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Abstract 

With the growing popularity of Internet of Things (IoT), Mobile Edge Computing (MEC) has emerged for reducing 
the heavy workload at the multi-cloud core network by deploying computing and storage resources at the edge 
of network close to users. In IoT, services are data-intensive and event-driven, resulting in extensive dependen-
cies among services. Traditional task offloading schemes face significant challenges in the IoT scenario with service 
dependencies. To this end, this paper proposes an intelligent approach for minimizing latency and energy consump-
tion which jointly considers the task scheduling and resource allocation for dependent IoT services in MEC. Specifi-
cally, we establish the system model, communication model as well as computing model for performance evaluation 
by fully considering the dependent relationships among services, and an optimization problem is proposed for mini-
mizing the delay and energy consumption simultaneously. Then, we design a layered scheme to deal with the service 
dependencies, and present detailed algorithms to intelligently obtain optimal task scheduling and resource allocation 
policies. Finally, simulation experiments are carried out to validate the effectiveness of the proposed scheme.

Keywords Mobile Edge Computing, Internet of Things, Offloading decision, Resource allocation, Delay, Energy 
consumption

Introduction
With the rapid development of smart mobile devices and 
Internet of Things (IoT), various IoT services show explo-
sive growth [1]. IoT services enrich people’s lives, but 
they also put forward higher requirements for hardware 
resources of IoT devices, such as computing resources, 
storage resources and battery life [2]. With the dramatic 
increase in the computational complexity of services in 
IoT, only relying on the limited computing capacity of 
IoT devices often can not guarantee the timely execu-
tion of various tasks [3]. Given the architecture of IoT 
devices and the trend of battery development, these 

problems will also be difficult to solve in the future [4]. 
Mobile Cloud Computing (MCC) is considered an effec-
tive solution to the above problems. In MCC, migrating 
the data processing and storage of IoT services to the 
multi-cloud for computing provides users with power-
ful data computing and storage capabilities. In addition, 
it reduces energy consumption of IoT devices and pro-
longs battery life. However, the explosive growth of IoT 
devices and data transfers poses enormous challenges to 
MCC [5]. Excessive network load makes it impractical for 
IoT devices to transfer all the massive data generated to 
multi-cloud for centralized processing. In addition, some 
new IoT services requiring extremely low latency are 
emerging in large numbers. Offloading all these IoT ser-
vices over the core network to a remote multi-cloud can 
result in high latency [6]. Therefore, MCC is not suitable 
for IoT services with very low latency requirements.
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Mobile Edge Computing (MEC) is a new computing 
mode, which focuses on providing users with certain Inter-
net Technology (IT) and cloud computing capabilities at 
the edge of the mobile network [7]. In 2014, the European 
Telecommunications Standards Institute (ETSI) proposed 
the concept of Mobile Edge Computing [8]. MEC provides 
users with powerful computing, storage, network and com-
munication resources near the edge of their mobile net-
work (such as base stations, wireless access points, etc.), 
which reduces the latency of tasks and improves the Qual-
ity of user Experience (QoE) [9]. In addition, it can alleviate 
users’ concerns about privacy leaks and ensure data secu-
rity by eliminating the need to transfer data to multi-cloud 
for processing [10].

Computational Offloading is one of the key technolo-
gies of MEC, which mainly includes the following two 
aspects [11]: 

(1) Offloading Decision: Deciding whether the task is 
handled on the local device or on an MEC server;

(2) Resource Allocation: Allocating the resources 
needed to process tasks, including computing 
resources, communication resources, etc.

However, due to the heterogeneity of IoT devices and 
MEC servers and the diversity of IoT services, it is difficult 
to obtain a common computational offloading strategy 
[12, 13]. Therefore, it is necessary to design an appropriate 
computational offloading strategy based on different MEC 
environments, IoT services, and optimization objectives.

Modern IoT services often consist of multiple tasks 
with dependencies [14]. Dependency means that there is 
a priority constraint between tasks, such as a task cannot 
be started until all tasks with a higher priority than it have 
been processed. In MEC, when tasks with dependencies 
are processed on IoT devices and MEC servers separately 
or on different MEC servers, data transmission across 
devices will usually occur. Complex dependencies and 
commucication between IoT services makes it more dif-
ficult to realize optimal offloading decisions and resource 
allocation schemes [15, 16]. So, in the existing studies, 
few gave consideration to both offloading decisions and 
resource allocation to optimize task latency and energy 
consumption simultaneously. This paper considers task 
offloading and resource allocation of dependent IoT ser-
vices in user-oriented MEC scenarios to optimize latency 
and energy consumption. Different from the previous 
works, our contributions are as follows. 

(1) To solve the problem of task dependency, this paper 
presents a layered algorithm based on topological 
sorting, which layers tasks so that there is no depend-
ency between tasks in the same layer after layering, 

and then gets the optimal offloading decision and 
resource allocation of all tasks in the layer in turn.

(2) To decide whether a task in a layer is offloaded or 
not, we use the weighted sum of latency and energy 
consumption to define the cost of local and edge 
calculations for tasks. To determine the optimal 
offloading decision and resource allocation scheme, 
we calculate and compare the minimum cost of a 
task computed locally and offloaded to MEC server. 
Simulation experiments were conducted to verify 
the effectiveness of the algorithm in optimizing 
latency and energy consumption.

