
Sun et al. Journal of Cloud Computing (2023) 12:110
https://doi.org/10.1186/s13677-023-00480-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Recommend what to cache: a simple
self-supervised graph-based recommendation
framework for edge caching networks
Aijing Sun1, Guoqing Wang1* and Qi Han2

Abstract

Deep Learning-based edge caching networks can accurately infer what to cache based on a user’s historical content
requests, thereby significantly relieving the burden of the backbone networks. However, the cold-start problem inher-
ent in deep learning may limit the performance of history-based caching strategies. Due to the mobile and dynamic
nature of wireless networks, base stations often lack sufficient data to accurately estimate the user’s demands
and cache the possible requested data. In this context, we adopt self-supervised learning (SSL) into the caching strat-
egies and propose a Simple Self-supervised Graph-based Recommendation framework for edge caching networks
(SimSGR). Specifically, we propose two new network layers: the Mixing layer and the Conversion layer. The former
replaces the data augmentation of the SSL paradigm to avoid destroying the semantic loss, while the latter greatly
simplifies the loss function, which helps to lighten the model structure and facilitates deployment on edge caching
networks. Simulation results show that our model outperforms baseline algorithms that are sensitive to augmentation
hyper-parameters, particularly when trained in a cold-start environment.

Keywords Edge caching, Cold-start, Self-supervised, Graph-based recommendation

Introduction
The proliferation of modern mobile devices has led to a
plethora of applications, such as VR video, mobile gaming,
and so on [1]. Such applications demand low latency and
high bandwidth from data stores, usually hosted in cloud
data centers. However, the large transmission latency
incurred by the long distance between mobile users and
the cloud data center may significantly degrade the quality
of service on mobile devices [2]. To mitigate the impact of
distance, Mobile Edge Computing (MEC) has been pro-
posed and deployed to move contents’ proximity to the

network edge and proactively cache popular contents [3].
Compared with traditional centralized cloud computing,
MEC can greatly reduce access latency and load on back-
haul, core, and transit networks [4]. From the perspec-
tive of content caching, wireless edge caching can greatly
improve the efficiency of content delivery by deploying
storage and caching facilities at the network edge [5].

A closely related problem to be solved by edge cach-
ing is content placement, that is, determining what,
where, and when to cache [6]. Several cache strate-
gies, including Least Recently Used (LRU), Least Fre-
quently Used (LFU), and First In First Out (FIFO), were
proposed successively. Recently, with the continuous
increase of data size and types, many researchers have
proposed to introduce machine learning into the edge
network [7]. These learning strategies could accurately
predict the demand for data content by tracking and
leveraging the user’s history demand to recommend the
network what to cache. However, the recommendation

*Correspondence:
Guoqing Wang
wgq_rainbow@163.com
1 School of Communication and Information Engineering, Xi’an University
of Posts and Telecommunications, Xi’an 710121, China
2 ShenZhen ZET Technology & Service Company Limited, Shenzhen,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00480-0&domain=pdf

Page 2 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

system usually suffers from the cold-start problem in
the edge caching network. When a new user’s mobile
devices enter a new cell, the base stations have no suf-
ficient prior knowledge of the new user [6]. In this way,
it cannot obtain an accurate estimation of the demand
and cache the possible requested data.

Recently, a resurgence of Self-supervised learning (SSL)
has been witnessed in the recommendation system [8]. In
the SSL task, the supervision signals could be automati-
cally generated from the raw data instead of human-pro-
vided labels, which is a natural antidote to the cold-start
problem in the Edge caching network based on deep
learning [9]. More precisely, the existing graph-based SSL
recommendation (e.g., Self-supervised graph learning
[10]) typically performs stochastic augmentation, such as
random node/edge dropout, to perturb the raw user-item
bipartite graph to generate different views. Then the aug-
mented versions are fed into a shared encoder to learn
representations. The contrastive learning (CL) task, the
core paradigm of the SSL task, aims to maximize the con-
sistency of positives and push the semantics of negatives
apart. Significantly, the representations of the same node
(user/item) but learned from different views are regarded
as positives. On the contrary, the remaining nodes in one
batch are regarded as negatives. Finally, the main task of
recommendation and the CL task will be jointly training
to build effective representations.

Although SSL methods are effective, we argue that it
still has the following defects:

1) Arbitrary augmentations aggravate the cold-start
problem: The SSL paradigm based on augmentation

was first proposed in the computer vision domain.
As shown in Fig. 1 (a), an input image is augmented
to generate different views. Despite random crop-
ping and rotating them or disturbing their color,
the image’s inherent semantics can still be well pre-
served, and humans can recognize the changes [11].
Unlike data augmentation well defined in images,
the augmentations may behave arbitrarily on graphs.
For example, in Fig. 1 (b), randomly dropping nodes
or edges may change the semantics of graphs. More
specifically, whether Bob or the edge between Bob
and Movie1 is dropped, Movie1 will not be recom-
mended to Ruby. Moreover, the relationship between
Mike and Ruby will become distant, such random
node/edge dropping will separate the original graph
into many disconnected components and destroy the
mutual information between the augmented graphs
[9]. Therefore, the number of informative positives
that can be used for SSL will be reduced, thus aggra-
vating the cold-start problem.

2) The computationally expensive learning strategy: In
the classic SSL, the CL task usually plays the role of
regularization terms and are jointly trained with the
main task of the recommendation system. Although
the joint learning strategy is effective to some
extent, training for two tasks simultaneously is too
time-consuming and memory-cost, especially for
the edge caching network with limited computing
resources [12]. Considering that the downstream
task in most recommendation scenarios is fixed,
that is, predicting the possible behavior of users.
here we propose a new learning strategy in SimSGR

Fig. 1 a Augmentations on images preserve the inherent semantics. b Augmentations behave arbitrarily on user-item graphs

Page 3 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

which could unify the CL task and the main the
main task of the recommendation.

