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Abstract 

Efficient resource management approaches have become a fundamental challenge for distributed systems, especially 
dynamic environment systems such as cloud computing data centers. These approaches aim at load-balancing or 
minimizing power consumption. Due to the highly dynamic nature of cloud workloads, traditional time series and 
machine learning models fail to achieve accurate predictions. In this paper, we propose novel hybrid VTGAN models. 
Our proposed models not only aim at predicting future workloads but also predicting the workload trend (i.e., the 
upward or downward direction of the workload). Trend classification could be less complex during the decision-
making process in resource management approaches. Also, we study the effect of changing the sliding window size 
and the number of prediction steps. In addition, we investigate the impact of enhancing the features used for training 
using the technical indicators, Fourier transforms, and wavelet transforms. We validate our models using a real cloud 
workload dataset. Our results show that VTGAN models outperform traditional deep learning and hybrid models, 
such as LSTM/GRU and CNN-LSTM/GRU, concerning cloud workload prediction and trend classification. Our proposed 
model records an upward prediction accuracy ranging from 95.4% to 96.6%.

Keywords  Cloud computing, Workload prediction, GAN, LSTM, GRU​, Convolution neural network, sliding windows, 
Multi-step-ahead-prediction

Introduction
Recently, there has been a pronounced tendency towards 
using individual virtual servers in large-scale cloud data 
centers with thousands of high-performance servers. For 
instance, cloud services provide elastic computing advan-
tages to end users based on virtualization technology at 
a low-cost [16, 68]. Virtual machine (VM) facilities allow 
cloud end users to scale up/down or relinquish their 
resource demands (e.g., CPUs/GPUs, memory, storage, 
· · · , etc.) and pay accordingly. Such frequent variations 
in the dynamic environment lead to a tradeoff between 
the service provider’s profit and the end user’s quality of 

service (QoS). More specifically, the underutilized server 
causes resource and power consumption wastage. On the 
other hand, the overutilized server causes performance 
degradation. Consequently, service providers need effi-
cient techniques for optimal resource management [33, 
68]. Managing and improving the provided services in 
such distributed systems cause several challenges. One 
major challenge is observing and monitoring these dis-
tributed systems for accurate resource allocation deci-
sions [58]. In particular, observability has become a 
critical prerequisite to guarantee stable services for end-
user applications and maximize the profit for the service 
provider.

In general, there are two approaches for resource allo-
cation: reactive and proactive [77]. The reactive approach 
offloads the required resources from overutilized servers 
to underutilized servers. The offloading decisions, in this 
case, rely on the current end-user utilization. Neverthe-
less, this causes unnecessary migration because of the 
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sharp workload peaks. Hence, researchers exert continu-
ous effort to improve the accuracy of proactive resource 
allocation techniques, where deciding VM migration 
depends on future workloads [71]. Most researchers 
focus on predicting CPU utilization for the servers [24, 
54], or individual VMs [55]. The motivation for focusing 
on CPU utilization stems from the fact that the CPU of a 
server incurs the most power consumption, and the rela-
tionship between energy consumption and CPU utiliza-
tion is linear [15].

Focusing on the proactive resource allocation 
approaches, we need an accurate forecasting tech-
nique. To that end, classical time-series techniques aim 
to model short-term forecasts. As the CPU utilization 
data is considered time series data, The ARIMA models 
have been widely used for CPU utilization time series 
forecasting [57]. For example, researchers have used 
ARIMA models as a baseline to compare more sophis-
ticated techniques [41]. The main drawback of the time 
series forecasting model is that it merely captures linear 
relationships. In addition, TS models require the input 
data to be stationary (whether in its raw form or as dif-
ferenced data). Unfortunately, authors in [55] performed 
the popular Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
stationarity test for each VM [40]. They concluded that 
almost 70% of tested PlanetLab VMs [60] are not station-
ary. Consequently, classical TS models cannot accurately 
predict its future CPU utilization. As a result, they used 
machine learning (ML) models to predict the CPU utili-
zation using lagged values of each time series as inputs to 
the model. Hence, in recent years many machine learning 
models, such as artificial neural networks (ANNs) [55, 
66, 67], and support vector machine (SVM) [6, 37, 55], 
have been proposed for modeling CPU utilization.

Deep learning (DL) methods have stirred remarkable 
attention during the artificial intelligence revolution 
in recent years. Deep-learning-based prediction mod-
els outperform traditional machine learning models in 
several applications, especially cloud workloads predic-
tion [48]. Thus, the accuracy of CPU utilization predic-
tion could increase using a recurrent neural network 
(RNN), which maps target vectors from the history of 
the previous inputs. Nevertheless, RNN suffers from 
the gradient vanishing problem with long sequences 
[57]. The long short-term memory (LSTM), which 
Hochreiter and Schmidhuber [35] proposed, is an 
effective solution to overcome the gradient vanishing 
problem. LSTM achieves a considerable improvement 
in capturing long-term temporal dependencies. Thus, 
LSTM can accurately predict high fluctuated time-
series data [59, 76]. Recently, the generative adversarial 
network (GAN), proposed by Goodfellow [30], achieves 
remarkable improvements in different research areas. 

In particular, GANs are used for the prediction of 
highly volatile cloud traces as in [85]. This motivates 
our interest in investigating the performance of GANs 
for workload prediction. GANs employ two deep learn-
ing networks, namely, the generator and the discrimi-
nator. The generator generates artificial data samples 
that mimic the actual distribution of the actual data 
distribution. The discriminator, however, tries to differ-
entiate between the actual data samples and the artifi-
cially generated samples by the generator. By providing 
a feedback signal from the discriminator to the genera-
tor, the generator enhances its data generation model.

Moreover, many research works concerning forecasting 
investigated the problem of selecting technical indicators 
(TIs) as input of machine learning/deep learning mod-
els for extracting more features [74]. Many efforts study 
the determination of the optimal combinations of TIs or 
their parameters.

The main challenge in cloud prediction is the need for 
an effective nonlinear model that tracks the cloud work-
load [45, 79]. Furthermore, the workload value frequently 
suffers from excessive changes [62]. This motivates our 
interest in recasting the over-utilized server detection 
problem into a workload trend prediction rather than the 
value. In other words, the system will migrate VMs from 
over-utilized servers if the future workload trend is “up” 
only. We inspire this idea from stock price prediction, 
where researchers in this area demonstrated that trend 
prediction as a classification problem can improve pre-
diction accuracy using machine learning and deep learn-
ing models [23, 70].

Therefore, the principal contribution of this paper is 
proposing a novel nonlinear prediction model, named 
value trend generative adversarial network (VTGAN), 
to deal with the high-frequency and volatility of cloud 
workload. Additionally, this paper presents a novel clas-
sification approach to predict the trend of workload data. 
In our proposed VTGAN prediction model, we used a 
GAN in which the long short-term memory (LSTM) or 
the gated recurrent units (GRU) model is a generator, 
and the convolution neural network (CNN) model is a 
discriminator. The proposed system presents subsequent 
research contributions:

•	 We use GAN models for building predicting cloud 
workloads models. Moreover, GANs were not 
applied before in cloud data centers, whether a simu-
lation or real environment, making our model one of 
the pioneers in cloud workload prediction.

•	 In addition, we compared the results of the proposed 
models with state-of-the-art time series, ML, and DL 
models, such as ARIMA, SVR, LSTM, and GRU.
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•	 We propose a classification approach to predict the 
trend instead of the value of the cloud workload.

•	 We study the effect of using common technical indi-
cators.

•	 We also study and test the window input size and 
multi-step prediction using our model.

The structure of this paper is as follows: Section 
“Related work” presents the related work. Section “Pro-
posed architecture” introduces the mathematical model. 
Section “Experimental configuration and evaluation 
methodology” shows the experimental set-up and the 
methodology of the evaluation conducted in this work. 
Section “Results and discussions” analyzes the perfor-
mance results. Section “Conclusions and future works” 
summarizes our concluding remarks.