The rest of this paper is organized as follows. In the 
next  section, we discuss the releated works. Then, 
we  present the system model and problem formulation. 
Based on the system model, the following section gives a 
layered computational offloading algorithm for the mini-
mum overhead. Next, we conduct experiments to verify 
the effectiveness of the proposed algorithm. Finally, we 
conclude the paper in the last section.

Related work
In the computation offloading of MEC, most of the exist-
ing researches focus on reducing task latency or energy 
consumption by studying reasonable offloading decision.

By offloading computing tasks from IoT devices to MEC 
servers with rich computing resources, latency of tasks can 
be significantly reduced [17]. Real time applications such 
as AR, VR and the Internet of Vehicles that are sensitive to 
time delay require ultra-low time delay to provide continu-
ous services. Therefore, there is a lot of research in MEC 
that focuses on reducing task delay through task offload-
ing. The literature [18] studied an MEC system that allows 
computing tasks to be executed in parallel on IoT devices 
and MEC servers with the goal of reducing the latency of 
computing tasks. An efficient one-dimensional search 
algorithm is proposed. Although this scheme has signifi-
cant effect in reducing delay, there are still some defects. 
For example, this scheme is not applicable to dependent 
tasks, and does not consider the signaling cost of terminal 
receiving feedback from MEC server. The literature [19] 
studied the problem of task offloading in 5G ultra dense 
networks and establishes a problem to minimize the total 
delay of all tasks under the constraint of residual power of 
IoT devices, which is a mixed integer nonlinear program-
ming problem. On this basis, the author proposes an effec-
tive computational offloading scheme, which can reduce 
task delay by 20% compared with random offloading and 
uniform offloading schemes. However, the final offloading 
strategy of this scheme depends too much on the given ini-
tial task offloading strategy.
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Because rapid energy consumption poses a major obsta-
cle in the contemporary network [19], there are also a lot of 
researches aimed at reducing energy consumption in MEC. 
Due to the limited battery life of IoT devices, most relevant 
researches focus on reducing the energy consumption of 
IoT devices. In order to reduce the total energy consump-
tion of the MEC system, the literature [20] considers joint 
optimisation of offloading decisions and wireless resource 
allocation. The joint optimisation problem is difficult to 
solve due to its non-convexity and NP-hard property. To 
reduce the solution complexity, the original problem is 
transformed into a two-layer optimisation problem. Specif-
ically, the optimal transmission power and subcarrier allo-
cation can be obtained by the Lagrange multiplier method 
for a given initial task offloading strategy. And on the basis 
of obtaining the optimal transmission power and subcarrier 
allocation, the optimal offloading strategy is solved by using 
the Hungarian algorithm.

In MEC, higher transmission rate requires higher power 
at the transmitter and receiver, which will reduce task delay, 
but also lead to more energy consumption, and vice versa 
[21, 22]. Therefore, it is also an important research direction 
of computational offloading to comprehensively consider 
the latency and energy consumption to improve the Quality 
of Service (QoS) and user experience of MEC system. The 
literature [23] investigates task offloading and resource allo-
cation in a multi-user MEC system using time division mul-
tiple access as the uplink transmission mechanism, which 
shares a single MEC server. The optimal resource allocation 
problem is programmed as a convex optimization problem 
that minimizes the overhead (weighted sum of delay and 
energy consumption) by considering two cases of limited 
and unlimited MEC server resources, and the optimal off-
loading is obtained by solving the problem.

Modern IoT services usually consist of multiple depend-
ent tasks [24]. The literature [25] investigates the offload-
ing of sequentially dependent tasks and concurrent tasks. 
For sequential dependent tasks, the authors clarify that 
successive offloading of tasks is required to reduce the 
overall latency. A violence-based search approach is then 
used to find the starting and ending tasks that need to be 
offloaded. For concurrent tasks, the task dependencies are 
degraded to a tree, and then clusters of tasks are offloaded 
to minimize latency based on the idea of load balancing. 
For more general task dependencies (where there are both 
sequential and concurrent tasks), concurrent tasks are first 
aggregated into virtual tasks and then the offloading deci-
sion for the task is found by using the method of offload-
ing sequentially dependent tasks. For virtual tasks that are 
decided to be processed on the IoT device, they are then 
offloaded by using the offloading method for concurrent 
tasks. Finally, simulation results show that the method is 
twice as fast as the baseline method and achieves 85% of 
the performance of the optimal solution.