To solve the preceding limitations, we propose a
Simple Self-supervised Graph-based Recommendation
framework for edge caching network (SimSGR), where
the core is to modify the generation of positives based
on two layers: Mixing and Conversion.

A) Mixing: We still follow the paradigm of CL task
in the SSL, which is to maintain the invariance of
the representation by pulling in positives from two
views. However, positives are no longer generated
by randomly perturbing the topology of the original
graph. Instead, we use the original graph as one view
and mix another view, both of which no longer need
augmentations, thus avoiding the semantic change of
the graph caused by augmentation.

B) Conversion: Unlike the existing CL, which directly
pulls the positives together in the representation
space, we add the Conversion layer before calculat-
ing the loss function. In this layer, the predicted rat-
ing matrix is calculated based on the representation.
Thus, our positives are updated to the corresponding
elements in two matrices from two views. In this way,
the positives are transformed from the representation
space to the rating space, which is consistent with the
main task of the recommendation system. This sim-
ple step unifies the CL task and the main task of the
recommendation system.

The major contributions of this paper are summa-
rized as follows:

(1) We introduce SSL into edge caching networks to
alleviate the cold-start problem of caching strate-
gies.

(2) We further tailor a new SSL framework for edge
caching networks and propose a new model
SimSGR, based on the Mixing layer and the Con-
version layer. This model can generate highly relia-
ble positives and simplify the model structure, thus
saving the computing resources of the edge network
while improving the model performance.

(3) Extensive experiments demonstrate that our
SimSGR outperforms a wide range of state-of-art
methods, especially in the cold-start scenario.

Related work
SimSGR proposes two new network layers Mixing and
Conversion to reconstruct the positive pairs. The for-
mer is designed to replace the data augmentation on the

graph, and the latter is used to modify the criterion of
CL. Therefore, we first introduce the existing augmenta-
tion methods on the graph in SSL, then discuss the differ-
ent designs of the loss function in CL and conclude some
typical SSL-based recommendations.

Augmentations on graphs
While intuitive augmentations are well defined on images
and texts, they may behave arbitrarily on graphs due to
their discrete, non-euclidean nature [13] As a conse-
quence, augmentations for graphs are less explored. DGI
[14] first proposes to augment the input graph via shuf-
fling node features. MVGRL [15] adopt the graph dif-
fusion kernels to generate two augmented views of the
original graph. GCC [16] proposes to create multi-views
of a graph via sampling subgraphs. GRACE [17] ran-
domly drops edges and masks features to augment the
input. Following GRACE, GraphCL [18] designs four
graph augmentations types by injecting different priors
and demonstrates the effects of various combinations of
data augmentations on different datasets. Different from
the methods mentioned above adopting random data
augmentation schemes to construct positives, GCA [19]
designs a new augmentation scheme according to the
node centrality to corporate more priors for topological
and semantic information of the graph.

However, due to the natural complexity of graphs, the
mentioned SSL-based model highly depends on the data
augmentation scheme [11], and [18] has shown that there
is no universally outperforming data augmentation scheme
for graphs. AFGRL [11] first proposes to generate posi-
tive pairs based on the local structural information and
the global semantics of graphs instead of data augmenta-
tion, where the structure of the original graph will not be
destroyed, thus preserving the semantics. Simultaneously,
SimGCL [9] discards the augmentation and creates con-
trastive positives by adding uniform noises to the embed-
ding space. Our SimSGR is mainly inspired by AFGRL, but
we modify the details according to the characteristics of
the recommendation and remove the clustering strategy in
AFGRL, which is redundant for our model.

Loss function in contrastive learning
The main principle of designing the loss function in the
CL task is to keep the invariance between the two aug-
mented views while avoiding the model’s collapse. A typi-
cal loss function InfoNCE aims to pull positive samples
together and push negative samples apart. In this way,
different definitions of negative samples appear in vari-
ous methods. SimCLR [20] regards all other samples in
one batch as negatives, while MOCO [21] requires an
additional memory bank to store negative samples. While

Page 4 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

these methods yield good performance, they require a lot
of extra storage space.

Instead of avoiding the model’s collapse by pushing
away the negatives, BYOL [22] has indicated that col-
lapse can be avoided by using architectural tricks with-
out negative sampling. Barlow Twins [11] proposes a loss
term to disentangle the embedding variables to maximize
the information stored by the embeddings. VICReg [23]
introduces two regularization terms, variance and covari-
ance, successfully avoiding dimension collapse.

Inspired by Barlow Twins and VICReg, we introduce
covariance regularization to avoid collapse. More impor-
tantly, we design a new layer Conversion where the con-
trastive positives are converted from embedding space
into rating space, thus, unifying the CL task and the
main task of the recommendation system. In this way,
there is no need for negative sampling or joint learning.

SSL‑based recommendation
Recently, a wave of researchers attempted to introduce
SSL into the recommendation system to alleviate the
issue of data sparsity in the recommendation system and
have achieved promising results. Sˆ 3-Rec [24] randomly
masks the item features to create sequence augmenta-
tions. Inspired by SimCLR [20], SGL [10] introduces the
InfoNCE loss function into recommendations and aug-
ments the original user-item bipartite graph via node/
edge dropout and random walk. SEPT [25] attempts to
use semi-supervised learning to generate more posi-
tives for the social recommendation. CL4Rec [26] reor-
ders and crops item sequences to augment the input for
sequential data augmentation. CoSeRec [27] proposes
two informative augmentations named ‘substitute’ and
‘insert’ to create more informative positives according to
the item correlations. A sea of studies have proved that
introducing SSL into the recommendation system is con-
ducive to improving performance and solving the exist-
ing issues in the recommendation system. However, the
mentioned methods all create contrastive positives by
data augmentation, which will cause semantic loss. Fur-
thermore, the SSL task is often regarded as an auxiliary
task and is jointly trained with the main task of the rec-
ommendation, which is both time-consuming and mem-
ory-cost. To solve the above problems, we propose a new
SSL scheme tailored to the characteristics of graph-based
recommendation by reconstructing the contrastive posi-
tives. The Details will be given in chapter 3.

