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Abstract 

Fog computing aims to mitigate data communication delay by deploying fog nodes to provide servers in the prox‑
imity of users and offload resource-hungry tasks that would otherwise be sent to distant cloud servers. In this paper, 
we propose an effective fog device deployment algorithm based on a new metaheuristic algorithm–search eco‑
nomics–to solve the optimization problem for the deployment of fog computing systems. The term “effective” in this 
paper refers to that the developed algorithm can achieve better performance in terms of metrics such as lower 
latency and less resource usage. Compared with conventional metaheuristic algorithms, the proposed algorithm 
is unique in that it first divides the solution space into a set of regions to increase search diversity of the search 
and then allocates different computational resources to each region according to its potential. To verify the effective‑
ness of the proposed algorithm, we compare it with several classical fog computing deployment algorithms. The 
simulation results indicate that the proposed algorithm provides lower network latency and higher quality of service 
than the other deployment algorithms evaluated in this study.
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Introduction
With the explosive growth of the internet of things, new 
applications aim to provide interactive and intelligent 
services to users; these services typically require lower 
delay for responsive user experience and greater com-
putational resources for complex algorithms. However, 
determining how to reduce transmission and process-
ing delay to provide responsive and intelligent services 
under various network traffic conditions is a challenging 
task. Fog computing is a method that involves distributed 
computing on fog nodes comprising numerous devices 
(e.g., sensors and appliances). It is different from upload-
ing all computing tasks to the cloud and it can potentially 
be used to enhance the performance of internet of things 

(IoT) environments [1]. Fog computing architecture is 
typically hierarchical and can be divided into three layers, 
namely the terminal, fog, and cloud layers [2].

When the sensors require computational resources or 
run real-time tasks, the fog computing system provides 
the required services accordingly. Because the fog layer 
connects the low-level sensors and high-level cloud, it 
plays an essential role in such hierarchical architecture. 
The devices of the fog layer (e.g., fog servers) can gen-
erally be deployed in a fixed location or installed on a 
dynamic vehicle. The fog server analyzes the data col-
lected from the terminal layer and then relays the anal-
ysis results to the terminal layer or uploads the data to 
the cloud layer for processing. In this type of system, 
the cloud layer comprises high-performance computing 
servers and storage devices that enable mass data pro-
cessing and the performance of complex computational 
tasks. Fog nodes are typically deployed between lower-
level devices and high-level cloud computing platforms. 
The fog servers share the cloud computing platforms’ 
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computational loads to reduce latency and increase the 
computational speed of the integrated IoT system.

Because the fog node deployment strategy influ-
ences a fog computing system’s cost and performance, 
determining a suitable and efficient deployment strat-
egy has become a critical optimization problem. One 
key research topic related to the development of such 
a strategy is the sufficient allocation of computational 
resources to the fog computing cluster to allow for 
the provision of customized services near users [3]. 
Some early studies on fog computer architecture [4, 5] 
regarded the fog node deployment optimization problem 
as nearly identical to the NP-hard degree-constrained 
minimum spanning tree (DCMST) optimization prob-
lem [6–8]. Because determining optimal solutions to 
most NP-hard optimization problems within a reason-
able time is nearly impossible, metaheuristic algorithms 
are often used to determine approximate solutions to fog 
node deployment optimization problems. Some studies 
[9–11] have also attempted to use metaheuristic algo-
rithms to solve the DCMST optimization problem in 
recent years because most can determine an approxi-
mate solution within a reasonable time.

Because most conventional meta heuristic algorithms 
[12–14] tend to converge to local optima, postponing the 
convergence of metaheuristic algorithms to allow search-
ing of particular regions has become a key research topic. 
One approach to addressing this problem is to increase 
the search diversity of the metaheuristic algorithm during 
the convergence process by, for example, randomly creat-
ing additional candidate solutions to replace the current 
searched keys. However, using this method to increase 
the search diversity might also degrade the search perfor-
mance of the metaheuristic algorithm because it erases 
some of the search experience. A new metaheuristic algo-
rithm called search economics (SE) [15] was designed to 
increase search diversity in the convergence process by 
allocating searches to different regions according to the 
potential of each region instead of randomly creating new 
search directions.

The main goal of SE is to fairly allocate computational 
resources in each iterative process by computing the 
potential of each region (i.e., subspace). In this paper, 
we present an effective metaheuristic algorithm based 
on SE for solving the fog node deployment optimiza-
tion problem. The main contributions of this paper are 
as follows:

•	 A new solution space division method is proposed for 
solving the fog node optimization problem based on SE.

•	 A new operator for SE called the trade operator and 
modification of other SE operators are proposed to 
solve the fog node optimization problem.

This paper is organized as follows. Related work section 
discusses fog computing systems, provides a definition of 
the optimization problem, and briefly discusses deploy-
ment algorithms used to address the fog node optimization 
problem. Proposed method section discusses the improved 
version of the SE algorithm. Experimental results section 
describes the experimental process and environment and 
presents the simulation results of the proposed algorithm 
and the other deployment algorithms compared in this 
paper. Finally, Conclusion section presents our conclusions 
and some suggestions for future research.