System model and problem formulation
Task dependency model
As shown in Fig. 1, suppose that an IoT device has a service 
that needs to be processed. Service generated by the IoT 
device consists of |V| dependent tasks. Each task can be 
processed on the IoT device or offloaded to an MEC server 
through the wireless network. Directed Acyclic Graph 
(DAG) G = (V ,E) is used to model the service depend-
ency [26]. Wherein, node vi ∈ V  represents the ith task 
generated by the IoT device, while the edge < vi, vj >∈ E 
represents the dependency between tasks (task vj can 
only be started after task vi has completed processing and 
vj has received the output of task vi ), where vi is called the 

Fig. 1 An example of service dependency
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precursor task of vj , and vj is called the successor task of vi . 
For a given DAG, a task without any precursor is called an 
entry task, and a task without any successor is called an exit 
task. For the ith task generated by the IoT device, a quater-
nion in the form of vi = (Ci,Di, Ii,Oi) is used for modeling, 
where Ci represents the calculation amount of vi , that is, the 
number of CPU cycles required to process vi , Ii represents 
the amount of input data that vi receives from all its precur-
sor tasks, Oi represents the amount of output data of vi after 
processing, and Di represents the amount of data of vi . To 
ensure the first task is executed from the IoT device and the 
final processing results can be returned to the IoT device, 
a virtual entry task ventry and a virtual exit task vexit are 
added to the DAG [27]. Among them, Centry = Cexit = 0 , 
Dentry = Dexit = 0 , Ientry = 0 , Oentry = I1 , Iexit = O|V | , 
Oexit = O|V | , and ventry and vexit can only be processed on 
the local IoT device and cannot be offloaded to an MEC 
server. For multi entry tasks or multi exit tasks, adding 
a virtual entry task and an exit task can also simplify the 
DAG into single entry task and single exit task for easy 
solution. Therefore, the total number of tasks n is:

Communication model
When a task is offloaded to an MEC server or two 
dependent tasks are processed on different devices 
respectively (For example, task vi is processed on the IoT 
device and its successor task is processed on an MEC 
server), data transmission between the IoT device and 
an MEC server through the wireless network is involved, 
and an appropriate communication model needs to be 
established to analyze the communication overhead. 

(1) Offload task vi to an MEC server When the task vi is 
offloaded to an MEC server, the uplink data trans-
mission rate roi  is: 

  Wherein, B represents the channel bandwidth, hi 
represents the channel gain between the base sta-
tion and the IoT device, σ 2

i  represents the noise 
power, poi  represents the transmission power that vi 
is offloaded from the IoT device, pmin ≤ poi ≤ pmax , 
pmin and pmax are respectively the minimum and 
maximum transmission power of the IoT device. 
Correspondingly, rmin ≤ r

o

i
≤ rmax , where, 

rmin = Blog2(1 +
pminhi

�
2

i

) , rmax = Blog2(1+
pmaxhi
σ 2
i

) . The 
offloading delay required for offloading task vi to an 
MEC server is: 

(1)n = |V | + 2

(2)roi = Blog2(1+
poi hi

σ 2
i

)

  Wherein, Di
rmax ≤ toi ≤

Di

rmin . The energy consump-
tion for transmisson of the IoT device required for 
offloading task vi to an MEC server is: 

(2) Upload the output of the task vi to an MEC server 
When a task vi is processed on the IoT device and 
a successor task of the task vi needs to be offloaded 
to an MEC server, the IoT device needs to transmit 
the output of vi to an MEC server through the wire-
less network. The uplink data transmission rate rui  
of uploading the output of task vi is: 

  Wherein, pmin ≤ pui ≤ pmax , correspondingly, 
rmin ≤ rui ≤ rmax . The transmission delay required 
for uploading the output of task vi to an MEC server 
is: 

  Wherein, Oi
rmax ≤ tui ≤

Oi

rmin . The transmission 
energy consumption of the IoT device required 
for uploading the output of the task vi to an MEC 
server is: 

(3) Download the output of the task vi to the IoT device 
When a task vi is processed on an MEC server, and 
a successor task of vi needs to be processed on the 
IoT device, the MEC server needs to send the out-
put of vi back to the IoT device through the wireless 
network. Assuming that the download rate is con-
stant at rd , the transmission delay of downloading 
the output result of the task vi is: 

Computational model
Because tasks can be processed on the IoT device or 
offloaded to MEC servers, two different models need to 
be considered. 

(3)toi =
Di

roi

(4)eoi = poi t
o
i =

Diσ
2
i

roi hi
(2

roi
B − 1)

(5)rui = Blog2(1+
pui hi

σ 2
i

)

(6)tui =
Oi

rui

(7)eui = pui t
u
i =

Diσ
2
i

rui hi
(2

rui
B − 1)

(8)tdi =
Oi

rd
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(1) Local computing model The IoT device uses Dynamic 
Frequency Scaling (DFS) technology to reduce energy 
consumption [28]. Therefore, the energy consump-
tion of the IoT device during local computing can be 
reduced by adjusting the CPU frequency. Therefore, 
the computing delay when task vi is processed on the 
IoT device can be expressed as follows: 

  Wherein, f li  represents the calculation frequency 
of the IoT device when processing task vi and f max 
represents the maximum frequency of the IoT 
device processor. Because f li ≤ f max , so tli ≥ tmin

i  , 
wherein tmin

i =
Ci

f max . The computing energy con-
sumption when task vi is processed on the IoT 
device can be expressed as [29]: 

  Wherein, κ > 0 refers to the energy efficiency 
parameter.

(2) Edge computing model The calculation delay 
when task vi is processed on an MEC server can be 
expressed as: 

  Wherein, f e is the processor frequency of an MEC 
server.

