
Sun et al. Journal of Cloud Computing          (2023) 12:110  
https://doi.org/10.1186/s13677-023-00480-0

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Recommend what to cache: a simple 
self-supervised graph-based recommendation 
framework for edge caching networks
Aijing Sun1, Guoqing Wang1* and Qi Han2 

Abstract 

Deep Learning-based edge caching networks can accurately infer what to cache based on a user’s historical content 
requests, thereby significantly relieving the burden of the backbone networks. However, the cold-start problem inher-
ent in deep learning may limit the performance of history-based caching strategies. Due to the mobile and dynamic 
nature of wireless networks, base stations often lack sufficient data to accurately estimate the user’s demands 
and cache the possible requested data. In this context, we adopt self-supervised learning (SSL) into the caching strat-
egies and propose a Simple Self-supervised Graph-based Recommendation framework for edge caching networks 
(SimSGR). Specifically, we propose two new network layers: the Mixing layer and the Conversion layer. The former 
replaces the data augmentation of the SSL paradigm to avoid destroying the semantic loss, while the latter greatly 
simplifies the loss function, which helps to lighten the model structure and facilitates deployment on edge caching 
networks. Simulation results show that our model outperforms baseline algorithms that are sensitive to augmentation 
hyper-parameters, particularly when trained in a cold-start environment.
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Introduction
The proliferation of modern mobile devices has led to a 
plethora of applications, such as VR video, mobile gaming, 
and so on [1]. Such applications demand low latency and 
high bandwidth from data stores, usually hosted in cloud 
data centers. However, the large transmission latency 
incurred by the long distance between mobile users and 
the cloud data center may significantly degrade the quality 
of service on mobile devices [2]. To mitigate the impact of 
distance, Mobile Edge Computing (MEC) has been pro-
posed and deployed to move contents’ proximity to the 

network edge and proactively cache popular contents [3]. 
Compared with traditional centralized cloud computing, 
MEC can greatly reduce access latency and load on back-
haul, core, and transit networks [4]. From the perspec-
tive of content caching, wireless edge caching can greatly 
improve the efficiency of content delivery by deploying 
storage and caching facilities at the network edge [5].

A closely related problem to be solved by edge cach-
ing is content placement, that is, determining what, 
where, and when to cache [6]. Several cache strate-
gies, including Least Recently Used (LRU), Least Fre-
quently Used (LFU), and First In First Out (FIFO), were 
proposed successively. Recently, with the continuous 
increase of data size and types, many researchers have 
proposed to introduce machine learning into the edge 
network [7]. These learning strategies could accurately 
predict the demand for data content by tracking and 
leveraging the user’s history demand to recommend the 
network what to cache. However, the recommendation 
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system usually suffers from the cold-start problem in 
the edge caching network. When a new user’s mobile 
devices enter a new cell, the base stations have no suf-
ficient prior knowledge of the new user [6]. In this way, 
it cannot obtain an accurate estimation of the demand 
and cache the possible requested data.

Recently, a resurgence of Self-supervised learning (SSL) 
has been witnessed in the recommendation system [8]. In 
the SSL task, the supervision signals could be automati-
cally generated from the raw data instead of human-pro-
vided labels, which is a natural antidote to the cold-start 
problem in the Edge caching network based on deep 
learning [9]. More precisely, the existing graph-based SSL 
recommendation (e.g., Self-supervised graph learning 
[10]) typically performs stochastic augmentation, such as 
random node/edge dropout, to perturb the raw user-item 
bipartite graph to generate different views. Then the aug-
mented versions are fed into a shared encoder to learn 
representations. The contrastive learning (CL) task, the 
core paradigm of the SSL task, aims to maximize the con-
sistency of positives and push the semantics of negatives 
apart. Significantly, the representations of the same node 
(user/item) but learned from different views are regarded 
as positives. On the contrary, the remaining nodes in one 
batch are regarded as negatives. Finally, the main task of 
recommendation and the CL task will be jointly training 
to build effective representations.

Although SSL methods are effective, we argue that it 
still has the following defects:

1) Arbitrary augmentations aggravate the cold-start 
problem: The SSL paradigm based on augmentation 

was first proposed in the computer vision domain. 
As shown in Fig. 1 (a), an input image is augmented 
to generate different views. Despite random crop-
ping and rotating them or disturbing their color, 
the image’s inherent semantics can still be well pre-
served, and humans can recognize the changes [11]. 
Unlike data augmentation well defined in images, 
the augmentations may behave arbitrarily on graphs. 
For example, in Fig. 1 (b), randomly dropping nodes 
or edges may change the semantics of graphs. More 
specifically, whether Bob or the edge between Bob 
and Movie1 is dropped, Movie1 will not be recom-
mended to Ruby. Moreover, the relationship between 
Mike and Ruby will become distant, such random 
node/edge dropping will separate the original graph 
into many disconnected components and destroy the 
mutual information between the augmented graphs 
[9]. Therefore, the number of informative positives 
that can be used for SSL will be reduced, thus aggra-
vating the cold-start problem.

