
Chen et al. Journal of Cloud Computing (2023) 12:107
https://doi.org/10.1186/s13677-023-00477-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An intelligent approach of task offloading
for dependent services in Mobile Edge
Computing
Jie Chen1, Yajing Leng1 and Jiwei Huang1*

Abstract

With the growing popularity of Internet of Things (IoT), Mobile Edge Computing (MEC) has emerged for reducing
the heavy workload at the multi-cloud core network by deploying computing and storage resources at the edge
of network close to users. In IoT, services are data-intensive and event-driven, resulting in extensive dependen-
cies among services. Traditional task offloading schemes face significant challenges in the IoT scenario with service
dependencies. To this end, this paper proposes an intelligent approach for minimizing latency and energy consump-
tion which jointly considers the task scheduling and resource allocation for dependent IoT services in MEC. Specifi-
cally, we establish the system model, communication model as well as computing model for performance evaluation
by fully considering the dependent relationships among services, and an optimization problem is proposed for mini-
mizing the delay and energy consumption simultaneously. Then, we design a layered scheme to deal with the service
dependencies, and present detailed algorithms to intelligently obtain optimal task scheduling and resource allocation
policies. Finally, simulation experiments are carried out to validate the effectiveness of the proposed scheme.

Keywords Mobile Edge Computing, Internet of Things, Offloading decision, Resource allocation, Delay, Energy
consumption

Introduction
With the rapid development of smart mobile devices and
Internet of Things (IoT), various IoT services show explo-
sive growth [1]. IoT services enrich people’s lives, but
they also put forward higher requirements for hardware
resources of IoT devices, such as computing resources,
storage resources and battery life [2]. With the dramatic
increase in the computational complexity of services in
IoT, only relying on the limited computing capacity of
IoT devices often can not guarantee the timely execu-
tion of various tasks [3]. Given the architecture of IoT
devices and the trend of battery development, these

problems will also be difficult to solve in the future [4].
Mobile Cloud Computing (MCC) is considered an effec-
tive solution to the above problems. In MCC, migrating
the data processing and storage of IoT services to the
multi-cloud for computing provides users with power-
ful data computing and storage capabilities. In addition,
it reduces energy consumption of IoT devices and pro-
longs battery life. However, the explosive growth of IoT
devices and data transfers poses enormous challenges to
MCC [5]. Excessive network load makes it impractical for
IoT devices to transfer all the massive data generated to
multi-cloud for centralized processing. In addition, some
new IoT services requiring extremely low latency are
emerging in large numbers. Offloading all these IoT ser-
vices over the core network to a remote multi-cloud can
result in high latency [6]. Therefore, MCC is not suitable
for IoT services with very low latency requirements.

*Correspondence:
Jiwei Huang
huangjw@cup.edu.cn
1 Beijing Key Laboratory of Petroleum Data Mining, China University
of Petroleum, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00477-9&domain=pdf

Page 2 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

Mobile Edge Computing (MEC) is a new computing
mode, which focuses on providing users with certain Inter-
net Technology (IT) and cloud computing capabilities at
the edge of the mobile network [7]. In 2014, the European
Telecommunications Standards Institute (ETSI) proposed
the concept of Mobile Edge Computing [8]. MEC provides
users with powerful computing, storage, network and com-
munication resources near the edge of their mobile net-
work (such as base stations, wireless access points, etc.),
which reduces the latency of tasks and improves the Qual-
ity of user Experience (QoE) [9]. In addition, it can alleviate
users’ concerns about privacy leaks and ensure data secu-
rity by eliminating the need to transfer data to multi-cloud
for processing [10].

Computational Offloading is one of the key technolo-
gies of MEC, which mainly includes the following two
aspects [11]:

(1) Offloading Decision: Deciding whether the task is
handled on the local device or on an MEC server;

(2) Resource Allocation: Allocating the resources
needed to process tasks, including computing
resources, communication resources, etc.

However, due to the heterogeneity of IoT devices and
MEC servers and the diversity of IoT services, it is difficult
to obtain a common computational offloading strategy
[12, 13]. Therefore, it is necessary to design an appropriate
computational offloading strategy based on different MEC
environments, IoT services, and optimization objectives.

Modern IoT services often consist of multiple tasks
with dependencies [14]. Dependency means that there is
a priority constraint between tasks, such as a task cannot
be started until all tasks with a higher priority than it have
been processed. In MEC, when tasks with dependencies
are processed on IoT devices and MEC servers separately
or on different MEC servers, data transmission across
devices will usually occur. Complex dependencies and
commucication between IoT services makes it more dif-
ficult to realize optimal offloading decisions and resource
allocation schemes [15, 16]. So, in the existing studies,
few gave consideration to both offloading decisions and
resource allocation to optimize task latency and energy
consumption simultaneously. This paper considers task
offloading and resource allocation of dependent IoT ser-
vices in user-oriented MEC scenarios to optimize latency
and energy consumption. Different from the previous
works, our contributions are as follows.

(1) To solve the problem of task dependency, this paper
presents a layered algorithm based on topological
sorting, which layers tasks so that there is no depend-
ency between tasks in the same layer after layering,

and then gets the optimal offloading decision and
resource allocation of all tasks in the layer in turn.

(2) To decide whether a task in a layer is offloaded or
not, we use the weighted sum of latency and energy
consumption to define the cost of local and edge
calculations for tasks. To determine the optimal
offloading decision and resource allocation scheme,
we calculate and compare the minimum cost of a
task computed locally and offloaded to MEC server.
Simulation experiments were conducted to verify
the effectiveness of the algorithm in optimizing
latency and energy consumption.

The rest of this paper is organized as follows. In the
next section, we discuss the releated works. Then,
we present the system model and problem formulation.
Based on the system model, the following section gives a
layered computational offloading algorithm for the mini-
mum overhead. Next, we conduct experiments to verify
the effectiveness of the proposed algorithm. Finally, we
conclude the paper in the last section.

Related work
In the computation offloading of MEC, most of the exist-
ing researches focus on reducing task latency or energy
consumption by studying reasonable offloading decision.