Methods
In this section, by reconstructing positives based on
Mixing and Conversion, we propose a simple but effec-
tive self-supervised graph-based recommendation

framework without data augmentation, joint-learning,
or even negative sampling. We will elaborate on how
to modify the definition of positives and the benefits
of this definition. The overall Framework of SimSGR is
shown in Fig. 2.

Preliminaries
In the graph-based recommendation system, let
G = (V , ε) denote a graph, where the node set V = U ∪ I
involves all users and items, and the edge set ε ∈ O+
represents the history interactions. G is associated
with a feature matrix X ∈ R

(n+m)×d and an adjacency
matrix A ∈ R

(n+m)×(n+m) where Ai,j = 1 if (vi, vj) ∈ ε
and Ai,j = 0 otherwise, n is the number of users, m is the
number of items and d is the embedding size.

Unlike the existing models where the representations
of users (items) are encoded from the augmented graphs,
we directly encode the original graph without any aug-
mentation. Specifically, the adjacency matrix A and the
feature matrix X of the original graph are fed into the
encoder to compute the representation. Here we use the
state-of-art graph-based encoder LightGCN [28]:

whose i-th rows, zi is the representation of node i . We
use the representation Z encoded by the original graph as
one view and then mix another view.

Mixing layer
In this section, we focus on how to generate the represen-
tation of the other view Z′ based on the representation
Z . It mainly consists of two steps: selecting positives and
mixing positives.

Selecting positives
Considering the inherent relational inductive bias in
the graph structure, for each target node i ∈ V , its adja-
cent nodes tend to have the same semantics as the tar-
get node. Consequently, we first randomly samples Kpos
nodes from the neighboring nodes to construct the initial
positive samples Ai.

To further validate the effectiveness of Ai , we conduct
the following experiments on the Cora dataset. For each
node i in the Cora dataset, we calculate the proportion
ri of nodes in Ai that belong to the same class as the tar-
get node i . The average of all ri constitute the final result,
where the hyper-parameters Kpos is set to {4, 8, 16, 32, 64} .
As shown in Fig. 3, only 70% of the nodes in Ai belong
to the same class as the target node, which indicates the
unfiltered Ai contains noise nodes of about 30%, namely
“false” positives that are semantically contrary to the
target node and will lead to poor performance when
regarded as positives.

(1)Z = LightGCN (X ,A),

Page 5 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

Therefore, to filter out “false” positives in the neigh-
boring nodes, following [11], we then compute the
cosine similarity between all other nodes in the graph
as follows:

Given the similarity information, we denote the top
Kpos nodes with the greatest similarity in the neighboring
nodes by the final positive sample set Pi . For each node
i , when the number of its neighboring nodes Ai < Kpos ,
we expand the size of the positives equal to Kpos on pad-
ding. The Fig. 3 shows that the ratio of Pi is much higher
than that of Ai , which is basically stable at around 90%.
This indicates that screening the initial positive samples
based on similarity can help the Mixing layer filter out
noise and improve the performance of the model.

(2)sim(vi, vj) =
zi · zj

�zi� zj
, ∀vi ∈ V .

Mixing positives
Given the positive sample set Pi , the core lies in the
aggregation layer for mixing positive representations. The
aggregated representation can be obtained as follows:

where z′i is the final representation serves as the posi-
tive of the target node i , zk ∈ R

d×1 is the d-dimensional
representation of nodes in the positive sample set Pi ,
αk denote the weight of the aggregation, Ik denotes the
mask indices during padding, where Ik = 0 indicates
a padding token; otherwise Ik = 1 . The Calculation
of αk will change with different aggregation methods.
Here we adopt three common aggregation strategies,
including average-pooling, self-attention, and target-
attention [29]:

(3)z′i =
∑

k∈Pi
Ik · αkzk ,

Fig. 2 The overall framework of SimSGR. Following the scheme of CL, one view of the contrastive positive pair Z is encoded from the original graph
G , and the other Z ′ is generated from the Mixing layer by mixing both the neighboring nodes and similar nodes. The two contrastive views are then
converted into the rating matrices R and R′ in the Conversion layer, SimSGR aims to maintain the invariance of R and R′ , and the covariance criterion
is used to prevent the model from collapsing

Page 6 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

where average pooling treats all alike to average all node
representations in Pi . Although it is simple and direct,
it does not consider the relative importance of different
nodes in Pi and the relationship with the target nodes
zi . According to the attention mechanism, q ∈ R

d×1 is a
learnable query vector for self-attention and zi ∈ R

d×1
is the target-specific query vector for target node i in
target-attention. W1,W2 ∈ R

d×d and b1, b2 ∈ R
d×1 are

learnable parameters.
The above three aggregation methods are widely used

in the embedding aggregation related to deep learning,
and their performance also changes with different net-
works and datasets.

