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Abstract 

Dynamic auction-based resource allocation models require little global price information, are decentralized and suit-
able for the distributed systems like cloud computing. For the cloud computing market, we proposed a Truthful 
Dynamic Combinatorial Double Auction (TDCDA) model to improve the social welfare and resource utilization. 
In our model, multiple cloud service providers and cloud users bid for various resources in a dynamic environ-
ment. We adopted a payment scheme to ensure truthfulness for all participants, which motivates bidders to reveal 
their true preferences. Since the combinatorial auction allocation with goal of economic efficiency is NP-hard, we 
developed a greedy mechanism to achieve the approximately efficient solution. Considering both parties’ interests 
and the resource scarcity, this model also ensures fairness and balances resource allocation. The proposed model 
is proven to be approximately efficient, incentive compatible, individually rational and budget-balanced. Simulation 
results show that the model not only achieves economic efficiency, but also improves resource allocation and meets 
resource needs for more cloud users.
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Introduction
As a new business model, cloud computing uses internet 
and virtualization to provide ready-to-use IT resources. 
It provides efficient and scalable computing resources, 
reduces setup and maintenance costs, and improves the 
resource utilization [1].

With the help of virtualization technology, cloud com-
puting integrates a large number of IT resources (includ-
ing storage, CPUs, networks, applications, etc.), and 
provides them to users based on supply and demand. It 
is convenient for users and has many advantages over 

the traditional model. However, it also brings some chal-
lenges to resource management [2].

Users’ requirements could change at any time and 
cloud resources are heterogeneous and expandable. 
Therefore, the cloud market changes constantly and is 
highly dynamic. When demand increases, it is difficult 
to ensure Quality of Service (QoS). How to schedule 
and allocate cloud resources to make an optimal match 
between supply and demand is one of the major chal-
lenges in cloud computing [3].

The competition for cloud resources in cloud com-
puting is similar to that in the free market in econom-
ics. Many models and theories in economics have been 
applied to cloud computing. Current researches usually 
use the auction method from economics to simulate 
cloud resource allocation in order to optimize the social 
welfare. However, the resources in cloud computing are 
diverse and cloud users’ requirements are different. The 
allocation problem of combinatorial cloud resources is 
NP-Hard [4].
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The fixed price strategy adopted in the traditional 
auction method does not truly reflect the service quali-
ties and request differences, and there are deviations 
in fairness and resource utilization. Cloud service pro-
viders need to maximize their profits, and cloud users 
want to spend less and obtain resources with desired 
quality. They have their own interests, which often con-
flict with each other. A transaction can only be reached 
when both parties’ interests are satisfied. Therefore, 
when designing a cloud resource allocation mechanism, 
we need to take both parties’ interests into considera-
tion to build a healthy and sustainable cloud computing 
market.

Game theory studies the interaction of multiple play-
ers in a competitive environment [5]. It can be used to 
solve the optimization problem with competition or 
mutual constraints among multiple players in econom-
ics, international relations, biology, computer science, 
etc. In the cloud computing market, both cloud ser-
vice providers and cloud users are driven by their own 
interests, and there are competition and mutual con-
straints. Game theory can be used to meet the needs of 
both parties.

Two popular categories of market-based models 
for cloud resource management are commodity mar-
ket model and auction model. In the commodity mar-
ket model, providers specify their resource prices and 
charge users according to the amount of resources they 
would consume. In the auction model, each provider 
and user acts independently and individually. Auc-
tions are used for products that have no standard val-
ues and the prices are affected by supply and demand 
at a specific time [6]. Auctions require little global price 
information, are decentralized, easy to implement and 
suitable for distributed systems like grid computing, 
cloud computing, etc.

Auction is a type of game that bidders need to strate-
gically select their best bids. It is also one of the many 
ways to implement the dynamic pricing. Dynamic 
pricing reflects the real-time supply and demand rela-
tionship, one example is the Amazon EC2 spot mar-
ket. It is desirable for the dynamic cloud market as 
trade prices can be adjusted based on the supply and 
demand changes to obtain the efficient allocation. 
Among the different types of auctions, combinatorial 
double auction is most suitable for cloud computing 
because it allows double-sided competition and bid-
ding on any combination of resources, which helps to 
achieve the economic efficiency. An effective auction 
mechanism needs to have the desirable properties of 
economic efficiency, incentive compatibility/truthful-
ness, individual rationality, budget-balance and com-
putational efficiency.

Motivation and contributions
Since there is competition between cloud service pro-
viders and cloud users, they will not disclose all of their 
information, so the auction is an incomplete information 
game [7]. The bidders are self-interested and intend to 
maximize their own utilities. Some bidders might ben-
efit by manipulating the market with untruthful bids 
and gain unfair advantages. That could hinder other 
qualified bidders and reduce the auction efficiency. Most 
researches considered truthfulness for either the cloud 
users or cloud service providers. We adopted a payment 
scheme to ensure truthfulness for all participants. In our 
model, bidding truthfully (revealing true information) is 
the dominant strategy for every participant. As the com-
binatorial auction allocation with goal of economic effi-
ciency is NP-hard, we developed a greedy mechanism to 
mitigate the computational complexity of combinatorial 
auctions. Experimental results show that our algorithm 
can balance resource allocation, and achieve optimal 
social welfare (sum of utilities for all participants) and 
high request success rate.

The main contributions of the paper are as follows:

•	 This paper proposed a Truthful Dynamic Combina-
torial Double Auction (TDCDA) model to ensure 
truthfulness for all participants.

•	 In the proposed model, we developed a greedy mech-
anism to overcome the complexity of computing the 
efficient allocation in combinatorial auctions.

•	 Considering the resource scarcity, the proposed model 
balances resource allocation for cloud service providers.

In the double-sided auction, both cloud users and 
cloud service providers can submit bids, and their utili-
ties are included in the winner determination problem 
(WDP). All participants are treated equally, the proposed 
model is fair enough to motivate bidders to participate 
and stay in the market. The TDCDA model is proven to 
be approximately efficient, incentive compatible, indi-
vidually rational, budget-balanced and computationally 
efficient.

Related work
Cloud computing integrates a large amount of IT 
resources through virtualization technology and pro-
vides scalable resources on demand. It improves resource 
utilization, and reduces operation and maintenance 
costs. However, the dynamically changing resources and 
requests complicate cloud resource allocation and man-
agement. In recent years, resource allocation is a major 
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challenge for the cloud market. How to effectively allo-
cate these huge and dynamic resources has been an 
important issue that needs to be solved. Some theories 
and models in economics are very suitable for the cloud 
resource allocation problem. Researchers have used the 
game theory and auction methods to study the cloud 
resource allocation process.

