is so powerful that even a
randomly initialized two-layer GCN can generate
feature representations of nodes in a graph network.

• GAT [45]: GAT is a representative graph convolu-
tional network that introduces an attention mecha-
nism to achieve better neighbor aggregation, and the
attention mechanism also endows the model with a
certain degree of interpretability.

• GraphSAGE [46]: GraphSAGE uses a multi-layer
aggregation function, where each layer aggregates
the information of nodes and their neighbors to get
the feature vector of the next layer. GraphSAGE uses

Page 10 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

the neighborhood information of nodes and does not
depend on the global graph structure.

• trans2vec [36]: trans2vec is a method to detect
Blockchain phishing scams by mining Blockchain
transaction records, taking into account the transac-
tion amount and timestamp.

The embedding dimensions of DeepWalk, Node2Vec,
LINE, and trans2vec methods are all set to 64, and the
rest of the parameters are set according to the optimal
parameters in the paper.

This paper implements the proposed algorithm using
the graph deep learning toolkit CogDL [47]. All experi-
ments were conducted on a Linux server with GPU
(GeForce GTX 3090) and CPU (Intel Xeon E5-2620),
running Ubuntu 16.04.1. Python v3.8.6 and CogDL v0.5.3
were the versions used for the implementation of the
proposed algorithm. The following parameters need to
be specified in this paper: embedding size d, number of
walks per node r, walk length l, context size k, and hyper-
parameters α,β , and γ . For the experiments conducted
in this paper, the parameters were set as follows: d=64,

r=20, l=5, k=10, and α=β=γ=0.5. Each experiment in
this paper was repeated 10 times.

In order to evaluate the classification effect of different
classification methods, three evaluation indicators are
selected: Precision, Recall and F1-score. These three indi-
cators are set as follows.

Node feature analysis (RQ1)
To answer RQ1, the node characteristics of different
types of nodes are analyzed. Fig. 3 and Table 4 report the
corresponding results. The following conclusions can be
drawn:

(1) Compared with normal nodes, the degree of illicit
nodes is generally concentrated at 102 . The main reason
for this is that as the volume of transactions increases,
the more likely it is to be added to the database of illicit
nodes. When it is marked as an illicit node, ordinary
users will not transact with it, resulting in a small degree
of illicit nodes.

(17)Precision =
TP

TP + FP

(18)Recall =
TP

TP + FN

(19)F1− score = 2 ∗
Precision ∗ Reacll

Precision+ Recall

Fig. 3 Degree distribution of all/illicit nodes

Table 3 Three training-validation-test set division methods

Dataset Train set Validation set Test set

D1 50% 10% 40%

D2 70% 10% 20%

D3 80% 10% 10%

Page 11 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

(2) The mean and standard deviation of certain
characteristics of illegal accounts (i.e., min_VS, AVS,
min_RA, AVR, TEB) are greater than those of normal
accounts, and the median difference is smaller. The
minimum amount sent and received by illegal accounts
is greater than that of normal users, and the average
amount received and sent is approximately that of nor-
mal accounts. This means that compared to the average
account, the illegal account entices the victim to make a
large amount of transfer transactions and then to cash
out a large amount of money.

(3) The average number of sending transactions for a
normal account is 513.4, with 78.92 receiving transac-
tions, while for illegal accounts, the average number of
sending transactions is 22.91, with 34.61 receiving trans-
actions. This suggests that illegal accounts conduct a
small number of transactions to reduce the probability of
detection. Low transaction volume can make it difficult
to imitate the transaction patterns of normal accounts,
reducing the risk of being caught.

(4) The average transaction amount for normal
accounts is 125.29 ether, while for illegal accounts it is
only 3.46 ether. This suggests that illegal accounts tend
to have much smaller transaction amounts, possibly to
evade regulation or make tracing more difficult. Mean-
while, the transaction amounts for normal accounts are
much higher, which is also in line with their typical use
cases, such as daily consumption and investment.

