
Chen et al. Journal of Cloud Computing (2023) 12:105
https://doi.org/10.1186/s13677-023-00475-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

SEFSD: an effective deployment algorithm
for fog computing systems
Huan Chen1, Wei‑Yan Chang1, Tai‑Lin Chiu1, Ming‑Chao Chiang2 and Chun‑Wei Tsai2*    

Abstract 

Fog computing aims to mitigate data communication delay by deploying fog nodes to provide servers in the prox‑
imity of users and offload resource-hungry tasks that would otherwise be sent to distant cloud servers. In this paper,
we propose an effective fog device deployment algorithm based on a new metaheuristic algorithm–search eco‑
nomics–to solve the optimization problem for the deployment of fog computing systems. The term “effective” in this
paper refers to that the developed algorithm can achieve better performance in terms of metrics such as lower
latency and less resource usage. Compared with conventional metaheuristic algorithms, the proposed algorithm
is unique in that it first divides the solution space into a set of regions to increase search diversity of the search
and then allocates different computational resources to each region according to its potential. To verify the effective‑
ness of the proposed algorithm, we compare it with several classical fog computing deployment algorithms. The
simulation results indicate that the proposed algorithm provides lower network latency and higher quality of service
than the other deployment algorithms evaluated in this study.

Keywords  Mobile communication, Deployment problem, Metaheuristic algorithm, Search economics

Introduction
With the explosive growth of the internet of things, new
applications aim to provide interactive and intelligent
services to users; these services typically require lower
delay for responsive user experience and greater com-
putational resources for complex algorithms. However,
determining how to reduce transmission and process-
ing delay to provide responsive and intelligent services
under various network traffic conditions is a challenging
task. Fog computing is a method that involves distributed
computing on fog nodes comprising numerous devices
(e.g., sensors and appliances). It is different from upload-
ing all computing tasks to the cloud and it can potentially
be used to enhance the performance of internet of things

(IoT) environments [1]. Fog computing architecture is
typically hierarchical and can be divided into three layers,
namely the terminal, fog, and cloud layers [2].

When the sensors require computational resources or
run real-time tasks, the fog computing system provides
the required services accordingly. Because the fog layer
connects the low-level sensors and high-level cloud, it
plays an essential role in such hierarchical architecture.
The devices of the fog layer (e.g., fog servers) can gen-
erally be deployed in a fixed location or installed on a
dynamic vehicle. The fog server analyzes the data col-
lected from the terminal layer and then relays the anal-
ysis results to the terminal layer or uploads the data to
the cloud layer for processing. In this type of system,
the cloud layer comprises high-performance computing
servers and storage devices that enable mass data pro-
cessing and the performance of complex computational
tasks. Fog nodes are typically deployed between lower-
level devices and high-level cloud computing platforms.
The fog servers share the cloud computing platforms’

*Correspondence:
Chun‑Wei Tsai
cwtsai@mail.cse.nsysu.edu.tw
1 Department of Computer Science and Engineering, National Chung
Hsing University, Taichung, Taiwan
2 Department of Computer Science and Engineering, National Sun Yat-
sen University, Kaohsiung, Taiwan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00475-x&domain=pdf
http://orcid.org/0000-0003-0128-4052

Page 2 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

computational loads to reduce latency and increase the
computational speed of the integrated IoT system.

Because the fog node deployment strategy influ-
ences a fog computing system’s cost and performance,
determining a suitable and efficient deployment strat-
egy has become a critical optimization problem. One
key research topic related to the development of such
a strategy is the sufficient allocation of computational
resources to the fog computing cluster to allow for
the provision of customized services near users [3].
Some early studies on fog computer architecture [4, 5]
regarded the fog node deployment optimization problem
as nearly identical to the NP-hard degree-constrained
minimum spanning tree (DCMST) optimization prob-
lem [6–8]. Because determining optimal solutions to
most NP-hard optimization problems within a reason-
able time is nearly impossible, metaheuristic algorithms
are often used to determine approximate solutions to fog
node deployment optimization problems. Some studies
[9–11] have also attempted to use metaheuristic algo-
rithms to solve the DCMST optimization problem in
recent years because most can determine an approxi-
mate solution within a reasonable time.

Because most conventional meta heuristic algorithms
[12–14] tend to converge to local optima, postponing the
convergence of metaheuristic algorithms to allow search-
ing of particular regions has become a key research topic.
One approach to addressing this problem is to increase
the search diversity of the metaheuristic algorithm during
the convergence process by, for example, randomly creat-
ing additional candidate solutions to replace the current
searched keys. However, using this method to increase
the search diversity might also degrade the search perfor-
mance of the metaheuristic algorithm because it erases
some of the search experience. A new metaheuristic algo-
rithm called search economics (SE) [15] was designed to
increase search diversity in the convergence process by
allocating searches to different regions according to the
potential of each region instead of randomly creating new
search directions.

The main goal of SE is to fairly allocate computational
resources in each iterative process by computing the
potential of each region (i.e., subspace). In this paper,
we present an effective metaheuristic algorithm based
on SE for solving the fog node deployment optimiza-
tion problem. The main contributions of this paper are
as follows:

•	 A new solution space division method is proposed for
solving the fog node optimization problem based on SE.

•	 A new operator for SE called the trade operator and
modification of other SE operators are proposed to
solve the fog node optimization problem.

This paper is organized as follows. Related work section
discusses fog computing systems, provides a definition of
the optimization problem, and briefly discusses deploy-
ment algorithms used to address the fog node optimization
problem. Proposed method section discusses the improved
version of the SE algorithm. Experimental results section
describes the experimental process and environment and
presents the simulation results of the proposed algorithm
and the other deployment algorithms compared in this
paper. Finally, Conclusion section presents our conclusions
and some suggestions for future research.