Game theory studies strategic interaction between 
rational decision-makers [7]. Liu et  al. [8] studied ad 
hoc cloud providers selling their private idle computing 
resources to cloud users through non-cooperative game 
to improve resource utilization and reduce maintenance 
costs. Jie et al. [9] modeled the resource allocation prob-
lem as a double-stage Stackelberg game and proposed 
three algorithms to achieve Nash equilibrium and Stack-
elberg equilibrium. Lin et  al. [10] proposed a strategic 
game approach to address the multi-ownership of the 
network resources and services, and analyzed the Nash 
equilibrium of the game and stability of the algorithm. 
Zheng et al. [11] have investigated the problem of multi-
user computation offloading for mobile cloud computing 
under dynamic environment. By formulating this prob-
lem as a stochastic game, they proved the dynamic off-
loading decision process always leads to a pure-strategy 
Nash Equilibrium. Chen et al. [12] proposed a stochastic 
scheduling algorithm for the cloud computing environ-
ment to optimize the accumulative QoS. Guo et al. [13] 
modeled the bandwidth sharing problem as a Nash bar-
gaining game, and proposed the allocation principles 
by defining a tunable base bandwidth for each virtual 
machine (VM).

Auction is designed with certain bidding strategies 
and rules, where sales can be done with bids. Research-
ers have conducted extensive study on auction-based 
resource allocation schemes. Zhang et  al. [14] designed 
an efficient and truthful online auction for dynamic 
resource scaling and pricing. Li et  al. [15] adopted a 
truthful and individual-rational double auction as the 
inter-cloud trading mechanism, and designed a dynamic 
algorithm for each cloud to decide the best VM valua-
tion and bidding strategies. Zhang et  al. [16] proposed 
an incentive-Compatible Online Cloud Auction (COCA) 
mechanism based on a monotonic payment rule and a 
utility-maximizing allocation rule. Tafsiri et al. [17] stud-
ied combinatorial double auction-based market in which 
a broker performs the allocation of the providers’ virtual 
machines according to the users’ requests. Their pro-
posed integer linear programming model achieved truth-
fulness, fairness and allocation efficiency. Mashayekhy 
et  al. [18] proposed optimal and approximate strategy-
proof mechanisms for resource management in clouds 
with multiple types of physical machines and resources 

that give incentives to the users to reveal their true valu-
ations for the requested bundles of virtual machines. Li 
et al. [19] proposed a game-based combinatorial double 
auction model for resource allocation supporting multi-
ple infrastructure providers and service providers bidding 
for various combinations of resources. Considering both 
parties’ interests, this model optimized social welfare 
and achieved high resource utilization. Dibaj et  al. [20] 
proposed a cloud priority-based dynamic online double 
auction mechanism, which is aligned with the dynamic 
nature of cloud supply and demand and the agents’ time 
constraints. Umer et al. [21] proposed Adaptive Market-
Oriented Combinatorial Double Auction Resource Allo-
cation (AMO-CDARA) model that allocates services to 
users based on multiple parameters such as less price, 
QoS, and ranking of providers. It reduced service-level 
agreement (SLA) violation, improved users’ satisfaction 
and the social welfare. Ullah et al. [22] proposed a Nego-
tiation based Combinatorial Double Auction mechanism 
for Resource Allocation (N-CDARA) in cloud comput-
ing. The proposed method negotiates with dropped users 
to maximize the number of winners. It also improved the 
resource utilization and utilities. Lee et al. [23] presented 
two energy-conscious task consolidation heuristics to 
maximize resource utilization and improve energy effi-
ciency. Yadav et al. [24] proposed three adaptive models 
to minimize energy consumption and SLA violation.

Compared with other auction mechanisms, combi-
natorial double auction not only solves the problem of 
monopoly but also reduces transaction times and costs. 
Many researchers have studied combinatorial double 
auction for cloud computing. An auction mechanism 
basically consists of two parts, i.e., allocation function 
and payment scheme, which need to be designed care-
fully to achieve the auction properties [25]. However, it 
is impossible to have all the auction properties, like com-
putational efficiency and economic efficiency conflict 
with each other in combinatorial double auction. There-
fore, researchers have focused on the trade-off and pro-
posed various mechanisms that satisfy a subset of those 
properties [26].

The combinatorial auction allocation with goal of 
economic efficiency is often denoted as the WDP that 
is NP-hard. In order to solve the WDP, Sandholm et al. 
[27] developed a sophisticated search algorithm—
Branch On Bids (BOB) including structural improve-
ments, optimizations at search nodes, and faster data 
structures. Sandholm et al. [28] designed a depth-first 
branch-and-bound search algorithm—Combinatorial 
Auction Branch On Bids (CABOB), and it has better 
anytime performance than CPLEX. Lehmann et al. [29] 
studied combinatorial auctions with single-minded 
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bidders and proposed an 
√
M  greedy scheme which 

approximated the optimal allocation, where M is 
the total number of resources. Zaman et  al. [30] 
extended the greedy mechanism and redefined M to 
be the weighted total number of VM instances. They 
proposed a Combinatorial Auction-Greedy (CA-
GREEDY) mechanism and showed that CA-GREEDY 
can allocate VM instances efficiently. Nejad et  al. 
[31] designed a family of truthful greedy mechanisms 
considering heterogeneity and the scarcity of cloud 
resources. However, they only considered bids from 
users. Samimi et  al. [32] extended mechanism in [30] 
and defined bid density for both cloud service provid-
ers and cloud users.

In auctions, incentive compatibility/truthfulness is 
one of the most critical properties. It is essential to resist 
market manipulation and ensure auction fairness and 
efficiency. Researchers have designed different pricing 
schemes to ensure truthfulness. Vickrey auction [33] is an 
example of truthful auction mechanism. Vickrey-Clarke-
Groves (VCG) mechanism is strategy-proof and efficient. 
However, it suffers from computational complexity. Li 
et al. [34] proposed combinatorial double auction for the 
resource allocation and pricing in grid system, and calcu-
lated trade price as average of the bid prices of the match-
ing provider and user. Samimi et al. [32] extended models 
in [30] and [34], and proposed a Combinatorial Double 
Auction Resource Allocation (CDARA) model in cloud 
computing. Although their mechanisms claimed to be 
incentive compatible through the experimental studies, 
the average price is not an incentive compatible mecha-
nism theoretically. Di et al. [35] extended the traditional 
second-price bidding policy to a novel double-sided next-
price bidding policy, and ensured truthfulness for both 
consumers and providers. It is also approved that their 
resource allocation scheme is ex-post efficient. Kumar 
et  al. [36] proposed a Truthful Multi-unit Double Auc-
tion (TMDA) mechanism and calculated the trade price 
following the procedure of dominant strategy double 
auction in McAfee [37].