2) The computationally expensive learning strategy: In 
the classic SSL, the CL task usually plays the role of 
regularization terms and are jointly trained with the 
main task of the recommendation system. Although 
the joint learning strategy is effective to some 
extent, training for two tasks simultaneously is too 
time-consuming and memory-cost, especially for 
the edge caching network with limited computing 
resources [12]. Considering that the downstream 
task in most recommendation scenarios is fixed, 
that is, predicting the possible behavior of users. 
here we propose a new learning strategy in SimSGR 

Fig. 1 a Augmentations on images preserve the inherent semantics. b Augmentations behave arbitrarily on user-item graphs
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which could unify the CL task and the main the 
main task of the recommendation.

To solve the preceding limitations, we propose a 
Simple Self-supervised Graph-based Recommendation 
framework for edge caching network (SimSGR), where 
the core is to modify the generation of positives based 
on two layers: Mixing and Conversion.

A) Mixing: We still follow the paradigm of CL task 
in the SSL, which is to maintain the invariance of 
the representation by pulling in positives from two 
views. However, positives are no longer generated 
by randomly perturbing the topology of the original 
graph. Instead, we use the original graph as one view 
and mix another view, both of which no longer need 
augmentations, thus avoiding the semantic change of 
the graph caused by augmentation.

B) Conversion: Unlike the existing CL, which directly 
pulls the positives together in the representation 
space, we add the Conversion layer before calculat-
ing the loss function. In this layer, the predicted rat-
ing matrix is calculated based on the representation. 
Thus, our positives are updated to the corresponding 
elements in two matrices from two views. In this way, 
the positives are transformed from the representation 
space to the rating space, which is consistent with the 
main task of the recommendation system. This sim-
ple step unifies the CL task and the main task of the 
recommendation system.

The major contributions of this paper are summa-
rized as follows:

(1) We introduce SSL into edge caching networks to 
alleviate the cold-start problem of caching strate-
gies.

(2) We further tailor a new SSL framework for edge 
caching networks and propose a new model 
SimSGR, based on the Mixing layer and the Con-
version layer. This model can generate highly relia-
ble positives and simplify the model structure, thus 
saving the computing resources of the edge network 
while improving the model performance.

(3) Extensive experiments demonstrate that our 
SimSGR outperforms a wide range of state-of-art 
methods, especially in the cold-start scenario.

Related work
SimSGR proposes two new network layers Mixing and 
Conversion to reconstruct the positive pairs. The for-
mer is designed to replace the data augmentation on the 

graph, and the latter is used to modify the criterion of 
CL. Therefore, we first introduce the existing augmenta-
tion methods on the graph in SSL, then discuss the differ-
ent designs of the loss function in CL and conclude some 
typical SSL-based recommendations.

Augmentations on graphs
While intuitive augmentations are well defined on images 
and texts, they may behave arbitrarily on graphs due to 
their discrete, non-euclidean nature [13] As a conse-
quence, augmentations for graphs are less explored. DGI 
[14] first proposes to augment the input graph via shuf-
fling node features. MVGRL [15] adopt the graph dif-
fusion kernels to generate two augmented views of the 
original graph. GCC [16] proposes to create multi-views 
of a graph via sampling subgraphs. GRACE [17] ran-
domly drops edges and masks features to augment the 
input. Following GRACE, GraphCL [18] designs four 
graph augmentations types by injecting different priors 
and demonstrates the effects of various combinations of 
data augmentations on different datasets. Different from 
the methods mentioned above adopting random data 
augmentation schemes to construct positives, GCA [19] 
designs a new augmentation scheme according to the 
node centrality to corporate more priors for topological 
and semantic information of the graph.

However, due to the natural complexity of graphs, the 
mentioned SSL-based model highly depends on the data 
augmentation scheme [11], and [18] has shown that there 
is no universally outperforming data augmentation scheme 
for graphs. AFGRL [11] first proposes to generate posi-
tive pairs based on the local structural information and 
the global semantics of graphs instead of data augmenta-
tion, where the structure of the original graph will not be 
destroyed, thus preserving the semantics. Simultaneously, 
SimGCL [9] discards the augmentation and creates con-
trastive positives by adding uniform noises to the embed-
ding space. Our SimSGR is mainly inspired by AFGRL, but 
we modify the details according to the characteristics of 
the recommendation and remove the clustering strategy in 
AFGRL, which is redundant for our model.

Loss function in contrastive learning
The main principle of designing the loss function in the 
CL task is to keep the invariance between the two aug-
mented views while avoiding the model’s collapse. A typi-
cal loss function InfoNCE aims to pull positive samples 
together and push negative samples apart. In this way, 
different definitions of negative samples appear in vari-
ous methods. SimCLR [20] regards all other samples in 
one batch as negatives, while MOCO [21] requires an 
additional memory bank to store negative samples. While 
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these methods yield good performance, they require a lot 
of extra storage space.