By offloading computing tasks from IoT devices to MEC
servers with rich computing resources, latency of tasks can
be significantly reduced [17]. Real time applications such
as AR, VR and the Internet of Vehicles that are sensitive to
time delay require ultra-low time delay to provide continu-
ous services. Therefore, there is a lot of research in MEC
that focuses on reducing task delay through task offload-
ing. The literature [18] studied an MEC system that allows
computing tasks to be executed in parallel on IoT devices
and MEC servers with the goal of reducing the latency of
computing tasks. An efficient one-dimensional search
algorithm is proposed. Although this scheme has signifi-
cant effect in reducing delay, there are still some defects.
For example, this scheme is not applicable to dependent
tasks, and does not consider the signaling cost of terminal
receiving feedback from MEC server. The literature [19]
studied the problem of task offloading in 5G ultra dense
networks and establishes a problem to minimize the total
delay of all tasks under the constraint of residual power of
IoT devices, which is a mixed integer nonlinear program-
ming problem. On this basis, the author proposes an effec-
tive computational offloading scheme, which can reduce
task delay by 20% compared with random offloading and
uniform offloading schemes. However, the final offloading
strategy of this scheme depends too much on the given ini-
tial task offloading strategy.

Page 3 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

Because rapid energy consumption poses a major obsta-
cle in the contemporary network [19], there are also a lot of
researches aimed at reducing energy consumption in MEC.
Due to the limited battery life of IoT devices, most relevant
researches focus on reducing the energy consumption of
IoT devices. In order to reduce the total energy consump-
tion of the MEC system, the literature [20] considers joint
optimisation of offloading decisions and wireless resource
allocation. The joint optimisation problem is difficult to
solve due to its non-convexity and NP-hard property. To
reduce the solution complexity, the original problem is
transformed into a two-layer optimisation problem. Specif-
ically, the optimal transmission power and subcarrier allo-
cation can be obtained by the Lagrange multiplier method
for a given initial task offloading strategy. And on the basis
of obtaining the optimal transmission power and subcarrier
allocation, the optimal offloading strategy is solved by using
the Hungarian algorithm.

In MEC, higher transmission rate requires higher power
at the transmitter and receiver, which will reduce task delay,
but also lead to more energy consumption, and vice versa
[21, 22]. Therefore, it is also an important research direction
of computational offloading to comprehensively consider
the latency and energy consumption to improve the Quality
of Service (QoS) and user experience of MEC system. The
literature [23] investigates task offloading and resource allo-
cation in a multi-user MEC system using time division mul-
tiple access as the uplink transmission mechanism, which
shares a single MEC server. The optimal resource allocation
problem is programmed as a convex optimization problem
that minimizes the overhead (weighted sum of delay and
energy consumption) by considering two cases of limited
and unlimited MEC server resources, and the optimal off-
loading is obtained by solving the problem.

Modern IoT services usually consist of multiple depend-
ent tasks [24]. The literature [25] investigates the offload-
ing of sequentially dependent tasks and concurrent tasks.
For sequential dependent tasks, the authors clarify that
successive offloading of tasks is required to reduce the
overall latency. A violence-based search approach is then
used to find the starting and ending tasks that need to be
offloaded. For concurrent tasks, the task dependencies are
degraded to a tree, and then clusters of tasks are offloaded
to minimize latency based on the idea of load balancing.
For more general task dependencies (where there are both
sequential and concurrent tasks), concurrent tasks are first
aggregated into virtual tasks and then the offloading deci-
sion for the task is found by using the method of offload-
ing sequentially dependent tasks. For virtual tasks that are
decided to be processed on the IoT device, they are then
offloaded by using the offloading method for concurrent
tasks. Finally, simulation results show that the method is
twice as fast as the baseline method and achieves 85% of
the performance of the optimal solution.

System model and problem formulation
Task dependency model
As shown in Fig. 1, suppose that an IoT device has a service
that needs to be processed. Service generated by the IoT
device consists of |V| dependent tasks. Each task can be
processed on the IoT device or offloaded to an MEC server
through the wireless network. Directed Acyclic Graph
(DAG) G = (V ,E) is used to model the service depend-
ency [26]. Wherein, node vi ∈ V represents the ith task
generated by the IoT device, while the edge < vi, vj >∈ E
represents the dependency between tasks (task vj can
only be started after task vi has completed processing and
vj has received the output of task vi), where vi is called the

Fig. 1 An example of service dependency

Page 4 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

precursor task of vj , and vj is called the successor task of vi .
For a given DAG, a task without any precursor is called an
entry task, and a task without any successor is called an exit
task. For the ith task generated by the IoT device, a quater-
nion in the form of vi = (Ci,Di, Ii,Oi) is used for modeling,
where Ci represents the calculation amount of vi , that is, the
number of CPU cycles required to process vi , Ii represents
the amount of input data that vi receives from all its precur-
sor tasks, Oi represents the amount of output data of vi after
processing, and Di represents the amount of data of vi . To
ensure the first task is executed from the IoT device and the
final processing results can be returned to the IoT device,
a virtual entry task ventry and a virtual exit task vexit are
added to the DAG [27]. Among them, Centry = Cexit = 0 ,
Dentry = Dexit = 0 , Ientry = 0 , Oentry = I1 , Iexit = O|V | ,
Oexit = O|V | , and ventry and vexit can only be processed on
the local IoT device and cannot be offloaded to an MEC
server. For multi entry tasks or multi exit tasks, adding
a virtual entry task and an exit task can also simplify the
DAG into single entry task and single exit task for easy
solution. Therefore, the total number of tasks n is:

Communication model
When a task is offloaded to an MEC server or two
dependent tasks are processed on different devices
respectively (For example, task vi is processed on the IoT
device and its successor task is processed on an MEC
server), data transmission between the IoT device and
an MEC server through the wireless network is involved,
and an appropriate communication model needs to be
established to analyze the communication overhead.