Related work
During the last decade, machine learning and deep learn-
ing approaches have revolutionized the scientific and 
industrial communities. In the sequel, we focus on enu-
merating research works concerning the time-series 
prediction area. Figure 1 illustrates a taxonomy of time-
series prediction models. Classically, most works deal 
with workload forecasting as a value prediction problem 
(a.k.a. regression). We classify the regression models into 
four main categories: (i) Traditional time series models, 
(ii) Machine Learning models, (iii) Deep learning models, 
and (iv) Hybrid Techniques. Nevertheless, in this work, 
we will introduce a trend prediction approach (a.k.a. 
classification), where we focus on predicting the sign of 
workload change.

Traditional time series approaches
As cloud workload data is naturally temporal, research-
ers used different time-series forecasting models for 
predicting workload traces. Autoregressive moving 
average (ARMA), as a traditional time-series forecast-
ing model, is used in [17] to predict cloud workload for 
resource allocation. Authors reported that this approach 
is unsuitable for most cloud workload traces, particu-
larly for highly-volatile workloads. Also, Vazquez et  al. 
[81] applied several time-series prediction models, such 
as AR, MA, simple exponential smoothing (SES), double 
exponential smoothing (DES), error trend seasonal expo-
nential smoothing (ETS), and ARIMA, to forecast cloud 
workloads. They evaluated the forecasting accuracy for 
each model for two real cloud workloads, namely, Google 
cluster data and Intel Netbatch logs. The authors con-
clude that no model is consistently superior to the others 
for all datasets.

Vashistha and Verma [80] presented a cloud work-
load prediction survey based on time series models, 
where some researchers applied AR [37–39, 46], MA [37, 
38, 81], and ARIMA [7, 17, 18, 28, 38, 46, 81]. In addi-
tion, other researchers proposed extended versions of 
the ARIMA model for workload prediction, such as 
autoregressive moving average with exogenous inputs 
(ARMAX) [88], cumulative moving average (CMA), 
weighted moving average (WMA) [29], difference model 
(DM), and median model (MM) [38].

Although such traditional time-series approaches 
were ubiquitous in the last decade, these models are not 
appropriate for long-term time-series data [47]. Moreo-
ver, these models assume that the input data is stationary, 
which is not a valid assumption for most cloud workload 
traces [55]. Therefore, the ML approaches seem like a 
natural solution for traditional time-series problems and 
a step toward more accurate cloud workload prediction 
results.

Machine learning approaches
ML models have been widely used as an alternative 
solution for traditional time-series forecasting. Thus, 
researchers proposed several ML prediction models for 
cloud applications. Farahnakian et  al. [25] proposed a 
linear regression (LR) algorithm to predict the CPU uti-
lization of the servers in the context of proactive over-
load detection servers. In follow-up work, they used a 
K-nearest neighbor (KNN) regression model instead of 
the linear regression model. They demonstrated that this 
approach is superior in terms of energy consumption and 
system performance [26].

Patel et  al. [63] proposed the support vector regres-
sion (SVR) and ARIMA models to predict VM memory 
during the live migration to calculate the migration time. 
The SVR model has less capability to improve prediction 
accuracy because it consists of a single hidden layer. Cor-
tez et  al. [21] used gradient boosting tree and random 
forest models to predict the resource management of 
a VM allocated in the Azure cloud platform. They used 
the dynamically linked library (DLL) to collect the result 
after each estimation process. Then, it decided whether 
the prediction process was trusted using the DLL score.

Nguyen et  al. [34] used a multiple linear regression 
(MLR) method to predict overutilized and underutilized 
servers. They integrated their prediction technique with 
traditional consolidation frameworks to reduce energy 
consumption.

Moghaddam et  al. [55] proposed different ML algo-
rithms for overload detection in the VM consolida-
tion framework. They developed several ML prediction 
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algorithms for individual VMs to predict the most suit-
able time for migration from overutilized servers. They 
implemented their approach using PlanetLab traces 
based on the CloudSim simulation tool [60]. Their frame-
work was compared to LR-MMT-PBFD as a baseline in 
most publications. Nevertheless, they did not measure 
the prediction accuracy of the proposed ML models and 
implemented them directly on the VM consolidation 
framework. Thus, in this paper, we evaluate the accuracy 
of our approaches before integrating them with the whole 
system in future work.

Regardless of the reasonably fast prediction ability for 
cloud workloads, ML approaches do not achieve high 
prediction accuracy with high dispersal because of the 
non-linearity and complexity of cloud workloads. Hence, 
the third direction was deep learning (DL) approaches to 
achieve high prediction accuracy.

Deep learning approaches
Due to the recent success of DL in various applications, 
several works employed DL approaches for time-series 
analysis and prediction [27]. Specifically, the recurrent 
neural network (RNN) has outstanding sequential pro-
cessing capabilities. Therefore, authors in [24, 36, 87] 
proposed an RNN-based model to predict the future 
workloads in cloud data centers. However, previous 
research showed that traditional RNNs struggle to cap-
ture long-term dependencies due to the vanishing gradi-
ent problem [14, 82]. To solve this issue, LSTM [31] and 
GRU [20] were developed for better dealing with long-
term dependencies [19, 42]. Consequently, Song et  al. 
[76] used the LSTM network for workload prediction to 
improve their previous RNN-based work [84]. GRU is 
much less computationally intensive than LSTM due to 
its ability to converge with fewer parameters [20]. Nev-
ertheless, there is little research work based on GRU 
networks [19, 32] for workload prediction in the cloud 
environment.

Focusing on convolutional neural networks (CNNs), 
Mozo et  al. [56] used CNN to predict short-term net-
work traffic in data centers. [56] is considered the only 
work using a pure CNN approach for prediction in the 
cloud environment because CNN is also unsuitable for 
long-term dependencies. That is because CNN models 
fundamentally focus on extracting features and inter-
dependencies from the input sequence and do not use 
any historical data during the learning process [69].

The nature of cloud workloads is always dynamic and 
complex. Thus, all previous approaches did not achieve 
acceptable prediction accuracy due to the long-term 
dependencies, complexity, and non-linearity of cloud 
workload traces. As a result, the authors recently tuned 

the research direction to hybrid approaches rather than 
single models.

Hybrid approaches
Finally, the hybrid approaches are an amalgamation of 
various time-series algorithms aiming at forecasting 
complex time series traces [85]. Liu et al. [52] proposed 
a hybrid prediction model that combines ARIMA with 
LSTM models. Their results illustrated that their model 
improved the prediction accuracy by 6% and 66% com-
pared to the pure LSTM and pure ARIMA models, 
respectively. Also, Shuvo et  al. [73] proposed a hybrid 
prediction model, namely LSRU, that combined the GRU 
with the LSTM model. They show that LSRU achieves 
better accuracy than the pure LSTM or GRU model. Bi 
et  al. [13] proposed a hybrid prediction model integrat-
ing bi-directional and grid-long short-term memory net-
works (BG-LSTM) for high accuracy.

The combination of ConvNets and LSTM is one of the 
popular hybrid schemes for time series prediction pur-
poses [85]. Regarding cloud environments, Ouhame et al. 
[59] proposed a hybrid prediction model that combines 
CNN model with the LSTM model. This combination 
helps to extract complex features of the VM usage com-
ponents. This is in addition to modeling temporal infor-
mation of irregular trends, which may arise in the time 
series. Their results illustrated that this hybrid model is 
more accurate than VAR-MLP, VAR-GRU, and ARIMA-
LSTM hybrid models.