Conversion layer
After aggregation, we finally get a pair of positive
representations Z = [zu1, ..., zun]||Z = [zi1, ..., zin] and
Z′ = [z′u1, ..., z

′
un]||Z

′ = [z′i1, ..., z
′
in] . During self-super-

vised training, most existing loss functions aim to
push the positive pair of nodes close to each other in

(4)αk =

Ik
�

k∈pi
Ik

average - pooling,

Ik ·exp(q
T tanh(W1zk+b1))

�

j∈pi
Ik ·exp(q

T tanh(W1zj+b1))
self - attention,

Ik ·exp(z
T
i tanh(W2×zk+b2))

�

j∈pi
Ik ·exp(z

T
i tanh(W2×zj+b2))

target - attention,

representation space. However, in the main task of the
recommendation, our goal is to make the score pre-
dicted from the model based on the historical interac-
tion between users and items consistent with the real
score. The commonly used loss functions include cross-
entropy loss, mean squared error loss, and Bayesian
Personalized Ranking (BPR) loss. Taking BPR loss as
an example, which aims to improve the accuracy of the
recommendation model by maximizing the score dif-
ference between rated and unrated items:

where D is the training set, (u, i, j) is a triplet where u rep-
resents the user, i represents the rated item, and j rep-
resents the unrated item. rui represents the predicted
score of user u for item i , while ruj represents the pre-
dicted score of user u for item j . σ is the sigmoid func-
tion and � is the regularization term that prevents the
model from overfitting. Finally, θ represents all model
parameters. The optimization direction of BPR is to pull
the predicted score and the real score together in the
rating space, which is different from the optimization
direction of SSL task. Therefore, existing SSL-based rec-
ommendations usually jointly optimize the main task of

(5)LBPR = −
∑

(u,i,j)∈D

ln σ(rui − ruj)+ ����2,

Fig. 3 The ratio of its neighboring nodes being the same label as the target node across different Kpos

Page 7 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

recommendation and SSL task. Considering the com-
plexity of joint learning, we propose a new learning strat-
egy which could unify the SSL task and the main task of
the recommendation.

We first separate Z and Z′ into Z = Zu�Z i and
Z′ = Z′

u

∥

∥Z′
i according to the index of users and items,

where || represents the separation operation. We then
calculate the predictive rating matrix:

where R ∈ R
n×n,R′ ∈ R

n×n , n is the size of one batch.
Following the core idea of pulling two positive samples
together in CL, the loss function can be given by [30]:

where s(R,R′) named invariance encourages the scores
predicted by two views close to each other, rk ,j and r′k ,j
represent the elements of row k and column j in matrix R
and R′ respectively.

Furthermore, if we only consider pulling in positives,
the model is easy to collapse, which means that all
embeddings shrink to a constant value [13]. To prevent
collapse with all the input converge to a trivial solution,
we first calculate the covariance matrix C(Z) as

where Z is a normalized matrix. Inspired by Barlow
Twins [13] and VICReg [23], whose core idea is to dis-
entangle the representation and reduce the correlation
between dimensions, so that prevent them from holding
the same information. Therefore, we define the covari-
ance criterion c as:

this term named covariance calculate the sum of the
squared off-diagonal coefficients of C(Z) and encourages
the off-diagonal coefficients of C(Z) equals to zero.

Based on (7, 8, 9), we propose a new IC (Invariance
Covariance) loss that consists of the weighted sum of
invariance and covariance:

where � is a hyper-parameter indicating the weight of the
covariance criterion.

Complexity
In this section, we will analyze the time complexity of
SimSGR and compare it with that of LightGCN and its

(6)R = Zu(Zi)
T ,R′ = Z′

u(Z
′
i)
T ,

(7)s(R,R′) =
1

n× n

∑

k

∑

j

∥

∥

∥
rk ,j − r′k ,j

∥

∥

∥

2
,

(8)C(Z) = (Z − Z)T (Z − Z),

(9)c(Z) =
1

d

∑

k �=j

[C(Z)]2k ,j ,

(10)L(Z,Z′) = s(R,R′)+ �[c(Z)+ c(Z′)],

graph-augmentation based counterpart, SGL. We will
focus on batch time complexity since the in-batch nega-
tive sampling is a widely used technique contrastive
learning. Let |E| be the edge number in the graph, d rep-
resent the embedding size, B denote the batch size, M
represent the number of nodes in a batch, and ρ denote
the edge keep rate in SGL. We can derive: (Table 1)

For LightGCN and SimSGR, no graph augmentations
are required. Therefore, they only need to normalize the
original adjacency matrix, which has 2|E| non-zero ele-
ments. On the contrary, SGL requires two graph augmen-
tations, each has 2ρ|E| non-zero elements. In the graph
convolution stage, SGL employes a three-encoder archi-
tecture to learn augmented node representations. As a
result, the time cost of SGL is almost three times that of
LightGCN and SimSGR. In terms of recommendation
loss, both LightGCN and SGL require joint-learning strat-
egies, resulting in an additional complexity O(2Bd) com-
pared to SimSGR. When calculating the CL loss, SGL
incurs computation costs of O(Bd) and O(BMd) for the
positive/negative samples, respectively, because each node
only considers itself as the positive, while the other nodes
all are negatives. In contrast, by computing the covari-
ance matrix C(Z) ∈ Rd×d , negative sampling is avoided in
SimSGR, resulting in a lower complexity of O(Bd + Bd2).

Comparing SimSGR with SGL, it is clear that SimSGR
theoretically spends less time on all components. This
is mainly due to the Mixing and Conversion layers pro-
posed in this paper. These layers greatly simplify the
framework of self-supervised recommendation networks,
making them more suitable for edge caching networks
with resource limitations.