(1) Offload task vi to an MEC server When the task vi is
offloaded to an MEC server, the uplink data trans-
mission rate roi is:

 Wherein, B represents the channel bandwidth, hi
represents the channel gain between the base sta-
tion and the IoT device, σ 2

i represents the noise
power, poi represents the transmission power that vi
is offloaded from the IoT device, pmin ≤ poi ≤ pmax ,
pmin and pmax are respectively the minimum and
maximum transmission power of the IoT device.
Correspondingly, rmin ≤ r

o

i
≤ rmax , where,

rmin = Blog2(1 +
pminhi

�
2

i

) , rmax = Blog2(1+
pmaxhi
σ 2
i

) . The
offloading delay required for offloading task vi to an
MEC server is:

(1)n = |V | + 2

(2)roi = Blog2(1+
poi hi

σ 2
i

)

 Wherein, Di
rmax ≤ toi ≤

Di

rmin . The energy consump-
tion for transmisson of the IoT device required for
offloading task vi to an MEC server is:

(2) Upload the output of the task vi to an MEC server
When a task vi is processed on the IoT device and
a successor task of the task vi needs to be offloaded
to an MEC server, the IoT device needs to transmit
the output of vi to an MEC server through the wire-
less network. The uplink data transmission rate rui
of uploading the output of task vi is:

 Wherein, pmin ≤ pui ≤ pmax , correspondingly,
rmin ≤ rui ≤ rmax . The transmission delay required
for uploading the output of task vi to an MEC server
is:

 Wherein, Oi
rmax ≤ tui ≤

Oi

rmin . The transmission
energy consumption of the IoT device required
for uploading the output of the task vi to an MEC
server is:

(3) Download the output of the task vi to the IoT device
When a task vi is processed on an MEC server, and
a successor task of vi needs to be processed on the
IoT device, the MEC server needs to send the out-
put of vi back to the IoT device through the wireless
network. Assuming that the download rate is con-
stant at rd , the transmission delay of downloading
the output result of the task vi is:

Computational model
Because tasks can be processed on the IoT device or
offloaded to MEC servers, two different models need to
be considered.

(3)toi =
Di

roi

(4)eoi = poi t
o
i =

Diσ
2
i

roi hi
(2

roi
B − 1)

(5)rui = Blog2(1+
pui hi

σ 2
i

)

(6)tui =
Oi

rui

(7)eui = pui t
u
i =

Diσ
2
i

rui hi
(2

rui
B − 1)

(8)tdi =
Oi

rd

Page 5 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

(1) Local computing model The IoT device uses Dynamic
Frequency Scaling (DFS) technology to reduce energy
consumption [28]. Therefore, the energy consump-
tion of the IoT device during local computing can be
reduced by adjusting the CPU frequency. Therefore,
the computing delay when task vi is processed on the
IoT device can be expressed as follows:

 Wherein, f li represents the calculation frequency
of the IoT device when processing task vi and f max
represents the maximum frequency of the IoT
device processor. Because f li ≤ f max , so tli ≥ tmin

i ,
wherein tmin

i =
Ci

f max . The computing energy con-
sumption when task vi is processed on the IoT
device can be expressed as [29]:

 Wherein, κ > 0 refers to the energy efficiency
parameter.

(2) Edge computing model The calculation delay
when task vi is processed on an MEC server can be
expressed as:

 Wherein, f e is the processor frequency of an MEC
server.

Problem formulation
Binary variable ai is used to indicate whether the task vi
is offloaded (ai = 1 indicates that the task vi is offloaded
to an MEC server, ai = 0 indicates that the task vi is pro-
cessed on the IoT device). During the whole offloading
process, the following restrictions need to be met:

(1) For ∀ < vi, vj >∈ E , the moment tsj when the suc-
cessor task vj starts processing cannot be earlier
than the moment when the precusor task vi com-
pletes processing and the output of the task vi is
received by vj;

(2) Each task is either offloaded to an MEC server or
processed on the local device;

(3) Tasks on the same device must be processed serially.
For example, if task vi and task vj are offloaded to an
MEC server for processing, one of them must wait
for the other to finish processing before it can be
processed.

(9)tli =
Ci

f li

(10)eli = κf 3i t
l
i = κ

C3
i

(tli)
2

(11)tei =
Ci

f e

In order to optimize task delay and energy consumption
of the IoT device at the same time, referring to [20], the
optimization goal is considered as the weighted sum of
all task delay and local device energy consumption. In
order to facilitate the solution, the startup time of the vir-
tual entry task ventry is set as 0, and the delay of all tasks
can be expressed as:

Wherein, tfi is the completion time of the task vi.
The energy consumption of IoT devices includes three

parts: Firstly, locally computed energy consumption; Sec-
ondly, the energy consumption of offloading tasks which
need to be processed on MEC servers; Thirdly, the energy
consumption for uploading output of tasks which are
processed on the local device and whose successor tasks
are offloaded to MEC servers. Therefore, the energy con-
sumption of the local device can be expressed as:

Therefore, the problem can be planned as follows:

Wherein, ω1 and ω2 are weighting factors, and
ω1 + ω2 = 1 , χ is a large number. The constraint C1 guar-
antees that for ∀< vi, vj >∈ E , the time tsj when the task
vj starts possessing is not earlier than the time when the
task vi finishes processing and the output of the task vi is
received by vj . Constraints C2 and C4 ensure that tasks
processed on the IoT device must be processed serially.
Constraints C3 and C4 ensure that tasks processed on an
MEC server must be processed serially. The constraint
C5 ensures that the transmission power of the IoT device
must be between its maximum power and minimum
power. The constraint C6 ensures that the calculation
frequency of the IoT device cannot exceed its maximum
calculation frequency. Constrain C7 ensures that tasks
can only be offloaded to MEC servers or processed on

(12)T =

n

i=1

t
f
i

(13)

E =

n
∑

i=1

[(1− ai)e
l
i + aie

o
i] +

∑

<vi ,vj>∈E

(1− ai)aje
u
i

(14)

min𝜔1T + 𝜔2E

s.t.