Related work
Problem definition
The performance of fog computational resource manage-
ment can be evaluated on the basis of three factors dis-
cussed in [16] as follows: 1). Minimized latency: Reducing
latency is a main goal of fog computing architecture. User-
perceived latency strongly affects the service quality of a
fog computing system. The locations of servers affect the
speed of data transmission. 2). Minimized resource usage:
Although increasing the number of fog servers might
reduce the latency of the whole system, it also increases
the cost. 3). Minimized service placement transitions:
Because a user requests must often be completed by serv-
ers in different layers, reducing the data transmission
requirements is another primary concern in such a sys-
tem. In this paper, the problem definition is based on that
employed in a recent study [17] and is defined as follows:

where s represents a candidate solution, Cl represents
the total cost of deploying fiber to construct connections
with devices, Cs is the total cost of device installation, and
P represents penalty costs. The details of the calculation
are described as follows:

where cf represents the unit cost of deploying fiber; xi,j
represents the link installed between devices i and j; di,j
is the distance between devices i and j; z represents the
location of the cloud center, and �G , �F , and �E , repre-
sent the potential positions of the gateways, fog servers,
and edge servers, respectively.

where the cG , cF , and cE are the costs of installing a sin-
gle gateway, a fog server, and an edge server, respectively;
gm is a binary flag indicating the candidate location for

(1)min f (s) = Cl + Cs + P,

(2)Cl = cf
(i,j)∈{s}×�G∪�G×�F∪�F×�E

xi,j · di,j ,

(3)Cs = cG
∑

m∈�G

gm + cF
∑

n∈�F

fn + cE
∑

t∈�E

qt ,

Page 3 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

installation of gateway m; fn is a binary flag indicating
the candidate location for installation of fog server n;
and qt is a binary flag indicating candidate location for
installation of edge sever t. The constraints of fog com-
puting system deployment are difficult to evaluate inde-
pendently of the solution space, but the constraints can
increase the objective value by defining penalty costs. A
fog computing system can incur considerable costs when
deployment does not meet constraints. Penalty costs can
be calculated using Eq. (4)

where the κ is the coefficient of the penalty cost and ηl ,
ηd , ηφ , ηo , and ηu are constrained terms in the fog comput-
ing system. The constrained terms are defined as follows:

•	 Constraint of link ( ηl ): The number of users or
devices in the fog system without service. The opti-
mal solution would allow all devices or users to
obtain service from he top layer when they request
resources. This constraint is calculated using Eq. (5)

where the xi,j indicates whether a connective link
exists between devices i and j.

•	 Constraint of demand ( ηd ): The maximum number
of services that devices can handle. Each user has
its demand γA that requests resources from top lay-
ers to maintain service, and the demand is handled
by the closest server. Each type of device has dif-
ferent demands (i.e., γt , γn , and γm are demands of
edge server t, fog server n, and gateway m, respec-
tively) and maximum demand factors ( HE

t  , HF
n  , and

HG
m for edge server t, fog server n, and gateway m,

respectively). This constraint is calculated using
Eq. (6)

where ωi,j represents a device i’s demands for a top-
layer device j and k represents the type of device. In
the deployment stage, the ideal is for each device to
be able to handle the demands from the lower layer
and the total loading demands of each device to be
less than its maximum.

•	 Constraint of latency ( ηφ ): The total latency time of
the whole fog computing system. The latency time of
device i is calculated from its service provider device
j according to data size Lj and transmission rate γj .
This constraint is calculated using Eq. (7):

(4)P = κ · (ηl + ηd + ηφ + ηo + ηu),

(5)ηl =

{

ηl + 1, if xi,j = 0,
ηl , otherwise,

(6)ηd =

{

ηd + 1, if
∑

k∈ωi
ri · xjk > HE

j ,

ηd , otherwise,

 where Di,j represents the maximum latency time.
•	 Constraint of coverage ( ηo ): The distance of any user

k to its service provider must be less than the radius
of range for edge server t. In the deployment stage,
the ideal is for all users to deploy at least one edge
server nearby.

where x(t, k) and d(t, k) represent the connection flag
and distance between the user k and edge server t,
respectively. RE represents the radius of service range
for edge servers.

•	 Constraint of capacity ( ηu ): The maximum capacity
of the edge servers, fog servers, and gateways are NE ,
NF , and NG , respectively.

where ωi represents the capacity of device k and i
represents the type of device.

In summary, the design of the objective function defined
in Eq. (1) takes into consideration the fiber deployment
cost Cl , device installation cost Cs , and many other penalty
costs P, which have been explained in detail in Eqs. (2) to
(4), respectively. It’s worth to mention that the penalty
cost increases the objective value to avoid server over-
load, disconnection, high latency, and other problems.
Since this deployment problem can be considered as a
complex optimization problem, using the greedy or deter-
ministic search algorithms might not be able to find out
a good solution in reasonable time. To solve such com-
plex optimization problems, the proposed metaheuristic
algorithm can provide an alternative way to find out the
approximate solution within reasonable time [18]. That is
the major reason we apply the metaheuristic algorithm to
solve this optimization problem in this study.

Proposed method
Basic idea
The SE algorithm is a new metaheuristic algorithm [15]
that aims to adjust the computational resources allocated
to different regions of the whole search space according to
the potential profit of regions in the current search direc-
tion. Unlike other metaheuristic algorithms, the SE algo-
rithm contains three essential components involved in the
convergence process: Regions, goods, and searchers. The
whole solution space (search space) can be regarded as an