The overall framework
In summary, SimSGR is derived from the traditional SSL
paradigm and tailored for the characteristics of edge
caching networks. The core of SimSGR is to reconstruct
positives based on two layers: Mixing and Conversion.
Specifically, in the Mixing layer, we discover each node’s
most similar nodes based on graph structure and seman-
tic similarity, and then mix them as another view of this
node. In this setting, data augmentation is no longer
needed, preserving the semantics in the original graph
and generating more reliable positives to fundamentally

Table 1 The comparison of time complexity

Component LightGCN SGL SimSGR

Adjacency Matrix O(2|E|) O(2|E| + 4ρ|E|) O(2|E|)

Graph Convolution O(2|E|Ld) O((2+ 4ρ)|E|Ld) O(2|E|Ld)

 BPR Loss O(2Bd) O(2Bd) -

 CL Loss - O(Bd + BMd) O(Bd + Bd2)

Page 8 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

solve the cold-start problem. In addition, in the Conver-
sion layer, unlike other methods that treat the represen-
tation from two views as positives, we directly calculate
the prediction score matrix under the two views. The
CL task changes to maximize the consistency of the two
matrices, unifying the CL task and the main task of the
recommendation. Thus, SimSGR can achieve model per-
formance comparable to joint-learning even when only
training on self-supervised tasks. Finally, we disentangle
the representation and reduce the correlation between
dimensions, ensuring that the trained representations
do not collapse even without negative sampling. These
improvements simplify SimSGR’s structure compared to
traditional deep learning model, making it more suitable
for edge caching networks with limited resources.

Results and discussion
Experiment settings
Datasets
We evaluate the performance of SimSGR on three popu-
lar benchmark datasets, including Douban-book, Mov-
ieLens-1 M and Yelp2018, for which the statistics are
shown in Table 2. Following the convention in [25] to
convert the explicit ratings with a 1–5 rating scale in
Douban-book into implicit ratings, we leave out the rat-
ings less than 4 and set the rest at 1. MovieLens-1 M is
a popular movie dataset where each record represents
the user’s rating of the film. We use the processed ver-
sion downloaded from the Recbole library [30]. Moreo-
ver, Yelp2018 was collected from Yelp.com, a subset of
the businesses, reviews, and user data. To keep a com-
parison fair, we directly use the same ‘10-core’ version
as [28]. These datasets are split into three parts (training
set, validation set, and test set) with a ratio of 8:1:1. Two
standard metrics: Recall@K and NDCG@K are used and
we set K = 20.

Baselines
We consider the following representative baseline meth-
ods of three groups and their variants to compare with
SimSGR:

a) Supervised models: NGCF [31] first proposed the
GNN-based recommendation; LightGCN [28], which
discards feature transformation and nonlinear activa-

tion in NGCF, achieves better results in lighter struc-
tures and has become the state-of-art baseline.

b) Self-supervised models with augmentations: SGL [10]
is a typical model that adopts SSL to the recommen-
dation. Here we use its three variants which repre-
sent three different ways of data augmentation: node
dropout (SGL-ND), edge dropout (SGL-ND), and
random walk (SGL-RW).

c) Self-supervised models without augmentations:
Unlike group b, all methods in group c generate
positives by perturbing the output of the backbone
instead of augmenting the input graph. SelfCF [32]
first proposed three perturb methods: historical
embedding perturbation (SelfCF-HE), embedding
dropout (SelfCf-ED), edge pruning (SelfCF-EP);
AFGRL [11] discovers positives by considering the
local structural information and the global semantics
of graphs; Moreover, to regulate the uniformity of the
representation distribution, SimGCL [9] adds ran-
dom noises to the representation to generate posi-
tives for contrast.

Implementation details
We use the code provided by the author for SGL, Self-
CF, AFGRL, and SimGCL and implement NGCF and
LightGCN based on the Recbole library [30]. For a fair
comparison, we directly refer to the best hyper-parame-
ter settings recorded in the original papers of the base-
lines and then fine-tune all the hypermeters with the grid
search. The values for each hyper-parameter are shown
in Table 3. We adopt early-stopping if the performance
does not improve within ten rounds in the validation set
and record the results on the test set.

Overall performance
In this section, we evaluate and compare our SimSGR
with the other baselines mentioned in chapter 4.1.2 on 3
real-world datasets. The hyper-parameters Kpos, �,µ are
set to [8, 1, 0.1] on MovieLens-1 M and [4, 1, 0.1] on Dou-
ban-Book and Yelp2018. We bold the best performance

Table 2 Statistics of the experimented data

Dataset User Item Interaction Density

Douban-book 13024 22347 792062 0.0027

MovieLens-1M 6040 3952 1000209 0.0419

Yelp-2018 31668 38048 1561406 0.0013

Table 3 Values of hyper-parameters

Hyper‑parameter Value

Embedding size 64

 Batch size 4096

 Optimizer Adam

Learning rate 0.001

 Kpos {4, 8, 16, 32}

 � [0.1, 0.9]

Page 9 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

and underline the second-best. Besides, the improve-
ments are calculated based on LightGCN. According to
Table 4, we can draw the following conclusions:

1) Our SimSGR outperforms all baselines with a
vast improvement, proving that the framework
designed in our paper is conducive to improv-
ing the performance of the recommendation. The
improvement is mainly due to the reconstruction
of the positives: 1) Mixing instead of Augmenting,
which will not destroy the original graph’s seman-
tics; 2) We convert the loss criteria from the repre-
sentation space to the rating space, which leads to
the unification of the SSL task and the main task of
the recommendation.

2) Almost all SSL-based models outperform super-
vised models, especially on sparse datasets,
which indicates that the recommendation sys-
tem benefits from SSL strategies. When on the
recall, SimSGR can remarkably improve Light-
GCN by 36.78% in Douban-Book, 8.00% in Mov-
ieLens-1 M, and 16.30% in Yelp2018. The SSL task
helps the recommendation expand the range of
input data and provide more positives and nega-
tives for learning representations invariant to the
interference factors, thus increasing the model’s
generality.

3) Self-supervised models without augmentations can
achieve or even exceed the performance of self-
supervised models with augmentations. SelfCF-HE,
AFGRL, and our model SimSGR outperform SGL
in most cases, demonstrating that generating cred-
ible positive pair is the main driving force of the per-
formance improvement, while graph augmentations
are just a way to produce positives, which can be
replaced or removed.