So far, there are not many researches on truthfulness 
for all participants. Most of the reported work ensures 
truthfulness for either the cloud users or cloud service 
providers. Kumar et  al. [36] considered truthfulness for 
all participants with multi-unit resources, but they did 
not consider multiple types of resources. We considered 
the heterogeneity in resources, and proposed a truthful 
dynamic combinatorial double auction model to ensure 
truthfulness for all participants. To mitigate the compu-
tational complexity of combinatorial auctions, we devel-
oped a greedy approximation method to solve the winner 
determination problem. The proposed model is proven 

to be approximately efficient, incentive compatible, indi-
vidually rational, budget-balanced and computationally 
efficient.

Although there are lots of researches on combina-
torial double auction for cloud computing, it is rarely 
implemented in the real cloud market. There are still 
many challenges need to be resolved such as perish-
able resources, QoS of the allocated resources, SLA 
violation, energy consumption, cloud users’ satisfac-
tion, providers’ reputation, data security, bidder drop 
problem, etc.

Truthful Dynamic Combinatorial Double Auction 
(TDCDA) model
The cloud resources are provided as three major types 
of services: Infrastructure as a Service (IaaS), Platform 
as a Service (PaaS), and Software as a Service (SaaS). 
IaaS provides CPUs, storage, networks and other infra-
structure resources; PaaS provides a platform for soft-
ware developers to build their applications; and SaaS 
provides already created applications. Our targeted sys-
tem is a generic cloud computing environment.

For the auction-based lease model of cloud market, 
the market framework is composed of multiple cloud 
users (CUs), multiple cloud service providers (CSPs) 
and the auctioneer. In the leasing process, various 
cloud resources need to be arranged differently based 
on cloud users’ requirements.

Model construction
In the combinatorial double auction, both CUs and 
CSPs submit their bids to the auctioneer who deter-
mine the winners and trade prices. Bidders’ valuations 
for the resources are their private information. We set 
up a model as shown in Fig.  1 to realize their optimal 
utilities.

Cloud service provider
Cloud service providers offer resources and act as sell-
ers. They submit bids with their available resources and 
ask prices. For cloud service providers, the resource 
costs, energy consumption, resource quantities and 
QoS are different. Therefore, different cloud service 
providers have different costs for the resources.

Cloud user
Cloud users intend to purchase resources and act as 
buyers. They submit bids with their resource require-
ments and bid prices. For cloud users, they have dif-
ferent time and resource requirements, different price 
acceptance ranges, etc., so their bids are different.
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Auctioneer
Auctioneer is in charge of the auction and acts as an 
interface between CSPs and CUs. It collects bids from 
all participants, and uses the allocation algorithm to 
obtain winners and trade prices.

Model assumptions
For the combinatorial double auction model, we made 
the following assumptions:

1.	 Bidders in the auction are rational and do not col-
lude, their goals are to maximize their respective util-
ities.

2.	 Bidders’ valuations of the resources are their private 
information. They do not know other participants’ 
valuations.

3.	 Cloud users are single-minded and bid only one spe-
cific set of resources. They will pay only when they 
receive the entire set.

4.	 A cloud user can only trade with one cloud service 
provider.

Our model assumes that the auctions run periodi-
cally and cloud users request only one set of resources 
in each round. The assumption of single-minded users 
does not limit them to express more flexible require-
ments and they can revise bids based on their prefer-
ences. For example, a cloud user might have some 
changes that need to purchase some other types of 
resources, then it could update bid in the next round.

Model analysis
There are N  cloud resource providers, M cloud users, 
and k kinds of resources in the auction. Figure  2 shows 
the sequence diagram for the proposed model.

	 1.	 Begin
	 2.	 Auctioneer starts auction
	 3.	 CUs and CSPs submit bids
	 4.	 Auctioneer acknowledges all participants’ bids
	 5.	 Auctioneer closes the auction
	 6.	 Auctioneer informs all participants about the auc-

tion close

Fig. 1  Combinatorial double auction model
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	 7.	 Based on the proposed model, auctioneer obtains 
the winners and trade prices

	 8.	 Auctioneer sends the auction result to all partici-
pants

	 9.	 Winning CSPs allocate resources to winning CUs 
based on the auction result

	10.	 CUs pay according to the final trade prices
	11.	 End

In combinatorial auctions, participants can bid for 
combinations of items rather than just individual items. 
This allows bidders to express their preferences more 
fully which could improve the economic efficiency, espe-
cially when items are complements [38]. Our model 
allows cloud users to place bids on bundles of resources 
to express complementarity. For cloud service providers, 
as they know their costs for each type of resources, their 
bids include per-unit ask prices.

Cloud service provider i ’s resource capacity vector 
is CS

i =
(

cSi1, ..., c
S
ir , ..., c

S
ik

)

.BS
i = bSi1, ..., b

S
ir , ..., b

S
ik  is its 

unit ask price vector. cSir and bSir are cloud service pro-
vider i ’s capacity and unit ask price of the r-th resource, 
respectively.

Cloud user j ’s resource quantity vector (bundle) is 
CU
j =

(

cUj1 , ..., c
U
jr , ..., c

U
jk

)

 . bj is its bid price for the bundle. 
cUjr  is cloud user j ’s requested quantity of the r-th 
resource.

Each participant’s benefit in a combinatorial auction 
is expressed by its utility. Under normal circumstances, 
when the cloud service provider could fulfill the cloud 
user’s request and the cloud user’s bid price is no less 
than the cloud service provider’s ask price, a deal can be 
reached.

When cloud service provider i and cloud user j reach 
a deal, cloud user j pays pUij  and cloud service provider 
i receives pSij . Cloud service provider i ’s utility can be 
represented as the difference between the payment it 
received and its valuation; and cloud user j ’s utility can 
be calculated as the difference between its valuation and 
the price it paid [37]. In our truthful model, all partici-
pants would bid for resources according to their true val-
uations and we get the utility functions for cloud service 
provider i and cloud user j as given in Eqs. (1) and (2), 
respectively:

Our model adopts dynamic pricing strategies, it 
improves resource utilization and solves the unfairness 
problem of fixed price in the traditional model. Also, it 
allocates combinatorial resources at one time, which is 

(1)uSij = pSij −
k

∑

r=1

bSirc
U
jr

(2)uUij = bj − pUij

Fig. 2  Sequence diagram of the TDCDA model
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more efficient than multiple allocations for each kind of 
resources.

Winner determination
Given the information received from all participants, the 
model determines the winners in the auction system in 
such a way that the social welfare (sum of utilities for all 
participants) get maximized. The combinatorial auction 
problem is denoted as the winner determination prob-
lem. We considered utilities for cloud service providers, 
cloud users and the auctioneer. Auctioneer’s utility is 
included as the model could not operate without the auc-
tioneer [37].

