
Zhang et al. Journal of Cloud Computing (2023) 12:109
https://doi.org/10.1186/s13677-023-00482-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Hyperparameter optimization method
based on dynamic Bayesian with sliding
balance mechanism in neural network for cloud
computing
Jianlong Zhang1, Tianhong Wang1, Bin Wang1*, Chen Chen2 and Gang Wang3

Abstract

Hyperparameter optimization (HPO) of deep neural networks plays an important role of performance and efficiency
of detection networks. Especially for cloud computing, automatic HPO can greatly reduce the network deployment
cost by taking advantage of the computing power. Benefiting from its global-optimal search ability and simple
requirements, Bayesian optimization has become the mainstream optimization method in recent years. However,
in a non-ideal environment, Bayesian method still suffers from the following shortcomings: (1) when search resource
is limited, it can only achieve inferior suboptimal results; (2) the acquisition mechanism cannot effectively balance
the exploration of parameter space and the exploitation of historical data in different search stages. In this paper, we
focused on the limited resources and big data provided by the cloud computing platform, took the anchor boxes
of target detection networks as the research object, employed search resource as a restraint condition, and designed
a dynamic Bayesian HPO method based on sliding balance mechanism. The dynamism of our method is mainly
reflected in two aspects: (1) A dynamic evaluation model is proposed which uses the cross-validation mechanism
to evaluate the surrogate model library and select the best model in real time; (2) A sliding balance mechanism
is designed based on resource constraints to seek a balance between exploration and exploitation. We firstly augment
the recommended samples of probability of improvement acquisition function by using k-nearest neighbor method,
then introduce Hausdorff distance to measure the exploration value and match sampling strategy with resource
utilization, which makes it slide smoothly with resource consumption to establish a dynamic balance of explora-
tion to exploitation. The provided experiments show that our method can quickly and stably obtain better results
under the same resource constraints compared with mature methods like BOHB.

Keywords Bayesian optimization, Dynamic surrogate model, Sliding balance

*Correspondence:
Bin Wang
bwang@xidian.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00482-y&domain=pdf

Page 2 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Graphical Abstract

Introduction
Object detection is a core and hot issue in computer
vision, which is widely applied in autonomous driving
[1], intelligent surveillance [2], disaster prediction [3],
and many other fields. With the rapid development of
deep learning in recent years, neural networks are tak-
ing the place of traditional feature engineering and pat-
tern recognition, and becoming the mainstream method
in object detection. The popularity of cloud computing
including the Internet of Things [4] and edge computing
[5, 6] helps the practicality of autonomous driving, and
also puts forward higher requirements on the efficiency
and adaptability of the detection networks. Most of the
commonly used target detection networks are anchor
based, they slide anchor boxes with different scale on the
image, and try to locate and classify the target objects.
The parameter of anchor box (anchor for short) mainly
refers to the length and the width, which has the main
impact on the detection performance.

Currently, mainstream object detection networks usu-
ally use pre-defined anchors, or adaptively change them
according to the dataset’s statistical information. For
example, the RCNN [7] network series generate 9 fixed
anchors by crossing three aspect ratios with three scaling
ratios; YOLO [8] network series get the clustering cent-
ers of the sample sizes by K-means clustering in detection
space, use them as the anchor parameters and update
them during the search progress. These methods con-
sider less about controlling the computational cost (like
GPU memory and working time) and making full use of
the big data, thus they cannot utilize the advantages of
cloud computing and ensure reasonable anchor settings
under limited resources.

The hyperparameter optimization (HPO) in neural
networks is a black box problem; the high-dimensional
objective functions have complicated structures and
expensive evaluation costs, which all make the design
and verification of hyperparameters difficult. The cost
of manual parameter adjustment restricts the versatility
of neural networks. As a consequence, early HPO meth-
ods are predominantly theoretical rather than practical.
However, the advancement of cloud computing has led
to scalable computing power, enabling the fulfillment of
various fine-tuning requirements, while big data facili-
tates optimization progress by sharing historical data
among similar models and tasks. These developments
have motivated researchers to transform automatic HPO
into a practical and utilizable technology. Because of the
difficulty in computing the derivative or finite difference
of the loss function of neural networks, traditional gradi-
ent optimization can hardly deal with them. The optimi-
zation methods of neural networks can be mainly divided
into two categories, i.e., heuristic algorithm and non-gra-
dient optimization. Heuristic algorithm imitates natural
phenomenon, abstracts mathematical rules from them
to solve the optimization problem, such as SF-HPO [9]
based on mean regression, MH-TOD based on discrete
bat algorithm [10], IGA [11] based on genetic algorithm,
and HMPSO-CNN [12] based on particle swarm optimi-
zation, etc. On the other hand, non-gradient algorithm
samples the hyperparameter space, uses surrogate mod-
els to fit and replace the complex network, and predicts
the distribution of optimal parameters, such as Hyp-RL
based on reinforcement learning [13], and Bayesian opti-
mization based on Bayesian probability distribution [14],
etc. Among them, Bayesian optimization has become

Page 3 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

the mainstream baseline of neural network optimization
in recent years because of its global optimal search abil-
ity, low evaluation consumption and simple requisition
(only needs the object function to satisfy local smooth
assumption).