Problem formulation
Binary variable ai is used to indicate whether the task vi 
is offloaded ( ai = 1 indicates that the task vi is offloaded 
to an MEC server, ai = 0 indicates that the task vi is pro-
cessed on the IoT device). During the whole offloading 
process, the following restrictions need to be met: 

(1) For ∀ < vi, vj >∈ E , the moment tsj  when the suc-
cessor task vj starts processing cannot be earlier 
than the moment when the precusor task vi com-
pletes processing and the output of the task vi is 
received by vj;

(2) Each task is either offloaded to an MEC server or 
processed on the local device;

(3) Tasks on the same device must be processed serially. 
For example, if task vi and task vj are offloaded to an 
MEC server for processing, one of them must wait 
for the other to finish processing before it can be 
processed.

(9)tli =
Ci

f li

(10)eli = κf 3i t
l
i = κ

C3
i

(tli )
2

(11)tei =
Ci

f e

In order to optimize task delay and energy consumption 
of the IoT device at the same time, referring to [20], the 
optimization goal is considered as the weighted sum of 
all task delay and local device energy consumption. In 
order to facilitate the solution, the startup time of the vir-
tual entry task ventry is set as 0, and the delay of all tasks 
can be expressed as:

Wherein, tfi  is the completion time of the task vi.
The energy consumption of IoT devices includes three 

parts: Firstly, locally computed energy consumption; Sec-
ondly, the energy consumption of offloading tasks which 
need to be processed on MEC servers; Thirdly, the energy 
consumption for uploading output of tasks which are 
processed on the local device and whose successor tasks 
are offloaded to MEC servers. Therefore, the energy con-
sumption of the local device can be expressed as:

Therefore, the problem can be planned as follows:

Wherein, ω1 and ω2 are weighting factors, and 
ω1 + ω2 = 1 , χ is a large number. The constraint C1 guar-
antees that for ∀< vi, vj >∈ E , the time tsj  when the task 
vj starts possessing is not earlier than the time when the 
task vi finishes processing and the output of the task vi is 
received by vj . Constraints C2 and C4 ensure that tasks 
processed on the IoT device must be processed serially. 
Constraints C3 and C4 ensure that tasks processed on an 
MEC server must be processed serially. The constraint 
C5 ensures that the transmission power of the IoT device 
must be between its maximum power and minimum 
power. The constraint C6 ensures that the calculation 
frequency of the IoT device cannot exceed its maximum 
calculation frequency. Constrain C7 ensures that tasks 
can only be offloaded to MEC servers or processed on 

(12)T =

n

i=1

t
f
i

(13)

E =

n
∑

i=1

[(1− ai)e
l
i + aie

o
i ] +

∑
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u
i
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l
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e
i
+ ai(1 − aj)t

d
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+ (1 − ai)ajt
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i
≤ ts

j
,∀ < vi , vj >∈ E

C2 ∶ ts
i
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j
+ 𝜒(3 − (1 − ai) − (1 − aj) − xi,j) ≥ tl

j
,∀vi , vj ∈ V

C3 ∶ ts
i
− ts

j
+ 𝜒(3 − ai − aj − xi,j) ≥ te

j
,∀vi , vj ∈ V

C4 ∶ xi,j + xj,i = 1,∀vi , vj ∈ V

C5 ∶ pmin ≤ po
i
, pu

i
≤ pmax ,∀vi ∈ V

C6 ∶ 0 < f l
i
≤ f max ,∀vi ∈ V

C7 ∶ ai ∈ {0, 1},∀i = 1, 2,⋯ , n

C8 ∶ a0 = an = 0

C9 ∶ xi,j ∈ {0, 1},∀vi , vj ∈ V

C10 ∶ ts
i
≥ 0,∀vi ∈ V
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the local device. Constraint C8 ensures that the first task 
and the last task must be processed on the local device. 
Constraint C9 guarantees that xi,j can only take 0 or 1. 
C10 ensures that the start time of task processing cannot 
be negative. Obviously, this is a mixed integer nonlinear 
programming problem and an NP-hard problem [27].

Layered computational offloading algorithm
In order to solve the above problems, this section proposes 
a layered offloading algorithm to minimize the overhead. 
Firstly, the tasks of the IoT device are layered according 
to the DAG of dependent services by using the layered 
algorithm based on topological sorting. After the layer-
ing, there is no dependency between the tasks in the same 
layer. Then the task of each layer is offloaded in order and 
the optimal resource allocation scheme is obtained.

Concept definition
To facilitate the description and analysis, the following 
concepts are defined first.

Concept about delay
  

(1) Actual computing delay Texec
i  of the task vi The 

actual processing delay of the task vi is defined as 
the actual computing delay of the task vi on the 
device (the local device or an MEC server) after the 
offloading decision. When the task vi is processed 
on the local device (ai = 0) , its actual computing 
delay can be expressed as: 

  When the task is processed on an MEC server 
(ai = 1) , the actual computing delay can be 
expressed as: 

(2) The time RTi when the task vi can be started Referring 
to [20], the concept of the startable time RTi of the task 
vi on the device (the local device or an MEC server) is 
introduced. RTi is defined as the earliest time when 
the task vi receives all precursor task outputs and the 
device is idle at the same time. The time RTl

i  of the task 
vi on the local device can be expressed as follows : 

  Wherein, Tidle
l  represents the idle time of the IoT 

device, pred(i) represents the collection of all the 

(15)Texec
i = tli

(16)Texec
i = tei

(17)
RTl

i = max{Tidle
l ,maxj∈pred(i){AFTj + ajt

d
j }}

precusor tasks of the task vi , and AFTj represents 
the time when the task vj is actually completed. The 
startable time RTe

i  of the task vi on the MEC server 
can be expressed as: 

  Wherein, Tidle
e  represents the idle time of the MEC 

server.
(3) The time ASTi when the task vi is actually started 

The time ASTi is defined as the time when the task 
vi is actually started to be processed during the pro-
cessing of all tasks. Because the actual starting time 
of the task vi is not earlier than the startable time, so 
there must be ASTi ≥ RTi.