(7)ηφ =

{

ηφ + 1, if
∑

j
Lj
xi,j

· γj > Di,j ,

ηφ , otherwise,

(8)ηo =

{

ηo + 1, if xt,k · dt,k > RE ,
ηo, otherwise,

(9)ηu =

{

ηu + 1, if
∑

k∈ωi
xi,k ≤ Nj ,

ηu, otherwise,

Page 4 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

investment market that can be further split into a certain
number of submarkets, called regions, by domain knowl-
edge. The solutions represent the goods in the market, and
the objective value of the solution represents the profit.
The searcher acts as an investor to identify and invest in
the goods that can yield a high profit. The searcher col-
lects historical profit information to improve product qual-
ity. The algorithm uses searchers to continually identify
goods with high profit potential in each region. The goods
retain characteristics that reflect their respective submar-
kets, remain in their original region, and do not exchange
information with goods in other regions. If the algorithm
can estimate the potential profit from investing in certain
regions, it can dynamically adjust the allocation of compu-
tational resources. Therefore, the SE algorithm is suitable
for solving problems with massive solution spaces. After
the first version of SE was presented in [15], it was success-
fully applied to solve optimization problem in many fields,
such as wireless sensors deployment problem [19], internet
resource management [20], cell deployment in 5G wireless
communication [21], hyper-parameter optimization for
deep neural networks [22], and deep neural network prun-
ing problem [23]. These results shown that SE can find bet-
ter results than other metaheuristic algorithms (e.g., genetic
algorithm), especially in complex optimization problems.
Therefore, we are confident that using SE in our study is an
efficient approach to obtain better deployment solution.

SE algorithms have the advantage over other
metaheuristic algorithms in that they will first analyze
the complex solution spaces and adjust the search direc-
tion accordingly. The algorithm collects three pieces
of information from the process of searchers investing
in goods: (1) The previous optimal profit of goods, (2)
the region with the highest average profit, and (3) the
regions not yet explored. For the searcher, if the indices
of profit potential can be effectively classified by submar-
ket, the efficiency of the search increases. For example, if
the goods located in the same submarket yield the same
profits and their profits are different from those of goods
in other regions, the searcher can efficiently search for
goods in submarkets with the highest profit potential.
In this study, the SE algorithm was used to solve the fog
computing system deployment problem. The algorithm
generates several goods that represent the deployment of
gateways, fog servers, and edge servers at candidate loca-
tions, and the profits of the goods are calculated using
Eq. (1). These values are used to allocate computational
resources and identify more profitable goods in the high-
potential region. Finally, the algorithm generates the opti-
mal deployment locations for the fog computing system
in the final convergence stage. The notation presented in
Table 1 is used throughout the remainder of this paper to
simplify the discussion of the proposed algorithm.

Search economics for fog computing system
As described in Algorithm 1, the proposed algorithm
consists of four primary operators: Resource arrange-
ment, vision search, trade, and marketing research.

Algorithm 1 Search economics for fog system deployment

In the algorithm, R, S, and G represent the sets of regions,
searchers, and goods, respectively. At the initial stage (i.e.,
Initialization(·) ), the algorithm constructs solutions for
each good and searcher at random, and the solution length
is the total quantity of the gateways, fog servers, and edge
servers. The role of Resource_arrangement(·) is to split the
market to determine how to distribute limited resources
to search the whole market evenly. The Vision_search(·)
operator allows the searchers to exchange information with

Table 1  The notation of this paper

Notation Description

k Number of region.

ri The i-th region.

R A set of region, R = {r1, r2, . . . , rk}.

m Number of searchers.

sij The j-th searcher in the i-th region.

S A set of searchers,S = {s1, s2, . . . , sm}.

n Number of candidate goods in regions.

gil
The l-th goods in i-th region.

Gi A set of goods in the i-th region.

tai Number of consecutive invested in the i-th region.

tbi Number of consecutive uninvested in the i-th region.

µi Rates of consecutive invested in the i-th region.

νi Average objective value obtained by searchers in the i-th
region.

ρi Average objective value obtained by goods in the i-th region.

Ei The expected value of the i-th region.

E ′i The adjusted expected value of the non-convergent region i.

o Number of players.

γ The weight of trade operator adjust the expected value
of the non-convergent region.

t Number of iteration.

d The solutions with the best objective value.

Page 5 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

goods to generate a new solution that combines the char-
acteristics of searchers and goods and to evaluate the profit
potential to obtain the optimal fitness value for each region.
Trade(·) is a new operator for improved SE that is used to
calculate the potential of each region to allow the searcher
to move to a more suitable region. Subsequently, the pro-
posed algorithm calculates and updates the market infor-
mation using the Marketing_research(·) operator.

Figure 1 further shows a flowchart to explain how the
proposed algorithm is applied to the deployment of the
fog computing systems. This flowchart illustrates first the
proposed system receives data from environment and
sensors. As part of the proposed algorithm, the received
data will be refined using the pre-processing procedure.
Based on these data, a deployment plan (SEFSD) will be
computed, which will then be used to deploy fog servers.

Resource arrangement
Resource arrangement involves splitting unknown mar-
kets into several submarkets and defining the specifica-
tion of goods in each market. All invested interests (i.e.,
new solutions) must follow specifications for their respec-
tive markets. The specification of markets means that the
goods generated in the same regions exhibit the same fea-
tures. Each region keeps a certain number of goods in the
search process. If the region produces more goods than
this maximum, the region eliminates the goods exhibit-
ing lower fitness. Searchers dynamically invest in different
submarkets and exchange information to improve goods
with high potential in their respective regions of invest-
ment. The method by which they estimate profit potential

is introduced in a later section. For example, the SE depth-
first search divides the market into four submarkets and
selects two bits in the solution as identity bits. The market
is divided into four regions and they are identified by bit
pairs: (0, 0), (0, 1), (1, 0), and (1, 1). The identity bits com-
prise part of the solution and influence the search process
and deployment situations. Therefore, the identity bits
also affect the objective values.

In this paper, we propose an improved split-market
mechanism for the deployment of fog computing systems
to address the problem of large-scale solution spaces.
In our algorithm, the solution space is divided into four
regions, and the identity bit pairs extend to the segment
of solution that represents the top layer devices installed
in candidate locations. The high installation costs of
top-layer devices and their distance to other connected
devices substantially affect the devices in the next layer
to be deployed. Moreover, solutions with the same num-
ber of deployed gateways have similar object values. The
Resource_arrangement(·) operator is described as follows.