Related work
Problem definition
The performance of fog computational resource manage-
ment can be evaluated on the basis of three factors dis-
cussed in [16] as follows: 1). Minimized latency: Reducing 
latency is a main goal of fog computing architecture. User-
perceived latency strongly affects the service quality of a 
fog computing system. The locations of servers affect the 
speed of data transmission. 2). Minimized resource usage: 
Although increasing the number of fog servers might 
reduce the latency of the whole system, it also increases 
the cost. 3). Minimized service placement transitions: 
Because a user requests must often be completed by serv-
ers in different layers, reducing the data transmission 
requirements is another primary concern in such a sys-
tem. In this paper, the problem definition is based on that 
employed in a recent study [17] and is defined as follows:

where s represents a candidate solution, Cl represents 
the total cost of deploying fiber to construct connections 
with devices, Cs is the total cost of device installation, and 
P represents penalty costs. The details of the calculation 
are described as follows:

where cf  represents the unit cost of deploying fiber; xi,j 
represents the link installed between devices i and j; di,j 
is the distance between devices i and j; z represents the 
location of the cloud center, and �G , �F , and �E , repre-
sent the potential positions of the gateways, fog servers, 
and edge servers, respectively.

where the cG , cF , and cE are the costs of installing a sin-
gle gateway, a fog server, and an edge server, respectively; 
gm is a binary flag indicating the candidate location for 

(1)min f (s) = Cl + Cs + P,

(2)Cl = cf
(i,j)∈{s}×�G∪�G×�F∪�F×�E

xi,j · di,j ,

(3)Cs = cG
∑

m∈�G

gm + cF
∑

n∈�F

fn + cE
∑

t∈�E

qt ,



Page 3 of 15Chen et al. Journal of Cloud Computing          (2023) 12:105 	

installation of gateway m; fn is a binary flag indicating 
the candidate location for installation of fog server n; 
and qt is a binary flag indicating candidate location for 
installation of edge sever t. The constraints of fog com-
puting system deployment are difficult to evaluate inde-
pendently of the solution space, but the constraints can 
increase the objective value by defining penalty costs. A 
fog computing system can incur considerable costs when 
deployment does not meet constraints. Penalty costs can 
be calculated using Eq. (4)

where the κ is the coefficient of the penalty cost and ηl , 
ηd , ηφ , ηo , and ηu are constrained terms in the fog comput-
ing system. The constrained terms are defined as follows:

•	 Constraint of link ( ηl ): The number of users or 
devices in the fog system without service. The opti-
mal solution would allow all devices or users to 
obtain service from he top layer when they request 
resources. This constraint is calculated using Eq. (5) 

where the xi,j indicates whether a connective link 
exists between devices i and j.

•	 Constraint of demand ( ηd ): The maximum number 
of services that devices can handle. Each user has 
its demand γA that requests resources from top lay-
ers to maintain service, and the demand is handled 
by the closest server. Each type of device has dif-
ferent demands (i.e., γt , γn , and γm are demands of 
edge server t, fog server n, and gateway m, respec-
tively) and maximum demand factors ( HE

t  , HF
n  , and 

HG
m for edge server t, fog server n, and gateway m, 

respectively). This constraint is calculated using 
Eq. (6) 

where ωi,j represents a device i’s demands for a top-
layer device j and k represents the type of device. In 
the deployment stage, the ideal is for each device to 
be able to handle the demands from the lower layer 
and the total loading demands of each device to be 
less than its maximum.

•	 Constraint of latency ( ηφ ): The total latency time of 
the whole fog computing system. The latency time of 
device i is calculated from its service provider device 
j according to data size Lj and transmission rate γj . 
This constraint is calculated using Eq. (7): 

(4)P = κ · (ηl + ηd + ηφ + ηo + ηu),

(5)ηl =

{

ηl + 1, if xi,j = 0,
ηl , otherwise,

(6)ηd =

{

ηd + 1, if
∑

k∈ωi
ri · xjk > HE

j ,

ηd , otherwise,

 where Di,j represents the maximum latency time.
•	 Constraint of coverage ( ηo ): The distance of any user 

k to its service provider must be less than the radius 
of range for edge server t. In the deployment stage, 
the ideal is for all users to deploy at least one edge 
server nearby. 

where x(t, k) and d(t, k) represent the connection flag 
and distance between the user k and edge server t, 
respectively. RE represents the radius of service range 
for edge servers.

•	 Constraint of capacity ( ηu ): The maximum capacity 
of the edge servers, fog servers, and gateways are NE , 
NF , and NG , respectively. 

where ωi represents the capacity of device k and i 
represents the type of device.

In summary, the design of the objective function defined 
in Eq.  (1) takes into consideration the fiber deployment 
cost Cl , device installation cost Cs , and many other penalty 
costs P, which have been explained in detail in Eqs. (2) to 
(4), respectively. It’s worth to mention that the penalty 
cost increases the objective value to avoid server over-
load, disconnection, high latency, and other problems. 
Since this deployment problem can be considered as a 
complex optimization problem, using the greedy or deter-
ministic search algorithms might not be able to find out 
a good solution in reasonable time. To solve such com-
plex optimization problems, the proposed metaheuristic 
algorithm can provide an alternative way to find out the 
approximate solution within reasonable time [18]. That is 
the major reason we apply the metaheuristic algorithm to 
solve this optimization problem in this study.