Recently, the GAN invention revolutionized DL. It 
achieves remarkable improvement in several fields, such 
as computer vision and audio. Goodfellow et  al. devel-
oped GANs in 2014 [30]. Until now, few works consid-
ered GAN for time-series cloud workload prediction 
purposes. The first approach for cloud workload predic-
tion value, E2LG, was proposed by Yazdanian and Shari-
fan [85]. They combined LSTM networks as a generator 
and CNNs as a discriminator. This hybrid model can 
effectively capture the long-term nonlinear dependencies 
of time series and is suitable for the high-frequency data 
type. E2LG improved prediction accuracy significantly in 
the cloud environment. Also, Lin et  al. [51] proposed a 
GAN-based method for realistic cloud workload genera-
tion to capture the data distribution and generate high-
quality workloads. Generated workloads are useful to 
mimic real data. In addition, their model can easily gen-
erate specific kinds of workloads according to the input. 
But, their model aimed to generate synthetic data that 
have a similar distribution to the real data. Unlike our 
approach, We aim to predict the near future utilization 
by considering the near historical data to deal with the 
unexpected change instantaneously.
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Table  1 summarizes publications on previous cloud 
workload prediction approaches. These publications are 
classified according to their learning category, method, 
dataset, and weakness.

In this paper, we use a modified version of GAN to pre-
dict the trend rather than the value. Therefore, the deci-
sion of resource allocation will be based on the trend. 
This approach is a pioneer in cloud workload prediction. 
Also, we study the effect of using technical indicators 
(TIs), Fourier, and wavelet transforms in the performance 
of our regression and classification models.

Proposed architecture
We propose a modified version of GAN to predict future 
workload values. The proposed model is a step towards 
a proactive overload detection technique in the resource 
management framework for cloud data centers. This 
technique prevents unnecessary migrations by making 
migration decisions from the over-utilized server based 
on the predicted CPU utilization value. In addition, we 
present an alternative solution to make the migration 
decision based on the future trend of the cloud workload. 
For this trend prediction, we cast the prediction problem 
as trend classification (in contrast to the regression prob-
lem corresponding to the workload value prediction).

In our suggested workload prediction system, we use 
a GAN network. In our proposed GAN architecture, 
the GRU or LSTM model represents a generator, which 
learns to generate workload values that are consistent 
with the statistical distribution of the actual workload. 
In addition, our GAN model includes a 1D-CNN model 
as a discriminator, which learns to differentiate between 
actual and artificially generated workloads. Upon inter-
action between the generator and discriminator, the 
predicted workload accuracy enhances. The LSTM and 
GRU are suitable for predicting time series data. To fur-
ther enhance the prediction accuracy in multi-step-ahead 
prediction, our proposed system uses technical indica-
tors (TIs) as feature extraction mechanisms. Moreover, 
we apply and test Fourier and wavelet transform func-
tions as additional TIs that remove redundant data.

Data preprocessing
To improve the predictive performance of our model, we 
pre-process the data to highlight oscillations and trends in 
the workload trace. To that end, we study the use of seven 
technical indicators (TIs) as additional features. We note 
that the works [9] and [22] used a subset of these TIs. we 
extend some of the TIs in [43] to include short-term and 
long-term moving averages (MAs). These MAs smooth 

Fig. 1  Taxonomy of cloud workload prediction models
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Table 1  Comparison of cloud workload prediction models

Authors Method Dataset Weakness

Time-series Calheiros et al. [17] - ARMA - Wikimedia Foundation real traces [5] - Time-series models are not suitable for high 
volatile workloads, and there is no superior 
model for all tested datasets. 

Vazquez et al. [81] AR, MA, SES, DES, ETS, - Google [3] - These models could not fit with long-term 
time-series data.

and ARIMA - Intel Netbatch logs

Kim et al. [46] AR, ARMA, ARIMA, EMA, - Synthetic workloads: Growing

DES, WMA, and Gaussian-DES & On/Off & Bursty & Random

Hu et al. [38] MA, AR, ARIMA, DM, and MM - 30 min. from esc.tl.small instance

Fu and Zhou [28] - ARIMA - PlanetLab [4]

- Google

Aldossary et al. [7] - ARIMA - Collected from OpenNebula testbed

Gai et al. [29] WMA, CMA, MA -

Zhu and Agrawal [88] - ARMAX -

Machine learning Farahnakian et al. [25] - LR - Random workload - PlanetLab - ML models did not achieve high prediction 
accuracy with high dispersal data.

Farahnakian et al. [26] - KNN - These models could not fit with non-linear 
and complex data as cloud workloads.

Patel et al. [63] - SVR - Idle workload

- Web workload

- Stress workload

Cortez et al. [21] - Gradient boosting tree - Azure workload

- Random Forest

Nguyen et al. [34] - MLR - Google

- PlanetLab

Moghaddam et al. [55] LR, MLP, SVR, AdaBoost, - PlanetLab

Random Forest, Gradient

Boosting, Decision Tree

Deep learning Zhang et al. [87] - RNN - Google - DL models did not achieve acceptable 
prediction accuracy due to very long-term 
dependencies, complex, and non-linearity of 
cloud data.

Duggan et al. [24] - RNN - PlanetLab

Huang et al. [36] - RNN-LSTM - Real requests data

Yang et al. [84] - Echo state network (ESN) - Google

Song et al. [76] - LSTM - Google

Chen et al. [19] - Auto-Encoder GRU​ - Google

- Alibaba traces [1]

Peng et al. [64] - GRU based encoder-decoder - Google

network - Dinda [2]

Zhu et al. [89] - Attention-based LSTM - Alibaba traces

- Dinda

Mozo et al. [56] - CNN - ONTS dataset

Hybrid Liu et al. [52] - ARIMA-LSTM - Google - Although its accuracy with non-linearity 
and very long-term dependencies, it is more 
complex.

Shuvo et al. [73] - LSTM-GRU (LSRU) - Bitbrains [10]

Bi et al. [13] - BG-LSTM - Google

Ouhame et al. [59] - CNN-LSTM - Bitbrains

Yazdanian and - GAN (LSTM-CNN) - Calgary

Sharifan [85] - NASA

- Saskatchewan

BHyPreC [44] - Bi-LSTM - Bitbrains

VTGAN - GAN (Bi-GRU-CNN) - PlanetLab

- GAN (Bi-LSTM-CNN)
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the workload trace, discard short-term fluctuations, and 
highlight overall trends and/or cycles of the workload time 
series. In the sequel, we enumerate the full list of our pro-
posed TIs:

•	 Moving averages (MAs): MAs often capture trends by 
smoothing a CPU utilization series using a lag factor 
of order n. The long MAs indicators illustrate changes 
in CPU utilization that are less sensitive to recent utili-
zation movements than the short MAs. This is due to 
the fact that the longer the MA is, the smoother and 
less accurate the output is. We calculate MA by Eq. (1), 
where pt is the CPU utilization value at time t. 

•	 Exponential Moving Average (EMA): EMA is a par-
ticular moving average indicator, which exponentially 
averages historic CPU utilization. Unlike simple MAs, 
EMA can place more weight on recent CPU utiliza-
tion. More specifically, the influence of previous CPU 
utilization samples decreases exponentially fast in the 
EMA indicator. Hence, it reflects directly on the imme-
diate trend [22]. We calculate EMA according to (2), 

(1)MA(pt , n) =
pt + pt−1 +⋯ + pt−(n−1)

n
=

1

n

n−1
∑

i=0

pt−i

  where s is a tuning parameter to control the impor-
tance of the recent past, and α is a weighting term 
( α = s−1

s+1).
•	 Moving Average Convergence Divergence (MACD): 

It gives insight into workload convergence, divergence, 
and crossover [22]. It reflects the difference between a 
short-term (fast) EMA and a long-term (slow) EMA, 
capturing the second derivative of a CPU utilization 
series. We calculate MACD according to (3), 

•	 Moving Standard Deviation (MSD): MSD meas-
ures the nth time slot volatility (i.e., the rate of 
change) of CPU utilization. It is considered helpful 
in predicting the magnitude of future CPU utiliza-
tion changes. This indicator expects low-volatility 
periods followed by high-volatility periods. We cal-
culate MSD according to (4), 

(2)EMA(pt , s) =
pt + αpt−1 + · · · + αtp0

1+ α + · · · + αt

(3)MACD(pt , s1, s2) = EMA(pt , s1) − EMA(pt , s2), s2 > s1

(4)MSD(pt , n) =
1

n

n−1

i=0

(pt−i −MA(pt , n))2

Fig. 2  Selected technical indicators after applied to the used dataset. (200-time slots)
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•	 Bollinger Bands (BBANDs): Bollinger Bands are 
indicators that are plotted at standard deviation 
levels above, and below a simple moving average. 
BBANDs consist of the upper band ( BBAND+ ) and 
the lower band ( BBAND− ) [22]. Bollinger Bands 
are useful indicators to compare volatility against 
relative CPU utilization levels, over a period of 
time. We calculate BBAND+ and BBAND− by Eqs. 
(5) and (6). 