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

C1 ∶ ts
i
+ (1 − ai)t

l
i
+ ait

e
i
+ ai(1 − aj)t

d
i
+ (1 − ai)ajt

u
i
≤ ts

j
,∀ < vi , vj >∈ E

C2 ∶ ts
i
− ts

j
+ 𝜒(3 − (1 − ai) − (1 − aj) − xi,j) ≥ tl

j
,∀vi , vj ∈ V

C3 ∶ ts
i
− ts

j
+ 𝜒(3 − ai − aj − xi,j) ≥ te

j
,∀vi , vj ∈ V

C4 ∶ xi,j + xj,i = 1,∀vi , vj ∈ V

C5 ∶ pmin ≤ po
i
, pu

i
≤ pmax ,∀vi ∈ V

C6 ∶ 0 < f l
i
≤ f max ,∀vi ∈ V

C7 ∶ ai ∈ {0, 1},∀i = 1, 2,⋯ , n

C8 ∶ a0 = an = 0

C9 ∶ xi,j ∈ {0, 1},∀vi , vj ∈ V

C10 ∶ ts
i
≥ 0,∀vi ∈ V

Page 6 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

the local device. Constraint C8 ensures that the first task
and the last task must be processed on the local device.
Constraint C9 guarantees that xi,j can only take 0 or 1.
C10 ensures that the start time of task processing cannot
be negative. Obviously, this is a mixed integer nonlinear
programming problem and an NP-hard problem [27].

Layered computational offloading algorithm
In order to solve the above problems, this section proposes
a layered offloading algorithm to minimize the overhead.
Firstly, the tasks of the IoT device are layered according
to the DAG of dependent services by using the layered
algorithm based on topological sorting. After the layer-
ing, there is no dependency between the tasks in the same
layer. Then the task of each layer is offloaded in order and
the optimal resource allocation scheme is obtained.

Concept definition
To facilitate the description and analysis, the following
concepts are defined first.

Concept about delay

(1) Actual computing delay Texec
i of the task vi The

actual processing delay of the task vi is defined as
the actual computing delay of the task vi on the
device (the local device or an MEC server) after the
offloading decision. When the task vi is processed
on the local device (ai = 0) , its actual computing
delay can be expressed as:

 When the task is processed on an MEC server
(ai = 1) , the actual computing delay can be
expressed as:

(2) The time RTi when the task vi can be started Referring
to [20], the concept of the startable time RTi of the task
vi on the device (the local device or an MEC server) is
introduced. RTi is defined as the earliest time when
the task vi receives all precursor task outputs and the
device is idle at the same time. The time RTl

i of the task
vi on the local device can be expressed as follows :

 Wherein, Tidle
l represents the idle time of the IoT

device, pred(i) represents the collection of all the

(15)Texec
i = tli

(16)Texec
i = tei

(17)
RTl

i = max{Tidle
l ,maxj∈pred(i){AFTj + ajt

d
j }}

precusor tasks of the task vi , and AFTj represents
the time when the task vj is actually completed. The
startable time RTe

i of the task vi on the MEC server
can be expressed as:

 Wherein, Tidle
e represents the idle time of the MEC

server.
(3) The time ASTi when the task vi is actually started

The time ASTi is defined as the time when the task
vi is actually started to be processed during the pro-
cessing of all tasks. Because the actual starting time
of the task vi is not earlier than the startable time, so
there must be ASTi ≥ RTi.

(4) The time AFTi when the task vi is actually completed
The actual completion time of a task vi is equal to
the sum of its actual start time and its actual com-
puting delay. Therefore, the actual completion time
AFTi of the task vi can be expressed as follows:

Concept about energy consumption

(1) Energy consumption El
i of the task vi processed on

the IoT device When the task vi is processed on the
IoT device, the energy consumption of the local
device is only the computing energy consumption
for processing the task vi . So the energy consump-
tion El

i can be expressed as follows:

(2) Energy consumption Ee
i of the task vi processed on

an MEC server When the task vi is processed on an
MEC server, the energy consumption of the local
device is the energy consumption of offloading the
task vi and the energy consumption of transmitting
the output of all its precursor tasks processed on
the local IoT device to MEC servers. Therefore, the
energy consumption Ee

i can be expressed as follows:

Layered algorithm
Topological sorting is a standard algorithm for solving the
linear sorting of DAG vertices [30]. In the vertex sequence
generated by topological sorting, for ∀ < i, j >∈ E , task vi
is before task vj . Topological sorting is used to sort tasks to

(18)RTe
i
= max{Tidle

e
,maxj∈pred(i){AFTj + (1 − aj)t

u
j
+ to

i
}}

(19)AFTi = ASTi + Texec
i

(20)El
i = eli

(21)Ee
i = eoi +

∑

j∈pred(i)

(1− aj)e
u
j

Page 7 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

ensure that all the precursor tasks of the task vj are ahead
of them. However, this method can only produce one task
sequence. Therefore, referring to the idea of topological
sorting, an algorithm is designed to layer dependent tasks,
so that there is no dependency between tasks in the same
layer after layering.

In this paper, a layering algorithm is proposed based on
topological sequences. The procedure of the algorithm is
shown in Algorithm 1. The adjacency table (adjList) is used
to store the DAG nodes and their dependencies. Line 2
of the algorithm initializes a queue for subsequent opera-
tions. Lines 3-4 of the algorithm put the entry task ventry
into the queue. Line 8 indicates that as long as the queue is
not empty, the current length of the queue (len) is obtained,
which is the number of tasks in the next layer. In line 10-20,
len tasks leave the queue in order and are put into the set
(curLayer) that stores tasks of the current layer. When each
task leaves the queue, the indegree of all its successor tasks
will be reduced by 1. If the indegree of a successor task
becomes 0, the successor task will be put into the queue.
After processing all the tasks of the current layer, put the
set (curLayer) into a list storing layers (layerList), and then
continue to process the tasks of the next layer. After all
tasks are processed, return layering results (layerList).

Algorithm 1 Task layering algorithm

Cost analysis of processing tasks
The cost Costi of processing task vi is divided into two
parts: one is the delay required for processing tasks
(computational latency and transmission latency);

The other is the energy consumption of the IoT device
(processing energy consumption or transmission
energy consumption) when processing tasks. There-
fore, Costi can be expressed as:

Next, we will analyze the cost of the task processed on
the local IoT device and offloaded to an MEC server sep-
arately according to whether the task is offloaded.