The impact of each structure of SimSGR
The core of SimSGR is to reconstruct positives based on
two layers, Mixing and Conversion. To verify the advan-
tages of each component of SimSGR, we conduct abla-
tion studies on three datasets.

The performance of mixing layer
In the mixing layer, for each target node, we construct the
initial positive set based on its neighboring nodes and then
filter out "false" positives according to representation similar-
ity to generate the final positive set, which is recorded as KP .
Here we calculate two degenerate positive sets KN and KS for
further studies, where KN represents the positive set based
only on neighboring nodes, and KS represents the positive
set based only on the node similarity in the representation
space. Next, we combine the preceding three positive sets
with the three aggregation methods mentioned in Sect. "Mix-
ing Layer" in pairs and Fig. 4. shows the performance after
the combination of three datasets on average-pooling (Avg),
self-attention (Self), and target-attention (Target). The perfor-
mance improves with color deepening. We observe that:

1) Compared with combinations containing KN and
KS , the combination containing KP achieves the best
performance of all three datasets, which proves that
considering both the inductive bias of the graph and
the similarity of representation is beneficial for gen-
erating positives with high reliability, thus leading to
better performance;
2) In the combination containing KP , Avg achieves
the best performance compared with the other two
aggregations. However, when the positive set become
KN or KS , there is no obvious advantage among the
three aggregations, which indicates that the aggrega-
tion method needs to be fine-tuned according to dif-
ferent scenarios.

Table 4 Performance comparisons of different methods

Dataset Douban‑Book MovieLens‑1M Yelp2018

Method recall ndcg recall ndcg recall ndcg

NGCF 0.1380(-0.86%) 0.1165(-1.93%) 0.0812(-0.31%) 0.1587(-0.99%) 0.0612(-4.07%) 0.0502(-3.46%)

LightGCN 0.1392 0.1188 0.0838 0.1603 0.0638 0.0520

SGL-ND 0.1626(+16.81%) 0.1450(+22.05%) 0.0856(+2.15%) 0.1667(+3.99%) 0.0643(+0.78%) 0.0526(+1.15%)

SGL-ED 0.1732(+24.43%) 0.1549(+30.39%) 0.0864(+3.10%) 0.1656(+3.31%) 0.0675(+5.79%) 0.0555(+6.73%)

SGL-RW 0.1731(+24.35%) 0.1545(+30.05%) 0.0852(+1.67%) 0.1645(+2.62%) 0.0667(+4.54%) 0.0547(+5.19%)

SelfCF-HE 0.1742(+25.14%) 0.1569(+32.07%) 0.0889(+6.09%) 0.1684(+5.05%) 0.0661(+3.61%) 0.0542(+4.23%)

SelfCF-ED 0.1401(+0.65%) 0.1223(+2.95%) 0.0833(-0.60%) 0.1610(+0.44%) 0.0639(+0.16%) 0.0521(+0.19%)

SelfCF-EP 0.1365(-1.94%) 0.1152(-3.03%) 0.0729(-13.01%) 0.1492(-6.92%) 0.0640(+0.31%) 0.0531(+2.12%)

AFGRL 0.1654(+18.82%) 0.1254(+20.29%) 0.0869(+3.70%) 0.1632(+1.81%) 0.0702(+10.03%) 0.0553(+6.35 %)

SimGCL 0.1770(+27.16%) 0.1582(+33.16%) 0.0887(+5.85%) 0.1695(+5.74%) 0.0721(+13.01%) 0.0596(+14.62%)

SimSGR 0.1904(+36.78%) 0.1624(+36.70%) 0.0905(+8.00%) 0.1701(+6.11%) 0.0742(+16.30%) 0.0602(+15.77%)

Page 10 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

The performance of conversion layer
Given the positive pair Z and Z′ , we first convert them
into the corresponding rating matrix. Meanwhile, the IC
loss is designed to maintain the consistency of the corre-
sponding terms in the rating matrix. To verify the effec-
tiveness of the conversion layer, we modify the invariance
term of IC loss as IC-variants (IC_V):

We directly pull the positives in representation space,
which is consistent with the traditional CL task. For a
more comprehensive comparison, we introduce two
other classic self-supervised loss functions: InfoNCE (IN)

(11)s(Z,Z′) =
1

n

∑

i

∥

∥zi − z′i
∥

∥

2

2
.

[5] and Barlow Twins (BT) [11]. Finally, we adopt the loss
functions above (including IC) to optimize our model
under the training settings of CL-only and joint learning
separately. The Comparison is shown in Fig. 5:

1) Whether jointly optimizing the CL task and the
main task of the recommendation or only optimiz-
ing the CL task, Our IC outperforms the others,
which proves that the loss function in this paper
is beneficial to improving the performance of the
recommendation.

2) In the setting of only training the CL task, our IC out-
performs others in a wide range, mainly due to the
conversion layer that projects the positives of repre-

Fig. 4 The performance of SimSGR with varied combinations of positive sets and aggregation methods

Fig. 5 The performance of SimSGR with different loss functions

Page 11 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

sentation space into the rating space, unifying the CL
task and the main task of recommendation system.
At this time, the training no longer depends on the
main task of the recommendation, which improves
the performance and simplifies the framework.

3) Adopting the joint learning scheme has no obvious
improvement for IC. We argue that this is mainly
because IC has covered the main task of the rec-
ommendation system and the extra training term is
redundant.

The performance in cold‑start environments
SSL can effectively alleviate the data sparseness problem
called cold-start in recommendation due to the ability to
generate supervisory signals through the data itself. We
conduct the following experiments to verify the effect of
SimSGR on the cold-start problem.