•	 Momentum (MOM): MOM measures CPU utili-
zation differences over relatively short periods to 
follow the speed of the changes in utilization. We 
used log momentum to center the values at zero. It 

(5)
BBAND+(pt , n) =MA(pt , n)+ 2×MSD(pt , n)

(6)
BBAND−(pt , n) =MA(pt , n)− 2×MSD(pt , n)

Fig. 3  The proposed VTGAN architecture

Fig. 4  The proposed VTGAN model
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is often used to predict reversals [9]. We calculate 
using (7) as, 

In summary, the selected TIs have been plotted in 
Fig. 2 after being applied to the PlanetLab dataset (200-
time slots), which is described in Section “Dataset”.

Then, we study applying and testing Fourier and 
wavelet transforms as additional features, where Fou-
rier and wavelet transforms are used to remove redun-
dant data and retain the most relevant information 
[8]. Therefore, these approximation tools could help 
the deep learning network for predicting trends more 
accurately.

VTGAN models
We use the GAN network to predict the value and trend 
of future CPU utilization, i.e., to predict future samples 
of the time series corresponding to the CPU utilization. 
Figure 3 illustrates the essential components of the pro-
posed VTGAN architecture. The generator produces 
CPU traces, which have a similar distribution compared 
to the original CPU traces. The discriminator, however, 
is responsible for classifying the input trace into either 
an actual CPU utilization trace or a predicted trace (i.e., 
an artificially generated CPU utilization trace). The gen-
erator and discriminator losses are added together and 
fed back to the generator to become better at generating 
CPU utilization traces that mimic the actual data statis-
tics. This process continues until the discriminator no 
longer be able to differentiate between actual predicted 
data from generated CPU utilization data.

Some researchers recently reconstructed the generator 
and the discriminator based on LSTM and CNN layers 
for better learning regarding several applications. GAN 
differs from other deep learning techniques in that it tries 
to strike a balance between the two sides (generator and 
discriminator) [85].

Figure  4 illustrates the proposed system using the 
GAN model. In this work, we use an RNN as a gen-
erator. Specifically, we employ one of the follow-
ing recurrent neural networks: (i) LSTM or (ii) GRU, 
for generating CPU traces. As described in Subsec-
tion  “Deep learning approaches”, RNN has the ability 
to map generated data from the history of the previous 
inputs, therefore it is suitable for sequential data. For 
the discriminator, we utilize a multi-layer 1D-CNN. We 
choose CNN for the discriminator components as it is 
able to extract temporal features and information for 
series data. In the numerical result section, we compare 

(7)MOM(pt , n) = log(pt − pt−n)

the performance of the two RNNs and select the better 
generator network.

Regression and classification approaches
Generally, the main goal of forecasting CPU utiliza-
tion as a time-series forecasting problem is to estimate 
the closing value of the next time slot. In this work, 
we focus on CPU utilization value prediction (CPU 
utilization value regression problem), and the trend 
direction of CPU utilization (CPU utilization trend 
classification problem).

A preliminary process, mandatory to follow this 
approach, is to build a dataset suited to a classification 
problem. Next, we associate each past observation from 
the time series with a symbolic label describing the pre-
dicted trend (i.e., we label the trend as an upward or a 
downward trend).

Consequently, we split the dataset into sub-sequences 
using the sliding window technique as input for our mod-
els. This technique selects every n samples as inputs, and 
the (n+ 1) th samples as outputs for value regression and 
symbolic labels as outputs for trend classification in one-
step prediction.

Value regression approach
In this approach, we only focus on predicting the value 
of CPU utilization and not its trend direction. The CPU 
utilization value prediction problem has been the tra-
ditional approach for proactive resource management 
in cloud data centers [85]. We use the sliding window 
technique. In this technique, we use the last n samples 
as an input to our regression technique, i.e., the VTGAN 
model, to predict future samples. We consider two ver-
sions of our scheme, namely, one-step-ahead prediction 
and p-step-ahead prediction. In the one-step-ahead ver-
sion, the regression procedure aims to predict the imme-
diate future sample (i.e., one sample only as an output). 
This is in contrast to the p-step-ahead version, where the 
regression procedure outputs p future samples.

More specifically, let the input Ireg be the CPU utili-
zation time-series samples. The kth row of Ireg contains 
n actual data points (actual CPU utilization), namely, 
{ik , ik+1, · · · , in+k−1} , where k = 1, 2, · · · , l − n . We 
denote the corresponding output by Oreg . The output Oreg 
corresponds to the predicted value(s). The kth row of Oreg 
is the predicted CPU utilization at the (n+ k) th time slot 
în+k for one-step-ahead prediction, while it is the pre-
dicted values {în+k , în+k+1, · · · , în+k+p} , as shown in Eqs. 
(8) and (9) for one-step-ahead and p-step-ahead predic-
tion, respectively.
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(8)

Ireg =









i1 i2 . . . in
i2 i3 . . . in+1

...
...

. . .
...

ir ir+1 . . . in+r−1









,

Oreg =











în+1

în+2

...

în+r











, r = l − n+ 1

(9)

Ireg =









i1 i2 . . . in
i2 i3 . . . in+1

...
...

. . .
...

ir ir+1 . . . in+r−1









,

Oreg =











în+1 în+2 . . . în+p

în+2 în+3 . . . în+p+1

...
...

. . .
...

în+r în+r+1 . . . în+r+p−1











, r = l − n− p+ 1

where ij denotes the actual CPU utilization at time slot j, 
îj denotes the predicted CPU utilization at time slot j, n 
is the sliding window length, and l is the input sequence 
length.

Trend classification: 2‑classes approach
In this section, we describe our proposed algorithm for 
forecasting the trend of CPU utilization. In this case, we 
classify the direction of the change of the future CPU 
utilization, whether it is upward or downward. The 
upward trend of CPU utilization implies that we predict 
the future CPU utilization to be higher than the current 
CPU utilization. The downward trend, however, entails 
that the future CPU utilization is lower than the current 
CPU utilization. In many practical applications, it is more 
important to know the trend of workload value rather 
than the actual value (e.g., in Stock prediction).

Specifically, this approach predicts the CPU utili-
zation trend based on two classes:(i) upward and (ii) 
downward. The movement of each time slot is asso-
ciated with a label in the set L = {up, down} , which is 
determined by comparing the current CPU utilization 

Fig. 5  Assigning label example for trend classification approach
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value to one of the previous time slots. We obtain the 
class Lm at the mth time slot as follows:

Upward class:

Downward class:

(10)îm − im−1 > 0 ⇒ Lm = up

(11)îm − im−1 < 0 ⇒ Lm = down

where im−1 is the sample of a time series representing the 
actual value of the CPU utilization at the (m− 1) th time slot, 
and ̂im is the predicted future sample at the mth time slot.