Proposed method
Basic idea
The SE algorithm is a new metaheuristic algorithm [15] 
that aims to adjust the computational resources allocated 
to different regions of the whole search space according to 
the potential profit of regions in the current search direc-
tion. Unlike other metaheuristic algorithms, the SE algo-
rithm contains three essential components involved in the 
convergence process: Regions, goods, and searchers. The 
whole solution space (search space) can be regarded as an 

(7)ηφ =

{

ηφ + 1, if
∑

j
Lj
xi,j

· γj > Di,j ,

ηφ , otherwise,

(8)ηo =

{

ηo + 1, if xt,k · dt,k > RE ,
ηo, otherwise,

(9)ηu =

{

ηu + 1, if
∑

k∈ωi
xi,k ≤ Nj ,

ηu, otherwise,
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investment market that can be further split into a certain 
number of submarkets, called regions, by domain knowl-
edge. The solutions represent the goods in the market, and 
the objective value of the solution represents the profit. 
The searcher acts as an investor to identify and invest in 
the goods that can yield a high profit. The searcher col-
lects historical profit information to improve product qual-
ity. The algorithm uses searchers to continually identify 
goods with high profit potential in each region. The goods 
retain characteristics that reflect their respective submar-
kets, remain in their original region, and do not exchange 
information with goods in other regions. If the algorithm 
can estimate the potential profit from investing in certain 
regions, it can dynamically adjust the allocation of compu-
tational resources. Therefore, the SE algorithm is suitable 
for solving problems with massive solution spaces. After 
the first version of SE was presented in [15], it was success-
fully applied to solve optimization problem in many fields, 
such as wireless sensors deployment problem [19], internet 
resource management [20], cell deployment in 5G wireless 
communication [21], hyper-parameter optimization for 
deep neural networks [22], and deep neural network prun-
ing problem [23]. These results shown that SE can find bet-
ter results than other metaheuristic algorithms (e.g., genetic 
algorithm), especially in complex optimization problems. 
Therefore, we are confident that using SE in our study is an 
efficient approach to obtain better deployment solution.

SE algorithms have the advantage over other 
metaheuristic algorithms in that they will first analyze 
the complex solution spaces and adjust the search direc-
tion accordingly. The algorithm collects three pieces 
of information from the process of searchers investing 
in goods: (1) The previous optimal profit of goods, (2) 
the region with the highest average profit, and (3) the 
regions not yet explored. For the searcher, if the indices 
of profit potential can be effectively classified by submar-
ket, the efficiency of the search increases. For example, if 
the goods located in the same submarket yield the same 
profits and their profits are different from those of goods 
in other regions, the searcher can efficiently search for 
goods in submarkets with the highest profit potential. 
In this study, the SE algorithm was used to solve the fog 
computing system deployment problem. The algorithm 
generates several goods that represent the deployment of 
gateways, fog servers, and edge servers at candidate loca-
tions, and the profits of the goods are calculated using 
Eq.  (1). These values are used to allocate computational 
resources and identify more profitable goods in the high-
potential region. Finally, the algorithm generates the opti-
mal deployment locations for the fog computing system 
in the final convergence stage. The notation presented in 
Table 1 is used throughout the remainder of this paper to 
simplify the discussion of the proposed algorithm.

Search economics for fog computing system
As described in Algorithm  1, the proposed algorithm 
consists of four primary operators: Resource arrange-
ment, vision search, trade, and marketing research.

Algorithm 1 Search economics for fog system deployment

In the algorithm, R, S, and G represent the sets of regions, 
searchers, and goods, respectively. At the initial stage (i.e., 
Initialization(·) ), the algorithm constructs solutions for 
each good and searcher at random, and the solution length 
is the total quantity of the gateways, fog servers, and edge 
servers. The role of Resource_arrangement(·) is to split the 
market to determine how to distribute limited resources 
to search the whole market evenly. The Vision_search(·) 
operator allows the searchers to exchange information with 

Table 1  The notation of this paper

Notation Description

k Number of region.

ri The i-th region.

R A set of region, R = {r1, r2, . . . , rk}.

m Number of searchers.

sij The j-th searcher in the i-th region.

S A set of searchers,S = {s1, s2, . . . , sm}.

n Number of candidate goods in regions.

gil
The l-th goods in i-th region.

Gi A set of goods in the i-th region.

tai Number of consecutive invested in the i-th region.

tbi Number of consecutive uninvested in the i-th region.

µi Rates of consecutive invested in the i-th region.

νi Average objective value obtained by searchers in the i-th 
region.

ρi Average objective value obtained by goods in the i-th region.

Ei The expected value of the i-th region.

E ′i The adjusted expected value of the non-convergent region i.

o Number of players.

γ The weight of trade operator adjust the expected value 
of the non-convergent region.

t Number of iteration.

d The solutions with the best objective value.
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goods to generate a new solution that combines the char-
acteristics of searchers and goods and to evaluate the profit 
potential to obtain the optimal fitness value for each region. 
Trade(·) is a new operator for improved SE that is used to 
calculate the potential of each region to allow the searcher 
to move to a more suitable region. Subsequently, the pro-
posed algorithm calculates and updates the market infor-
mation using the Marketing_research(·) operator.