Instead of avoiding the model’s collapse by pushing 
away the negatives, BYOL [22] has indicated that col-
lapse can be avoided by using architectural tricks with-
out negative sampling. Barlow Twins [11] proposes a loss 
term to disentangle the embedding variables to maximize 
the information stored by the embeddings. VICReg [23] 
introduces two regularization terms, variance and covari-
ance, successfully avoiding dimension collapse.

Inspired by Barlow Twins and VICReg, we introduce 
covariance regularization to avoid collapse. More impor-
tantly, we design a new layer Conversion where the con-
trastive positives are converted from embedding space 
into rating space, thus, unifying the CL task and the 
main task of the recommendation system. In this way, 
there is no need for negative sampling or joint learning.

SSL‑based recommendation
Recently, a wave of researchers attempted to introduce 
SSL into the recommendation system to alleviate the 
issue of data sparsity in the recommendation system and 
have achieved promising results. Sˆ 3-Rec [24] randomly 
masks the item features to create sequence augmenta-
tions. Inspired by SimCLR [20], SGL [10] introduces the 
InfoNCE loss function into recommendations and aug-
ments the original user-item bipartite graph via node/
edge dropout and random walk. SEPT [25] attempts to 
use semi-supervised learning to generate more posi-
tives for the social recommendation. CL4Rec [26] reor-
ders and crops item sequences to augment the input for 
sequential data augmentation. CoSeRec [27] proposes 
two informative augmentations named ‘substitute’ and 
‘insert’ to create more informative positives according to 
the item correlations. A sea of studies have proved that 
introducing SSL into the recommendation system is con-
ducive to improving performance and solving the exist-
ing issues in the recommendation system. However, the 
mentioned methods all create contrastive positives by 
data augmentation, which will cause semantic loss. Fur-
thermore, the SSL task is often regarded as an auxiliary 
task and is jointly trained with the main task of the rec-
ommendation, which is both time-consuming and mem-
ory-cost. To solve the above problems, we propose a new 
SSL scheme tailored to the characteristics of graph-based 
recommendation by reconstructing the contrastive posi-
tives. The Details will be given in chapter 3.

Methods
In this section, by reconstructing positives based on 
Mixing and Conversion, we propose a simple but effec-
tive self-supervised graph-based recommendation 

framework without data augmentation, joint-learning, 
or even negative sampling. We will elaborate on how 
to modify the definition of positives and the benefits 
of this definition. The overall Framework of SimSGR is 
shown in Fig. 2.

Preliminaries
In the graph-based recommendation system, let 
G = (V , ε) denote a graph, where the node set V = U ∪ I 
involves all users and items, and the edge set ε ∈ O+ 
represents the history interactions. G is associated 
with a feature matrix  X ∈ R

(n+m)×d and an adjacency 
matrix A ∈ R

(n+m)×(n+m) where Ai,j = 1 if (vi, vj) ∈ ε 
and Ai,j = 0 otherwise, n is the number of users, m is the 
number of items and d is the embedding size.

Unlike the existing models where the representations 
of users (items) are encoded from the augmented graphs, 
we directly encode the original graph without any aug-
mentation. Specifically, the adjacency matrix A and the 
feature matrix X of the original graph are fed into the 
encoder to compute the representation. Here we use the 
state-of-art graph-based encoder LightGCN [28]:

whose i-th rows, zi is the representation of node i . We 
use the representation Z encoded by the original graph as 
one view and then mix another view.

Mixing layer
In this section, we focus on how to generate the represen-
tation of the other view Z′ based on the representation 
Z . It mainly consists of two steps: selecting positives and 
mixing positives.

Selecting positives
Considering the inherent relational inductive bias in 
the graph structure, for each target node i ∈ V  , its adja-
cent nodes tend to have the same semantics as the tar-
get node. Consequently, we first randomly samples Kpos 
nodes from the neighboring nodes to construct the initial 
positive samples Ai.

To further validate the effectiveness of Ai , we conduct 
the following experiments on the Cora dataset. For each 
node i in the Cora dataset, we calculate the proportion 
ri of nodes in Ai that belong to the same class as the tar-
get node i . The average of all ri constitute the final result, 
where the hyper-parameters Kpos is set to {4, 8, 16, 32, 64} . 
As shown in Fig.  3, only 70% of the nodes in Ai belong 
to the same class as the target node, which indicates the 
unfiltered Ai contains noise nodes of about 30%, namely 
“false” positives that are semantically contrary to the 
target node and will lead to poor performance when 
regarded as positives.