Similar to the CPU utilization value prediction prob-
lem, in this approach, we use the sliding window tech-
nique in the training procedure to predict the next 
output trend. We perform the trend prediction in either 
one-step-ahead prediction fashion or p-step-ahead pre-
diction. The trend prediction of the kth time slot can 

Fig. 6  6 Days CPU utilization data

Table 2  Selected regression evaluation metrics, their formulas, and symbols

Symbols:

- T: Number of samples in the time series.

- it : True value at time slot t.

- ît : Predicted value at time slot t.

- ī  : mean value of i

Performance Metric Equation

Root Mean Squared Error (RMSE)
RMSE =

√

1
T

∑

T

t=1(it − ît)
2

Mean Absolute Percentage Error MAPE = 1
T

∑

T

t=1
|it−ît |
it

× 100%

(MAPE)

Mean Absolute Error (MAE) MAE = 1
T

∑

T

t=1 | it − ît |

Theil’s coefficient (Theil) [80]
Theil =

√

1
T

∑

T

t=1(it−ît )
2

√

1
T

∑

T

t=1(it )
2+

√

1
T

∑

T

t=1(ît )
2

Average relative variance (ARV) [11]
ARV =

∑

T

t=1(it−ît )
2

∑

T

t=1(ît−i)

[11]

Prediction of Change in Direction
POCID =

∑

T

t=1 Dt

T
× 100

(POCID) [11]

where 
Dt =

{

1, if (it − it−1)(ît − ît−1) > 0,
0, otherwise.

Coefficient of determination ( R2 ) [11]
R
2 = 1−

∑

T

t=1(it−ît )
2

∑

T

t=1(it−ī)2
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be calculated based on W past observations of the CPU 
utilization values. We obtain this prediction using the 
so-called embedding technique, i.e., numeric vector 
input represents a word, by which the vector Ik of past 
samples is defined as:

where W denotes the window size, i.e., the number of 
data points used to obtain a prediction.

The trend classifier aims at finding a function f (·) 
that maps the CPU utilization vector Ik into a binary 
decision Lk+1 = {up, down} , i.e., Lk+1 = f (Ik) , where 
Lk+1 denotes the predicted trend label at the (k + 1) th 
time slot. As CPU utilization time series usually have 
complex behavior, we propose to employ the VTGAN 
as a classifier (i.e., for identifying upward or downward 
trends). Consequently, we capture the non-linear and 
non-stationary behavior of time series by learning the 
ML model parameters using data-driven techniques. 
The input Iclass is the CPU utilization time-series sam-
ples. Each row of Iclass corresponds to a window of W 
samples. We organize the samples in a sliding window 
fashion as in the regression model. The corresponding 
output Oclass represents the predicted class value(s), 
as shown in Eqs. (13) and (14) for one-step-ahead and 
p-step-ahead prediction, respectively.

For instance, Fig. 5 illustrates a label association example 
using three-sample-window (W=3). The embedded vector 
at the 5th time slot is as follows:

(12)Ik =
(

ik−W+1 ik−W . . . ik−1 ik
)

(13)

Iclass =









i1 i2 . . . iW
i2 i3 . . . iW+1

...
...

. . .
...

ir ir+1 . . . iW+r−1









,

Oclass =









LW+1

LW+2

...
LW+r









, r = l −W + 1

(14)

Iclass =









i1 i2 . . . iW
i2 i3 . . . iW+1

...
...

. . .
...

ir ir+1 . . . iW+r−1









,

Oclass =









LW+1 LW+2 . . . LW+p

LW+2 LW+3 . . . LW+p+1

...
...

. . .
...

LW+r LW+r+1 . . . LW+r+p−1









, r = l−W−p+1

The relative variation from time slot 5 to time slot 6 is:

and so, the trend label of time slot 6 is L6 = down.

Experimental configuration and evaluation 
methodology
This section considers the experimental setting used for 
assessing our proposed prediction models. Our evalua-
tion includes one-step-ahead and p-step-ahead results. 
We focus our prediction steps p to be limited to 5 (spe-
cifically, we focus on p = 1, 3, 5 prediction steps). For 
p > 5 , we note that the prediction accuracy diminishes. 
Hence, the prediction outcomes would be less beneficial 
in practical applications. We compare the accuracy of our 
proposed VTGAN models against ARIMA, SVR, LSTM, 
and GRU benchmarks, which appeared in the most 
recent related works.

Dataset
In our experimental study, we used the PlanetLab traces 
[60]. These traces contain CPU utilization collected every 
five minutes from more than 500 places around the world 
[4]. We show a visual representation of the behavior in 
Fig. 6, where six days are considered. In particular, CPU 
utilization values are inputs to predict the value and label 
for the next time slot. We consider 80% of workload data 
during all experiments for training the model to predict 
the remaining data.

Performance evaluation metrics
We investigate various accuracy metrics used to evalu-
ate the proposed VTGAN algorithm. Regarding the 
CPU utilization value prediction problem, we study the 
RMSE, MAPE, Theil’s coefficient, ARV, POCID, and R2 
coefficient as prediction accuracy (equivalently, evalu-
ate the error in the prediction) metrics. We summa-
rize the formal definitions of the aforestated metrics 
in Table  2. In the CPU utilization trend classification 
problem, we consider the precision, the recall, and the 

(15)I5 =
(

55 52 41
)

(16)22− 41 = −19 < 0,

Table 3  Selected classification evaluation metrics and their 
formulas

Perfomance metric Equation

Precision Precision = True Positives
True Positives+False Positives

Recall Recall = True Positives
True Positives+False Negatives

F1 score ( F1) F1 = 2 Precision×Recall
Precision+Recall
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Table 4  The structure of VTGAN models

Model Layers Configuration

Stacked LSTM Bidirectional cuDNNLSTM 256 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNLSTM 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNLSTM 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

FC Dense, output units (1 or p for one or multiple-step-ahead)

L1 kernel, and bias regularization = 0.00001

Stacked GRU​ Bidirectional cuDNNGRU​ 256 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNGRU​ 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNGRU​ 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

FC Dense, output units (1 or p for one or multiple-step-ahead)

L1 kernel, and bias regularization = 0.00001

VTGAN (LSTM-based) - Generator parameters

Bidirectional cuDNNLSTM 256 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNLSTM 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNLSTM 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

FC Dense, output units (1 or p for one or multiple-step-ahead)

L1 kernel, and bias regularization = 0.00001

- Discriminator parameters

Conv1D flter=64, kernel size=5, strides=2, padding=same

LeakyReLU activation (alpha=0.001)

Conv1D flter=128, kernel size=5, strides=2, padding=same

LeakyReLU activation (alpha=0.001)

Conv1D flter=128, kernel size=5, strides=2, padding=same

LeakyReLU activation (alpha=0.001)

Flatten

FC 1 Dense, units=64, LeakyReLU activation

FC 2 Dense, output units (1 or p for one or multiple-step-ahead),

sigmoid activation

VTGAN (GRU-based) - Generator parameters

Bidirectional cuDNNGRU​ 256 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNGRU​ 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

cuDNNGRU​ 128 units, dropout= 0.2

L1 kernel, recurrent, and bias regularization = 0.00001

FC Dense, output units (1 or p for one or multiple-step-ahead)

L1 kernel, and bias regularization = 0.00001

- Discriminator parameters:

as VTGAN (LSTM-based)
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F1 score as classification accuracy metrics. We summa-
rize the formal definitions of the classification accuracy 
metrics in Table  3. In addition, we use the confusion 
matrix as a visual evaluation to reflect the classifier’s 
recognition ability for each class. We show the confu-
sion matrix in terms of a 2-class approach (upward and 
downward) for the trend classification problem, while 
we use 10 quantized classes for the regression problem. 
Specifically, we quantize the CPU utilization percent-
age into 10 classes (in steps of 10% ). Hence, we have 
classes 0, 1, 2, · · · , 9 representing the CPU utilization 
percentages of > 90% , 80− 90% , 70− 80% , · · · , 0− 10%.