Figure 1 further shows a flowchart to explain how the 
proposed algorithm is applied to the deployment of the 
fog computing systems. This flowchart illustrates first the 
proposed system receives data from environment and 
sensors. As part of the proposed algorithm, the received 
data will be refined using the pre-processing procedure. 
Based on these data, a deployment plan (SEFSD) will be 
computed, which will then be used to deploy fog servers.

Resource arrangement
Resource arrangement involves splitting unknown mar-
kets into several submarkets and defining the specifica-
tion of goods in each market. All invested interests (i.e., 
new solutions) must follow specifications for their respec-
tive markets. The specification of markets means that the 
goods generated in the same regions exhibit the same fea-
tures. Each region keeps a certain number of goods in the 
search process. If the region produces more goods than 
this maximum, the region eliminates the goods exhibit-
ing lower fitness. Searchers dynamically invest in different 
submarkets and exchange information to improve goods 
with high potential in their respective regions of invest-
ment. The method by which they estimate profit potential 

is introduced in a later section. For example, the SE depth-
first search divides the market into four submarkets and 
selects two bits in the solution as identity bits. The market 
is divided into four regions and they are identified by bit 
pairs: (0, 0), (0, 1), (1, 0), and (1, 1). The identity bits com-
prise part of the solution and influence the search process 
and deployment situations. Therefore, the identity bits 
also affect the objective values.

In this paper, we propose an improved split-market 
mechanism for the deployment of fog computing systems 
to address the problem of large-scale solution spaces. 
In our algorithm, the solution space is divided into four 
regions, and the identity bit pairs extend to the segment 
of solution that represents the top layer devices installed 
in candidate locations. The high installation costs of 
top-layer devices and their distance to other connected 
devices substantially affect the devices in the next layer 
to be deployed. Moreover, solutions with the same num-
ber of deployed gateways have similar object values. The 
Resource_arrangement(·) operator is described as follows.

Algorithm 2 Resource arrangement

When 30 candidate locations for gateways are present, 
the gateways are deployed in 25 or 21 candidate locations 
within the solution space rather than 5. If only five gate-
ways are deployed, the gateways are far from each other. If 
the deployment pattern increases the number of gateways 
from 20 to 21, the gateways get closer to each other and the 
fiber installation cost decreases substantially. Therefore, 
the algorithm classifies similar numbers of gateways into 
the same submarket, and the objective values of solutions 
can therefore be expected to be different in each region. In 
Algorithm 2, the market R is split into k regions , and the 
number of regions k is used to allocate the goods G gener-
ated in the initial step according to the number of gateways 
in each region and to evenly assign the searchers S to each 
region. The number of gateways per region is obtained 
by dividing the candidate locations of gateways by the k 
regions. A region i only accepts the goods with numbers of 
gateways located within the interval of the region.Fig. 1  The flowchart of the proposed algorithm for the fog 

computing system
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Following the aforementioned split-market method, the 
goods in the same region have the same number of gate-
ways within the same interval. The number of regions into 
which the market is split can differ by problem or data-
set. If the algorithm dynamically increases the number of 
regions, it will locate goods close to the optimal solution 
within the same region. However, if the number of regions 
remains low, the profit of goods will be uneven within the 
same region. Furthermore, a high number of regions will 
lead to several regions exhibiting the same profit poten-
tial. These two situations will lead to searcher misjudg-
ment. Although this method splits the solution space by 
the number of gateways and generates sub-solution spaces 
of different sizes, the SE algorithm allocates resources 
according to each region’s potential, and large regions 
are allocated more search resources. The details of the 
resource arrangement are introduced in the next section.

Vision search
After the resource arrangement stage, each region contains 
goods and searchers. In the first iteration, the region ran-
domly allocates its searchers, and each searcher randomly 
generates new solutions using the crossover and mutation 
operators of the GA [24]. The main difference is that in the 
present algorithm, the searcher checks whether the identity 
segment of the new solution follows the specification of the 
region to which it belongs. If the identity segment does not 
follow the specification, the searcher randomly selects a bit 
of the new solution’s segment to exchange with the iden-
tity segment of the original solution until the specification 
is met. When the new solution meets the specification and 
is superior to the original, it replaces the original solution, 
and the searcher evaluates the objective value of the new 
solution. The searchers do not exchange information with 
each other and do not reset the identity segments. Finally, 
the searcher updates the objective values of the new goods 
and estimates the expected profit for each region. The 
Vision_search(·) of the algorithm is described as follows.