When cloud service provider i and cloud user j reach 
a deal, cloud user j pays pUij  , cloud service provider 
i receives pSij , and the auctioneer’s utility is pUij − pSij . 
sij =

∑k
r=1 b

S
irc

U
jr  is cloud service provider i ’s total ask 

price for cloud user j ’s request. The allocation problem is 
formulated as follows:

The first item inside the big brackets is the sum of utili-
ties obtained by all cloud service providers, the second 
item is the sum of utilities obtained by all cloud users, 
and the third item is utility obtained by the auctioneer. 
They can be simplified to be the right side of the equa-
tion, and we get the WDP as:

Constraint (5) indicates that the total amount of the r-
th resource requested by all cloud users that traded with 
cloud service provider i does not exceed the amount 

(3)

max

(

M
∑

j=1

N
∑

i=1

(

pSij − sij

)

xij +
M
∑

j=1

N
∑

i=1

(

bj − pUij

)

xij +
M
∑

j=1

N
∑

i=1

(

pUij − pSij

)

xij

)

= max
M
∑

j=1

N
∑

i=1

(

bj − sij
)

xij

(4)max

M
∑

j=1

N
∑

i=1

(

bj − sij
)

xij

(5)s.t.

M
∑

j=1

cUjr xij ≤ cSir

(6)
N
∑

i=1

xij ≤ 1

(7)

xij ∈ {0, 1}
0 < i ≤ N
0 < j ≤ M
0 < r ≤ k

of the r-th resource owned by cloud service provider 
i . Constraint (6) indicates that one cloud user cannot 
trade with more than one cloud service provider. Con-
straint (7) indicates that when cloud service provider i 
and cloud user j reach a deal, xij is 1; otherwise, it is 0. 
It is noted that the social welfare does not depend on 
the final trade prices, but the prices do affect bidders’ 
utilities.

The combinatorial double auction allocation problem 
is NP-hard. We extended mechanisms in [31, 32], and 
defined bid density for cloud service providers and cloud 
users considering the scarcity of resources.

Cloud user j ’s bid density Dj is:

Cloud service provider i ’s bid density Di is:

Where fr is:

We defined fr as the scarcity of the r-th resource, 
which depends on the capacity of the r-th resource.

Based on their bid density, the cloud users and cloud 
service providers will be sorted in descending and 
ascending order, respectively. The main reason for sort-
ing is to prioritize the higher valued cloud users and 
lower valued cloud service providers, and then find the 
most profitable trades by matching the cloud users whose 
bids are higher with the cloud service providers whose 
asks are cheaper in turn.

When a cloud user requests a scarce resource, its bid 
density will be lower which means its request would be 
less likely to be fulfilled. On the other hand, if a cloud ser-
vice provider has the scarce resource, its bid density will 
also be lower. As the cloud service providers are ordered in 
ascending order of their bid density, it will make the cloud 
service provider more popular. In this way, we can balance 
the resource allocation for cloud service providers.

Payment determination
After sorting cloud users and cloud service provid-
ers based on their bid density, we tried to find potential 
trades in turn. When cloud service provider i could fulfill 
cloud user j ’s request and sij ≤ bj , they could reach a deal 
and we will calculate their average prices.

(8)Dj =
bj

√

∑k
r=1 frc

U
jr

(9)Di =
∑k

r=1 b
S
irc

S
ir

√

∑k
r=1 frc

S
ir

(10)fr =
1

∑N
i=1 c

S
ir
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Average price for cloud user j ’s bid:

Average price for cloud service provider i ’s ask based 
on cloud user j ’s resource request:

Suppose there are l pairs of trade candidates, we sort 
the average prices in descending order for cloud users as 
given in (13) and ascending order for cloud service pro-
viders as given in (14), respectively.

Compare these average prices, and we might find 
aUl ≥ aSl  , or

And

If aUl ≥ aSl  , then all the trade candidates with indi-
ces less than l can be completed, cloud users pay price 
pUij = aUl

∑k
r=1 c

U
jr  and cloud service providers receive 

payment pSij = aSl
∑k

r=1 c
U
jr .

Otherwise, define a0 =
(

a
S

T+1
+ a

U

R+1

)

/2 . If a0 ∈
[

aST , a
U
R

]

 , 
the trade candidates with indices j′ ≤ R and i′ ≤ T  

(11)aUj =
bj

∑k
r=1 c

U
jr

(12)aSij =
sij

∑k
r=1 c

U
jr

(13)aU1 ≥ aU2 ... ≥ aUj′ ... ≥ aUl

(14)aS1 ≤ aS2... ≤ aSi′ ... ≤ aSl

(15)aUR ≥ aST ≥ aUR+1

(16)aST+1 ≥ aUR ≥ aST

can complete transactions, and the trade price is 
pUij = pSij = a0

∑k
r=1 c

U
jr  . If a0 /∈

[

aST , a
U
R

]

 , the trade can-
didates with indices j′ < R and i′ < T  can complete 
transactions, cloud users pay price pUij = aUR

∑k
r=1 c

U
jr  

and cloud service providers receive payment 
pSij = aST

∑k
r=1 c

U
jr .

Figure  3 shows how to get indices R and T  . Some-
times it might not be possible to satisfy both (15) and 
(16). For example, if T = l , then we can only get (15). 
We assumed aSl+1

= ∞ and aUl+1
= 0 . In this way, indi-

ces R and T  can always be found to satisfy both (15) 
and (16).

In order to ensure truthfulness for all participants, 
some least profitable trades might not be able to com-
plete with this pricing mechanism. However, as the auc-
tion runs periodically, the lost trades might be completed 
in the following rounds.

Auction properties
An effective market-based resource allocation model 
must meet the needs of both cloud service providers 
and cloud users, and encourage them to participate in 
the market. Our proposed model was assessed from an 
economic perspective, and the following properties are 
fulfilled:

Economic efficiency
An efficient mechanism maximizes the total social wel-
fare. As the combinatorial auction allocation problem 
with goal of economic efficiency is NP-hard, we adopted 
a greedy mechanism which is approximately efficient 
[29–32].

Fig. 3  Average prices for potential trading CUs and CSPs
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Incentive compatibility
A double auction mechanism is incentive compatible/
truthful if bidding truthfully is the dominant strat-
egy for every participant. Truthfulness is essential to 
resist market manipulation and ensure efficiency. In 
untruthful auctions, some bidders can manipulate 
their bids to obtain outcomes that favor themselves 
but hurt others. In truthful auctions, the resources can 
be allocated efficiently to users who value them the 
most. Our payment scheme ensures truthfulness for all 
participants, and it can be proved with the usual Vick-
rey argument.