Algorithm 2 Resource arrangement

When 30 candidate locations for gateways are present,
the gateways are deployed in 25 or 21 candidate locations
within the solution space rather than 5. If only five gate-
ways are deployed, the gateways are far from each other. If
the deployment pattern increases the number of gateways
from 20 to 21, the gateways get closer to each other and the
fiber installation cost decreases substantially. Therefore,
the algorithm classifies similar numbers of gateways into
the same submarket, and the objective values of solutions
can therefore be expected to be different in each region. In
Algorithm 2, the market R is split into k regions , and the
number of regions k is used to allocate the goods G gener-
ated in the initial step according to the number of gateways
in each region and to evenly assign the searchers S to each
region. The number of gateways per region is obtained
by dividing the candidate locations of gateways by the k
regions. A region i only accepts the goods with numbers of
gateways located within the interval of the region.Fig. 1  The flowchart of the proposed algorithm for the fog

computing system

Page 6 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

Following the aforementioned split-market method, the
goods in the same region have the same number of gate-
ways within the same interval. The number of regions into
which the market is split can differ by problem or data-
set. If the algorithm dynamically increases the number of
regions, it will locate goods close to the optimal solution
within the same region. However, if the number of regions
remains low, the profit of goods will be uneven within the
same region. Furthermore, a high number of regions will
lead to several regions exhibiting the same profit poten-
tial. These two situations will lead to searcher misjudg-
ment. Although this method splits the solution space by
the number of gateways and generates sub-solution spaces
of different sizes, the SE algorithm allocates resources
according to each region’s potential, and large regions
are allocated more search resources. The details of the
resource arrangement are introduced in the next section.

Vision search
After the resource arrangement stage, each region contains
goods and searchers. In the first iteration, the region ran-
domly allocates its searchers, and each searcher randomly
generates new solutions using the crossover and mutation
operators of the GA [24]. The main difference is that in the
present algorithm, the searcher checks whether the identity
segment of the new solution follows the specification of the
region to which it belongs. If the identity segment does not
follow the specification, the searcher randomly selects a bit
of the new solution’s segment to exchange with the iden-
tity segment of the original solution until the specification
is met. When the new solution meets the specification and
is superior to the original, it replaces the original solution,
and the searcher evaluates the objective value of the new
solution. The searchers do not exchange information with
each other and do not reset the identity segments. Finally,
the searcher updates the objective values of the new goods
and estimates the expected profit for each region. The
Vision_search(·) of the algorithm is described as follows.

Algorithm 3 Vision search

Each searcher moves to the next search region accord-
ing to the expected value, and the number of searchers
for each region is dynamic. Searchers may not be allo-
cated to a region because the region’s expected value
is low. The expected value Ei can be calculated using
Eq. (10):

where µi represents the investment situation for region
i, νi represents the average profit of searchers in region i,
and ρi represents the ratio of profit for the optimal goods
to the total yield of all goods in region i. The investment
situation µi can be calculated using Eq. (11):

where tai and tbi represent the number of iterations dur-
ing which the searcher continuously invested and did
not continuously invest in region i, respectively. How the
investment times are counted and updated is introduced
in the Marketing research section. The average profit for
searchers νi can be calculated using Eq. (12).

where sij represents searcher j in region i, m is the num-
ber of searchers in region i, and f (·) is the objective func-
tion for the problem, which is divided by the maximum
profit and the number of searchers to normalize the value
to within [0, 1]. It can avoid the expected value from the
benchmark and prevent the other two indices at differ-
ent levels from affecting the expected value. This index
increases the probability of investment in the regions
according to the experience of the searchers. The regions
with potential profit become the investment target in
the next iteration. The profit ratio for the optimal goods
to the total yield of all goods ρi can be calculated using
Eq. (13):

where gil represents the l-th good in region i,and n is
the maximum number of goods in region i. This term
calculates the ratio of the optimal profit to the total
profit of all the products in the region. Although the
searcher’s strategy of accepting new solutions is greedy,
the searcher uses the optimal solution of the previously
searched region to exchange and generate new solutions,
thus increasing search diversity. In addition, the expected
value accounts for the potential profit of a region and

(10)Ei = µi × νi × ρi,

(11)µi =
tai

tbi
,

(12)νi =

∑m
j=1 f (sij)

m×max(sij)
,

(13)ρi =
min(gil)

∑n
l=1 f (gil)

,

Page 7 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

investment times. This mechanism can dynamically
allocate computational resources to the high-potential
regions to determine more favorable solutions.

Trade
The trade(·) operator is a new component of the pro-
posed method used to improve upon the original SE. It
determines the direction of the searcher because the
original SE algorithm does not consider the potential
of regions that are not converged. The trade(·) operator
is used to determine the direction of the searcher in the
next iteration in two stages: First it calculates the Ham-
ming distances of regions and then uses tournament
selection to determine the direction of the searcher. The
goods in the same region are alike in the last search stage.
To avoid wasting computational resources on regions
with similar goods, the trade(·) operator increases the
probability that the searchers invest in regions without
convergence. The trade(·) of the algorithm is described
as follows. The probability is modified by calculating the
Hamming distances between goods in each region to
determine the optimal solution. The total number of dif-
ferent bits in solutions is then calculated. If the Hamming
distance is high, the region is not converged. The trans-
formed expected value of the region according to Ham-
ming distance is calculated using Eq. (14):

where the E′
i , defined in Eq. (14), represents the new

expected value and e is base of natural logarithm. The
logarithmic base e of the originally expected values is
divided by e to calculate the new expected value within
the interval [0, 1]. γ is the parameter to adjust the
expected value range. Adjustments to γ considerably
affect the expected value of the nonconvergence region

(14)E′
i = (

eEi

e
)γ ,

(Fig. 2). A lower parameter γ can obtain a higher range of
expected values.