Algorithm 3 Vision search

Each searcher moves to the next search region accord-
ing to the expected value, and the number of searchers 
for each region is dynamic. Searchers may not be allo-
cated to a region because the region’s expected value 
is low. The expected value Ei can be calculated using 
Eq. (10):

where µi represents the investment situation for region 
i, νi represents the average profit of searchers in region i, 
and ρi represents the ratio of profit for the optimal goods 
to the total yield of all goods in region i. The investment 
situation µi can be calculated using Eq. (11):

where tai  and tbi  represent the number of iterations dur-
ing which the searcher continuously invested and did 
not continuously invest in region i, respectively. How the 
investment times are counted and updated is introduced 
in the Marketing research section. The average profit for 
searchers νi can be calculated using Eq. (12).

where sij represents searcher j in region i, m is the num-
ber of searchers in region i, and f (·) is the objective func-
tion for the problem, which is divided by the maximum 
profit and the number of searchers to normalize the value 
to within [0, 1]. It can avoid the expected value from the 
benchmark and prevent the other two indices at differ-
ent levels from affecting the expected value. This index 
increases the probability of investment in the regions 
according to the experience of the searchers. The regions 
with potential profit become the investment target in 
the next iteration. The profit ratio for the optimal goods 
to the total yield of all goods ρi can be calculated using 
Eq. (13):

where gil  represents the l-th good in region i,and n is 
the maximum number of goods in region i. This term 
calculates the ratio of the optimal profit to the total 
profit of all the products in the region. Although the 
searcher’s strategy of accepting new solutions is greedy, 
the searcher uses the optimal solution of the previously 
searched region to exchange and generate new solutions, 
thus increasing search diversity. In addition, the expected 
value accounts for the potential profit of a region and 

(10)Ei = µi × νi × ρi,

(11)µi =
tai

tbi
,

(12)νi =

∑m
j=1 f (sij)

m×max(sij)
,

(13)ρi =
min(gil )

∑n
l=1 f (gil )

,
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investment times. This mechanism can dynamically 
allocate computational resources to the high-potential 
regions to determine more favorable solutions.

Trade
The trade(·) operator is a new component of the pro-
posed method used to improve upon the original SE. It 
determines the direction of the searcher because the 
original SE algorithm does not consider the potential 
of regions that are not converged. The trade(·) operator 
is used to determine the direction of the searcher in the 
next iteration in two stages: First it calculates the Ham-
ming distances of regions and then uses tournament 
selection to determine the direction of the searcher. The 
goods in the same region are alike in the last search stage. 
To avoid wasting computational resources on regions 
with similar goods, the trade(·) operator increases the 
probability that the searchers invest in regions without 
convergence. The trade(·) of the algorithm is described 
as follows. The probability is modified by calculating the 
Hamming distances between goods in each region to 
determine the optimal solution. The total number of dif-
ferent bits in solutions is then calculated. If the Hamming 
distance is high, the region is not converged. The trans-
formed expected value of the region according to Ham-
ming distance is calculated using Eq. (14):

where the E′
i , defined in Eq.  (14), represents the new 

expected value and e is base of natural logarithm. The 
logarithmic base e of the originally expected values is 
divided by e to calculate the new expected value within 
the interval [0,  1]. γ is the parameter to adjust the 
expected value range. Adjustments to γ considerably 
affect the expected value of the nonconvergence region 

(14)E′
i = (

eEi

e
)γ ,

(Fig. 2). A lower parameter γ can obtain a higher range of 
expected values.

Algorithm 4 Trade

After transformation based on the calculated Ham-
ming distance, the expected value changes according to 
the convergence of each region. Each searcher sij deter-
mines the search direction for the next iteration through 
tournament selection according to the transformed 
expected value E′ of each region. The tournament selec-
tion involves randomly selecting regions o to determine 
the searcher’s new search target region. Tournament 
selection was adopted as the selection method because 
it can prevent the region with the highest expected value 
from always winning. Avoiding unnecessary exploration 
increases search efficiency. Using the trade(·) operator 
reduces searching in the convergence region. The indices 
that affect search efficiency are the number of searchers 
continuously searching in region µi , the lowest average 
profit of investment in region νi , the lowest average profit 
of goods in region ρi , and the nonconvergence region 
with high Hamming distance.

Fig. 2  Curves for transformed expected values when the parameter γ is 0.7 and 1.2
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Marketing research
After all the searchers finish investment, the Marketing 
research (·) operator is used to update the information 
for the whole market. This operator allows the operator 
of the next iteration to obtain new market information 
and the objective value of each region. The functions of 
this operator are to update the market information and 
to determine the new candidate solution in each region. 
The Marketing_research(·) operator of the algorithm is 
described as follows. 

1)	 Determining the new candidate solution: Although the 
candidate goods in each region are updated, the goods 
are not influenced by each other because of their spec-
ifications. The previous section mentioned that the 
goods generated from the exchange would remain in 
their region and be compared with the original goods 
in the region. If one of the new goods is more profita-
ble than the least-profitable original good, the operator 
replaces the less-profitable good with the new good. 
The operator compares the profitability of the least-
profitable candidate goods with the new goods until all 
the new goods in the region have been evaluated.

2)	 Updating the market information: Before the 
solutions are exchanged and the objective val-
ues of the next iteration are evaluated, the 
Marketing_research(·) operator must update the 
investment record. The investment record ri is 
updated as follows: If region i does not obtain any 
investment, the count of noninvestment tib increases 
by 1. Otherwise, the count of investment tia is set to 
1 to avoid division by 0. If any searcher invests in 
the region, the count of investment tia increases by 1. 
Otherwise, the count of noninvestment tib is set to 1.

Algorithm 5 Marketing research

If all the new goods have been compared with the origi-
nal goods and the market information for all regions has 
been updated, the algorithm proceeds to new iterations 
until the termination criterion is met.

Simplified example of the SE algorithm
To illustrate the proposed method, this section provides a 
simplified example of using SE to solve the fog computing 
deployment problem.