(1) The cost of task vi when processed locally When the
task vi is calculated on the local IoT device, accord-
ing to the previous analysis, Costi can be expressed
as a function of one variable, with its variable being
local computational latency tli , so Costi can be
expressed as follows:

 Wherein, gi(x) = ω1x +
ω2κC

3
i

x2
 . Obviously, gi(x)

decreases monotonically in the range of

0 < x ≤
3

√

2ω2κC
3
i

ω1
 and increases monotonically in

the range of x ≥
3

√

2ω2κC
3
i

ω1
 . Use topti to represent the

corresponding tli when the local computing over-

head Costli (t
l
i) is optimal. If 3

√

2ω2κC
3
i

ω1
≤ tmin

i , then

t
opt
i = tmin

i . Otherwise, topti =
3

√

2ω2κC
3
i

ω1
 . Therefore,

t
opt
i = max(

3

√

2ω2κC
3
i

ω1
, tmin
i) . Therefore, Algorithm 2

is designed to obtain the minimum cost of task vi
processed on the local IoT device and the corre-
sponding optimal latency of local computing. After
obtaining the optimal local latency of the task vi , the
optimal computing resource allocated by the local
IoT device can be obtained from the equation (9).

Algorithm 2 Solving for the minimum cost of local computation and its
corresponding optimal latency algorithm

(22)Costi = ω1AFTi + ω2Ei

(23)

Costi(t
l
i
) = Costl

i
(tl
i
) = �1(RT

l
i
+ tl

i
) + �2�

C3

i

(tl
i
)2

= �1RT
l
i
+ gi(t

l
i
)

Page 8 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

(2) The cost of task vi when offloaded According to the
previous analysis, when the task vi is offloaded to an
MEC server for calculation, Costi can be expressed
as a binary function, with its variables being toi and
tuj , and its specific form can be expressed as follows:

Because the binary function increases the difficulty of
solving, offloading task vi and transmitting the output
of its precursor tasks processed on the local IoT device
are considered to use the same transmission rate (i.e.
ruj = roi = ri). At this time, Costi is converted into a
unary function only related to the transmission rate ri :

Wherein, f (x) =
2x−1

x
 , ci = ω1t

e
i , bi =

�2�
2

i

B
(
Di

hi
+
∑

j∈pred(i)

(1−aj)Oj

hj
) .

Obviously, when x ≥ 0 , f(x) is monotonically increasing.
If ri ≥ R1

i , then:

Wherein, R1
i = maxj∈pred(i)(

Di+(1−aj)Oj

T i
edle−AFTj

).At this time,
Costi(ri) increases monotonically.

If ri < R1
i , then:

Wherein, MAFTe
i = maxj∈pred(i)∧aj=1(AFTj) ,

hi(x) =
ai
x + bifi(x)+ ci ,

ai =
ω1Di
B , h′

i(x) =
bi(ln2·x·2

x−2x+1)−ai
x2

 . Obviously, when
x ≥ 0 , ln2 · x · 2x − 2x + 1 is monotonically increasing,
so, there are only three possible values of hi(x) in the
range of [x1, x2] :

(1) If h′

i(x) is always less than or equal to 0, hi(x)
decreases monotonically, and the optimal value of
hi(x) at this time is obtained at x = x2;

(2) If h′

i(x) is always greater than or equal to 0, hi(x)
increases monotonically, and the optimal value of
hi(x) at this time is obtained at x = x1;

(3) When h′

i(x) is less than or equal to 0 at first and
then greater than or equal to 0, hi(x) is a single-
peaked function, and 0.618 method can be used to
search for the optimal value.

So, the above analysis of solving for the minimum value
of h(x) and its corresponding x can be summarized as the

(24)Costi(t
o
i
, tu

j
) = �1(RT

e
i
+ te

i
) + �2[e

o
i
+

∑

j∈pred(i)

(1 − aj)e
u
j
]

(25)

Costi(ri) =�1(RT
e
i
+ te

i
) + �2[

Di�
2

rihi
(2

ri
B − 1) +

∑

j∈pred(i)

(1 − aj)
Oj�

2

rihj
(2

ri
B − 1)]

=�1(max{Tidle
e

,maxj∈pred(i){AFTj +
(1 − aj)Oj + Di

ri
}}) + ci + bif (

ri

B
)

(26)Costi(ri) = Coste1i (ri) = ω1T
idle
e + ci + bif (

ri

B
)

(27)
Costi(ri) =�1maxj∈pred(i){AFTj +

(1 − aj)Oj + Di

ri
} + ci + bifi(

ri

B
)

=�1max{MAFTe
i
,maxj∈pred(i)∧aj=0{AFTj +

Oj

ri
}} + hi(

ri

B
)

function OPTIMAL(h(x), x1, x2) . Wherein, input of OPTI-
MAL consists of a monotone or single-peaked function h(x),
lower bound x1 and upper bound x2 . Output of OPTIMAL
are the minimum value hopt of h(x) and its corresponding
optimal value xopt of x. Specific steps of function OPTIMAL
are as follows. Firstly, Solve for the derivative function h′(x)
of h(x). Secondly, three cases are considered. If h′(x2) ≤ 0 ,
then xopt = x2 and hopt = h(x2) . If h′(x1) ≥ 0 , then
xopt = x1 and hopt = h(x1) . If h′(x1) < 0 and h′(x2) > 0 ,
then hopt and xopt can be obtained by 0.618 method.

If R2
i ≤ ri ≤ R1

i , then:

Wherein, R2
i = maxj∈pred(i)∧aj=0(

Oj

MAFTe
i −AFTj

) . The
minimum cost is obtained by function OPTIMAL.