Algorithm 4 Trade

After transformation based on the calculated Ham-
ming distance, the expected value changes according to
the convergence of each region. Each searcher sij deter-
mines the search direction for the next iteration through
tournament selection according to the transformed
expected value E′ of each region. The tournament selec-
tion involves randomly selecting regions o to determine
the searcher’s new search target region. Tournament
selection was adopted as the selection method because
it can prevent the region with the highest expected value
from always winning. Avoiding unnecessary exploration
increases search efficiency. Using the trade(·) operator
reduces searching in the convergence region. The indices
that affect search efficiency are the number of searchers
continuously searching in region µi , the lowest average
profit of investment in region νi , the lowest average profit
of goods in region ρi , and the nonconvergence region
with high Hamming distance.

Fig. 2  Curves for transformed expected values when the parameter γ is 0.7 and 1.2

Page 8 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

Marketing research
After all the searchers finish investment, the Marketing
research (·) operator is used to update the information
for the whole market. This operator allows the operator
of the next iteration to obtain new market information
and the objective value of each region. The functions of
this operator are to update the market information and
to determine the new candidate solution in each region.
The Marketing_research(·) operator of the algorithm is
described as follows.

1)	 Determining the new candidate solution: Although the
candidate goods in each region are updated, the goods
are not influenced by each other because of their spec-
ifications. The previous section mentioned that the
goods generated from the exchange would remain in
their region and be compared with the original goods
in the region. If one of the new goods is more profita-
ble than the least-profitable original good, the operator
replaces the less-profitable good with the new good.
The operator compares the profitability of the least-
profitable candidate goods with the new goods until all
the new goods in the region have been evaluated.

2)	 Updating the market information: Before the
solutions are exchanged and the objective val-
ues of the next iteration are evaluated, the
Marketing_research(·) operator must update the
investment record. The investment record ri is
updated as follows: If region i does not obtain any
investment, the count of noninvestment tib increases
by 1. Otherwise, the count of investment tia is set to
1 to avoid division by 0. If any searcher invests in
the region, the count of investment tia increases by 1.
Otherwise, the count of noninvestment tib is set to 1.

Algorithm 5 Marketing research

If all the new goods have been compared with the origi-
nal goods and the market information for all regions has
been updated, the algorithm proceeds to new iterations
until the termination criterion is met.

Simplified example of the SE algorithm
To illustrate the proposed method, this section provides a
simplified example of using SE to solve the fog computing
deployment problem.

Step 1 consists of initialization of the searchers and
goods by using randomly generated parameters from
the whole solution spaces. In step 2, the solution spaces
are split and the identity bits for each region are defined.
The segment of the solutions for the goods are also con-
structed in this stage. Step 3 consists of the exchange
of solution segments using the vision search operator.
The searcher randomly selects goods to invest in and
exchanges solutions with one another. The new solu-
tion generated in step 3 is illustrated in step 4 of Fig. 3.
In step 4, the original solution is compared with the
new one, and the solution with a lower objective value
is eliminated. The goods generated from the investment
remain in the region to which they belong to update the
investment information and calculate the expected val-
ues. Step 5 involves the new operator of the SE algorithm.
The searcher moves to another region according to the
expected value. Finally, in step 6, the new goods are com-
pared with the original goods in the same region, and the
goods with higher profitability are retained.

Experimental results
Environment
The algorithm presented in this paper was run on a
workstation with two Intel Xeon Silver 4410 cores of 2.1
GHz with 16 GB of memory each. The operating system
was Ubuntu 18.04 LTS. The algorithms were developed
in C++, and using the GNU Compiler Collection ver-
sion 7.4.0. The proposed method was compared with
the TF algorithm [25], GA [12], DBA [26], and DMGA
[17]. Because the optimal solution to an NP-hard prob-
lem cannot be determined in a reasonable time using
an exhaustive method, this study employed the rule-
based TF algorithm as the baseline for comparison
with other optimization algorithms. The TF algorithm
prioritizes the deployment of servers in areas with the
greatest workloads. In the ideal situation (i.e., the dis-
tribution of users is concentrated and enough candidate
locations are available for deploying the devices.), the
TF algorithm can be used to optimize the deployment
of the fog systems. The GA was also used for compari-
son because it is longer established and well-known in

Page 9 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

the field of metaheuristic algorithms. Numerous studies
have adopted the GA to solve deployment problems for
wireless sensor networks, reporting adequate results. In
this paper, the DBA and DMGA were selected for com-
parison because they can deliver more favorable results
in complex solution spaces.

Datasets and encoding
The simulation of datasets is presented in study [17].
This study deployed 10 times as many devices in the
same map size to analyze the performance of different
algorithms in complex solution spaces. Therefore, data-
set 1 (DS1) comprised 30 gateways, 150 fog servers, 700
edge servers, and 5, 000 users in a logistics center of 200
m × 180 m. The total number of devices was 880, which
means that the solution space was 2880 . The visualization
of DS1 is presented in Fig. 4. The details of the datasets
are presented in Table 2. The purposes of adjusting the
number of devices were to evaluate the performance of
the algorithm using different devices and to observe the
results for each algorithm in different solution spaces.

The proposed method adopts discrete encoding
in addressing the fog computing system deployment

problem. A simplified example of the encoding method
is illustrated in Fig. 5. The solution comprises three parts;
the first, second, and third parts represent the deploy-
ment pattern in candidate locations for the gateways, fog
servers, and edge servers, respectively. A bit in the solu-
tion is represented in binary, in which a value of 1 indi-
cates the installation of a device at the corresponding
candidate location. A value of 0 indicates that no devices
are installed at that candidate location.

Experiment for adjusting parameter
The proposed method integrates five adjustable param-
eters: The number of regions k, the number of searches
m, the number of goods n in a region, the number of
players for tournament selection o, and the parameter
γ of trade operator. These parameters mainly comprise
those present in the original SE algorithm. The algo-
rithm analyzes and attempts to understand the features
of a dataset by using those parameters. To analyze an
unknown dataset, the algorithm compares the results of
the greedy search and the search diversity to determine
which search strategy is most suitable for the data-
set. Subsequently, the algorithm uses this strategy to

Fig. 3  Simplified illustration of using the improved search economics algorithm to solve the fog computing system deployment problem

Page 10 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

increase the greediness or diversity of the search. After
the numbers of regions, goods, searches, and players
are determined, the algorithm sets the aforementioned
parameters and tests the effect of the parameter γ . The
results of parameter adjustment are presented in Fig. 6,
and the combinations of parameters are represented in
the order (k, m, n, o).