Step 1 consists of initialization of the searchers and 
goods by using randomly generated parameters from 
the whole solution spaces. In step 2, the solution spaces 
are split and the identity bits for each region are defined. 
The segment of the solutions for the goods are also con-
structed in this stage. Step 3 consists of the exchange 
of solution segments using the vision search operator. 
The searcher randomly selects goods to invest in and 
exchanges solutions with one another. The new solu-
tion generated in step 3 is illustrated in step 4 of Fig. 3. 
In step 4, the original solution is compared with the 
new one, and the solution with a lower objective value 
is eliminated. The goods generated from the investment 
remain in the region to which they belong to update the 
investment information and calculate the expected val-
ues. Step 5 involves the new operator of the SE algorithm. 
The searcher moves to another region according to the 
expected value. Finally, in step 6, the new goods are com-
pared with the original goods in the same region, and the 
goods with higher profitability are retained.

Experimental results
Environment
The algorithm presented in this paper was run on a 
workstation with two Intel Xeon Silver 4410 cores of 2.1 
GHz with 16 GB of memory each. The operating system 
was Ubuntu 18.04 LTS. The algorithms were developed 
in C++, and using the GNU Compiler Collection ver-
sion 7.4.0. The proposed method was compared with 
the TF algorithm [25], GA [12], DBA [26], and DMGA 
[17]. Because the optimal solution to an NP-hard prob-
lem cannot be determined in a reasonable time using 
an exhaustive method, this study employed the rule-
based TF algorithm as the baseline for comparison 
with other optimization algorithms. The TF algorithm 
prioritizes the deployment of servers in areas with the 
greatest workloads. In the ideal situation (i.e., the dis-
tribution of users is concentrated and enough candidate 
locations are available for deploying the devices.), the 
TF algorithm can be used to optimize the deployment 
of the fog systems. The GA was also used for compari-
son because it is longer established and well-known in 
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the field of metaheuristic algorithms. Numerous studies 
have adopted the GA to solve deployment problems for 
wireless sensor networks, reporting adequate results. In 
this paper, the DBA and DMGA were selected for com-
parison because they can deliver more favorable results 
in complex solution spaces.

Datasets and encoding
The simulation of datasets is presented in study [17]. 
This study deployed 10 times as many devices in the 
same map size to analyze the performance of different 
algorithms in complex solution spaces. Therefore, data-
set 1 (DS1) comprised 30 gateways, 150 fog servers, 700 
edge servers, and 5, 000 users in a logistics center of 200 
m × 180 m. The total number of devices was 880, which 
means that the solution space was 2880 . The visualization 
of DS1 is presented in Fig. 4. The details of the datasets 
are presented in Table  2. The purposes of adjusting the 
number of devices were to evaluate the performance of 
the algorithm using different devices and to observe the 
results for each algorithm in different solution spaces.

The proposed method adopts discrete encoding 
in addressing the fog computing system deployment 

problem. A simplified example of the encoding method 
is illustrated in Fig. 5. The solution comprises three parts; 
the first, second, and third parts represent the deploy-
ment pattern in candidate locations for the gateways, fog 
servers, and edge servers, respectively. A bit in the solu-
tion is represented in binary, in which a value of 1 indi-
cates the installation of a device at the corresponding 
candidate location. A value of 0 indicates that no devices 
are installed at that candidate location.

Experiment for adjusting parameter
The proposed method integrates five adjustable param-
eters: The number of regions k, the number of searches 
m, the number of goods n in a region, the number of 
players for tournament selection o, and the parameter 
γ of trade operator. These parameters mainly comprise 
those present in the original SE algorithm. The algo-
rithm analyzes and attempts to understand the features 
of a dataset by using those parameters. To analyze an 
unknown dataset, the algorithm compares the results of 
the greedy search and the search diversity to determine 
which search strategy is most suitable for the data-
set. Subsequently, the algorithm uses this strategy to 

Fig. 3  Simplified illustration of using the improved search economics algorithm to solve the fog computing system deployment problem
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increase the greediness or diversity of the search. After 
the numbers of regions, goods, searches, and players 
are determined, the algorithm sets the aforementioned 
parameters and tests the effect of the parameter γ . The 
results of parameter adjustment are presented in Fig. 6, 
and the combinations of parameters are represented in 
the order (k, m, n, o).

The combinations in Fig.  6 can be divided into two 
types. The first type, which consists of different regions 
and numbers of searches, affects the search diversity. The 
second type, which consists of different numbers of goods 
and players, makes the algorithm greedily accept solu-
tions. Through the adjustment of individual parameters, 
the greediness or diversity of a search can be increased. 
For example, the optimal objective value may be obtained 
using the set of parameters (4, 4, 4, 4). If the search diver-
sity is increased and the parameters are set to (5, 5, 4, 4) 
or the search greediness is increased and the parameters 
are set to (4, 4, 5, 5) and a more favorable objective value 
is not obtained, the parameters are set to (4, 4, 4, 4) as a 
baseline before attempted adjustment of the numbers of 
searchers or goods. The results obtained using different 

combinations of searchers and goods are illustrated in 
Fig. 6. In the proposed method, when the number of goods 
increases, the search process converges rapidly because 
the number of goods is limited by the regional specifica-
tion and increasing the number of goods increases the 
greediness of the algorithm. By contrast, increasing the 
number of searchers leads to slow convergence because 
the region may receive different information from multi-
ple searchers from other areas to increase search diversity. 
As illustrated in Fig. 7, the objective values of the searchers 
and goods are similar after 40, 000 - 60, 000 evaluations. 
This is because the proposed method employs two com-
plementary strategies: One that prioritizes greediness in 
global searches and one that prioritizes diversity in local 
searches.