(1)Z = LightGCN (X ,A),
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Therefore, to filter out “false” positives in the neigh-
boring nodes, following [11], we then compute the 
cosine similarity between all other nodes in the graph 
as follows:

Given the similarity information, we denote the top 
Kpos nodes with the greatest similarity in the neighboring 
nodes by the final positive sample set Pi . For each node 
i , when the number of its neighboring nodes Ai < Kpos , 
we expand the size of the positives equal to Kpos on pad-
ding. The Fig. 3 shows that the ratio of Pi is much higher 
than that of Ai , which is basically stable at around 90%. 
This indicates that screening the initial positive samples 
based on similarity can help the Mixing layer filter out 
noise and improve the performance of the model.

(2)sim(vi, vj) =
zi · zj

�zi� zj
, ∀vi ∈ V .

Mixing positives
Given the positive sample set Pi , the core lies in the 
aggregation layer for mixing positive representations. The 
aggregated representation can be obtained as follows:

where z′i is the final representation serves as the posi-
tive of the target node i , zk ∈ R

d×1 is the d-dimensional 
representation of nodes in the positive sample set Pi , 
αk denote the weight of the aggregation, Ik denotes the 
mask indices during padding, where Ik = 0 indicates 
a padding token; otherwise Ik = 1 . The Calculation 
of αk will change with different aggregation methods. 
Here we adopt three common aggregation strategies, 
including average-pooling, self-attention, and target-
attention [29]:

(3)z′i =
∑

k∈Pi
Ik · αkzk ,

Fig. 2 The overall framework of SimSGR. Following the scheme of CL, one view of the contrastive positive pair Z is encoded from the original graph 
G , and the other Z ′ is generated from the Mixing layer by mixing both the neighboring nodes and similar nodes. The two contrastive views are then 
converted into the rating matrices R and R′ in the Conversion layer, SimSGR aims to maintain the invariance of R and R′ , and the covariance criterion 
is used to prevent the model from collapsing
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where average pooling treats all alike to average all node 
representations in Pi . Although it is simple and direct, 
it does not consider the relative importance of different 
nodes in Pi and the relationship with the target nodes 
zi . According to the attention mechanism, q ∈ R

d×1 is a 
learnable query vector for self-attention and zi ∈ R

d×1 
is the target-specific query vector for target node i in 
target-attention. W1,W2 ∈ R

d×d and b1, b2 ∈ R
d×1 are 

learnable parameters.
The above three aggregation methods are widely used 

in the embedding aggregation related to deep learning, 
and their performance also changes with different net-
works and datasets.

Conversion layer
After aggregation, we finally get a pair of positive 
representations Z = [zu1, ..., zun]||Z = [zi1, ..., zin] and 
Z′ = [z′u1, ..., z

′
un]||Z

′ = [z′i1, ..., z
′
in] . During self-super-

vised training, most existing loss functions aim to 
push the positive pair of nodes close to each other in 

(4)αk =



















Ik
�

k∈pi
Ik

average - pooling,

Ik ·exp(q
T tanh(W1zk+b1))

�

j∈pi
Ik ·exp(q

T tanh(W1zj+b1))
self - attention,

Ik ·exp(z
T
i tanh(W2×zk+b2))

�

j∈pi
Ik ·exp(z

T
i tanh(W2×zj+b2))

target - attention,

representation space. However, in the main task of the 
recommendation, our goal is to make the score pre-
dicted from the model based on the historical interac-
tion between users and items consistent with the real 
score. The commonly used loss functions include cross-
entropy loss, mean squared error loss, and Bayesian 
Personalized Ranking (BPR) loss. Taking BPR loss as 
an example, which aims to improve the accuracy of the 
recommendation model by maximizing the score dif-
ference between rated and unrated items:

where D is the training set, (u, i, j) is a triplet where u rep-
resents the user, i represents the rated item, and j rep-
resents the unrated item. rui represents the predicted 
score of user u for item i , while ruj represents the pre-
dicted score of user u for item j . σ is the sigmoid func-
tion and � is the regularization term that prevents the 
model from overfitting. Finally, θ represents all model 
parameters. The optimization direction of BPR is to pull 
the predicted score and the real score together in the 
rating space, which is different from the optimization 
direction of SSL task. Therefore, existing SSL-based rec-
ommendations usually jointly optimize the main task of 

(5)LBPR = −
∑

(u,i,j)∈D

ln σ(rui − ruj)+ ����2,

Fig. 3 The ratio of its neighboring nodes being the same label as the target node across different Kpos
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recommendation and SSL task. Considering the com-
plexity of joint learning, we propose a new learning strat-
egy which could unify the SSL task and the main task of 
the recommendation.