In order to simulate the real cold-start scenario, for
each user, inspired by [33], we filter the N items that have
recently interacted with through the timestamp, where
N is the threshold that determines the cold-start degree
of the recommendation. Figure 6 shows the performance
of various models on N = 5 (Cold-5), N = 10 (Cold-
10), and the raw dataset (Raw, note that the number of
interactions per user in the Raw may exceed 10, while the
number of interactions per user in the cold-10 fix to 10).

Across the Raw, Cold-10, and Cold-5 settings, Light-
GCN achieved recall values of 0.1492, 0.1221, and
0.1021. SGL-ED and SimGCL achieved Recall values

of 0.1732, 0.1646, and 0.1523, and 0.1770, 0.1721, and
0.1669, respectively. Meanwhile, the recall values of
SimSGR are 0.1951, 0.1906, and 0.1867. As the degree of
cold start deepens, LightGCN’s performance decreased
by 18.12% and 16.56%, while SGL-ED’s performance
declined by 5.00% and 7.51%, and SimGCL’s perfor-
mance decreased by 2.75% and 3.02%, respectively.
SimSGR also exhibited a decline in performance of
2.44% and 2.05%, respectively.

In conclusion, the performance of the three methods
SGL, SimGCL, and SimSGR introduced SSL strategy
has sightly declined on three datasets, but the overall
performance maintains stable compared to LightGCN.
We argue that since the supervision signal of LightGCN
merely comes from the historical interaction, it is more
susceptible to data sparseness.

In all cold-start scenarios, SimSGR consistently out-
performs others. We argue that the Mixing and Conver-
sion mechanisms are the determining factors of SimSGR,
which make it possible to generate vast credible positive
pairs without relying on real labels.

The impact of the hyperparameter
This section explores the effects of hyperparameters Kpos
in SimSGR, which controls the size of the final positive
set before mixing. We vary Kpos in {4, 8, 16, 32}.

The results in Fig. 7 indicates that SimSGR achieves
the best performance when Kpos = 4 in Douban-Book
and Yelp2018. Meanwhile, the model performs best
when Kpos = 8 in MovieLens-1 M. This difference may
be attributed to the high density of the MovieLens-1 M

Fig. 6 The performance of SimSGR over the different cold-start degree

Page 12 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

compared to the other two datasets, thus, more prior
information can be obtained when the candidate positive
samples increase. It is worth noting that, no matter on
which dataset, the performance is relatively stable over
varied Kpos , which verifies that our model is not sensitive
to hyper-parameters and can be easily tuned.

Conclusion
In this paper, we adopted SSL into caching strategies
and proposed a simple self-supervised graph-based rec-
ommendation framework for edge caching networks.
Instead of randomly generating two augmented views
from the user-item graph and directly regarding their
corresponding representation as positives, SimSGR
reconstructs positives through two layers: the Mixing
layer and the Conversion layer. In the Mixing layer, we
mixed the candidate nodes selected based on represen-
tation similarity and the topology of the graph to gener-
ate credible positive pairs. In the Conversion layer, we
calculated the prediction score matrix, which converts
positives into corresponding elements in the two rating
matrices, leading to the unification of the SSL task and
the main task of the recommendation system. These
modifications simplify the model structure and make it
more suitable for edge caching networks with resource
limitations. Comprehensive experiments have been con-
ducted on various real-world datasets, demonstrating
that our SimSGR consistently outperforms existing state-
of-art methods, especially in cold-start environments.

Authors’ contributions
Sun Aijing provided the research direction and innovation points of this paper,
Wang Guoqing was mainly responsible for algorithm implementation and
code writing, Qi Han mainly provided hardware support and English polishing
and all authors participated in the manuscript writing.

Funding
We would like to thank the anonymous reviewers for their valuable com-
ments. The publication of the article is supported by the Natural Science
Foundation of China under Grant 61901367.

Availability of data and materials
The datasets are available online. The URL is as follows:
Douban-Book: https:// github. com/ libra hu/ HIN- Datas ets- for- Recom menda
tion- and- Netwo rk- Embed ding;
MovieLens-1 M: https:// github. com/ RUCAI Box/ RecSy sData sets/ tree/ master/
datas et_ info/ Movie Lens;
Yelp2018: https:// github. com/ gusye 1234/ Light GCN- PyTor ch/ tree/ master/
data/ yelp2 018.

Declarations

Ethics approval and consent to participate
This declaration is not applicable.

Competing interests
The authors declare no competing interests.

Received: 17 February 2023 Accepted: 1 July 2023

References
 1. Du J, Yu FR, Lu G, Wang J, Jiang J, Chu X (2020) MEC-assisted

immersive VR video streaming over terahertz wireless networks: a
deep reinforcement learning approach. IEEE Internet of Things J
7(10):9517–9529

 2. Shuja J, Bilal K, Alasmary W, Sinky H, Alanazi E (2021) Applying machine
learning techniques for caching in next-generation edge networks: a
comprehensive survey. J Netw Comput Appl 181:103005

 3. Mao S, Liu L, Zhang N, Dong M, Zhao J, Wu J, Leung VC (2022) Recon-
figurable intelligent surface-assisted secure mobile edge computing
networks. IEEE Trans Veh Technol 71:6647–60

 4. Du J, Cheng W, Guangyue Lu, Cao H, Chu X, Zhang Z, Wang J (2021)
Resource pricing and allocation in MEC enabled blockchain systems:
an A3C deep reinforcement learning approach. IEEE Trans Netw Sci Eng
9(1):33–44

 5. Wei X, Liu J, Wang Y, Tang C, Yongyang Hu (2021) Wireless edge caching
based on content similarity in dynamic environments. J Syst Architect
115:102000