This study employed the set of parameters (4,  4,  4,  4) 
as the baseline, and the numbers of searchers and goods 
were individually adjusted. The results are presented 
in Fig.  7 Increasing the number of goods and using the 
parameter set (4,  4,  8,  4) results in a more favorable 
objective value than does increasing the number for 
searchers and using the parameter set (4, 8, 4, 4). Increas-
ing the number of goods improves the search diversity 
of the fog computing system deployment algorithm. The 
combination parameter γ was determined to affect the 
transformation of the expected value of the nonconver-
gence region. The results of the adjustment are illustrated 
in Table 3.

The parameter γ is initially set to 0.7. As it increases, 
the original expected value approaches 0, and the 

Table 2  Details of each dataset

Dataset Gateways Fog Devices Edge Devices Users

DS1 30 150 700 5,000

DS2 30 150 1,000 5,000

DS3 30 500 700 5,000

DS4 200 150 700 5,000

Fig. 4  Solution space for DS1, in which 880 devices are deployed in a 220 m × 180 m area
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transformed expected value approaches 0.5. The 
expected value for the nonconvergence region approach-
ing 0 is unhelpful because it does not provide a more 
favorable objective value for the region. However, if the 
nonconvergence region exhibits a more favorable objec-
tive value, the region has more investment value. There-
fore, it updates the original expected value to centering, 
and increasing or decreasing the value of parameter γ 
affects the objective value. The results indicate that the 
most favorable objective values were obtained when the 
parameter γ was set to 0.7.

Experimental results and discussion
This paper compares the performance of different algo-
rithms, namely the TF algorithm, GA, DBA, DMGA, 

and SE algorithm, for addressing the fog computing 
system deployment problem. The results are presented 
in Table  4. Table  5 shows that the computation time of 
the proposed algorithm and deployment algorithms 
compared in this paper. These results show that TF and 
GA are faster than the other deployment algorithms for 
datasets DS1, DS2, DS3, and DS4. Since the design of 
the proposed algorithm considers much more factors 
in convergence process, its running time, of course, is 
larger than all the other deployment algorithms although 
it can find out better results than them. However, the 
good news is in that even though the other deployment 
algorithms use the same computation time with SEFSD 
they still cannot find the good deployment solution as 
the same as SEFSD can. This situation will be discussed 

Fig. 5  Simplified example of the encoding method. Each solution is divided into three parts

Fig. 6  Results of parameter adjustment of different parameter combinations



Page 12 of 15Chen et al. Journal of Cloud Computing          (2023) 12:105 

in detail shortly via the analysis of convergence curves of 
deployment algorithms.

Regardless of the complexity of the solution space, the 
proposed method eventually obtained the most favora-
ble objective value. The results of the TF algorithm not 
only were less favorable than those obtained using the 
proposed method but also required a massive number of 
iterations to compute. For example, using dataset DS1, 
the TF algorithm obtained the same result, but only after 
31,  500,  000 iterations. By contrast, other algorithms 
only required 1,  200,  000 iterations to obtain the same 
result. Compared with the conditional exhaustive search 
method, the proposed method obtained more favorable 
solutions for fog computing system deployment prob-
lems in the same number of iterations. As indicated in 
Table  6, the search efficiency of the SE algorithm did 
not change when the dataset changed, but the TF algo-
rithm and GA did. However, the TF algorithm requires 
a massive number of iterations to complete, and the GA’s 
s search strategy resembles a random search when used 
with complex datasets. The SE algorithm yielded results 
considerably superior to those of the DBA and DMGA 
using DS2 and DS3 because the solution lengths of DS2 
and DS3 were greater than that of DS1, and their solu-
tion spaces were more complicated than those of DS1 
and DS4.

Figure  8 illustrates the convergence of each algorithm 
using DS1 and the effects of algorithms employing differ-
ent strategies. The TF algorithm always deploys servers 
with a massive workload preferentially and therefore does 
not search regions with unfavorable objective values. 
Although its convergence curve indicates that its search 
begins in the region with the least favorable objective 
value, the algorithm does not search the whole region. 
The proposed method obtains a more favorable solu-
tion, which is not located in the search space of the TF 
algorithm. The GA retains chromosomes in the conver-
gence process through selection. A convergence strategy 
that does not require retaining the optimal chromosomes 
to receive the crossover operator may be inefficient for 
searches in a complex solution space. As indicated by its 
convergence curve, the GA cannot search for the opti-
mal direction and initiate a local search when the optimal 
direction is located.