We first separate Z and Z′ into Z = Zu�Z i and 
Z′ = Z′

u

∥

∥Z′
i according to the index of users and items, 

where || represents the separation operation. We then 
calculate the predictive rating matrix:

where R ∈ R
n×n,R′ ∈ R

n×n , n is the size of one batch. 
Following the core idea of pulling two positive samples 
together in CL, the loss function can be given by [30]:

where s(R,R′) named invariance encourages the scores 
predicted by two views close to each other, rk ,j and r′k ,j 
represent the elements of row k and column j in matrix R 
and R′ respectively.

Furthermore, if we only consider pulling in positives, 
the model is easy to collapse, which means that all 
embeddings shrink to a constant value [13]. To prevent 
collapse with all the input converge to a trivial solution, 
we first calculate the covariance matrix C(Z) as

where Z is a normalized matrix. Inspired by Barlow 
Twins [13] and VICReg [23], whose core idea is to dis-
entangle the representation and reduce the correlation 
between dimensions, so that prevent them from holding 
the same information. Therefore, we define the covari-
ance criterion c as:

this term named covariance calculate the sum of the 
squared off-diagonal coefficients of C(Z) and encourages 
the off-diagonal coefficients of C(Z) equals to zero.

Based on (7, 8, 9), we propose a new IC (Invariance 
Covariance) loss that consists of the weighted sum of 
invariance and covariance:

where � is a hyper-parameter indicating the weight of the 
covariance criterion.

Complexity
In this section, we will analyze the time complexity of 
SimSGR and compare it with that of LightGCN and its 

(6)R = Zu(Zi)
T ,R′ = Z′

u(Z
′
i)
T ,

(7)s(R,R′) =
1

n× n

∑

k

∑

j

∥

∥

∥
rk ,j − r′k ,j

∥

∥

∥

2
,

(8)C(Z) = (Z − Z)T (Z − Z),

(9)c(Z) =
1

d

∑

k �=j

[C(Z)]2k ,j ,

(10)L(Z,Z′) = s(R,R′)+ �[c(Z)+ c(Z′)],

graph-augmentation based counterpart, SGL. We will 
focus on batch time complexity since the in-batch nega-
tive sampling is a widely used technique contrastive 
learning. Let |E| be the edge number in the graph, d rep-
resent the embedding size, B denote the batch size, M 
represent the number of nodes in a batch, and ρ denote 
the edge keep rate in SGL. We can derive: (Table 1)

For LightGCN and SimSGR, no graph augmentations 
are required. Therefore, they only need to normalize the 
original adjacency matrix, which has 2|E| non-zero ele-
ments. On the contrary, SGL requires two graph augmen-
tations, each has 2ρ|E| non-zero elements. In the graph 
convolution stage, SGL employes a three-encoder archi-
tecture to learn augmented node representations. As a 
result, the time cost of SGL is almost three times that of 
LightGCN and SimSGR. In terms of recommendation 
loss, both LightGCN and SGL require joint-learning strat-
egies, resulting in an additional complexity O(2Bd) com-
pared to SimSGR. When calculating the CL loss, SGL 
incurs computation costs of O(Bd) and O(BMd) for the 
positive/negative samples, respectively, because each node 
only considers itself as the positive, while the other nodes 
all are negatives. In contrast, by computing the covari-
ance matrix C(Z) ∈ Rd×d , negative sampling is avoided in 
SimSGR, resulting in a lower complexity of O(Bd + Bd2).

Comparing SimSGR with SGL, it is clear that SimSGR 
theoretically spends less time on all components. This 
is mainly due to the Mixing and Conversion layers pro-
posed in this paper. These layers greatly simplify the 
framework of self-supervised recommendation networks, 
making them more suitable for edge caching networks 
with resource limitations.

The overall framework
In summary, SimSGR is derived from the traditional SSL 
paradigm and tailored for the characteristics of edge 
caching networks. The core of SimSGR is to reconstruct 
positives based on two layers: Mixing and Conversion. 
Specifically, in the Mixing layer, we discover each node’s 
most similar nodes based on graph structure and seman-
tic similarity, and then mix them as another view of this 
node. In this setting, data augmentation is no longer 
needed, preserving the semantics in the original graph 
and generating more reliable positives to fundamentally 

Table 1 The comparison of time complexity

Component LightGCN SGL SimSGR

Adjacency Matrix O(2|E|) O(2|E| + 4ρ|E|) O(2|E|)

Graph Convolution O(2|E|Ld) O((2+ 4ρ)|E|Ld) O(2|E|Ld)

 BPR Loss O(2Bd) O(2Bd) -

 CL Loss - O(Bd + BMd) O(Bd + Bd2)
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solve the cold-start problem. In addition, in the Conver-
sion layer, unlike other methods that treat the represen-
tation from two views as positives, we directly calculate 
the prediction score matrix under the two views. The 
CL task changes to maximize the consistency of the two 
matrices, unifying the CL task and the main task of the 
recommendation. Thus, SimSGR can achieve model per-
formance comparable to joint-learning even when only 
training on self-supervised tasks. Finally, we disentangle 
the representation and reduce the correlation between 
dimensions, ensuring that the trained representations 
do not collapse even without negative sampling. These 
improvements simplify SimSGR’s structure compared to 
traditional deep learning model, making it more suitable 
for edge caching networks with limited resources.