The combinations in Fig. 6 can be divided into two
types. The first type, which consists of different regions
and numbers of searches, affects the search diversity. The
second type, which consists of different numbers of goods
and players, makes the algorithm greedily accept solu-
tions. Through the adjustment of individual parameters,
the greediness or diversity of a search can be increased.
For example, the optimal objective value may be obtained
using the set of parameters (4, 4, 4, 4). If the search diver-
sity is increased and the parameters are set to (5, 5, 4, 4)
or the search greediness is increased and the parameters
are set to (4, 4, 5, 5) and a more favorable objective value
is not obtained, the parameters are set to (4, 4, 4, 4) as a
baseline before attempted adjustment of the numbers of
searchers or goods. The results obtained using different

combinations of searchers and goods are illustrated in
Fig. 6. In the proposed method, when the number of goods
increases, the search process converges rapidly because
the number of goods is limited by the regional specifica-
tion and increasing the number of goods increases the
greediness of the algorithm. By contrast, increasing the
number of searchers leads to slow convergence because
the region may receive different information from multi-
ple searchers from other areas to increase search diversity.
As illustrated in Fig. 7, the objective values of the searchers
and goods are similar after 40, 000 - 60, 000 evaluations.
This is because the proposed method employs two com-
plementary strategies: One that prioritizes greediness in
global searches and one that prioritizes diversity in local
searches.

This study employed the set of parameters (4, 4, 4, 4)
as the baseline, and the numbers of searchers and goods
were individually adjusted. The results are presented
in Fig. 7 Increasing the number of goods and using the
parameter set (4, 4, 8, 4) results in a more favorable
objective value than does increasing the number for
searchers and using the parameter set (4, 8, 4, 4). Increas-
ing the number of goods improves the search diversity
of the fog computing system deployment algorithm. The
combination parameter γ was determined to affect the
transformation of the expected value of the nonconver-
gence region. The results of the adjustment are illustrated
in Table 3.

The parameter γ is initially set to 0.7. As it increases,
the original expected value approaches 0, and the

Table 2  Details of each dataset

Dataset Gateways Fog Devices Edge Devices Users

DS1 30 150 700 5,000

DS2 30 150 1,000 5,000

DS3 30 500 700 5,000

DS4 200 150 700 5,000

Fig. 4  Solution space for DS1, in which 880 devices are deployed in a 220 m × 180 m area

Page 11 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

transformed expected value approaches 0.5. The
expected value for the nonconvergence region approach-
ing 0 is unhelpful because it does not provide a more
favorable objective value for the region. However, if the
nonconvergence region exhibits a more favorable objec-
tive value, the region has more investment value. There-
fore, it updates the original expected value to centering,
and increasing or decreasing the value of parameter γ
affects the objective value. The results indicate that the
most favorable objective values were obtained when the
parameter γ was set to 0.7.

Experimental results and discussion
This paper compares the performance of different algo-
rithms, namely the TF algorithm, GA, DBA, DMGA,

and SE algorithm, for addressing the fog computing
system deployment problem. The results are presented
in Table 4. Table 5 shows that the computation time of
the proposed algorithm and deployment algorithms
compared in this paper. These results show that TF and
GA are faster than the other deployment algorithms for
datasets DS1, DS2, DS3, and DS4. Since the design of
the proposed algorithm considers much more factors
in convergence process, its running time, of course, is
larger than all the other deployment algorithms although
it can find out better results than them. However, the
good news is in that even though the other deployment
algorithms use the same computation time with SEFSD
they still cannot find the good deployment solution as
the same as SEFSD can. This situation will be discussed

Fig. 5  Simplified example of the encoding method. Each solution is divided into three parts

Fig. 6  Results of parameter adjustment of different parameter combinations

Page 12 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

in detail shortly via the analysis of convergence curves of
deployment algorithms.

Regardless of the complexity of the solution space, the
proposed method eventually obtained the most favora-
ble objective value. The results of the TF algorithm not
only were less favorable than those obtained using the
proposed method but also required a massive number of
iterations to compute. For example, using dataset DS1,
the TF algorithm obtained the same result, but only after
31, 500, 000 iterations. By contrast, other algorithms
only required 1, 200, 000 iterations to obtain the same
result. Compared with the conditional exhaustive search
method, the proposed method obtained more favorable
solutions for fog computing system deployment prob-
lems in the same number of iterations. As indicated in
Table 6, the search efficiency of the SE algorithm did
not change when the dataset changed, but the TF algo-
rithm and GA did. However, the TF algorithm requires
a massive number of iterations to complete, and the GA’s
s search strategy resembles a random search when used
with complex datasets. The SE algorithm yielded results
considerably superior to those of the DBA and DMGA
using DS2 and DS3 because the solution lengths of DS2
and DS3 were greater than that of DS1, and their solu-
tion spaces were more complicated than those of DS1
and DS4.

Figure 8 illustrates the convergence of each algorithm
using DS1 and the effects of algorithms employing differ-
ent strategies. The TF algorithm always deploys servers
with a massive workload preferentially and therefore does
not search regions with unfavorable objective values.
Although its convergence curve indicates that its search
begins in the region with the least favorable objective
value, the algorithm does not search the whole region.
The proposed method obtains a more favorable solu-
tion, which is not located in the search space of the TF
algorithm. The GA retains chromosomes in the conver-
gence process through selection. A convergence strategy
that does not require retaining the optimal chromosomes
to receive the crossover operator may be inefficient for
searches in a complex solution space. As indicated by its
convergence curve, the GA cannot search for the opti-
mal direction and initiate a local search when the optimal
direction is located.