Fig. 7 The performance of SimSGR with varied values of Kpos

https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
https://github.com/RUCAIBox/RecSysDatasets/tree/master/dataset_info/MovieLens
https://github.com/RUCAIBox/RecSysDatasets/tree/master/dataset_info/MovieLens
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018

Page 13 of 13Sun et al. Journal of Cloud Computing (2023) 12:110

 6. Chang Z, Lei L, Zhou Z, Mao S, Ristaniemi T (2018) Learn to cache:
machine learning for network edge caching in the big data era. IEEE Wirel
Commun 25(3):28–35

 7. Feng J, Liu L, Pei Q, Li K (2021) Min-max cost optimization for efficient
hierarchical federated learning in wireless edge networks. IEEE Trans
Parallel Distrib Syst 33(11):2687–2700

 8. Hao B, Zhang J, Yin H et al (2021) Pre-training graph neural networks for
cold-start users and items representation. Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. pp 265–273

 9. Yu J, Yin H, Xia X, et al (2022) Are Graph Augmentations Necessary?
Simple Graph Contrastive Learning for Recommendation. arXiv preprint
arXiv:2112.08679

 10. Wu J, Wang X, Feng F et al (2021) Self-supervised graph learning for rec-
ommendation. Proceedings of the 44th international ACM SIGIR confer-
ence on research and development in information retrieval. pp 726–735

 11. Lee N, Lee J, Park C (2021) Augmentation-free self-supervised learning on
graphs. arXiv preprint arXiv:2112.02472

 12. Feng J, Zhang W, Pei Q, Jinsong Wu, Lin X (2022) Heterogeneous com-
putation and resource allocation for wireless powered federated edge
learning systems. IEEE Trans Commun 70(5):3220–3233

 13. Zbontar J, Jing L, Misra I, et al (2021) Barlow twins: Self-supervised learn-
ing via redundancy reduction[C]//International Conference on Machine
Learning. PMLR: 12310–12320

 14. Velickovic P, Fedus W, Hamilton WL et al (2019) Deep Graph Infomax. ICLR
(Poster) 2(3):4

 15. Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation
learning on graphs[C]//International Conference on Machine Learning.
PMLR: 4116–4126

 16. Qiu J, Chen Q, Dong Y et al (2020) Gcc: Graph contrastive coding for
graph neural network pre-training. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp
1150–1160

 17. Zhu Y, Xu Y, Yu F, et al (2020) Deep graph contrastive representation learn-
ing. arXiv preprint arXiv:2006.04131

 18. You Y, Chen T, Sui Y et al (2020) Graph contrastive learning with augmen-
tations. Adv Neural Inf Process Syst 33:5812–5823

 19. Zhu Y, Xu Y, Yu F et al (2021) Graph contrastive learning with adaptive
augmentation. Proceedings of the Web Conference 2021. pp 2069–2080

 20. Chen T, Kornblith S, Norouzi M, et al (2020) A simple framework for con-
trastive learning of visual representations[C]//International conference on
machine learning. PMLR: 1597–1607

 21. He K, Fan H, Wu Y et al (2020) Momentum contrast for unsupervised
visual representation learning. Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp 9729–9738

 22. Grill JB, Strub F, Altché F et al (2020) Bootstrap your own latent-a new
approach to self-supervised learning. Adv Neural Inf Process Syst
33:21271–21284

 23. Bardes A, Ponce J, LeCun Y (2021) Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. arXiv preprint arXiv:2105.04906

 24. Zhou K, Wang H, Zhao WX et al (2020) S3-rec: Self-supervised learning
for sequential recommendation with mutual information maximization.
Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. pp 1893–1902

 25. Yu J, Yin H, Gao M et al (2021) Socially-aware self-supervised tri-training
for recommendation. Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. pp 2084–2092

 26. Xie X, Sun F, Liu Z, et al (2020) Contrastive learning for sequential recom-
mendation. arXiv preprint arXiv:2010.14395

 27. Liu Z, Chen Y, Li J, et al (2021) Contrastive self-supervised sequential rec-
ommendation with robust augmentation. arXiv preprint arXiv:2108.06479

 28. He X, Deng K, Wang X et al (2020) Lightgcn: Simplifying and powering
graph convolution network for recommendation. Proceedings of the
43rd International ACM SIGIR conference on research and development
in Information Retrieval. pp 639–648

 29. Mao K, Zhu J, Wang J et al (2021) SimpleX: A Simple and Strong Baseline
for Collaborative Filtering. Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. pp 1243–1252

 30. Zhao WX, Mu S, Hou Y et al (2021) Recbole: Towards a unified, com-
prehensive and efficient framework for recommendation algorithms.
Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. pp 4653–4664

 31. Wang X, He X, Wang M et al (2019) Neural graph collaborative filtering.
Proceedings of the 42nd international ACM SIGIR conference on Research
and development in Information Retrieval. pp 165–174

 32. Zhou X, Sun A, Liu Y, et al (2021) SelfCF: A Simple Framework for Self-
supervised Collaborative Filtering. arXiv preprint arXiv:2107.03019, vvvv

 33. Zhang Y, Shi Z, Zuo W, et al (2020) Joint Personalized Markov Chains with
social network embedding for cold-start recommendation[J]. Neurocom-
puting 386:208–220

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Recommend what to cache: a simple self-supervised graph-based recommendation framework for edge caching networks
	Abstract
	Introduction
	Related work
	Augmentations on graphs
	Loss function in contrastive learning
	SSL-based recommendation

	Methods
	Preliminaries
	Mixing layer
	Selecting positives
	Mixing positives

	Conversion layer
	Complexity
	The overall framework

	Results and discussion
	Experiment settings
	Datasets
	Baselines
	Implementation details

	Overall performance
	The impact of each structure of SimSGR
	The performance of mixing layer
	The performance of conversion layer

	The performance in cold-start environments
	The impact of the hyperparameter

	Conclusion
	References