We select RMSE, MAPE, MAE, and ARV for regression 
evaluation metrics to measure the deviation between 
the predicted and actual values. With all these metrics, 
the absolute value of the error prevents the positive and 
negative errors from canceling out each other. The MAPE 
metric, in particular, has the added benefit of allowing 
prediction accuracy comparison of time series with dif-
ferent value scaling.

Theil’s coefficient measures relative accuracy that com-
pares the obtained predicted results with actual values 
by giving more weight to massive errors by squaring 
the deviations. Theil coefficient acceptable ranges from 
0 (corresponding to no forecasting error) and 1 (cor-
responding to no predictive ability). More than 1 value 
means poor prediction guessing [80, 83].

POCID measures the capability of predicting if future 
values will increase or decrease. It is superior to MAPE as 
it measures the prediction accuracy based on its change 
direction. Therefore, it is a powerful metric during the 
decision-making stage. POCID value closer to 100 repre-
sents the best value [11].
R2 represents the coefficient of how close the values 

are to be fitted with the line of regression. If R2 value 
equal to 1, this means that the model perfectly fits all 
variability. Therefore, R2 value closer to 1 represents the 
best value [11].

For the classification problem, we evaluate the accuracy 
of the proposed model using the precision, the recall, and 
the F1 score.

Experiment configuration
We perform all experiments on Intel Xeon Gold 6248 
processor with 2.5 GHz clock speed, 128 GB of memory, 
and a Tesla V100 GPU with 32 GB of RAM. We imple-
ment all deep learning models using the Keras framework 
and Tensorflow backend with CuDNN kernels. Table  4 
illustrates the architecture of proposed models.

We set the batch size and epochs to 32 and 3000, 
respectively, regarding the training phase. For hybrid 
CNN-LSTM/CNN-GRU and stacked LSTM/GRU mod-
els, the early stopping technique is used with a 20% vali-
dation rate. This technique finds the best point to halt the 
optimizer (Root Mean Squared Propagation - RMSprop) 
once the model performance stops improving [53]. We 
configure the stacked LSTM/GRU network structures as 
the generator configurations of VTGAN models. Also, 
the loss function for the generator is the mean squared 
error after the try-and-error method. We test each model 
three times, then the average and the standard deviation 
are calculated.

Results and discussions
This section presents the regression and classification 
accuracy results of the proposed VTGAN models. Sub-
sections “One-step-ahead regression and classification 
accuracy results”, “Regression and classification accuracy 
results using technical indicators”, and “Multistep-ahead 
regression and classification accuracy results for differ-
ent sliding window size” show the experimental results of 
the proposed algorithm compared to traditional models 
in recent publications such as CNN-LSTM/CNN-GRU 
and stacked-LSTM/GRU. Also, Section  “Bitbrains data-
set comparison” illustrates an additional evaluation study 
with another real cloud dataset (Bitbrains).

Table 6  Comparison of classification results

Model Window size Training epochs Time (Sec.) Precision Recall F1score

ARIMA 3 35.2 0.908 0.8681 0.8876

SVR 3 18.7 0.9339 0.895 0.914

VTGAN (LSTM-based) 3 3000 74.4 0.966±0.003 0.900±0.003 0.932±0.002

CNN-LSTM 15 596 80.7 0.929±0.007 0.890±0.024 0.909±0.015

Stacked LSTM 5 364 55.2 0.881±0.008 0.864 0.873±0.004

VTGAN (GRU-based) 3 3000 68.7 0.954±0.009 0.893±0.006 0.922±0.007

CNN-GRU​ 10 232 35.6 0.915±0.02 0.853±0.01 0.883±0.014

Stacked GRU​ 5 357 52.2 0.947±0.0002 0.900±0.003 0.923±0.002
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One‑step‑ahead regression and classification accuracy 
results
In this section, we assess the performance of VTGAN 
models in one-step-ahead regression and classification 
approaches. We optimize the window size such that it 

achieves maximum accuracy. Tables 5 and 6 illustrate the 
overall accuracy performance of VTGAN models com-
pared to other models for regression and classification 
approaches, respectively. In addition, These tables show 
the optimal values for window size, stopped training 

Fig. 7  Confusion matrices for regression approach. Classes 0, 1, 2, · · · , 9 represent the CPU utilization percentages of > 90% , 80− 90% , 70− 80% , 
· · · , 0− 10% , respectively
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epochs, and training time for the best-observed perfor-
mance in each model. In all tables, the best-observed 
model is in bold in each approach.

As we can see from the experimental results, VTGAN 
(LSTM-based) model is superior to all other predic-
tion models, whether for regression or classification 
approaches regarding all performance metrics presented 
in Section “Performance evaluation metrics”. The stacked 
LSTM model performs the worst compared with all DL 

techniques. Although, the results of the stacked LSTM 
remain acceptable since Theil value does not exceed one. 
Although the SVR model achieves a higher POCID value, 
it did not exceed the maximum value of VTGAN (LSTM-
based) after adding the standard deviation.

Focusing on the sliding window size (from the Tables 5 
and 6, W = 3 , which is equivalent to 15 minutes), 
VTGAN models achieve higher performance with small 
sliding window sizes, whether using LSTM or GRU as a 

Fig. 8  Confusion matrices for classification approach
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generator. This result agrees that the small window size 
is more suitable for the drift data as cloud workload data, 
while larger window sizes are more appropriate for noisy 
data [78]. Nevertheless, since LSTM and GRU techniques 
capture long-term dependencies [19, 42], the regres-
sion and classification accuracy of LSTM/GRU mod-
els enhances with a longer window size value relative to 
VTGAN models.

Hybrid and deep learning-based models are usu-
ally more complex and require higher computations for 
model training. Nevertheless, for all tested models, the 
training time is acceptable for resource management 
applications of the data center because overload/under-
load detection processes often occur every 5 minutes as 
in [12, 33]. As shown in Tables 5 and 6, the CNN-GRU 
model achieves less training time and epochs number 
whether regression or classification approaches (see 
underlined values in Tables 5 and 6).

We note that the complexity difference between models is 
a consequence of using the early stopping technique. Also, 
Tables  5 and 6 show that GRU-based models record less 
training time and the number of epochs compared to the 
LSTM-based models. This observation is consistent with 
the fact that the GRU-based models are much less compu-
tationally intensive. This is due to their ability to converge 
with fewer parameters [20]. However, the performance 
accuracy of the VTGAN (LSTM-based) model is superior to 
the VTGAN (GRU-based) model for all tested models.

Figures  7 and  8 illustrate the confusion matrices of 
all models. We use the confusion matrix comparison to 
visually examine the behavior of VTGAN models com-
pared to others with regression and classification results, 
respectively. Also, Fig.  9 illustrates a part of the actual 
CPU utilization compared to the predicted value using all 
models. The interval length is of 5 minutes.

The confusion matrix results of regression models 
in Fig.  7 illustrate the predictive capability within every 
CPU utilization interval. Figure 7 shows that the VTGAN 
(LSTM-based) model is superior in overall prediction 
accuracy. VTGAN (LSTM-based) model achieves accu-
rate prediction at every CPU utilization range. In con-
trast, the prediction accuracy reduces for very low or very 
high CPU utilization values compared to other models, 
particularly for the ARIMA, SVR, and CNN-LSTM mod-
els, as shown in Fig. 9.

The confusion matrix results of classification models 
in Fig. 8 signify the classification accuracy for predicting 
upward or downward trends. Figure 8, VTGAN (LSTM-
based) model achieves the best performance, followed by 
VTGAN (GRU-based) and stacked GRU models, which 
record slightly less accuracy. The strength of the classifi-
cation approach is that it is easy to make direct decisions 
depending on the classifier results. For instance, we can 
detect the overloaded server if its CPU utilization records 
more than a specific threshold and the predicted trend 
is upward. This solution will reduce unnecessary migra-
tions in resource management frameworks. Especially, 
the False downward detection probability with VTGAN 
(LSTM-based) model is low ( ≈ 4%).