Let us check about truthfulness for cloud service pro-
viders. In the proposed model, winning cloud service 
providers receive payment equal to the lowest average 
price of non-traded cloud service providers multiply the 
resource quantity, or a0

∑k
r=1 c

U
jr  . Suppose a cloud ser-

vice provider attempted to obtain better utility by mis-
representing its preference, the results can be classified 
as follows:

If bid value > true valuation, then the cloud service pro-
vider might be:

•	 still one of the winners, and there is no change in 
its utility.

•	 rejected by the model as its bid is too high and its util-
ity becomes 0. If the cloud service provider could be a 
winner with true valuation, it suffers with the bid.

If bid value < true valuation, then the cloud service pro-
vider might be:

•	 still one of the winners, and there is no change in 
its utility.

•	 still one of the losers as its bid is too high and its util-
ity remains 0.

•	 a winner from a loser. However, its utility will be neg-
ative and it suffers loss.

Therefore, truthful bidding is the dominant strategy for 
cloud service providers. Similarly, we can prove truthful-
ness for cloud users.

Budget‑balance
Budget-balance property means that the total payment 
from all cloud users is no less than the total money 
received by all cloud service providers. This property 
ensures the viability and sustainability of the market by 
ensuring that the auctioneer is not at loss in conducting 

the auction. Our mechanism is budget-balanced as 
aUR ≥ aST or aUl ≥ aSl .

Individual rationality
A mechanism is said to be individually rational if each 
participant’s utility is always non-negative. In our model, 
cloud users’ payments are not greater than their bid prices, 
and cloud service providers receive no less than their ask 
prices. The trade price will be zero if no participant wins in 
the auction. Therefore, every participant gets either posi-
tive or zero utility, and our model is individually rational.

Computational efficiency
The greedy mechanism has high computational effi-
ciency, as the resource allocation and payment can be 
decided in polynomial time [29]. The time complexity 
of TDCDA is O(kMN ) , which is polynomial.

Cloud resource allocation algorithm
This section explains the resource allocation algorithm. 
Most of researches just consider truthfulness for either 
cloud users or cloud service providers. This paper pro-
posed a truthful dynamic combinatorial double auc-
tion (TDCDA) algorithm to ensure truthfulness for all 
participants.

Some researchers used average price for the combi-
natorial double auction. However, the average price is 
not a truthful mechanism theoretically. For example, 
a cloud service provider might try to ask price higher 
than its valuation, then it could benefit from higher 
trade price when the bid wins. Similarly, there are 
incentives for cloud users to try bid prices less than 
their valuations. If some participants do not reveal 
their true preferences, the most profitable trades might 
not occur between higher valued cloud users and lower 
valued cloud service providers. It will affect the social 
welfare and cause fairness problem.

Cloud resource allocation algorithm
Each cloud service provider submits its unit ask prices 
and resource quantities to the auctioneer. Each cloud 
user submits its bid price and requested quantities to 
the auctioneer. After receiving information from all 
parties, the auctioneer uses cloud resource allocation 
algorithm to obtain the allocation result that can maxi-
mize utilities for all participants.
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Algorithm. Cloud resource allocation

and trade pairs. After that, it sends the auction result to 
all participants.

Simulation results
We implemented a simulation environment for cloud 
resource allocation using MATLAB, and compared 
our Truthful Dynamic Combinatorial Double Auction 
(TDCDA) algorithm with the Average price Combinato-
rial Double Auction (ACDA) algorithm. Cloud resource 
allocations for different numbers of cloud service pro-
viders (CSPs) and cloud users (CUs) were simulated. 
The bid prices of CUs and CSPs were generated ran-
domly between the lowest and highest prices of the cloud 
resources. Bid quantities of resources for all participants 
were also generated randomly. We have completed mul-
tiple experiments, and compared results of the two algo-
rithms for social welfare, resource allocation rate for 
cloud service providers, CUs’ and CSPs’ success rates.

Average price is often used for combinatorial double 
auctions. We compared our algorithm with the average 
price algorithm. Based on bid density, the two algorithms 
sort CUs and CSPs in descending and ascending order, 
respectively. Then TDCDA algorithm calculated the 
trade prices according to our truthful payment scheme. 
And ACDA algorithm calculated the trade prices as the 
average of bid prices of the matching CSPs and CUs.

Social welfare analysis
The social welfare obtained after competitive auctions 
with different numbers of CSPs and CUs are shown in 
Fig. 4. Figure 4a, b, c, and d show social welfare when the 
numbers of CSPs were fixed at 20, 40, 60 and 80 respec-
tively, and the number of CUs increased by 20 from 20 
and gradually reached 120.

We can see that when the number of CSPs and CUs is 
small, the social welfare obtained by the two algorithms 
are small and the difference is small. With the increasing 
number of CSPs and CUs, the social welfare obtained by 
the two algorithms increased, and the difference between 
the two algorithms also shows an increasing trend. Com-
paring with ACDA algorithm, the TDCDA algorithm 
increased social welfare by 30%.

As ACDA algorithm is not incentive compatible, some 
participants tried to benefit themselves by not bidding 
their true valuations. However, that could hurt other par-
ticipants and reduce the auction efficiency. Some most 
profitable trades did not occur and the social welfare was 
affected. The problem became more obvious when the 
number of participants increased.

Resource allocation rate analysis
In resource allocation rate experiment, the number of 
CUs in each set of experiments was fixed. The resource 

After receiving bids from all participants, auction-
eer calculates the bid density for cloud users and cloud 
service providers, and arranges them in descending and 
ascending order, respectively. Then, it matches them one 
by one, if the cloud user’s bid price is not less than the 
cloud service provider’s ask price and its resource request 
could be satisfied by the provider, they could potentially 
trade. Then the auctioneer calculates their average prices 
based on Eqs. (11) and (12), and find the final payments 
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allocation rates for different numbers of CSPs are shown 
in Fig. 5. We can see that the same CSP obtained different 
resource allocation rates with the two algorithms.

There are 30 CSPs and 100 CUs in Fig. 5a. The horizon-
tal axis represents the CSP sequence in ascending order 
of their bid density, and the vertical axis is resource allo-
cation rate for the corresponding CSP.

We can see that the resource allocation rate of each CSP 
with TDCDA algorithm is less than 90% , and it shows 
a gradual downward trend as the bid density increases. 
Therefore, the TDCDA algorithm can balance resource 
allocation as we considered the resource scarcity.

With ACDA algorithm, we find that resource allocation 
rate fluctuated and some CSPs failed to trade even though 
they could trade if every participant bid truthfully as with 
TDCDA algorithm. Meanwhile, some CSPs have alloca-
tion rate more than 90% , which is likely to have overload 

issue. From the result, we can see that when there are par-
ticipants bidding untruthfully, some CSPs lost unnecessar-
ily and it is not beneficial for the whole market.