Results and discussion
Experiment settings
Datasets
We evaluate the performance of SimSGR on three popu-
lar benchmark datasets, including Douban-book, Mov-
ieLens-1  M and Yelp2018, for which the statistics are 
shown in Table  2. Following the convention in [25] to 
convert the explicit ratings with a 1–5 rating scale in 
Douban-book into implicit ratings, we leave out the rat-
ings less than 4 and set the rest at 1. MovieLens-1 M is 
a popular movie dataset where each record represents 
the user’s rating of the film. We use the processed ver-
sion downloaded from the Recbole library [30]. Moreo-
ver, Yelp2018 was collected from Yelp.com, a subset of 
the businesses, reviews, and user data. To keep a com-
parison fair, we directly use the same ‘10-core’ version 
as [28]. These datasets are split into three parts (training 
set, validation set, and test set) with a ratio of 8:1:1. Two 
standard metrics: Recall@K and NDCG@K are used and 
we set K = 20.

Baselines
We consider the following representative baseline meth-
ods of three groups and their variants to compare with 
SimSGR:

a) Supervised models: NGCF [31] first proposed the 
GNN-based recommendation; LightGCN [28], which 
discards feature transformation and nonlinear activa-

tion in NGCF, achieves better results in lighter struc-
tures and has become the state-of-art baseline.

b) Self-supervised models with augmentations: SGL [10] 
is a typical model that adopts SSL to the recommen-
dation. Here we use its three variants which repre-
sent three different ways of data augmentation: node 
dropout (SGL-ND), edge dropout (SGL-ND), and 
random walk (SGL-RW).

c) Self-supervised models without augmentations: 
Unlike group b, all methods in group c generate 
positives by perturbing the output of the backbone 
instead of augmenting the input graph. SelfCF [32] 
first proposed three perturb methods: historical 
embedding perturbation (SelfCF-HE), embedding 
dropout (SelfCf-ED), edge pruning (SelfCF-EP); 
AFGRL [11] discovers positives by considering the 
local structural information and the global semantics 
of graphs; Moreover, to regulate the uniformity of the 
representation distribution, SimGCL [9] adds ran-
dom noises to the representation to generate posi-
tives for contrast.

Implementation details
We use the code provided by the author for SGL, Self-
CF, AFGRL, and SimGCL and implement NGCF and 
LightGCN based on the Recbole library [30]. For a fair 
comparison, we directly refer to the best hyper-parame-
ter settings recorded in the original papers of the base-
lines and then fine-tune all the hypermeters with the grid 
search. The values for each hyper-parameter are shown 
in Table  3. We adopt early-stopping if the performance 
does not improve within ten rounds in the validation set 
and record the results on the test set.

Overall performance
In this section, we evaluate and compare our SimSGR 
with the other baselines mentioned in chapter 4.1.2 on 3 
real-world datasets. The hyper-parameters Kpos, �,µ are 
set to [8, 1, 0.1] on MovieLens-1 M and [4, 1, 0.1] on Dou-
ban-Book and Yelp2018. We bold the best performance 

Table 2 Statistics of the experimented data

Dataset User Item Interaction Density

Douban-book 13024 22347 792062 0.0027

MovieLens-1M 6040 3952 1000209 0.0419

Yelp-2018 31668 38048 1561406 0.0013

Table 3 Values of hyper-parameters

Hyper‑parameter Value

Embedding size 64

 Batch size 4096

 Optimizer Adam

Learning rate 0.001

 Kpos {4, 8, 16, 32}

 � [0.1, 0.9]
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and underline the second-best. Besides, the improve-
ments are calculated based on LightGCN. According to 
Table 4, we can draw the following conclusions:

1) Our SimSGR outperforms all baselines with a 
vast improvement, proving that the framework 
designed in our paper is conducive to improv-
ing the performance of the recommendation. The 
improvement is mainly due to the reconstruction 
of the positives: 1) Mixing instead of Augmenting, 
which will not destroy the original graph’s seman-
tics; 2) We convert the loss criteria from the repre-
sentation space to the rating space, which leads to 
the unification of the SSL task and the main task of 
the recommendation.

2) Almost all SSL-based models outperform super-
vised models, especially on sparse datasets, 
which indicates that the recommendation sys-
tem benefits from SSL strategies. When on the 
recall, SimSGR can remarkably improve Light-
GCN by 36.78% in Douban-Book, 8.00% in Mov-
ieLens-1 M, and 16.30% in Yelp2018. The SSL task 
helps the recommendation expand the range of 
input data and provide more positives and nega-
tives for learning representations invariant to the 
interference factors, thus increasing the model’s 
generality.