The GA’s search diversity is similar to that employed in
a random search of a complex solution space. The DMGA
employs a greedy search strategy, which involves searching
in the direction of the monkey with the highest objective
value. The cooperation process integrated into the DMGA
allows the algorithm to quickly locate the region with the
most favorable objective value, but the algorithm does
not have a mechanism to avoid local optima. The curve

Fig. 7  Effect of the relationship between searchers and goods on the convergence speed of the algorithm

Table 3  Effect of parameter γ

γ Objective value

0.5 3,000,070

0.6 2,825,300

0.7 2,804,210

0.8 2,867,990

0.9 2,864,710

Table 4  Results of various algorithms for fog computing system
deployment across different datasets

Dataset TF GA DBA DMGA SEFSD

DS1 4,328,741 8,969,220 4,456,138 4,275,777 3,390,791

DS2 1,645,360 3,459,700 3,366,342 3,287,686 1,189,066

DS3 2,725,890 8,930,096 4,449,198 3,764,370 1,902,618

DS4 4,079,570 9,183,044 4,552,032 4,464,314 2,901,532

Page 13 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

indicates that once DMGA has located the most favorable
region, it no longer searches in less favorable regions.

To ensure that the search is thorough and conducted
in the correct direction, the DBA uses loudness and
pulse emission rates as parameters to dynamically
switch between local and global search strategies. The
convergence curve is between those of the GA and
DMGA, but it also converges in regions with the most
favorable objective values, as the DMGA does. Regard-
ing the SE algorithm, in the initial iteration stage, the
search strategy of goods involves rapidly moving to the
regions with less favorable objective values and con-
ducting a local search. The DBA and DMGA stop at the
regions with the optimal objective value, whereas the SE
algorithm is not limited to this region because it splits
the solution space into several regions and allocates

search resources to regions that have not yet been
explored in a given period. Furthermore, the trend illus-
trated in Fig. 8 indicates that the searchers continually
exchange solutions to enhance the search diversity even
if all goods exhibit convergence in the region to which
they belong.

The article [20] provides further information on the
time complexity of the proposed algorithm. The overall
time complexity of SEFSD is in the order of O(nkt), where
n is the number of searchers, k is the number of subso-
lutions, t is the number of iterations. Moreover, the time
complexity of SEFSD is also similar to most metaheuris-
tic algorithms.

In order to apply the proposed algorithm to real-world
applications, two important considerations must be
addressed. The first issue is about the problem defini-
tion which needs to take into account much more factors,
such as power consumption, network topology, reliabil-
ity, communication delay, collision, number of devices,
as so forth. The second issue is about the period change
of the system and environment. With these considera-
tions, we can then let the proposed algorithm more use-
ful for the deployment of fog system. It is important to
note that due to the schema for encoding of the proposed
algorithm is in the form of binary string, there will be a
limitation to the proposed algorithm, which means that
all the possible locations of the fog server will be limited
to a specific number of locations.

Conclusion
The deployment of the fog computing systems must
account for the cost, number of connected devices,
workload of servers, latency time, cover rate, and ser-
vice capacity of servers, which was formerly considered
a complex problem. Therefore, this study employed an

Table 5  Computation time of various algorithms for fog
computing system deployment across different datasets

Dataset TF GA DBA DMGA SEFSD

DS1 1,444.70 1,337.90 2,493.33 1,522.67 4,548.20

DS2 2,199.70 1,908.27 3,366.23 2,072.40 6,156.20

DS3 560.17 670.93 1,393.40 797.60 2,865.07

DS4 1,461.27 1,522.77 3,587.23 2,122.97 6,590.10

Table 6  Objective values of different percentages among the
various algorithms compared with the proposed method

Dataset TF GA DBA DMGA

DS1 20.6% 66.0% 35.4% 35.2%

DS2 27.7% 65.6% 64.7% 63.8%

DS3 30.2% 78.7% 57.2% 49.5%

DS4 28.9% 68.4% 36.3$ 35.0%

Fig. 8  Convergence curves for each algorithm simulated using DS1

Page 14 of 15Chen et al. Journal of Cloud Computing (2023) 12:105

SE algorithm suitable for handling complex solution
spaces to solve the fog computing system deployment
problem. This improved deployment algorithm was
designed to address the hierarchical distribution archi-
tecture of the fog computing system by integrating split
solution spaces and accounting for the number of gate-
ways required. The solution spaces are logically divided
according to the number of top-layer devices. The pro-
posed method evaluates the potential of each region to
dynamically allocate computational resources to sub-
solution spaces with high potential. According to the
experimental results, the proposed method increases
the objective value of each dataset by more than 50%.
Compared with the conditionally exhaustive algorithms,
the proposed method can deploy servers with the low-
est workloads, obtain the lowest cost of deployment,
and result in the lowest count of violated constraints.
In future studies, the numbers of searchers, goods,
and players should be adaptively adjusted according to
the iteration and the features of solution spaces. In the
search process, the algorithm may encounter situations
in which its typical search strategy is unsuitable. If the
algorithm can dynamically evaluate the features of solu-
tion spaces and immediately adjust the search strategy,
it can obtain more favorable objective values and exhibit
greater efficiency. Because the proposed algorithm is
capable of determining a better deployment plan for fog
servers, therefore we intend to apply it to other deploy-
ment problems in a variety of network environments in
the future (for example, vehicular ad-hoc networks or
sixth generation mobile systems).

Acknowledgements
The authors would like to thank the editor and anonymous reviewers for their
valuable comments and suggestions on the paper.

Authors’ contributions
Conception and design of study: Huan Chen, Tai-Lin Chiu, Ming-Chao Chiang, and
Chun-Wei Tsai. Drafting the manuscript: Huan Chen, Wei-Yan Chang, and Tai-Lin
Chiu. Implementation and acquisition of data: Wei-Yan Chang and Tai-Lin Chiu.