(4) The time AFTi when the task vi is actually completed 
The actual completion time of a task vi is equal to 
the sum of its actual start time and its actual com-
puting delay. Therefore, the actual completion time 
AFTi of the task vi can be expressed as follows: 

Concept about energy consumption
  

(1) Energy consumption El
i of the task vi processed on 

the IoT device When the task vi is processed on the 
IoT device, the energy consumption of the local 
device is only the computing energy consumption 
for processing the task vi . So the energy consump-
tion El

i can be expressed as follows: 

(2) Energy consumption Ee
i  of the task vi processed on 

an MEC server When the task vi is processed on an 
MEC server, the energy consumption of the local 
device is the energy consumption of offloading the 
task vi and the energy consumption of transmitting 
the output of all its precursor tasks processed on 
the local IoT device to MEC servers. Therefore, the 
energy consumption Ee

i  can be expressed as follows: 

Layered algorithm
Topological sorting is a standard algorithm for solving the 
linear sorting of DAG vertices [30]. In the vertex sequence 
generated by topological sorting, for ∀ < i, j >∈ E , task vi 
is before task vj . Topological sorting is used to sort tasks to 

(18)RTe
i
= max{Tidle

e
,maxj∈pred(i){AFTj + (1 − aj)t

u
j
+ to

i
}}

(19)AFTi = ASTi + Texec
i

(20)El
i = eli

(21)Ee
i = eoi +

∑

j∈pred(i)

(1− aj)e
u
j
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ensure that all the precursor tasks of the task vj are ahead 
of them. However, this method can only produce one task 
sequence. Therefore, referring to the idea of topological 
sorting, an algorithm is designed to layer dependent tasks, 
so that there is no dependency between tasks in the same 
layer after layering.

In this paper, a layering algorithm is proposed based on 
topological sequences. The procedure of the algorithm is 
shown in Algorithm 1. The adjacency table (adjList) is used 
to store the DAG nodes and their dependencies. Line 2 
of the algorithm initializes a queue for subsequent opera-
tions. Lines 3-4 of the algorithm put the entry task ventry 
into the queue. Line 8 indicates that as long as the queue is 
not empty, the current length of the queue (len) is obtained, 
which is the number of tasks in the next layer. In line 10-20, 
len tasks leave the queue in order and are put into the set 
(curLayer) that stores tasks of the current layer. When each 
task leaves the queue, the indegree of all its successor tasks 
will be reduced by 1. If the indegree of a successor task 
becomes 0, the successor task will be put into the queue. 
After processing all the tasks of the current layer, put the 
set (curLayer) into a list storing layers (layerList), and then 
continue to process the tasks of the next layer. After all 
tasks are processed, return layering results (layerList).

Algorithm 1 Task layering algorithm

Cost analysis of processing tasks
The cost Costi of processing task vi is divided into two 
parts: one is the delay required for processing tasks 
(computational latency and transmission latency); 

The other is the energy consumption of the IoT device 
(processing energy consumption or transmission 
energy consumption) when processing tasks. There-
fore, Costi can be expressed as:

Next, we will analyze the cost of the task processed on 
the local IoT device and offloaded to an MEC server sep-
arately according to whether the task is offloaded. 

(1) The cost of task vi when processed locally When the 
task vi is calculated on the local IoT device, accord-
ing to the previous analysis, Costi can be expressed 
as a function of one variable, with its variable being 
local computational latency tli  , so Costi can be 
expressed as follows: 

  Wherein, gi(x) = ω1x +
ω2κC

3
i

x2
 . Obviously, gi(x) 

decreases monotonically in the range of 

0 < x ≤
3

√

2ω2κC
3
i

ω1
 and increases monotonically in 

the range of x ≥
3

√

2ω2κC
3
i

ω1
 . Use topti  to represent the 

corresponding tli when the local computing over-

head Costli (t
l
i ) is optimal. If 3

√

2ω2κC
3
i

ω1
≤ tmin

i  , then 

t
opt
i = tmin

i  . Otherwise, topti =
3

√

2ω2κC
3
i

ω1
 . Therefore, 

t
opt
i = max(

3

√

2ω2κC
3
i

ω1
, tmin
i ) . Therefore, Algorithm 2 

is designed to obtain the minimum cost of task vi 
processed on the local IoT device and the corre-
sponding optimal latency of local computing. After 
obtaining the optimal local latency of the task vi , the 
optimal computing resource allocated by the local 
IoT device can be obtained from the equation (9). 