3) Self-supervised models without augmentations can 
achieve or even exceed the performance of self-
supervised models with augmentations. SelfCF-HE, 
AFGRL, and our model SimSGR outperform SGL 
in most cases, demonstrating that generating cred-
ible positive pair is the main driving force of the per-
formance improvement, while graph augmentations 
are just a way to produce positives, which can be 
replaced or removed.

The impact of each structure of SimSGR
The core of SimSGR is to reconstruct positives based on 
two layers, Mixing and Conversion. To verify the advan-
tages of each component of SimSGR, we conduct abla-
tion studies on three datasets.

The performance of mixing layer
In the mixing layer, for each target node, we construct the 
initial positive set based on its neighboring nodes and then 
filter out "false" positives according to representation similar-
ity to generate the final positive set, which is recorded as KP . 
Here we calculate two degenerate positive sets KN and KS for 
further studies, where KN represents the positive set based 
only on neighboring nodes, and KS represents the positive 
set based only on the node similarity in the representation 
space. Next, we combine the preceding three positive sets 
with the three aggregation methods mentioned in Sect. "Mix-
ing Layer" in pairs and Fig. 4. shows the performance after 
the combination of three datasets on average-pooling (Avg), 
self-attention (Self), and target-attention (Target). The perfor-
mance improves with color deepening. We observe that:

1) Compared with combinations containing KN and 
KS , the combination containing KP achieves the best 
performance of all three datasets, which proves that 
considering both the inductive bias of the graph and 
the similarity of representation is beneficial for gen-
erating positives with high reliability, thus leading to 
better performance;
2) In the combination containing KP , Avg achieves 
the best performance compared with the other two 
aggregations. However, when the positive set become 
KN or KS , there is no obvious advantage among the 
three aggregations, which indicates that the aggrega-
tion method needs to be fine-tuned according to dif-
ferent scenarios.

Table 4 Performance comparisons of different methods

Dataset Douban‑Book MovieLens‑1M Yelp2018

Method recall ndcg recall ndcg recall ndcg

NGCF 0.1380(-0.86%) 0.1165(-1.93%) 0.0812(-0.31%) 0.1587(-0.99%) 0.0612(-4.07%) 0.0502(-3.46%)

LightGCN 0.1392 0.1188 0.0838 0.1603 0.0638 0.0520

SGL-ND 0.1626(+16.81%) 0.1450(+22.05%) 0.0856(+2.15%) 0.1667(+3.99%) 0.0643(+0.78%) 0.0526(+1.15%)

SGL-ED 0.1732(+24.43%) 0.1549(+30.39%) 0.0864(+3.10%) 0.1656(+3.31%) 0.0675(+5.79%) 0.0555(+6.73%)

SGL-RW 0.1731(+24.35%) 0.1545(+30.05%) 0.0852(+1.67%) 0.1645(+2.62%) 0.0667(+4.54%) 0.0547(+5.19%)

SelfCF-HE 0.1742(+25.14%) 0.1569(+32.07%) 0.0889(+6.09%) 0.1684(+5.05%) 0.0661(+3.61%) 0.0542(+4.23%)

SelfCF-ED 0.1401(+0.65%) 0.1223(+2.95%) 0.0833(-0.60%) 0.1610(+0.44%) 0.0639(+0.16%) 0.0521(+0.19%)

SelfCF-EP 0.1365(-1.94%) 0.1152(-3.03%) 0.0729(-13.01%) 0.1492(-6.92%) 0.0640(+0.31%) 0.0531(+2.12%)

AFGRL 0.1654(+18.82%) 0.1254(+20.29%) 0.0869(+3.70%) 0.1632(+1.81%) 0.0702(+10.03%) 0.0553(+6.35 %)

SimGCL 0.1770(+27.16%) 0.1582(+33.16%) 0.0887(+5.85%) 0.1695(+5.74%) 0.0721(+13.01%) 0.0596(+14.62%)

SimSGR 0.1904(+36.78%) 0.1624(+36.70%) 0.0905(+8.00%) 0.1701(+6.11%) 0.0742(+16.30%) 0.0602(+15.77%)
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The performance of conversion layer
Given the positive pair Z and Z′ , we first convert them 
into the corresponding rating matrix. Meanwhile, the IC 
loss is designed to maintain the consistency of the corre-
sponding terms in the rating matrix. To verify the effec-
tiveness of the conversion layer, we modify the invariance 
term of IC loss as IC-variants (IC_V):

We directly pull the positives in representation space, 
which is consistent with the traditional CL task. For a 
more comprehensive comparison, we introduce two 
other classic self-supervised loss functions: InfoNCE (IN) 

(11)s(Z,Z′) =
1

n

∑

i

∥

∥zi − z′i
∥

∥

2

2
.