Regression and classification accuracy results using 
technical indicators
This section analyzes the impact of adding Techni-
cal Indicators (TIs) to the feature set with our work-
load traces. By repeating previous experiments in 
Section  “One-step-ahead regression and classification 
accuracy results”, Tables  7 and 8 illustrate the overall 
accuracy performance of VTGAN models using TI strat-
egy compared to other models for regression and classifi-
cation approaches, respectively.

Fig. 9  Actual and predicted CPU utilization values for regression approach
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In general, the TI addition diminishes the regression 
and classification performance for all tested models in 
terms of one-step-ahead prediction. This result could be 
due to the occurrence of over-fitting by adding depend-
ent features. VTGAN models are still the superior mod-
els for regression and classification approaches.

VTGAN (GRU-based) model outperforms other 
models (bold results). In contrast, CNN-LSTM/GRU 
models are the worst performance. In this case, the 

regression becomes useless, where the Theil value of 
these models record exceeds one, as shown in Table 7.

Figures 10 and 11 illustrate the comparison of confu-
sion matrices between all the models using TIs strategy 
to examine the visual behavior of VTGAN models com-
pared to others.

Focusing on the training speed of the models, we 
note that the single benefit of using the TI strategy 
for one-step-ahead prediction is that the training is 

Table 8  Comparison of classification results

Model Window size Training epochs Time (Sec.) Precision Recall F1score

VTGAN (LSTM-based) 3 3000 74.2 0.826±0.002 0.806±0.018 0.816±0.009

CNN-LSTM 15 235 35 0.782±0.004 0.775±0.017 0.778±0.007

Stacked LSTM 15 512 73.2 0.784±0.005 0.771±0.003 0.778±0.001

VTGAN (GRU-based) 3 3000 72 0.854±0.002 0.804±0.003 0.828±0.001

CNN-GRU​ 20 235 35 0.803±0.016 0.788±0.017 0.795±0.01

Stacked GRU​ 20 255 48.9 0.743±0.007 0.718±0.009 0.730±0.008

Fig. 10  Confusion matrices for regression approach using TI. Classes 0, 1, 2, · · · , 9 represent the CPU utilization percentages of > 90% , 80− 90% , 
70− 80% , · · · , 0− 10% , respectively
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faster than others. Specifically, the training time and 
the number of epochs reduce for CNN-LSTM/GRU 
and stacked LSTM/GRU models, whether regression 
or classification approaches compared to the results 
in Subsection  “One-step-ahead regression and clas-
sification accuracy results”. For instance, the training 
epochs and time decrease from 576 and 74.8 seconds 
in Table 5 to 235 and 35 seconds using the TI strategy 
for the CNN-LSTM model in Table 7.

Multistep‑ahead regression and classification accuracy 
results for different sliding window size
This section studies the performance of the multi-step-ahead 
prediction. Also, we assess the effect of changing the sliding 
window sizes on our models’ performance and/or adding TI 
features to the input of the prediction algorithm. The follow-
ing subsections analyze the impact of change in sliding win-
dow size, multi-step-ahead, and TI strategy, respectively.

Sliding window size analysis
This section analyzes the effect of changing the sliding 
window size. Figures  12 and 13 illustrate MAPE and F1 
score values against the sliding-window size for all tested 
models. Sub-figures in every row represent the step-
ahead size ( p = 1, 3, 5 ). The second column represents 
the results after adding the TI indicators.

Figures  12 and 13 show that VTGAN models’ perfor-
mance significantly declines when the sliding window 
size increases. In contrast, the performance of other 
models oscillates to a reasonable degree. Fortunately, the 
VTGAN models’ accuracy outperforms other models 
with small window sizes. This result is considered a con-
siderable benefit when we run our model for real-time 
resource management framework as in [33]. This result 
implies that as soon as the model collects three CPU uti-
lization data points (i.e., in a period of 15 minutes), it can 
successfully predict future samples.

Fig. 11  Confusion matrices for classification approach using TI
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Technical indicators effect on multi‑step‑ahead prediction
This section analyzes the impact of using TIs for all tested 
scenarios with different sliding windows and step-ahead 
sizes. Figures  14 and 15 illustrate MAPE and F1 score 
values, respectively. Solid and striped bars represent the 
pure models and models using the TIs, respectively, with 

various sliding window sizes (3, 5, 10, 15, and 20) and 
step-ahead sizes ( p = 1, 3, 5).

In general, the performance of all models with multi-
step-ahead fails to maintain its performance whenever 
the prediction step size increases for all tested configu-
rations. As shown in solid bars only in Figs.  14 and 15. 

Fig. 12  MAPE values using different window size input for one-step and mult-step ahead
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This result agrees with the results in [61, 85], which con-
firmed that most deep-learning and hybrid models per-
form poorly in long-term prediction approaches. That is 
because of the nature of CPU utilization data, where it 
fails to fit models due to the complexity and non-linearity 
issues.

Regarding the one-step-ahead prediction, the use of 
the TI strategy negatively affects the regression and 

classification performance except for the VTGAN 
(LSTM-based) model. It achieves a significant improve-
ment for window size equals 10 (Figs.  14(g) and 15(g)), 
then a slight improvement in regression performance for 
window sizes equal 15 and 20 (Fig. 14(j) and (m)).

Regarding multi-step-ahead regression, the use of the 
TI strategy achieves a significant improvement with 
stacked LSTM/GRU models (Fig. 14(columns 2 and 3)).

Fig. 13  F1 score values using different window size input for one-step and multi-step ahead
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Fig. 14  MAPE values using different window size and step ahead values
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Fig. 15  F1 score values using different window size and step ahead values
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Regarding multi-step-ahead classification, the use of 
the TI strategy achieves a slight improvement with the 
stacked LSTM model and most CNN-LSTM/GRU mod-
els (Fig. 15(columns 2 and 3)).

Table 9 illustrates the best configurations based on the 
number of prediction steps for regression and classifica-
tion approaches. Service providers can choose the model 
and adjust the configuration based on the required pre-
diction steps. For one-step-ahead prediction, VTGAN 
(LSTM-based) model outperforms other models with 
a window size equal to 3 (15 minutes), whether regres-
sion or classification approaches. For multi-step-ahead 
prediction, Stacked LSTM/GRU and CNN-LSTM out-
perform other models with TIs for the regression and 
classification approach, respectively.

In general, the use of the TI strategy is powerful in the 
case of long-term prediction strategy in some models. 
Unfortunately, this is not suitable for real-time resource 
management frameworks in cloud data centers, and that 
might be because adding dependent features leads to an 
over-fitting issue. Nevertheless, this issue is promising to 
investigate and could be improved using ensemble and 
hybrid strategies as in [86].