Funding
This research was partially supported in part by Qualcomm under the
Taiwan University Research Collaboration Project, and National Science and
Technology Council (NSTC) of Taiwan, R.O.C., under the grant numbers NSTC-
110-2221-E-005-032-MY3, NSTC-111-2634-F-005-001, NSTC-111-2222-E-110-
006-MY3, NSTC-112-2634-F-110-001-MBK, and NSTC-112-2628-E-110-001-MY3.

Availability of data and materials
The datasets generated during and/or analysed during the current study are
available in https://​ailab.​cse.​nsysu.​edu.​tw/​datas​ets/​fog_​compu​ting/.

Declarations

Competing interests
We declare the following:
• The work described has not been submitted elsewhere for publication, and
all the authors listed have approved the manuscript that is enclosed.
• We have read and abided by the statement of ethical standards for manu‑
scripts submitted to Journal of Cloud Computing.

Received: 25 November 2021 Accepted: 15 June 2023

References
	1.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role

in the internet of things. In: Proceedings of Mobile Cloud Computing
Workshop. ACM, pp 13–16

	2.	 Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: Architec‑
ture, key technologies, applications and open issues. J Netw Comput
Appl 98:27–42

	3.	 Luan TH, Gao L, Li Z, Xiang Y, Sun L (2015) Fog computing: Focusing on
mobile users at the edge. arXiv 1–11. http://​arxiv.​org/​abs/​1502.​01815

	4.	 Hong CH, Varghese B (2019) Resource management in fog/edge com‑
puting: A survey on architectures, infrastructure, and algorithms. ACM
Comput Surv 52(5):1–37

	5.	 Aditya S, Figueiredo JR (2017) Frugal: Building degree-constrained overlay
topology from social graphs. In: Proceedings of IEEE International Confer‑
ence on Fog and Edge Computing. IEEE, pp 11–20

	6.	 Narula SC, Ho CA (1980) Degree-constrained minimum spanning tree.
Comput OR 7(4):239–249

	7.	 Ning A, Ma L, Xiong X (2008) A new algorithm for degree-constrained
minimum spanning tree based on the reduction technique. Prog Nat Sci
18(4):495–499

	8.	 Ribeiro CC, Souza MC (2002) Variable neighborhood search for the
degree-constrained minimum spanning tree problem. Discret Appl Math
118(1):43–54

	9.	 Singh K, Sundar S (2019) A hybrid steady-state genetic algorithm for the
min-degree constrained minimum spanning tree problem. Eur J Oper
Res 276(1):88–105

	10.	 Singh K, Sundar S (2020) A hybrid genetic algorithm for the degree-
constrained minimum spanning tree problem. Soft Comput
24(1):2169–2186

	11.	 Krishnamoorthy M, Ernst AT, Sharaiha YM (2001) Comparison of algo‑
rithms for the degree constrained minimum spanning tree. J Heuristics
7(6):587–611

	12.	 Holland JH (1992) Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, Cambridge

	13.	 Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220(4598):671–680

	14.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceed‑
ings of International Conference on Neural Networks, vol 4. IEEE, pp
1942–1948

	15.	 Tsai CW (2015) Search economics: A solution space and computing resource
aware search method. In: Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics, Kowloon, China. IEEE; pp 2555–2560

	16.	 Yang L, Cao J, Liang G, Han X (2015) Cost aware service placement
and load dispatching in mobile cloud systems. IEEE Trans Comput
65(5):1440–1452

	17.	 Lin CC, Yang JW (2018) Cost-efficient deployment of fog comput‑
ing systems at logistics centers in industry 4.0. IEEE Trans Ind Inform
14(10):4603–4611

	18.	 Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: Over‑
view and conceptual comparison. ACM Comput Surv 35(3):268–308

	19.	 Tsai C-W (2016) An effective WSN deployment algorithm via search
economics. Comput Netw 101:178–191

	20.	 Tsai C-W, Liu S-J (2018) An effective iot service-to-interface assignment
algorithm via search economics. IEEE Internet Things J 5(3):1708–1718

	21.	 Tsai C-W, Liu S-J (2020) An effective hyper-dense deployment algo‑
rithm via search economics. J Ambient Intell Humanized Comput
11:2251–2262

	22.	 Tsai C-W, Fang Z-Y (2021) An effective hyperparameter optimization
algorithm for dnn to predict passengers at a metro station. ACM Trans
Internet Technol 21(2):1–24

	23.	 Tsai K-H, Tsai C-W, Chiang M-C (2022) An effective metaheuristic-based prun‑
ing method for convolutional neural network. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. ACM, pp 679–682

	24.	 Goldberg DE, Deb K (1991) A comparative analysis of selection schemes
used in genetic algorithms. Found Genet Algorithm 1(1):69–93

https://ailab.cse.nsysu.edu.tw/datasets/fog_computing/
http://arxiv.org/abs/1502.01815

Page 15 of 15Chen et al. Journal of Cloud Computing (2023) 12:105 	

	25.	 Li Y, Wang S (2018) An energy-aware edge server placement algorithm
in mobile edge computing. In: Proceedings of IEEE International Confer‑
ence on Edge Computing. IEEE, pp 66–73

	26.	 Mishra SK, Puthal D, Rodrigues JJ, Sahoo B, Dutkiewicz E (2018) Sustain‑
able service allocation using a metaheuristic technique in a fog server for
industrial applications. IEEE Trans Ind Inform 14(10):4497–4506

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

	SEFSD: an effective deployment algorithm for fog computing systems
	Abstract
	Introduction
	Related work
	Problem definition

	Proposed method
	Basic idea
	Search economics for fog computing system
	Resource arrangement
	Vision search
	Trade
	Marketing research
	Simplified example of the SE algorithm

	Experimental results
	Environment
	Datasets and encoding
	Experiment for adjusting parameter
	Experimental results and discussion

	Conclusion
	Acknowledgements
	References