(5) Normal accounts have a balanced number of send-
ing and receiving transactions, while illegal accounts are
more likely to send transactions than to receive them.
This may indicate that illegal accounts are mainly used
for sending funds rather than receiving them, consistent
with the typical feature of illegal activities involving fund
transfers.

Classification performance (RQ2)
To answer RQ2, the performance of different algorithms
was firstly evaluated, and secondly evaluate the effective-
ness of the method when using different classifiers for
classification, and the results are shown in Tables 5, 6.
The following conclusions can be drawn:

(1) For all the compared methods, our method T2

A2vec achieves significant advantages under different
evaluation metrics. Under the D2 dataset, our method
achieves 93.21% precision, 92.96% recall, and 93.08%
F1. Under the D1 dataset, the precision of this method
reaches 88.09%, which exceeds our method by 0.83%. The
performance of deep learning based methods fluctuates
between 76% and 89%. The performance gap between the
methods based on random walk is obvious, and the per-
formance of LINE and Node2vec is 10%-15% higher than
that of DeepWalk. The worst performer is Deepwalk,
whose lowest recall rate is only 69.52%.

(2) An interesting phenomenon emerges with the
increase of training samples. As the number of training

Table 4 Analysis of dataset account attributes

a The negative values are present because this paper only collected the last 10,000 transactions, so the old ones are ignored

Feature Normal accounts Illicit accounts

mean median std mean median std

NTS 513.40 90.00 1340.54 22.91 2.00 198.20

max_VS 135.67 4.90 2329.42 75.38 4.00 856.16

min_VS 0.61 0.00 41.00 17.49 0.10 434.24

TVS 2963.54 28.20 85792.10 133.99 5.99 1203.30

AVS 3.02 0.30 47.40 27.60 1.57 485.83

avg_TIS 13491.97 2550.67 36591.24 17332.89 111.55 77438.72

NTR 78.92 14.00 381.46 34.61 6.00 248.60

max_VR 114.98 3.46 2545.93 58.31 2.41 747.65

min_VR 1.04 0.00 41.75 21.52 0.02 607.25

TVR 1906.49 14.24 77983.87 103.57 6.00 949.58

AVR 8.48 0.73 80.15 30.36 0.90 623.45

avg_TIR 17083.43 5830.90 34763.81 6684.79 247.67 28455.29

TETF 4.83 0.61 16.99 0.14 0.01 1.16

AETF 8.25E-03 7.12E-03 8.00E-03 1.66E-03 5.93E-04 1.18E-02

TDFL 9.06E+05 7.78E+05 7.57E+05 2.07E+05 2.38E+04 4.26E+05

TEB -1057.05a -3.24a 24067.01 -30.42a 0.00 572.08

UAS 88.66 21.00 328.15 9.47 2.00 57.37

UAR 26.19 6.00 240.67 23.55 5.00 188.21

Page 12 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

samples increases, the metrics of deep learning-based
methods are improved. GraphSAGE has the most obvi-
ous improvement, and its precision rate has increased by
about 6%. However, the random walk-based method and
our method show a performance drop when the training
set ratio is increased from 70% to 80%. Among them, the
performance of our method drops by about 1.5%-2.7%.

(3) Compared with random walk-based methods, our
method outperforms by 3%-20% on different evalua-
tion metrics. Among them, Deepwalk has the worst per-
formance, and the precision index in the D2 dataset is
21.48% lower than our method. Node2vec has the best
performance, and the precision index in the D3 dataset
is only 2.93% lower than our method. Node2vec obtains
better node representation through different transfer
strategies, however, this method ignores transaction
time, transaction amount and transaction type, result-
ing in incomplete representation learning of nodes.
Our T2A2vec learns a more efficient node representa-
tion through a random walk strategy based on transac-
tion time, transaction amount, and transaction type, and
achieves better results.