Algorithm 2 Solving for the minimum cost of local computation and its 
corresponding optimal latency algorithm 

(22)Costi = ω1AFTi + ω2Ei

(23)

Costi(t
l
i
) = Costl

i
(tl
i
) = �1(RT

l
i
+ tl

i
) + �2�

C3

i

(tl
i
)2

= �1RT
l
i
+ gi(t

l
i
)
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(2) The cost of task vi when offloaded According to the 
previous analysis, when the task vi is offloaded to an 
MEC server for calculation, Costi can be expressed 
as a binary function, with its variables being toi  and 
tuj  , and its specific form can be expressed as follows: 

Because the binary function increases the difficulty of 
solving, offloading task vi and transmitting the output 
of its precursor tasks processed on the local IoT device 
are considered to use the same transmission rate (i.e. 
ruj = roi = ri ). At this time, Costi is converted into a 
unary function only related to the transmission rate ri :

Wherein, f (x) =
2x−1

x
 , ci = ω1t

e
i  , bi =

�2�
2

i

B
(
Di

hi
+
∑

j∈pred(i)

(1−aj )Oj

hj
) . 

Obviously, when x ≥ 0 , f(x) is monotonically increasing.
If ri ≥ R1

i  , then:

Wherein, R1
i = maxj∈pred(i)(

Di+(1−aj)Oj

T i
edle−AFTj

).At this time, 
Costi(ri) increases monotonically.

If ri < R1
i  , then:

Wherein, MAFTe
i = maxj∈pred(i)∧aj=1(AFTj) , 

hi(x) =
ai
x + bifi(x)+ ci  , 

ai =
ω1Di
B  ,   h′

i(x) =
bi(ln2·x·2

x−2x+1)−ai
x2

 . Obviously, when 
x ≥ 0 , ln2 · x · 2x − 2x + 1 is monotonically increasing, 
so, there are only three possible values of hi(x) in the 
range of [x1, x2] : 

(1) If h′

i(x) is always less than or equal to 0, hi(x) 
decreases monotonically, and the optimal value of 
hi(x) at this time is obtained at x = x2;

(2) If h′

i(x) is always greater than or equal to 0, hi(x) 
increases monotonically, and the optimal value of 
hi(x) at this time is obtained at x = x1;

(3) When h′

i(x) is less than or equal to 0 at first and 
then greater than or equal to 0, hi(x) is a single-
peaked function, and 0.618 method can be used to 
search for the optimal value.

So, the above analysis of solving for the minimum value 
of h(x) and its corresponding x can be summarized as the 

(24)Costi(t
o
i
, tu

j
) = �1(RT

e
i
+ te

i
) + �2[e

o
i
+

∑

j∈pred(i)

(1 − aj)e
u
j
]

(25)

Costi(ri) =�1(RT
e
i
+ te

i
) + �2[

Di�
2

rihi
(2

ri
B − 1) +

∑

j∈pred(i)

(1 − aj )
Oj�

2

rihj
(2

ri
B − 1)]

=�1(max{Tidle
e

,maxj∈pred(i){AFTj +
(1 − aj )Oj + Di

ri
}}) + ci + bif (

ri

B
)

(26)Costi(ri) = Coste1i (ri) = ω1T
idle
e + ci + bif (

ri

B
)

(27)
Costi(ri) =�1maxj∈pred(i){AFTj +

(1 − aj)Oj + Di

ri
} + ci + bifi(

ri

B
)

=�1max{MAFTe
i
,maxj∈pred(i)∧aj=0{AFTj +

Oj

ri
}} + hi(

ri

B
)

function OPTIMAL(h(x), x1, x2) . Wherein, input of OPTI-
MAL consists of a monotone or single-peaked function h(x), 
lower bound x1 and upper bound x2 . Output of OPTIMAL 
are the minimum value hopt of h(x) and its corresponding 
optimal value xopt of x. Specific steps of function OPTIMAL 
are as follows. Firstly, Solve for the derivative function h′(x) 
of h(x). Secondly, three cases are considered. If h′(x2) ≤ 0 , 
then xopt = x2 and hopt = h(x2) . If h′(x1) ≥ 0 , then 
xopt = x1 and hopt = h(x1) . If h′(x1) < 0 and h′(x2) > 0 , 
then hopt and xopt can be obtained by 0.618 method.

If R2
i ≤ ri ≤ R1

i  , then:

Wherein, R2
i = maxj∈pred(i)∧aj=0(

Oj

MAFTe
i −AFTj

) . The 
minimum cost is obtained by function OPTIMAL.