The GA’s search diversity is similar to that employed in 
a random search of a complex solution space. The DMGA 
employs a greedy search strategy, which involves searching 
in the direction of the monkey with the highest objective 
value. The cooperation process integrated into the DMGA 
allows the algorithm to quickly locate the region with the 
most favorable objective value, but the algorithm does 
not have a mechanism to avoid local optima. The curve 

Fig. 7  Effect of the relationship between searchers and goods on the convergence speed of the algorithm

Table 3  Effect of parameter γ

γ Objective value

0.5 3,000,070

0.6 2,825,300

0.7 2,804,210

0.8 2,867,990

0.9 2,864,710

Table 4  Results of various algorithms for fog computing system 
deployment across different datasets

Dataset TF GA DBA DMGA SEFSD

DS1 4,328,741 8,969,220 4,456,138 4,275,777 3,390,791

DS2 1,645,360 3,459,700 3,366,342 3,287,686 1,189,066

DS3 2,725,890 8,930,096 4,449,198 3,764,370 1,902,618

DS4 4,079,570 9,183,044 4,552,032 4,464,314 2,901,532
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indicates that once DMGA has located the most favorable 
region, it no longer searches in less favorable regions.

To ensure that the search is thorough and conducted 
in the correct direction, the DBA uses loudness and 
pulse emission rates as parameters to dynamically 
switch between local and global search strategies. The 
convergence curve is between those of the GA and 
DMGA, but it also converges in regions with the most 
favorable objective values, as the DMGA does. Regard-
ing the SE algorithm, in the initial iteration stage, the 
search strategy of goods involves rapidly moving to the 
regions with less favorable objective values and con-
ducting a local search. The DBA and DMGA stop at the 
regions with the optimal objective value, whereas the SE 
algorithm is not limited to this region because it splits 
the solution space into several regions and allocates 

search resources to regions that have not yet been 
explored in a given period. Furthermore, the trend illus-
trated in Fig. 8 indicates that the searchers continually 
exchange solutions to enhance the search diversity even 
if all goods exhibit convergence in the region to which 
they belong.

The article [20] provides further information on the 
time complexity of the proposed algorithm. The overall 
time complexity of SEFSD is in the order of O(nkt), where 
n is the number of searchers, k is the number of subso-
lutions, t is the number of iterations. Moreover, the time 
complexity of SEFSD is also similar to most metaheuris-
tic algorithms.

In order to apply the proposed algorithm to real-world 
applications, two important considerations must be 
addressed. The first issue is about the problem defini-
tion which needs to take into account much more factors, 
such as power consumption, network topology, reliabil-
ity, communication delay, collision, number of devices, 
as so forth. The second issue is about the period change 
of the system and environment. With these considera-
tions, we can then let the proposed algorithm more use-
ful for the deployment of fog system. It is important to 
note that due to the schema for encoding of the proposed 
algorithm is in the form of binary string, there will be a 
limitation to the proposed algorithm, which means that 
all the possible locations of the fog server will be limited 
to a specific number of locations.

Conclusion
The deployment of the fog computing systems must 
account for the cost, number of connected devices, 
workload of servers, latency time, cover rate, and ser-
vice capacity of servers, which was formerly considered 
a complex problem. Therefore, this study employed an 

Table 5  Computation time of various algorithms for fog 
computing system deployment across different datasets

Dataset TF GA DBA DMGA SEFSD

DS1 1,444.70 1,337.90 2,493.33 1,522.67 4,548.20

DS2 2,199.70 1,908.27 3,366.23 2,072.40 6,156.20

DS3 560.17 670.93 1,393.40 797.60 2,865.07

DS4 1,461.27 1,522.77 3,587.23 2,122.97 6,590.10

Table 6  Objective values of different percentages among the 
various algorithms compared with the proposed method

Dataset TF GA DBA DMGA

DS1 20.6% 66.0% 35.4% 35.2%

DS2 27.7% 65.6% 64.7% 63.8%

DS3 30.2% 78.7% 57.2% 49.5%

DS4 28.9% 68.4% 36.3$ 35.0%

Fig. 8  Convergence curves for each algorithm simulated using DS1
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SE algorithm suitable for handling complex solution 
spaces to solve the fog computing system deployment 
problem. This improved deployment algorithm was 
designed to address the hierarchical distribution archi-
tecture of the fog computing system by integrating split 
solution spaces and accounting for the number of gate-
ways required. The solution spaces are logically divided 
according to the number of top-layer devices. The pro-
posed method evaluates the potential of each region to 
dynamically allocate computational resources to sub-
solution spaces with high potential. According to the 
experimental results, the proposed method increases 
the objective value of each dataset by more than 50%. 
Compared with the conditionally exhaustive algorithms, 
the proposed method can deploy servers with the low-
est workloads, obtain the lowest cost of deployment, 
and result in the lowest count of violated constraints. 
In future studies, the numbers of searchers, goods, 
and players should be adaptively adjusted according to 
the iteration and the features of solution spaces. In the 
search process, the algorithm may encounter situations 
in which its typical search strategy is unsuitable. If the 
algorithm can dynamically evaluate the features of solu-
tion spaces and immediately adjust the search strategy, 
it can obtain more favorable objective values and exhibit 
greater efficiency. Because the proposed algorithm is 
capable of determining a better deployment plan for fog 
servers, therefore we intend to apply it to other deploy-
ment problems in a variety of network environments in 
the future (for example, vehicular ad-hoc networks or 
sixth generation mobile systems).
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