If ri ≤ min(R1
i ,R

2
i) , then:

Obviously, for AFTj ,
Oj

ri
 is negligible. Therefore, Costi(ri)

can be expressed as:

Wherein, MAFTl
i = maxj∈pred(i)∧aj=0(AFTj) . Obtain the

minimum cost by function OPTIMAL.
Through the above analysis, the minimum cost of task vi

processed on an MEC server and the corresponding optimal
transmission rate can be obtained. After obtaining the opti-
mal transmission rate of the IoT device, the optimal transmis-
sion power allocated by the local device can be obtained
by equation (2) or (5). The procedure of the algorithm is
shown in Algorithm 3. Line 2 calculates R1

i and R2
i . Lines

3-4 show that when R1
i < rmin , there must be R1

i < ri , so
Costi(ri) = Coste1i (ri) , monotonically increasing. Lines
8-10 show that when R2

i < rmin ≤ R1
i < rmax , if R1

i ≤ ri ,
then Costi(ri) = Coste1i (ri) , monotonically increasing,
so r

opt,1
i = R1

i ; If ri < R1
i , then Costi(ri) = Coste2i (ri) ,

the minimum cost Coste2i (r
opt,2
i) and its correspond-

ing optimal transmission rate ropt,2i can be obtained by
function OPTIMAL. Combining these two cases, the
minimum cost and its corresponding optimal transmis-
sion rate can be obtained when R2

i < rmin ≤ R1
i < rmax ,

th at i s r
opt
i = argmin(Coste1i (r

opt,1
i),Coste2i (r

opt,2
i)) .

Similarly, lines 13-16 consider the minimum cost when
rmin ≤ R2

i ≤ R1
i < rmax . Lines 18-20 consider the minimum

cost when rmin ≤ R1
i < min(R2

i , r
max) . Line 25 considers the

minimum cost when R2
i ≤ rmin ≤ rmax ≤ R1

i . Lines 28-30
consider the minimum cost when rmin ≤ R2

i ≤ rmax ≤ R1
i .

Line 32 considers the minimum cost when rmax ≤ min(R2
i ,R

1
i).

(28)Costi(ri) = Coste2i (ri) = ω1MAFTe
i + hi(

ri

B
)

(29)
Costi(ri) =�1maxj∈pred(i)∧aj=0(AFTj +

Oj

ri
) + �1t

e
i
+ �1

Di

ri

+
�2�

2

B
(
Di

hi
+

∑

j∈pred(i)

(1 − aj)
Oj

hj
)f (

ri

B
)

(30)Costi(ri) = Coste3i (ri) = ω1MAFTl
i + hi(

ri

B
)

Page 9 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

Algorithm 3 Solving for the minimum cost of edge computation and its corresponding optimal transmission rate algorithm

Layered computational offloading algorithm
From the above analysis, the costs of the task computed
on the local IoT device or offloaded to an MEC server are
obtained separately, which is related to resource alloca-
tion scheme. Here we propose an algorithm based on
comparing the minimum cost of the task vi processed on
the IoT device and on an MEC server separately to deter-
mine the offloading decision and resource allocation of
the task vi . The main steps of the algorithm are as follows:

(1) Call Algorithm 1 to layer tasks;
(2) For all tasks in the first layer, Algorithm 4 is called

to determine whether each task in the same layer is
offloaded or not in turn;

(3) Use the same method in step 2 for subsequent lay-
ers until all layers are processed.

The procedure of the intra-layer offloading algo-
rithm is shown in Algorithm 4. For all tasks in a given
layer, line 2 of Algorithm 4 indicates that the tasks are
arranged in ascending order according to the comple-
tion time of each task’s latest precursor task. Lines
3-13 indicate that the minimum cost of the task pro-
cessed on the local device and processed on an MEC
server are calculated separately in order . If the local
computing overhead is less than the offloading over-
head, the task is processed locally and the optimal
computing frequency of the IoT device is obtained.
Then, the next idle time of the local IoT device is
updated. Otherwise, the task will be offloaded, and
the optimal transmission power of the IoT device will
be obtained, and then the next idle time of the MEC
server will be updated.

Page 10 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

Algorithm 4 Intra-layer offloading decision and resource allocation algorithm

Performance evaluation
Setup
The two types of task dependency models shown in Fig. 2
are used for simulation experiments. In Fig. 2(a), tasks
can only be executed sequentially, and there is only one
task in each layer. In Fig. 2(b), each layer has five tasks,
and these five tasks are the precursor tasks of all tasks in
the next layer. In addition, the number of tasks in these
two types of task dependency models will be set to 10, 20,

30, 40 and 50, respectively, to evaluate the performance
of the proposed algorithm under different task numbers
and task dependencies.

The bandwidth of the wireless channel is set to 5
MHz. Consider that the white noise power and channel
gain are the same when all tasks are offloaded, wherein,
σ 2
1
= · · · = σ 2

|v| = σ 2 = 10−10W , h1 = · · · = h|v| = h .
For h, the path fading model is used for modeling [28],
and the specific form is as follows:

Fig. 2 Low and high parallelism task dependency model

Page 11 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

Wherein, Ad represents antenna gain, fc represents
carrier frequency, dM represents the distance between
IoT device and MEC server, and de represents path fad-
ing factor. For IoT devices, the maximum calculation
frequency f max is set to 0.5 GHz, and the minimum
transmission power pmin and maximum transmission
power pmax are set to 0.1 W and 0.5 W respectively. For
computing tasks, The required CPU cycle follows the
uniform distribution of [100, 200] × 106 Cycles, the data
size follows the uniform distribution of [2, 5] MB, and the
computing output follows the uniform distribution of [2,
5] KB. For the MEC server, its calculation frequency f e is
set to 5 GHz. The energy efficiency parameter κ is set to
10−27 . Other simulation parameters are shown in Table 1.

Comparison experiments
With reference to [31, 32], we compare the proposed
algorithm with three other offloading baseline strategies
and the earliest completion time offloading strategy pro-
posed in [33]:

(1) Local computing strategy: The local computing
strategy does not involve task offloading. All com-
puting tasks are processed on the local IoT device,
and the computing frequency of the IoT device is
randomly determined from 0GHz to 0.5GHz.

(2) Edge computing strategy: In the edge computing
strategy, all IoT devices offload their computing
tasks randomly to a nearby MEC server for pro-
cessing, and randomly determine the transmission
power of IoT devices from 0.1W to 0.5W.