(4) Significant differences in performance have also
emerged for deep learning-based graph representation
learning methods. Among them, the performance gap of
GCN reaches 10%-20%, and GCN performs neighbor-
hood information aggregation in the process of neural
network learning, which may cause the error to enlarge
as the neural network deepens. GAT and GarphSAGE
enrich the features of nodes and enhance the representa-
tion ability of nodes by sampling and aggregating neigh-
bors with statistical characteristics.

(5) By comparing several widely selected classifiers,
it is found that the classifier is also an important factor
affecting the detection performance of malicious nodes.
The performance gap of different classifiers is obvious.
For dataset D1 , the highest F1 score was achieved by the
random forest method with a score of 88.27%, followed

by logistic regression with a score of 85.66%. Naïve
Bayes had the lowest F1 score of 72.13%. For dataset D2 ,
the random forest method had the highest F1 score of
93.08%, followed by SVM with a score of 79.75%. Naïve
Bayes had the lowest F1 score of 72.17%. For dataset D3 ,
the logistic regression method had the highest F1 score
of 87.08%, followed by random forest with a score of
90.83%. Naïve Bayes had the lowest F1 score of 73.22%.
Overall, the random forest method performed the best
across all three datasets, while Naïve Bayes had the low-
est performance. The logistic regression and SVM meth-
ods also had strong performance across the datasets. The
decision tree method had moderate performance, rank-
ing fourth out of five methods.

Random walk strategy and embedding dimension analysis
(RQ3)
To answer RQ3, when the node embedding dimension d
is equal to 4, 8, 16, 32 and 64, the classification effects of
different walking strategies are tested, and the final classi-
fication results are shown in Fig. 4. The following conclu-
sions can be drawn:

(1) Different random strategies behave differently in
different situations. The method proposed in this paper
outperforms the other three random walk strategies. The
random walk strategy based on transaction time outper-
forms the random walk strategy based on transaction
type.

(2) Different embedding dimensions significantly
impact the classification effect. With the increase of the
embedding dimension, the performance of the algorithm
is obviously improved. The most obvious improvement in
overall performance is the time-based random walk strat-
egy, whose recall rate has increased from 68% to 87%.
Our algorithm achieves excellent results even when the
embedding dimension is 4, with an overall performance
of 86%. The most obvious performance improvement is
that the embedding dimension is increased from 4 to 8.

Table 5 The classification results (%) over the methods

Method Dataset D1 D2 D3

Metric Pre. Recall F1 Pre. Recall F1 Pre. Recall F1

Random walk DeepWalk 71.72 69.52 70.60 71.73 73.74 72.73 71.49 73.55 72.51

LINE 81.89 86.28 84.03 83.42 87.11 85.22 82.59 86.91 84.69

Node2Vec 81.31 81.86 81.58 86.85 81.98 84.34 87.52 81.96 84.65

Deep learning GCN 76.21 76.21 76.22 77.75 73.64 75.65 77.72 74.18 75.91

GAT 83.31 86.58 84.92 84.76 86.69 85.71 84.83 87.23 86.01

GraphSAGE 83.28 87.12 85.16 84.45 88.00 86.19 89.21 88.38 86.52

Blockchain method trans2vec 88.09 84.47 86.25 88.6 85.19 86.86 89.21 85.79 87.47

Ours T
2A2vec 87.26 89.33 88.27 93.21 92.96 93.08 90.45 91.23 90.83

Page 13 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

Fig. 4 Performance comparison of different random walk strategies under different embedding dimensions

Fig. 5 Results of parameters analysis

Table 6 Classification results(%) of different classification methods

Method D1 D2 D3

Pre. Recall F1 Pre. Recall F1 Pre. Recall F1

Naïve Bayes 72.72 71.55 72.13 72.72 71.63 72.17 73.81 72.64 73.22

SVM 78.59 78.50 78.54 79.82 79.70 79.75 79.81 79.92 79.86

Logistic regression 85.76 85.57 85.66 86.21 86.27 86.23 87.06 87.12 87.08

Decision tree 80.67 80.76 80.71 83.26 83.23 83.24 82.44 82.55 82.49

Random forest 87.23 89.33 88.27 93.21 92.93 93.08 90.45 91.20 90.83

Page 14 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

Afterwards, with the increase of the embedding dimen-
sion, the speed of the algorithm performance improve-
ment decreases. When the embedding dimension reaches
64, the performance gap is generally around 2%-3%. This
is because the larger the node vector dimension is, the
richer the network structure and node information can
be retained. When a high accuracy embedding result is
needed, a larger embedding dimension should be chosen.