Bitbrains dataset comparison
To confirm the performance evaluation of the proposed 
models, we perform experiments using another real 
cloud dataset, namely, Bitbrains [72]. This dataset is pub-
lished online in the Grid workloads archive [10]. It is a 
large-scale and long-term trace of real data. The dataset 
of Bitbrains contains data spanning over 5,446,811 CPU 
hours (1750 VMs), with 23,214 GB memory and 5,501 
cores. For comparison purposes, we perform the same 
preprocessing steps as [44]. Then, we evaluate our pro-
posed models compared to the models of Authors in [44] 
with the regression approach only, as using the trend 

Table 9  Best configuration based on the number of step-ahead 
prediction sizes

Prediction sizes Value regression Trend classification

1-step-ahead VTGAN (LSTM-based) VTGAN (LSTM-based)

Window size=3 Window size=3

(Fig. 14(a)) (Fig. 15(a))

3-step-ahead Stacked LSTM CNN-LSTM

Window size=10 Window size=20

With TIs With TIs

(Fig. 14(h)) (Fig. 15(n))

5-step-ahead Stacked GRU​ CNN-LSTM

Window size=3 Window size=3

With TIs With TIs

(Fig. 14(c)) (Fig. 15(c))

Table 10  Prediction performance of Bitbrains dataset for the 
proposed models compared to the models in [44]

Method Window size Train:Test ratio MAPE

Bi-LSTM [44] 65:35 12.0119

70:30 12.2173

30 75:25 12.3019

80:20 13.6177

65:35 11.7046
70:30 11.7091

60 75:25 11.914

80:20 13.6163

65:35 12.0244

70:30 12.3091

90 75:25 12.8671

80:20 13.1198

65:35 12.0802

70:30 11.8903

120 75:25 14.207

80:20 13.4428

BHyPreC [44] 65:35 11.1799

70:30 12.3343

30 75:25 12.3688

80:20 12.2959

65:35 11.1101

70:30 13.0751

60 75:25 11.7641

80:20 13.507

65:35 12.537

70:30 12.2912

90 75:25 10.8557

80:20 12.4713

65:35 12.2044

70:30 10.7738
120 75:25 12.706

80:20 13.3193

VTGAN (LSTM-based) 65:35 10.5822

70:30 9.47898

30 75:25 9.39637

80:20 9.0233
65:35 10.911

70:30 10.1507

60 75:25 10.4705

80:20 9.3998

65:35 10.3466

70:30 13.6877

90 75:25 11.146

80:20 11.2193

65:35 13.0493

70:30 14.7279

120 75:25 12.4581

80:20 12.8819

VTGAN (GRU-based) 65:35 8.87
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classification is a novel approach in the field of cloud 
workload forecasting.

Table 10 illustrates the MAPE of CPU utilization pre-
diction with the values of the same variables that are 
used in [44], such as window size and train/test ratio. 

Also, Table 11 illustrates the lowest MAPE value for each 
model with optimum window size and split ratio, which 
is obtained from all combinations shown in Table 10.

We can see that our proposed models achieve the high-
est prediction accuracy compared to other state-of-the-
art prediction models in [44]. However, the lowest MAPE 
is obtained in our VTGAN (GRU-based) model for a 
window size of 60 and a split ratio of 80:20. The split size 
ratio remains the same for our VTGAN (LSTM-based) 
model, but history window size changes to 30.

Table  12 illustrates the improvement or diminishing 
percentage of using our proposed models compared to 
the state-of-the-art prediction models. We calculate it as 
[44] using the Eq. (17), where Yp and Yc denote the MAPE 
value of our proposed model and the compared model, 
respectively. We take into consideration the best combi-
nation scenario only for all the models in terms of win-
dow size and split ratio.

For this comparison study, we use ARIMA, LSTM, 
GRU, Bi-LSTM, and BHyPreC as the baseline models to 
compare. The Positive percentage denotes the percent-
age increase of the MAPE value of the compared model 
with respect to our proposed models. We clearly see that 
the percentage MAPE value increases for all the models 
compared to our proposed models.

As we can see, our proposed models considerably mini-
mize the MAPE in predicting CPU utilization. Therefore, 
our models are not only superior to the classical models 
(ARIMA) but also perform much better compared to 
other deep learning approaches presented in this paper.

Conclusions and future works
In recent years, the workload prediction process has 
become a key stage towards efficient resource allocation 
and management approaches in cloud computing envi-
ronments. Due to the non-linearity of cloud workloads, 
this issue faces enormous challenges. Therefore, this 
paper proposes a novel direction in the cloud workload 
prediction field by considering the future movement 
direction in a modern classification structure. In addi-
tion, it presents novel VTGAN models, which are based 
on a GAN network with stacked LSTM or GRU as a gen-
erator and 1D CNN as a discriminator. The main benefit 
of VTGAN models is their ability to deal effectively with 
long-term nonlinear dependencies of cloud workloads.

In this paper, we study the proposed models on differ-
ent configurations over an over-volatile real cloud work-
load trace. Also, we present the impact of tuning sliding 

(17)Xc =
(Yc − Yp) ∗ 100

Yp

Table 10  (continued)

Method Window size Train:Test ratio MAPE

70:30 8.6018

30 75:25 9.1799

80:20 9.6228

65:35 8.5347

70:30 8.4522

60 75:25 9.044

80:20 8.1686
65:35 8.747

70:30 8.8152

90 75:25 8.5942

80:20 8.3724

65:35 8.6346

70:30 9.0875

120 75:25 8.0545

80:20 8.5751

Table 11  Summary of lowest MAPE values of our proposed 
models compared to the models in [44]

Method Best tested Best tested Lower
window size split ratio MAPE value

ARIMA [44] N/A 80:20 37.031

LSTM [44] 120 65:35 11.7246

GRU [44] 90 70:30 11.9765

Bi-LSTM [44] 60 65:35 11.7046

BHyPreC [44] 120 70:30 10.7738

VTGAN (LSTM-based) 30 80:20 9.0233

VTGAN (GRU-based) 60 80:20 8.1686

Table 12  MAPE percentage increase/decrease of the compared 
models in [44] with respect to our proposed model

Compared models VTGAN (LSTM-based) VTGAN (GRU-based)

ARIMA +310.3931% +319.8652%

LSTM +29.9369% +39.4091%

GRU​ +32.7286% +42.2007%

Bi-LSTM +29.7153% +39.1874%

BHyPreC +19.3998% +28.8719%
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window size and multi-step-ahead strategy. In addition, 
we study the use of technical indicators, Fourier trans-
forms, and wavelet transforms to increase the number 
of input features. We apply all of these studies with the 
VTGAN models compared to stacked LSTM/GRU and 
CNN-LSTM/GRU models.

The experimental results demonstrate that the VTGAN 
models are superior for the cloud workload prediction 
approach, whether using LSTM or GRU as a generator. 
Also, these results illustrate the effectiveness of trans-
forming the problem to classify the trend instead of pre-
dicting the value of future workload for all tested models. 
Significantly, the upward classification accuracy reaches 
96.6%. The proactive overload detection stage in the 
resource management techniques is a critical issue that 
overcomes the unnecessary migrations that violate the 
service level agreement for end-users. The results are 
not promising regarding the multi-step-ahead prediction 
and technical indicator strategies. Thus, one-step-ahead 
prediction is more suitable for a real-time cloud environ-
ment. In addition, the technical indicator approach may 
be extended further by proposing a solution to optimize 
the prediction and classification error.

As an additional suggestion for future work, a dynamic 
scaling method can be applied rather than set a fixed 
value to improve the prediction and classification accu-
racy. Another future direction is to implement these 
prediction models in an actual resource management 
framework for the cloud data center through the Cloud-
Sim simulation tool to evaluate the proposed models in 
a large-scale simulated cloud environment. Hence, the 
decision of resource allocation will be based on the trend. 
In addition, we will extend the classification approach so 
that the CPU utilization trend will be predicted based on 
three classes:(i) upward trend, (ii) hold, and (ii) down-
ward trend.

As further promising directions for future research, 
our contribution opens research areas concerning next-
generation computing, such as Edge AI [75]. Especially, 
a hybrid solution could be presented by processing real-
time applications on edge devices and training models 
on the cloud [50, 65]. Our trend classification approach 
could be helpful in this Edge-to-cloud integration 
approach in offloading the training process to the cloud 
by allocating it to the best host, depending on the future 
workload of the servers. This approach could be con-
sidered and implemented for most resource allocation 
frameworks, such as Mobile edge computing and fog 
computing platforms for internet of things (IoT) pur-
poses [49]. That approach increases computational 

performance and reduces the total energy consumed and 
processing times for mobile or edge devices. Moreover, 
edge computational resources suffer from QoS degra-
dation due to overloading and inconsistency. Therefore, 
an intelligent proactive workload management frame-
work could be presented to guarantee the load balanc-
ing between the edge resources using our classification 
approach.
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