(3) Random offloading strategy: In the random offload-
ing strategy, the decision whether task is offloaded
or not and which edge server to offload is deter-
mined randomly. The calculation frequency is
randomly determined from 0GHz to 0.5GHz and
transmission power of the IoT device is randomly
determined from 0.1W to 0.5W.

(31)h = Ad(
3× 108

4π fcdM
)de

(4) The earliest completion time offloading strategy:
Calculate the average calculation and communica-
tion cost of each task and determine the process-
ing order of the task, assign the task to the pro-
cessor with the minimum completion time in turn
according to the processing order. The calculation
frequency is randomly determined from 0GHz to
0.5GHz and transmission power of the IoT device is
randomly determined from 0.1W to 0.5W.

The task latency and energy consumption of IoT devices
are used as performance indicators to evaluate the off-
loading performance of five computational offload-
ing strategies for low parallelism and high parallelism
dependent IoT services.

Figure 3 compares the performance of five strategies
when ω1 = 0.9 and ω2 = 0.1 . At this time, more atten-
tion is paid to the task latency rather than the energy
consumption of IoT devices. It can be seen that, for both
low-parallelism dependent services and high-parallelism
dependent services, the computational offloading strat-
egy proposed in this paper always obtains lower latency
than other strategies. For low-parallelism dependent ser-
vices, the performance of random offloading strategy is
between local computing strategy and edge computing
strategy, while for high-parallelism dependent services,
the performance of random offloading strategy is bet-
ter than local computing strategy and edge computing
strategy. This is because, for low-parallelism dependent
services, tasks can only be executed sequentially, that is,
the next task can only be started after the precursor task
has been processed. Therefore, the performance of the
random offloading strategy must be somewhere between
the two. For high-parallelism dependent services, when
random offloading strategy is adopted, tasks can be pro-
cessed in parallel to a certain extent. For local comput-
ing strategy (or edge computing strategy), the task can
only be processed after the IoT device (or MEC server)
finishes processing the precursor task. That is, due to the
limitations of the processor, the task can only be serial.
Therefore, random offloading strategy is superior to local
computing strategy and edge computing strategy.

Figure 4 compares the performance of the five strat-
egies when ω1 = 0.1 and ω2 = 0.9 . At this time, more
attention is paid to the energy consumption of IoT
devices rather than the task latency. It can be seen that,
for both low-parallelism dependent services and high-
parallelism dependent services, the computational off-
loading strategy proposed in this paper always obtains
lower energy consumption than other strategies. It can
be seen that the energy consumption of each computa-
tional offloading strategy for low parallelism and high
parallelism dependent services is roughly the same.

Table 1 some other parameters

parameter value

Number of tasks |V| {10,20,30,40,50}

Bandwidth B 5MHz

White noise power σ 2
10

−10W

Antenna gain Ad 4.11

carrier frequency fc 915MHz

Path fading factor de 2.6

Distance between mobile device and MEC server dM 30

Page 12 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

This is because, at this time, more attention is paid to
energy consumption, and the dependency between IoT
services has less impact on the energy consumption
than on the task latency of IoT devices.

Conclusion
In this paper, task scheduling and resource allocation are
comprehensively considered to optimize the latency and
energy consumption for dependent IoT services in MEC.
We design a computational offloading algorithm based
on layering tasks by dependencies, to get the optimal task
offloading scheduling and resource allocation scheme.
Simulation results show that the proposed algorithm is

significantly better than other comparison algorithms in
reducing latency and energy consumption.

For our future work, we will consider further improve-
ments in future research:

(1) In the system model, this paper assumes a constant
download rate to facilitate the analysis and optimi-
zation of the task latency. However, task results are
typically transmitted over wireless networks, which
have a time-varying transmission rate. We will fur-
ther consider the varying download rate and design
its corresponding optimization scheme in our
future work.

Fig. 3 The performance of five strategies when ω1 = 0.9 and ω2 = 0.1

Fig. 4 The performance of five policies when ω1 = 0.1 and ω2 = 0.9

Page 13 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

(2) In the optimization goal, this paper uses the weighted
sum of latency and energy consumption as the opti-
mization goal to comprehensively optimize the
latency and energy consumption. However, how to
determine the weight value is a difficult problem to
solve. In the next step, we can consider using multi-
objective optimization methods, such as Pareto,
multi-objective particle swarm optimization, etc.

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions on improving this paper.

Authors’ contributions
Jie Chen designed the modeling approach and the algorithm, and wrote the
paper. Yajing Leng designed system model and carried out the experiments.
Jiwei Huang conceived the initial idea proofread the manuscript. The authors
read and approved the final manuscript.

Funding
This work is supported by Beijing Nova Program (No. Z201100006820082),
National Natural Science Foundation of China(No. 61972414).

Availability of data and materials
The datasets used during the current study are available from the correspond-
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 December 2022 Accepted: 25 June 2023

References
 1. Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital twin-

empowered mobile edge computing via deep reinforcement learning.
China Commun

 2. Chen Y, Zhao J, Wu Y et al (2022) Qoe-aware decentralized task offloading
and resource allocation for end-edge-cloud systems: A game-theoretical
approach. IEEE Trans Mob Comput. https:// doi. org/ 10. 1109/ TMC. 2022.
32231 19

 3. Satyanarayanan M (1996) Fundamental challenges in mobile computing.
In: Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing. pp 1–7

 4. Satyanarayanan M (1993) Mobile computing. Computer 26(9):81–82
 5. Huang J, Wan J, Lv B, Ye Q et al (2023) Joint computation offloading and

resource allocation for edge-cloud collaboration in internet of vehicles
via deep reinforcement learning. IEEE Syst J. https:// doi. org/ 10. 1109/
JSYST. 2023. 32492 17

 6. Chen H, Qin W, Wang L (2022) Task partitioning and offloading in iot
cloud-edge collaborative computing framework: a survey. J Cloud Com-
put 11(1):1–19

 7. Chen Y, Hu J, Zhao J, Min G (2023) Qos-aware computation offloading in
leo satellite edge computing for iot: A game-theoretical approach. Chin J
Electron