Parameter sensitivity analysis (RQ4)
To answer RQ4, the parameters l, r, k ,α,β and γ in the D2
dataset were analyzed. When analyzing parameters, all
other parameters are set to default values. The final clas-
sification results are shown in Fig. 5. The following con-
clusions can be drawn:

(1) The parameters l, r and k all achieve the best results
at 10. Among them, the parameter l has the least impact
on the algorithm performance, and the algorithm perfor-
mance on the D2 dataset fluctuates between 91.58% and
93.03%. The parameter r has a greater impact on the algo-
rithm performance than the parameter l, and the algo-
rithm performance of the D2 dataset fluctuates between
90.97% and 93.03%. The parameter k has the greatest
impact on the performance of the algorithm. When k is
equal to 6, the F1 of the D2 dataset is only 82%. When
k is increased from 6 to 8, the performance improve-
ment is the most obvious, and the overall performance is
improved by about 8%.

(2) The effect of the hyperparameter α,β , γ on the
experimental results in the D2 dataset can be seen in
Fig. 5(d)-(f) that the optimal results are achieved when
α,β , γ is taken as (0.1, 0.05, 0.1) and (0.1, 0.7, 0.8),
respectively.

Conclusion and future work
In this paper, a method called T2A2vec is proposed
to handle the task of classifying nodes in blockchain.
Through the analysis of blockchain transaction data, this
paper designed a node feature collection strategy , which
can completely and accurately describe the node’s trans-
action behavior. T2A2vec proposes three random walk
strategies, based on transaction time, transaction type,
and transaction amount to solve the problem of account
classification in blockchain. Using these three strate-
gies, more efficient graph learning can be performed on
graphs, resulting in stronger node representations. By
obtaining node representations from node features and
graph learning, this paper improves the performance of
account classification detection on blockchain. Extensive
experiments demonstrate that our proposed T2A2vec
outperforms state-of-the-art algorithms in performance
and utility.

In future work, the openness of blockchain technology
will be considered to propose a detection method for spe-
cific categories of illegitimate behavior accounts. Instead,
this work only targets the detection of nodes on the block-
chain and cannot identify the type of nodes.

Acknowledgements
Thanks to Dr. Zhaowei Liu of Yantai University for his help in our work.

Authors’ contributions
Shenqiang Wang: Conceptualization, Methodology, Software, Investigation,
Formal analysis, Writing – original draft. Zhaowei Liu: Project administration,
Supervision, Funding acquisition. Haiyang Wang: Formal analysis, Supervi-
sion. Jianping Wang: Formal analysis, Supervision. All authors reviewed the
manuscript.

Authors’ information
Shenqiang Wang is currently pursuing the M.Sc. degree with the School of
Computer and Control Engineering, Yantai University, Yantai, China. His current
research interests include blockchain and machine learning with graphs.
Zhaowei Liu received the Ph.D. degree from the Shandong University, Jinan,
in 2018. Currently, he is a Professor at the Yantai University, Yantai, China. His
research interests include blockchain, and machine learning with graphs.
Haiyang Wang received the master’s degree from Peking University, Beijing,
China, in 2011. He is currently the director of Institute of Network Technology
(Yantai) and of Yantai Association for Science and Technology (YTAST). His
main research interests include information security, big data technology and
artificial intelligence.
Jianping Wang is an engineer from Shandong Institute of Marine Resources
and Environment. He obtained a master’s degree in cartography and
geographic information engineering from China University of Mining and
Technology in 2013. His major is cartography and geographic information
engineering. His current research is marine satellite remote sensing.