If ri ≤ min(R1
i ,R

2
i ) , then:

Obviously, for AFTj , 
Oj

ri
 is negligible. Therefore, Costi(ri) 

can be expressed as:

Wherein, MAFTl
i = maxj∈pred(i)∧aj=0(AFTj) . Obtain the 

minimum cost by function OPTIMAL.
Through the above analysis, the minimum cost of task vi 

processed on an MEC server and the corresponding optimal 
transmission rate can be obtained. After obtaining the opti-
mal transmission rate of the IoT device, the optimal transmis-
sion power allocated by the local device can be obtained 
by equation (2) or (5). The procedure of the algorithm is 
shown in Algorithm  3. Line 2 calculates R1

i  and R2
i  . Lines 

3-4 show that when R1
i < rmin , there must be R1

i < ri , so 
Costi(ri) = Coste1i (ri) , monotonically increasing. Lines 
8-10 show that when R2

i < rmin ≤ R1
i < rmax , if R1

i ≤ ri , 
then Costi(ri) = Coste1i (ri) , monotonically increasing, 
so r

opt,1
i = R1

i  ; If ri < R1
i  , then Costi(ri) = Coste2i (ri) , 

the minimum cost Coste2i (r
opt,2
i ) and its correspond-

ing optimal transmission rate ropt,2i  can be obtained by 
function OPTIMAL. Combining these two cases, the 
minimum cost and its corresponding optimal transmis-
sion rate can be obtained when R2

i < rmin ≤ R1
i < rmax , 

th at  i s  r
opt
i = argmin(Coste1i (r

opt,1
i ),Coste2i (r

opt,2
i )) . 

Similarly, lines 13-16 consider the minimum cost when 
rmin ≤ R2

i ≤ R1
i < rmax . Lines 18-20 consider the minimum 

cost when rmin ≤ R1
i < min(R2

i , r
max) . Line 25 considers the  

minimum cost when R2
i ≤ rmin ≤ rmax ≤ R1

i . Lines 28-30  
consider the minimum cost when rmin ≤ R2

i ≤ rmax ≤ R1
i . 

Line 32 considers the minimum cost when rmax ≤ min(R2
i ,R

1
i ).

(28)Costi(ri) = Coste2i (ri) = ω1MAFTe
i + hi(

ri

B
)

(29)
Costi(ri) =�1maxj∈pred(i)∧aj=0(AFTj +

Oj

ri
) + �1t

e
i
+ �1

Di

ri

+
�2�

2

B
(
Di

hi
+

∑

j∈pred(i)

(1 − aj)
Oj

hj
)f (

ri

B
)

(30)Costi(ri) = Coste3i (ri) = ω1MAFTl
i + hi(

ri

B
)
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Algorithm 3 Solving for the minimum cost of edge computation and its corresponding optimal transmission rate algorithm

Layered computational offloading algorithm
From the above analysis, the costs of the task computed 
on the local IoT device or offloaded to an MEC server are 
obtained separately, which is related to resource alloca-
tion scheme. Here we propose an algorithm based on 
comparing the minimum cost of the task vi processed on 
the IoT device and on an MEC server separately to deter-
mine the offloading decision and resource allocation of 
the task vi . The main steps of the algorithm are as follows: 

(1) Call Algorithm 1 to layer tasks;
(2) For all tasks in the first layer, Algorithm 4 is called 

to determine whether each task in the same layer is 
offloaded or not in turn;

(3) Use the same method in step 2 for subsequent lay-
ers until all layers are processed.

The procedure of the intra-layer offloading algo-
rithm is shown in Algorithm 4. For all tasks in a given 
layer, line 2 of Algorithm 4 indicates that the tasks are 
arranged in ascending order according to the comple-
tion time of each task’s latest precursor task. Lines 
3-13 indicate that the minimum cost of the task pro-
cessed on the local device and processed on an MEC 
server are calculated separately in order . If the local 
computing overhead is less than the offloading over-
head, the task is processed locally and the optimal 
computing frequency of the IoT device is obtained. 
Then, the next idle time of the local IoT device is 
updated. Otherwise, the task will be offloaded, and 
the optimal transmission power of the IoT device will 
be obtained, and then the next idle time of the MEC 
server will be updated.
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Algorithm 4 Intra-layer offloading decision and resource allocation algorithm

Performance evaluation
Setup
The two types of task dependency models shown in Fig. 2 
are used for simulation experiments. In Fig.  2(a), tasks 
can only be executed sequentially, and there is only one 
task in each layer. In Fig. 2(b), each layer has five tasks, 
and these five tasks are the precursor tasks of all tasks in 
the next layer. In addition, the number of tasks in these 
two types of task dependency models will be set to 10, 20, 

30, 40 and 50, respectively, to evaluate the performance 
of the proposed algorithm under different task numbers 
and task dependencies.

The bandwidth of the wireless channel is set to 5 
MHz. Consider that the white noise power and channel 
gain are the same when all tasks are offloaded, wherein, 
σ 2
1
= · · · = σ 2

|v| = σ 2 = 10−10W  , h1 = · · · = h|v| = h . 
For h, the path fading model is used for modeling [28], 
and the specific form is as follows:

Fig. 2 Low and high parallelism task dependency model
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Wherein, Ad represents antenna gain, fc represents 
carrier frequency, dM represents the distance between 
IoT device and MEC server, and de represents path fad-
ing factor. For IoT devices, the maximum calculation 
frequency f max is set to 0.5 GHz, and the minimum 
transmission power pmin and maximum transmission 
power pmax are set to 0.1 W and 0.5 W respectively. For 
computing tasks, The required CPU cycle follows the 
uniform distribution of [100, 200] × 106 Cycles, the data 
size follows the uniform distribution of [2, 5] MB, and the 
computing output follows the uniform distribution of [2, 
5] KB. For the MEC server, its calculation frequency f e is 
set to 5 GHz. The energy efficiency parameter κ is set to 
10−27 . Other simulation parameters are shown in Table 1.