 8. Chen Y, Xing H, Ma Z, et al (2022) Cost-efficient edge caching for noma-
enabled iot services. China Commun

 9. Huang J, Lv B, Wu Y et al (2022) Dynamic admission control and resource
allocation for mobile edge computing enabled small cell network. IEEE
Trans Veh Technol 71(2):1964–1973. https:// doi. org/ 10. 1109/ TVT. 2021.
31336 96

 10. Tran-Dang H, Kim DS (2021) Frato: fog resource based adaptive task off-
loading for delay-minimizing iot service provisioning. IEEE Trans Parallel
Distrib Syst 32(10):2491–2508

 11. Hai LA, Sz B, Zc A, Hl C, Lw D (2020) A survey on computation offload-
ing modeling for edge computing - sciencedirect. J Netw Comput Appl
169:102781

 12. Huang J, Gao H, Wan S et al (2023) Aoi-aware energy control and com-
putation offloading for industrial iot. Future Generation Comput Syst
139:29–37

 13. Chen Y, Zhao J, Zhou X, et al (2023) A distributed game theoretical
approach for credibility-guaranteed multimedia data offloading in mec.
Inf Sci

 14. Liao Y, Shou L, Yu Q, Ai Q, Liu Q (2020) An intelligent computation
demand response framework for iiot-mec interactive networks. IEEE
Netw Lett 2(3):154–158

 15. Chen J, Chen P, Niu X, Wu Z, Xiong L, Shi C (2022) Task offloading in
hybrid-decision-based multi-cloud computing network: a cooperative
multi-agent deep reinforcement learning. J Cloud Comput 11(1):1–17

 16. Chen Y, Zhao J, Hu J, et al (2023) Distributed task offloading and resource
purchasing in noma-enabled mobile edge computing: Hierarchical game
theoretical approaches. ACM Trans Embed Comput Syst

 17. Almutairi J, Aldossary M (2021) A novel approach for iot tasks offloading
in edge-cloud environments. J Cloud Comput 10(1):1–19

 18. Liu J, Mao Y, Zhang J, Letaief KB (2016) Delay-optimal computation task
scheduling for mobile-edge computing systems. In: 2016 IEEE interna-
tional symposium on information theory (ISIT). IEEE, pp 1451–1455

 19. Chen M, Hao Y (2018) Task offloading for mobile edge computing
in software defined ultra-dense network. IEEE J Sel Areas Commun
36(3):587–597

 20. Cheng K, Teng Y, Sun W, Liu A, Wang X (2018) Energy-efficient joint
offloading and wireless resource allocation strategy in multi-mec server
systems. In: 2018 IEEE international conference on communications (ICC).
IEEE, pp 1–6

 21. Muñoz O, Pascual-Iserte A, Vidal J (2013) Joint allocation of radio and
computational resources in wireless application offloading. In: 2013
Future Network & Mobile Summit. IEEE, pp 1–10

 22. Li K, Zhao J, Hu J et al (2022) Dynamic energy efficient task offloading
and resource allocation for noma-enabled iot in smart buildings and
environment. Build Environ. https:// doi. org/ 10. 1016/j. build env. 2022.
109513

 23. You C, Huang K (2016) Multiuser resource allocation for mobile-edge
computation offloading. In: 2016 IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, pp 1–6

 24. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A
literature survey. ACM Comput Surv (CSUR) 35(4):399–458

 25. Jia M, Cao J, Yang L (2014) Heuristic offloading of concurrent tasks for com-
putation-intensive applications in mobile cloud computing. pp 352–357

 26. Lin X, Wang Y, Xie Q, Pedram M (2014) Energy and performance-aware
task scheduling in a mobile cloud computing environment. In: 2014 IEEE
7th international conference on cloud computing. IEEE, pp 192–199

 27. Vu TT, Van Huynh N, Hoang DT, Nguyen DN, Dutkiewicz E (2018) Offload-
ing energy efficiency with delay constraint for cooperative mobile edge
computing networks. In: 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, pp 1–6

 28. Ji J, Zhu K, Yi C, Wang R, Niyato D (2020) Joint resource allocation and trajec-
tory design for uav-assisted mobile edge computing systems. In: GLOBECOM
2020-2020 IEEE Global Communications Conference. IEEE, pp 1–6

 29. Wang Y, Min S, Wang X, et al (2016) Mobile-edge computing: partial
computation offloading using dynamic voltage scaling[J]. IEEE Trans
Commun 64(10):4268–4282

 30. Prabhumoye S, Salakhutdinov R, Black AW (2020) Topological sort for
sentence ordering. arXiv preprint arXiv: 2005. 00432

 31. Li J, Gao H, Lv T, Lu Y (2018) Deep reinforcement learning based compu-
tation offloading and resource allocation for mec. In: 2018 IEEE Wireless
communications and networking conference (WCNC). IEEE, pp 1–6

https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/TVT.2021.3133696
https://doi.org/10.1109/TVT.2021.3133696
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1016/j.buildenv.2022.109513
http://arxiv.org/abs/2005.00432

Page 14 of 14Chen et al. Journal of Cloud Computing (2023) 12:107

 32. Zhang Y, Niyato D, Wang P (2015) Offloading in mobile cloudlet systems
with intermittent connectivity. IEEE Trans Mob Comput 14(12):2516–2529

 33. Huang Q, Ang P, Knowles P, Nykiel T, Tverdokhlib I, Yajurvedi A, Dapolito IV
P, Yan X, Bykov M, Liang C, et al (2017) Sve: Distributed video processing
at facebook scale. In: Proceedings of the 26th Symposium on Operating
Systems Principles. pp 87–103

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	An intelligent approach of task offloading for dependent services in Mobile Edge Computing
	Abstract
	Introduction
	Related work
	System model and problem formulation
	Task dependency model
	Communication model
	Computational model
	Problem formulation

	Layered computational offloading algorithm
	Concept definition
	Concept about delay
	Concept about energy consumption

	Layered algorithm
	Cost analysis of processing tasks
	Layered computational offloading algorithm

	Performance evaluation
	Setup
	Comparison experiments

	Conclusion
	Acknowledgements
	References