Funding
This work was supported in part by the National Natural Science Foundation
of China under Grant 62272405, School and Locality Integration Development
Project of Yantai City (2022), the Youth Innovation Science and Technology
Support Program of Shandong Provincial under Grant 2021KJ080, the Natural
Science Foundation of Shandong Province, Grant ZR2022MF238, Yantai
Science and Technology Innovation Development Plan Project under Grant
2021YT06000645, the Open Foundation of State key Laboratory of Network-
ing and Switching Technology (Beijing University of Posts and Telecommuni-
cations) under Grant SKLNST-2022-1-12.

Availability of data and materials
The data used to support the findings of this study are available from the cor-
responding author upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 23 March 2023 Accepted: 28 May 2023

Page 15 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

References
 1. Zhou X, Yang X, Ma J, Kevin I, Wang K (2021) Energy-efficient smart rout-

ing based on link correlation mining for wireless edge computing in IoT.
IEEE Internet Things J 9(16):14988–14997

 2. Hu C, Fan W, Zeng E, Hang Z, Wang F, Qi L, Bhuiyan MZA (2021) Digital
twin-assisted real-time traffic data prediction method for 5g-enabled
internet of vehicles. IEEE Trans Ind Inf 18(4):2811–2819

 3. Zhou X, Xu X, Liang W, Zeng Z, Yan Z (2021) Deep-learning-enhanced
multitarget detection for end–edge–cloud surveillance in smart IoT. IEEE
Internet Things J 8(16):12588–12596

 4. Qi L, Chi X, Zhou X, Liu Q, Dai F, Xu X, Zhang X (2022) Privacy-aware data
fusion and prediction for smart city services in edge computing environ-
ment. In: 2022 IEEE International Conferences on Internet of Things
(iThings) and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics), IEEE, pp
9–16

 5. Qi L, Hu C, Zhang X, Khosravi MR, Sharma S, Pang S, Wang T (2021) Pri-
vacy-aware data fusion and prediction with spatial-temporal context for
smart city industrial environment. IEEE Trans Ind Inform 17(6):4159–4167

 6. Zhang T, Li Y, Chen CP (2021) Edge computing and its role in industrial
internet: Methodologies, applications, and future directions. Inf Sci
557:34–65

 7. Li X, Li D, Wan J, Liu C, Imran M (2018) Adaptive transmission optimiza-
tion in sdn-based industrial internet of things with edge computing. IEEE
Internet Things J 5(3):1351–1360

 8. Dai X, Xiao Z, Jiang H, Alazab M, Lui JC, Dustdar S, Liu J (2022) Task co-
offloading for d2d-assisted mobile edge computing in industrial internet
of things. IEEE Trans Ind Inf 19(1):480–490

 9. Ranaweera P, Jurcut AD, Liyanage M (2021) Survey on multi-access
edge computing security and privacy. IEEE Commun Surv Tutor
23(2):1078–1124

 10. Wang R, Lai J, Zhang Z, Li X, Vijayakumar P, Karuppiah M (2022) Privacy-
preserving federated learning for internet of medical things under edge
computing. IEEE J Biomed Health Inform 27(2):854–865.

 11. Zhou X, Liang W, Yan K, Li W, Kevin I, Wang K, Ma J, Jin Q (2022) Edge-
enabled two-stage scheduling based on deep reinforcement learning for
internet of everything. IEEE Internet Things J 10(4):3295–3304

 12. Yuan L, He Q, Chen F, Zhang J, Qi L, Xu X, Xiang Y, Yang Y (2022) Csedge:
Enabling collaborative edge storage for multi-access edge computing
based on blockchain. IEEE Trans Parallel Distrib Syst 33(8):1873–1887