[5] and Barlow Twins (BT) [11]. Finally, we adopt the loss 
functions above (including IC) to optimize our model 
under the training settings of CL-only and joint learning 
separately. The Comparison is shown in Fig. 5:

1) Whether jointly optimizing the CL task and the 
main task of the recommendation or only optimiz-
ing the CL task, Our IC outperforms the others, 
which proves that the loss function in this paper 
is beneficial to improving the performance of the 
recommendation.

2) In the setting of only training the CL task, our IC out-
performs others in a wide range, mainly due to the 
conversion layer that projects the positives of repre-

Fig. 4 The performance of SimSGR with varied combinations of positive sets and aggregation methods

Fig. 5 The performance of SimSGR with different loss functions
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sentation space into the rating space, unifying the CL 
task and the main task of recommendation system. 
At this time, the training no longer depends on the 
main task of the recommendation, which improves 
the performance and simplifies the framework.

3) Adopting the joint learning scheme has no obvious 
improvement for IC. We argue that this is mainly 
because IC has covered the main task of the rec-
ommendation system and the extra training term is 
redundant.

The performance in cold‑start environments
SSL can effectively alleviate the data sparseness problem 
called cold-start in recommendation due to the ability to 
generate supervisory signals through the data itself. We 
conduct the following experiments to verify the effect of 
SimSGR on the cold-start problem.

In order to simulate the real cold-start scenario, for 
each user, inspired by [33], we filter the N  items that have 
recently interacted with through the timestamp, where 
N  is the threshold that determines the cold-start degree 
of the recommendation. Figure 6 shows the performance 
of various models on N = 5 (Cold-5), N = 10 (Cold-
10), and the raw dataset (Raw, note that the number of 
interactions per user in the Raw may exceed 10, while the 
number of interactions per user in the cold-10 fix to 10).

Across the Raw, Cold-10, and Cold-5 settings, Light-
GCN achieved recall values of 0.1492, 0.1221, and 
0.1021. SGL-ED and SimGCL achieved Recall values 

of 0.1732, 0.1646, and 0.1523, and 0.1770, 0.1721, and 
0.1669, respectively. Meanwhile, the recall values of 
SimSGR are 0.1951, 0.1906, and 0.1867. As the degree of 
cold start deepens, LightGCN’s performance decreased 
by 18.12% and 16.56%, while SGL-ED’s performance 
declined by 5.00% and 7.51%, and SimGCL’s perfor-
mance decreased by 2.75% and 3.02%, respectively. 
SimSGR also exhibited a decline in performance of 
2.44% and 2.05%, respectively.

In conclusion, the performance of the three methods 
SGL, SimGCL, and SimSGR introduced SSL strategy 
has sightly declined on three datasets, but the overall 
performance maintains stable compared to LightGCN. 
We argue that since the supervision signal of LightGCN 
merely comes from the historical interaction, it is more 
susceptible to data sparseness.

In all cold-start scenarios, SimSGR consistently out-
performs others. We argue that the Mixing and Conver-
sion mechanisms are the determining factors of SimSGR, 
which make it possible to generate vast credible positive 
pairs without relying on real labels.

The impact of the hyperparameter
This section explores the effects of hyperparameters Kpos 
in SimSGR, which controls the size of the final positive 
set before mixing. We vary Kpos in {4, 8, 16, 32}.

The results in Fig.  7 indicates that SimSGR achieves 
the best performance when Kpos = 4 in Douban-Book 
and Yelp2018. Meanwhile, the model performs best 
when Kpos = 8 in MovieLens-1  M. This difference may 
be attributed to the high density of the MovieLens-1 M 

Fig. 6 The performance of SimSGR over the different cold-start degree
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compared to the other two datasets, thus, more prior 
information can be obtained when the candidate positive 
samples increase. It is worth noting that, no matter on 
which dataset, the performance is relatively stable over 
varied Kpos , which verifies that our model is not sensitive 
to hyper-parameters and can be easily tuned.

Conclusion
In this paper, we adopted SSL into caching strategies 
and proposed a simple self-supervised graph-based rec-
ommendation framework for edge caching networks. 
Instead of randomly generating two augmented views 
from the user-item graph and directly regarding their 
corresponding representation as positives, SimSGR 
reconstructs positives through two layers: the Mixing 
layer and the Conversion layer. In the Mixing layer, we 
mixed the candidate nodes selected based on represen-
tation similarity and the topology of the graph to gener-
ate credible positive pairs. In the Conversion layer, we 
calculated the prediction score matrix, which converts 
positives into corresponding elements in the two rating 
matrices, leading to the unification of the SSL task and 
the main task of the recommendation system. These 
modifications simplify the model structure and make it 
more suitable for edge caching networks with resource 
limitations. Comprehensive experiments have been con-
ducted on various real-world datasets, demonstrating 
that our SimSGR consistently outperforms existing state-
of-art methods, especially in cold-start environments.
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