Figure 5b shows the allocation result for 60 CSPs and 
100 CUs. Compared with Fig. 5a, TDCDA algorithm can 
still balance resource allocation between CSPs. However, 
we see more fluctuations and CSPs failed to trade with 
ACDA algorithm.

Request success rate analysis
In request success rate experiment, the number of CSPs 
in each set of experiments was fixed. We checked the 
ratio of the number of successfully allocated CUs to the 
total number of CUs that requested resources. Figure 6 
shows the request success rate with the two algorithms 
when the number of CUs increases. In Fig. 6a and b, the 
numbers of CSPs were fixed at 20 and 80 respectively, 

Fig. 4  Social welfare analysis
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and the number of CUs increased by 20 from 20 and 
gradually reached 120.

We can see that, as the number of CUs increases, the 
request success rates obtained by the two algorithms 
show a downward trend. The TDCDA algorithm always 
has better success rate up to 20% higher than ACDA 
algorithm. This result indicates that TDCDA algorithm 
can satisfy a larger number of CUs.

With ACDA algorithm, some participants could ben-
efit by not revealing their true preferences. With goal to 
maximize their respective utilities, they tried strategies 
best to themselves. However, that could hurt others 
and cause fairness issue. It discouraged some qualified 
bidders to participate and stay in the auction, and the 
request success rate was affected.

TDCDA algorithm is truthful and unbiased for all 
participants. It is fair enough to motivate bidders to 
participate and stay in the auction. Their true bids also 
helped to achieve good request success rate.

Provider success rate analysis
In provider success rate experiment, the number of CUs 
in each set of experiments was fixed. We checked the 
ratio of the number of successfully traded CSPs to the 
total number of CSPs. Figure 7 shows the provider suc-
cess rate with the two algorithms when the number of 
CSPs increases. In Fig.  7a and b, the numbers of CUs 
were fixed at 40 and 80 respectively, and the number of 
CSPs increased by 20 from 20 and gradually reached 120.

Fig. 5  Resource allocation rate analysis

Fig. 6  Request success rate analysis
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As the number of CSPs increases, the provider success 
rates obtained by the two algorithms show a downward 
trend. The TDCDA algorithm always has better success 
rate than ACDA algorithm. In the resource allocation 
rate experiment, we find that some CSPs lost unnecessar-
ily with ACDA algorithm. Figure  7 shows that TDCDA 
algorithm could improve the providers’ success rate by 
50% . This result indicates that more CSPs could trade 
with TDCDA algorithm.

In summary, the proposed TDCDA algorithm is 
superior to ACDA algorithm in terms of social welfare, 
resource allocation rate, request and provider success 
rates.

Conclusion
For the multi-tenant cloud computing market, this 
paper proposed a truthful dynamic combinatorial dou-
ble auction allocation model. Since there is the com-
petition between cloud service providers and cloud 
users, they will not share all of their information, so we 
adopted a payment scheme to ensure truthfulness for 
all participants. We also defined bid density for both 
cloud service providers and cloud users, and devel-
oped a greedy mechanism to obtain the approximately 
optimal allocations. Considering both parties’ inter-
ests and the resource scarcity, this model also ensures 
fairness and balances resource allocation. Simulations 
show that compared with the average price combinato-
rial double auction algorithm, the proposed algorithm 
could increase social welfare by 30% , balance resource 
allocation, improve providers’ success rate by 50% 
and meet resource needs for 20% more cloud users. 

It is also proven that the proposed TDCDA model is 
approximately efficient, incentive compatible, individu-
ally rational, budget-balanced and computationally 
efficient.

There are still lots of challenges in cloud computing. 
Future work could include QoS, SLA violation, providers’ 
reputation, users’ satisfaction, energy consumption, etc.

Abbreviations
TDCDA	� Truthful Dynamic Combinatorial Double Auction
ACDA	� Average price Combinatorial Double Auction
CSP	� Cloud Service Provider
CU	� Cloud User
WDP	� Winner Determination Problem
QoS	� Quality of Service
VM	� Virtual Machine
SLA	� Service-Level Agreement
COCA	� Incentive-Compatible Online Cloud Auction
AMO-CDARA​	� Adaptive Market-Oriented Combinatorial Double Auction 

Resource Allocation
N-CDARA​	� Negotiation based Combinatorial Double Auction mechanism 

for Resource Allocation
BOB	� Branch On Bids
CABOB	� Combinatorial Auction Branch On Bids
CA-GREEDY	� Combinatorial Auction-Greedy
VCG	� Vickrey-Clarke-Groves
CDARA​	� Combinatorial Double Auction Resource Allocation
TMDA	� Truthful Multi-unit Double Auction
IaaS	� Infrastructure as a Service
PaaS	� Platform as a Service
SaaS	� Software as a Service

Acknowledgements
The authors would like to thank the editors and reviewers who helped to 
improve the paper.

Authors’ contributions
All authors have participated in conception and design, drafting the article 
and revising it critically for important intellectual content. All authors read and 
approved the final manuscript.

Fig. 7  Provider success rate analysis



Page 14 of 15Li et al. Journal of Cloud Computing          (2023) 12:106 

Authors’ information
Qihui Li received the M.S. degree from Wuhan University of Technology in 
2009, and the Ph.D. degree from Wuhan University in 2023. She is currently 
working at Huanggang Normal University.  Her research interests include 
cloud computing, network functions virtualization and wireless networks.
Xiaohua Jia (IEEE Fellow) received the B.Sc. and M.Sc. degrees from the Univer-
sity of Science and Technology of China in 1984 and 1986, respectively, and 
the D.Sc. degree in information science from The University of Tokyo in 1991. 
He is currently a Chair Professor with the Department of Computer Science, 
City University of Hong Kong. His research interests include cloud computing 
and distributed systems, data security and privacy, computer networks, and 
mobile computing. He is the General Chair of ACM MobiHoc 2008, a TPC Co-
Chair of IEEE GLOBECOM 2010 Ad Hoc and Sensor Networking Symposium, 
and an Area Chair of IEEE INFOCOM 2010 and 2015–2017. He is an Editor of 
IEEE Internet of Things (2012–2018), IEEE Transactions on Parallel and Distrib-
uted Systems (2006–2009), Journal of Networks, Journal of World Wide Web, 
Journal of Combinatorial Optimization, etc.
Chuanhe Huang received his B.S., M.S., and Ph.D. degrees in Computer Science 
from Wuhan University in 1985, 1988, and 2002, respectively. He is currently a 
professor and Ph.D. supervisor at the School of Computer Science, Wuhan Uni-
versity. His research interests include SDN, opportunistic networks, and wireless 
networks, focusing on cryptography, wireless security, and trust management.