 13. Xu G, Dong J, Ma C, Liu J, Cliff UGO (2022) A certificateless signcryption
mechanism based on blockchain for edge computing. IEEE Internet
Things J https:// doi. org/ 10. 1109/ JIOT. 2022. 31513 59

 14. Qi L, Liu Y, Zhang Y, Xu X, Bilal M, Song H (2022) Privacy-aware point-of-
interest category recommendation in internet of things. IEEE Internet
Things J 9(21):21398–21408

 15. Liang W, Hu Y, Zhou X, Pan Y, Kevin I, Wang K (2021) Variational few-shot
learning for microservice-oriented intrusion detection in distributed
industrial IoT. IEEE Trans Ind Inform 18(8):5087–5095

 16. Wang G, Li C, Huang Y, Wang X, Luo Y (2022) Smart contract-based
caching and data transaction optimization in mobile edge computing.
Knowl-Based Syst 252(109):344

 17. Boo E, Kim J, Ko J (2021) Litezkp: Lightening zero-knowledge proof-based
blockchains for IoT and edge platforms. IEEE Syst J 16(1):112–123

 18. Nawaz A, Peña Queralta J, Guan J, Awais M, Gia TN, Bashir AK, Kan H,
Westerlund T (2020) Edge computing to secure IoT data ownership and
trade with the Ethereum blockchain. Sensors 20(14):3965

 19. Dasgupta D, Shrein JM, Gupta KD (2019) A survey of blockchain from
security perspective. J Bank Financ Technol 3:1–17

 20. Berdik D, Otoum S, Schmidt N, Porter D, Jararweh Y (2021) A survey
on blockchain for information systems management and security. Inf
Process Manag 58(1):102397

 21. Feng J, Yang LT, Gati NJ, Xie X, Gavuna BS (2020) Privacy-preserving
computation in cyber-physical-social systems: A survey of the state-of-
the-art and perspectives. Inf Sci 527:341–355

 22. Liu Z, Yang D, Wang Y, Lu M, Li R (2023) Egnn: graph structure learn-
ing based on evolutionary computation helps more in graph neural
networks. Appl Soft Comput 135:110040

 23. Zhou X, Liang W, Li W, Yan K, Shimizu S, Kevin I, Wang K (2021)
Hierarchical adversarial attacks against graph-neural-network-based

IoT network intrusion detection system. IEEE Internet Things J
9(12):9310–9319

 24. Khan A (2022) Graph analysis of the ethereum blockchain data: A sur-
vey of datasets, methods, and future work. In: 2022 IEEE International
Conference on Blockchain (Blockchain), IEEE, pp 250–257

 25. Farrugia S, Ellul J, Azzopardi G (2020) Detection of illicit accounts over
the Ethereum blockchain. Expert Syst Appl 150:1–11

 26. Poursafaei F, Hamad GB, Zilic Z (2020) Detecting malicious ethereum
entities via application of machine learning classification. In: Proceed-
ings 2nd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS). IEEE, pp 120–127

 27. Zhang Y, Yu W, Li Z, Raza S, Cao H (2022) Detecting Ethereum Ponzi
schemes based on improved lightGBM algorithm. IEEE Trans Comput
Soc Syst 9(2):624–637

 28. Chen W, Guo X, Chen Z, Zheng Z, Lu Y (2020) Phishing scam detection
on ethereum: Towards financial security for blockchain ecosystem. In:
Proceedings 29th International Joint Conference on Artificial Intel-
ligence, Morgan Kaufmann, pp 4506–4512

 29. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehen-
sive survey on graph neural networks. IEEE Trans Neural Netw Learn
Syst 32(1):4–24

 30. Liu M, Gao H, Ji S (2020) Towards deeper graph neural networks. In:
Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, pp 338–348

 31. Liu X, Tang Z, Li P, Guo S, Fan X, Zhang J (2022) A graph learning based
approach for identity inference in dapp platform blockchain. IEEE Trans
Emerg Top Comput 10(1):438–449