Comparison experiments
With reference to [31, 32], we compare the proposed 
algorithm with three other offloading baseline strategies 
and the earliest completion time offloading strategy pro-
posed in [33]: 

(1) Local computing strategy: The local computing 
strategy does not involve task offloading. All com-
puting tasks are processed on the local IoT device, 
and the computing frequency of the IoT device is 
randomly determined from 0GHz to 0.5GHz.

(2) Edge computing strategy: In the edge computing 
strategy, all IoT devices offload their computing 
tasks randomly to a nearby MEC server for pro-
cessing, and randomly determine the transmission 
power of IoT devices from 0.1W to 0.5W.

(3) Random offloading strategy: In the random offload-
ing strategy, the decision whether task is offloaded 
or not and which edge server to offload is deter-
mined randomly. The calculation frequency is 
randomly determined from 0GHz to 0.5GHz and 
transmission power of the IoT device is randomly 
determined from 0.1W to 0.5W.

(31)h = Ad(
3× 108

4π fcdM
)de

(4) The earliest completion time offloading strategy: 
Calculate the average calculation and communica-
tion cost of each task and determine the process-
ing order of the task, assign the task to the pro-
cessor with the minimum completion time in turn 
according to the processing order. The calculation 
frequency is randomly determined from 0GHz to 
0.5GHz and transmission power of the IoT device is 
randomly determined from 0.1W to 0.5W.

The task latency and energy consumption of IoT devices 
are used as performance indicators to evaluate the off-
loading performance of five computational offload-
ing strategies for low parallelism and high parallelism 
dependent IoT services.

Figure  3 compares the performance of five strategies 
when ω1 = 0.9 and ω2 = 0.1 . At this time, more atten-
tion is paid to the task latency rather than the energy 
consumption of IoT devices. It can be seen that, for both 
low-parallelism dependent services and high-parallelism 
dependent services, the computational offloading strat-
egy proposed in this paper always obtains lower latency 
than other strategies. For low-parallelism dependent ser-
vices, the performance of random offloading strategy is 
between local computing strategy and edge computing 
strategy, while for high-parallelism dependent services, 
the performance of random offloading strategy is bet-
ter than local computing strategy and edge computing 
strategy. This is because, for low-parallelism dependent 
services, tasks can only be executed sequentially, that is, 
the next task can only be started after the precursor task 
has been processed. Therefore, the performance of the 
random offloading strategy must be somewhere between 
the two. For high-parallelism dependent services, when 
random offloading strategy is adopted, tasks can be pro-
cessed in parallel to a certain extent. For local comput-
ing strategy (or edge computing strategy), the task can 
only be processed after the IoT device (or MEC server) 
finishes processing the precursor task. That is, due to the 
limitations of the processor, the task can only be serial. 
Therefore, random offloading strategy is superior to local 
computing strategy and edge computing strategy.

Figure 4 compares the performance of the five strat-
egies when ω1 = 0.1 and ω2 = 0.9 . At this time, more 
attention is paid to the energy consumption of IoT 
devices rather than the task latency. It can be seen that, 
for both low-parallelism dependent services and high-
parallelism dependent services, the computational off-
loading strategy proposed in this paper always obtains 
lower energy consumption than other strategies. It can 
be seen that the energy consumption of each computa-
tional offloading strategy for low parallelism and high 
parallelism dependent services is roughly the same. 

Table 1 some other parameters

parameter value

Number of tasks |V| {10,20,30,40,50}

Bandwidth B 5MHz

White noise power σ 2
10

−10W

Antenna gain Ad 4.11

carrier frequency fc 915MHz

Path fading factor de 2.6

Distance between mobile device and MEC server dM 30
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This is because, at this time, more attention is paid to 
energy consumption, and the dependency between IoT 
services has less impact on the energy consumption 
than on the task latency of IoT devices.

Conclusion
In this paper, task scheduling and resource allocation are 
comprehensively considered to optimize the latency and 
energy consumption for dependent IoT services in MEC. 
We design a computational offloading algorithm based 
on layering tasks by dependencies, to get the optimal task 
offloading scheduling and resource allocation scheme. 
Simulation results show that the proposed algorithm is 

significantly better than other comparison algorithms in 
reducing latency and energy consumption.

For our future work, we will consider further improve-
ments in future research: 

(1) In the system model, this paper assumes a constant 
download rate to facilitate the analysis and optimi-
zation of the task latency. However, task results are 
typically transmitted over wireless networks, which 
have a time-varying transmission rate. We will fur-
ther consider the varying download rate and design 
its corresponding optimization scheme in our 
future work.

Fig. 3 The performance of five strategies when ω1 = 0.9 and ω2 = 0.1

Fig. 4 The performance of five policies when ω1 = 0.1 and ω2 = 0.9
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(2) In the optimization goal, this paper uses the weighted 
sum of latency and energy consumption as the opti-
mization goal to comprehensively optimize the 
latency and energy consumption. However, how to 
determine the weight value is a difficult problem to 
solve. In the next step, we can consider using multi-
objective optimization methods, such as Pareto, 
multi-objective particle swarm optimization, etc.
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