Funding
This work is supported by the National Natural Science Foundation of China 
(No.61772385).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 August 2021   Accepted: 26 June 2023

References
	1.	 Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: 

24th IEEE International Conference on Advanced Information Networking 
and Applications. p 27–33. https://​doi.​org/​10.​1109/​AINA.​2010.​187

	2.	 Galante G, de Bona L (2012) A survey on cloud computing elasticity. In: 
IEEE Fifth International Conference on Utility and Cloud Computing, p 
263–270. https://​doi.​org/​10.​1109/​UCC.​2012.​30

	3.	 Prasad A, Rao S (2014) A mechanism design approach to resource pro-
curement in cloud computing. IEEE Trans Comput 63:17–30. https://​doi.​
org/​10.​1109/​TC.​2013.​106

	4.	 Gu S, Li Z, Wu C, Huang C (2016) An efficient auction mechanism for ser-
vice chains in the NFV market. In: IEEE INFOCOM 2016 - The 35th Annual 
IEEE International Conference on Computer Communications, p 1–9. 
https://​doi.​org/​10.​1109/​INFOC​OM.​2016.​75244​38

	5.	 Zhang W (2005) Game Theory and Information Economics. Shanghai 
People’s Publishing House, Shanghai

	6.	 Izakian H, Abraham A, Ladani BT (2010) An auction method for resource 
allocation in computational grids. Futur Gener Comput Syst 26(2):228–
235. https://​doi.​org/​10.​1016/j.​future.​2009.​08.​010

	7.	 Shen Q (2010) A course in game theory. China Renmin University Press, 
Beijing

	8.	 Liu G, Xiao Z, Tan G, Li K, Chronopoulos A (2020) Game theory-based opti-
mization of distributed idle computing resources in cloud environments. 
Theoret Comput Sci 806:468–488. https://​doi.​org/​10.​1016/j.​tcs.​2019.​08.​019

	9.	 Jie Y, Guo C, Choo K, Liu C, Li M (2020) Game-theoretic resource alloca-
tion for fog-based industrial internet of things environment. IEEE Internet 
Things J 7:3041–3052. https://​doi.​org/​10.​1109/​JIOT.​2020.​29645​90

	10.	 Lin T, Alpcan T, Hinton K (2017) A game-theoretic analysis of energy 
efficiency and performance for cloud computing in communication 

networks. IEEE Syst J 11:649–660. https://​doi.​org/​10.​1109/​JSYST.​2015.​
24511​95

	11.	 Zheng J, Cai Y, Wu Y, Shen X (2019) Dynamic computation offloading for 
mobile cloud computing: a stochastic game-theoretic approach. IEEE Trans 
Mob Comput 18:771–786. https://​doi.​org/​10.​1109/​TMC.​2018.​28473​37

	12.	 Chen Y, Wang L, Chen X, Ranjan R, Zomaya A, Zhou Y, Hu S (2020) Sto-
chastic workload scheduling for uncoordinated datacenter clouds with 
multiple QoS constraints. IEEE Trans Cloud Comput 8:1284–1295. https://​
doi.​org/​10.​1109/​TCC.​2016.​25860​48

	13.	 Guo J, Liu F, Zeng D, Lui J, Jin H (2013) A cooperative game based 
allocation for sharing data center networks. In: 2013 Proceedings IEEE 
INFOCOM, p 2139–2147. https://​doi.​org/​10.​1109/​INFCOM.​2013.​65670​16

	14.	 Zhang X, Huang Z, Wu C, Li Z, Lau F (2021) Dynamic VM scaling: Provi-
sioning and pricing through an online auction. IEEE Trans Cloud Comput 
9:131–144. https://​doi.​org/​10.​1109/​TCC.​2018.​28409​99

	15.	 Li H, Wu C, Li Z, Lau F (2013) Profit-maximizing virtual machine trading 
in a federation of selfish clouds. In: 2013 Proceedings IEEE INFOCOM, p 
25–29. https://​doi.​org/​10.​1109/​INFCOM.​2013.​65667​28

	16.	 Zhang H, Jiang H, Li B, Liu F, Vasilakos A, Liu J (2016) A framework for 
truthful online auctions in cloud computing with heterogeneous user 
demands. IEEE Trans Comput 65:805–818. https://​doi.​org/​10.​1109/​TC.​
2015.​24357​84

	17.	 Tafsiri S, Yousefi S (2018) Combinatorial double auction-based resource 
allocation mechanism in cloud computing market. J Syst Softw 137:322–
334. https://​doi.​org/​10.​1016/j.​jss.​2017.​11.​044

	18.	 Mashayekhy L, Nejad M, Grosu D (2015) Physical machine resource 
management in clouds: a mechanism design approach. IEEE Trans Cloud 
Comput 3:247–260. https://​doi.​org/​10.​1109/​TCC.​2014.​23694​19

	19.	 Li Q, Huang C, Bao H, Fu B, Jia X (2019) A game-based combinatorial 
double auction model for cloud resource allocation. In: 2019 28th Inter-
national Conference on Computer Communication and Networks ICCCN, 
p 1–8. https://​doi.​org/​10.​1109/​ICCCN.​2019.​88469​22

	20.	 Dibaj S, Miri A, Mostafavi S (2020) A cloud priority-based dynamic online 
double auction mechanism (pb-dodam). J Cloud Comput 9:1–26. https://​
doi.​org/​10.​1186/​s13677-​020-​00213-7

	21.	 Umer A, Nazir B, Ahmad Z (2022) Adaptive market-oriented combinatorial 
double auction resource allocation model in cloud computing. J Super-
comput 78(1):1244–1286. https://​doi.​org/​10.​1007/​s11227-​021-​03918-x

	22.	 Ullah Z, Umer A, Zaree M, Ahmad J, Alanazi F, Amin NU, Umar AI, Jehangiri 
AI, Adnan M (2021) Negotiation based combinatorial double auction 
mechanism in cloud computing. CMC-Comput Mater Contin 69:2123–
2140. https://​doi.​org/​10.​32604/​cmc.​2021.​015445

	23.	 Lee YC, Zomaya AY (2012) Energy efficient utilization of resources in cloud 
computing systems. J Supercomput 60(2):268–280. https://​doi.​org/​10.​
1007/​s11227-​010-​0421-3

	24.	 Yadav R, Zhang W, Kaiwartya O, Singh PR, Elgendy IA, Tian Y-C (2018) 
Adaptive energy-aware algorithms for minimizing energy consump-
tion and SLA violation in cloud computing. IEEE Access 6:55923–55936. 
https://​doi.​org/​10.​1109/​ACCESS.​2018.​28727​50