 32. Weber M, Domeniconi G, Chen J, Weidele DKI, Bellei C, Robinson T,
Leiserson CE Anti-money laundering in bitcoin: Experimenting with
graph convolutional networks for financial forensics. 2019. arXiv: 1908.
02591

 33. Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Trans Knowl
Data Eng 30(9):1616–1637

 34. Wang X, Bo D, Shi C, Fan S, Ye Y, Yu PS (2023) A survey on heterogeneous
graph embedding: Methods, techniques, applications and sources. IEEE
Trans Big Data 9(2):415–436

 35. Yuan Q, Huang B, Zhang J, Wu J, Zhang H, Zhang X (2020) Detecting
phishing scams on ethereum based on transaction records. In: Proceed-
ings 2020 IEEE International Symposium on Circuits and Systems. IEEE, pp
1–5

 36. Wu J, Yuan Q, Lin D, You W, Chen W, Chen C, Zheng Z (2022) Who are the
phishers? phishing scam detection on Ethereum via network embed-
ding. IEEE Trans Syst Man Cybern: Syst 52(2):1156–1166

 37. Yuan Z, Yuan Q, Wu J (2020) Phishing detection on Ethereum via learning
representation of transaction subgraphs. In: Proceedings International
Conference on Blockchain and Trustworthy Systems. Springer, pp
178–191

 38. Lin D, Wu J, Yuan Q, Zheng Z (2020) Modeling and understanding
Ethereum transaction records via a complex network approach. IEEE
Trans Circ Syst II: Express Briefs 67(11):2737–2741

 39. Qi L, Yang Y, Zhou X, Rafique W, Ma J (2022) Fast anomaly identification
based on multiaspect data streams for intelligent intrusion detection
toward secure industry 4.0. IEEE Trans Ind Inf 18(9):6503–6511

 40. Liu Z, Yang D, Wang S, Su H (2022) Adaptive multi-channel bayesian
graph attention network for IoT transaction security. Digit Commun
Netw. https:// doi. org/ 10. 1016/j. dcan. 2022. 11. 018

 41. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, pp 701–710

 42. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, pp 855–864

 43. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale
information network embedding. In: Proceedings of the 24th interna-
tional conference on world wide web. ACM, pp 1067–1077

 44. Kipf TN, Welling M (2017) Semi-supervised classification with graph
convolutional networks. In: Proceedings International Conference on
Learning Representations. ICLR, pp 1-14

https://doi.org/10.1109/JIOT.2022.3151359
http://arxiv.org/abs/1908.02591
http://arxiv.org/abs/1908.02591
https://doi.org/10.1016/j.dcan.2022.11.018

Page 16 of 16Wang et al. Journal of Cloud Computing (2023) 12:88

 45. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018)
Graph Attention Networks. In: Proceedings International Conference on
Learning Representations. ICLR, pp 1–12

 46. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning
on large graphs. In: Proceedings Neural Information Processing Systems.
MIT, pp 1025–1035

 47. Cen Y, Hou Z, Wang Y, Chen Q, Luo Y, Yu Z, Zhang H, Yao X, Zeng A, Guo
S, Dong Y, Yang Y, Zhang P, Dai G, Wang Y, Zhou C, Yang H, Tang J (2023)
Cogdl: A comprehensive library for graph deep learning. In: Proceedings
of the ACM Web Conference 2023 (WWW’23). ACM, pp 747–758

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Ensuring security in edge computing through effective blockchain node detection
	Abstract
	Introduction
	Related work
	Method introduction
	Data collection
	Graph construction
	Account features extraction
	Transaction feature extraction
	Transaction time-based random walk
	Transaction type-based random walk
	Transaction amount-based random walk

	Feature fusion

	Experiments
	Dataset and evaluation Criteria
	Node feature analysis (RQ1)
	Classification performance (RQ2)
	Random walk strategy and embedding dimension analysis (RQ3)
	Parameter sensitivity analysis (RQ4)

	Conclusion and future work
	Acknowledgements
	References