	25.	 Kumar D, Baranwal G, Raza Z, Vidyarthi DP (2018) A truthful combinatorial 
double auction-based marketplace mechanism for cloud computing. J 
Syst Softw 140:91–108. https://​doi.​org/​10.​1016/j.​jss.​2018.​03.​003

	26.	 Baranwal G, Kumar D, Raza Z, Vidyarthi DP (2018) Double auction-
based cloud resource provisioning. In: Auction Based Resource 
Provisioning in Cloud Computing, p 75–95. https://​doi.​org/​10.​1007/​
978-​981-​10-​8737-0_5

	27.	 Sandholm T, Suri S (2003) Bob: improved winner determination in combi-
natorial auctions and generalizations. Artif Intell 145(1–2):33–58. https://​
doi.​org/​10.​1016/​S0004-​3702(03)​00015-8

	28.	 Sandholm T, Suri S, Gilpin A, Levine D (2005) Cabob: a fast optimal algo-
rithm for winner determination in combinatorial auctions. Manage Sci 
51(3):374–390. https://​doi.​org/​10.​1287/​mnsc.​1040.​0336

	29.	 Lehmann D, Oćallaghan LI, Shoham Y (2002) Truth revelation in approxi-
mately efficient combinatorial auctions. JACM 49(5):577–602. https://​doi.​
org/​10.​1145/​585265.​585266

	30.	 Zaman S, Grosu D (2013) Combinatorial auction-based allocation of vir-
tual machine instances in clouds. J Parallel Distrib Comput 73(4):495–508. 
https://​doi.​org/​10.​1016/j.​jpdc.​2012.​12.​006

	31.	 Nejad MM, Mashayekhy L, Grosu D (2014) Truthful greedy mechanisms 
for dynamic virtual machine provisioning and allocation in clouds. IEEE 

https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1109/UCC.2012.30
https://doi.org/10.1109/TC.2013.106
https://doi.org/10.1109/TC.2013.106
https://doi.org/10.1109/INFOCOM.2016.7524438
https://doi.org/10.1016/j.future.2009.08.010
https://doi.org/10.1016/j.tcs.2019.08.019
https://doi.org/10.1109/JIOT.2020.2964590
https://doi.org/10.1109/JSYST.2015.2451195
https://doi.org/10.1109/JSYST.2015.2451195
https://doi.org/10.1109/TMC.2018.2847337
https://doi.org/10.1109/TCC.2016.2586048
https://doi.org/10.1109/TCC.2016.2586048
https://doi.org/10.1109/INFCOM.2013.6567016
https://doi.org/10.1109/TCC.2018.2840999
https://doi.org/10.1109/INFCOM.2013.6566728
https://doi.org/10.1109/TC.2015.2435784
https://doi.org/10.1109/TC.2015.2435784
https://doi.org/10.1016/j.jss.2017.11.044
https://doi.org/10.1109/TCC.2014.2369419
https://doi.org/10.1109/ICCCN.2019.8846922
https://doi.org/10.1186/s13677-020-00213-7
https://doi.org/10.1186/s13677-020-00213-7
https://doi.org/10.1007/s11227-021-03918-x
https://doi.org/10.32604/cmc.2021.015445
https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1109/ACCESS.2018.2872750
https://doi.org/10.1016/j.jss.2018.03.003
https://doi.org/10.1007/978-981-10-8737-0_5
https://doi.org/10.1007/978-981-10-8737-0_5
https://doi.org/10.1016/S0004-3702(03)00015-8
https://doi.org/10.1016/S0004-3702(03)00015-8
https://doi.org/10.1287/mnsc.1040.0336
https://doi.org/10.1145/585265.585266
https://doi.org/10.1145/585265.585266
https://doi.org/10.1016/j.jpdc.2012.12.006


Page 15 of 15Li et al. Journal of Cloud Computing          (2023) 12:106 	

Trans Parallel Distrib Syst 26(2):594–603. https://​doi.​org/​10.​1109/​TPDS.​
2014.​23082​24

	32.	 Samimi P, Teimouri Y, Mukhtar M (2016) A combinatorial double auction 
resource allocation model in cloud computing. Inf Sci 357:201–216. 
https://​doi.​org/​10.​1016/j.​ins.​2014.​02.​008

	33.	 Vickrey W (1961) Counterspeculation, auctions, and competitive sealed 
tenders. J Financ 16(1):8–37. https://​doi.​org/​10.​2307/​29776​33

	34.	 Li L, Liu YA, Liu KM, Ma XL, Yang M (2009) Pricing in combinatorial double 
auction-based grid allocation model. J China Univ Posts Telecommun 
16(3):59–65. https://​doi.​org/​10.​1016/​S1005-​8885(08)​60228-9

	35.	 Di S, Wang C-L, Chen L (2013) Ex-post efficient resource allocation for self-
organizing cloud. Comput Electr Eng 39(7):2342–2356. https://​doi.​org/​10.​
1016/j.​compe​leceng.​2012.​12.​018

	36.	 Kumar D, Baranwal G, Raza Z, Vidyarthi DP (2017) A systematic study 
of double auction mechanisms in cloud computing. J Syst Softw 
125:234–255. https://​doi.​org/​10.​1016/j.​jss.​2016.​12.​009

	37.	 McAfee RP (1992) A dominant strategy double auction. J Econ Theory 
56(2):434–450. https://​doi.​org/​10.​1016/​0022-​0531(92)​90091-U

	38.	 Cramton P, Shoham Y, Steinberg R (2006) Combinatorial Auctions. MIT 
Press, Boston

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TPDS.2014.2308224
https://doi.org/10.1109/TPDS.2014.2308224
https://doi.org/10.1016/j.ins.2014.02.008
https://doi.org/10.2307/2977633
https://doi.org/10.1016/S1005-8885(08)60228-9
https://doi.org/10.1016/j.compeleceng.2012.12.018
https://doi.org/10.1016/j.compeleceng.2012.12.018
https://doi.org/10.1016/j.jss.2016.12.009
https://doi.org/10.1016/0022-0531(92)90091-U

	A truthful dynamic combinatorial double auction model for cloud resource allocation
	Abstract 
	Introduction
	Motivation and contributions

	Related work
	Truthful Dynamic Combinatorial Double Auction (TDCDA) model
	Model construction
	Cloud service provider
	Cloud user
	Auctioneer

	Model assumptions
	Model analysis
	Winner determination
	Payment determination

	Auction properties
	Economic efficiency
	Incentive compatibility
	Budget-balance
	Individual rationality
	Computational efficiency

	Cloud resource allocation algorithm
	Cloud resource allocation algorithm

	Simulation results
	Social welfare analysis
	Resource allocation rate analysis
	Request success rate analysis
	Provider success rate analysis

	Conclusion
	Acknowledgements
	References