TPE [15] optimization builds a multi-stage prediction
model based on tree-like structure, and predicts the value
of the objective function in the form of classification.
Not being too greedy for new samples, TPE is less likely
to be constrained into local optimum, and has made
certain improvement especially in high-dimensional
spaces. Considering that the resource allocation strategy
of Successive Halving is not flexible enough, BOHB [16]
introduces Hyperband [17] to determine the resource
allocation according to the search stage and sample value,
and improves the search performance and efficiency.
AABO [18] finds that Hyperband and Successive Halving
might falsely discard potential samples before the optimi-
zation process converges, and proposes a bandit-based
SMC (Sub-sample Mean Comparisons) down-sampling
strategy. By combining observation times and recent
benefits together to determine the final sample point,
AABO weakens the influence of short-term outliers and
gets more stable results. DEEP-BO [19] combines sev-
eral enhancement strategies including multiple surrogate
models, early termination and cost function transforma-
tion together into an integrated optimization framework,
and proves that enhancing the diversity of the strategies
may avoid falling into local optimum.

The aforementioned works improved Bayesian opti-
mization from different aspects; however, the following
problems still limit the usage of Bayesian methods: (1)
Traditional Bayesian optimization uses fixed surrogate
models, which has a limited fit ability and may lead to
large variance and low robustness; (2) Traditional sam-
pling strategies are idealized, which cannot properly bal-
ance the exploration and exploitation in different search
stages and resource limits. When resource is constrained,
Bayesian optimization may degenerate to global subopti-
mal search.

As a solution, this paper first introduces multi-model
and cross-validation to dynamically select the best surro-
gate model, then adjusts the sampling strategy according
to the resource consumption to find the optimal solu-
tion under resource constraints. Since machine learning
platforms like Azure can support distributed training,
the surrogate models can be deployed to parallel nodes,
and share the historical data by data synchronously, to
achieve low latency and high efficiency [20]. The main
contribution of this paper includes: (1) We designed a
dynamic surrogate model evaluation mechanism, which
realizes dynamic splitting of the dataset and dynamic
training and selection of models, and ensure high stability

and availability by self-adaptive adjustments; (2) We
established a sliding balance acquisition strategy, which
binds the sampling strategy with resource consumption
and improves the balance of exploration and exploitation
under limited resources.

The chapters of this paper are arranged as follows.
Chapter II introduces the overall framework of our
method. Chapter III introduces the dynamic surrogate
model evaluation. Chapter IV introduces the sliding bal-
ance acquisition strategy. Chapter V verifies the effec-
tiveness through ablation experiments and comparative
experiments. Chapter VI is the summarization of our
work.

Overall framework
Bayesian optimization is mainly composed of a surrogate
model and an acquisition function. As an approximate
substitution for the complicated objective function, the
surrogate model evaluates the value and uncertainty at
any location. The acquisition function determines which
point to sample and evaluate next, while balancing explo-
ration and exploitation. We summarize the problems of
Bayesian optimization as follows. (1) The single-surro-
gate-model is unstable in different search stages of differ-
ent tasks. (2) The search strategy does not take account of
resource consumption, which makes it difficult to obtain
the optimal solution under resource constraints.

Aiming at the problems above, we proposed a dynamic
Bayesian HPO method. The principal framework, shown
in Fig. 1, mainly includes two parts, i.e., a dynamic sur-
rogate model and a sliding balance acquisition func-
tion. First, aiming at improving the prediction accuracy
of the model, a surrogate model library is built by using
the hyperparameters verified by the network as histori-
cal data to train, and the cross-validation mechanism to
dynamically select the surrogate model for each itera-
tion. Then the sliding balance acquisition function uses
the probability of improvement (PI) acquisition func-
tion to generate a candidate parameter set, then intro-
duces Hausdorff [21] distance to construct a nonlinear
mapping function, which takes the search resource as
constraints and resamples the candidate set. This mecha-
nism will shift the sampling preference from exploration
to exploitation with the consumption of resource, and
maximize the global search revenue.

Dynamic Surrogate Model Evaluation (DSME)
In the Bayesian optimization of neural networks, sur-
rogate models act as an approximate substitute to pre-
dict the result and variance of any point in the network
parameter space with a much lower computational cost.
Currently, most mainstream Bayesian methods deploy
fixed surrogate models. However, due to complex factors

Page 4 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

such as changes in the detection scenario and optimiza-
tion path, it is difficult for a single model to maintain its
advantage throughout the entire search process. To ver-
ify the model performance in different search stages, we
chose two commonly used surrogate models, i.e., Gauss-
ian Process [22] and Random Forest [23], and conducted
the following comparison experiment.

In order to reduce the experimental costs, we selected
YOLOv3-tiny [24] as our backbone detection network,
generated historical data by sampling and verifying the
parameter space, and trained the two surrogate models
above. Each pair of historical data consists of a sample
position and its corresponding detection performance
(maximum AP). Since the sample position is determined
by the acquisition function, we fixed the sample posi-
tion and loaded the same data into the models to avoid
introducing extra randomness. For each surrogate model,

we conducted 5 replicate experiments each of which
loads 50/100 pairs of historical data and is trained for 10
rounds. After each round, the surrogate models gave the
prediction of optimal parameters and we verified them
with our backbone. The box plot of the results is shown
in Fig. 2 where GP and RF denote Gaussian Process and
Random Forest, respectively.

The boxes indicate data within the upper and lower
quartiles, while the whiskers indicate data outside the
quartiles, and the individual points indicates the outliers.
Taking the non-outlier max AP50 index as the evalua-
tion standard, in Fig. 2a, Random Forest achieved 6 wins,
3 losses, and 1 tie, while in Fig. 2b, Gaussian Process
achieved 3 wins, 6 losses, and 1 tie. Moreover, Gaussian
Process exhibited higher variance when historical data
was insufficient (round 0), but it had fewer outliers; While
Random Forest had a more stable overall performance.

Fig. 1 Principal framework of our method

Fig. 2 Comparison of Gaussian process and random forest

Page 5 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Both the two surrogate models have their strengths and
weaknesses, and their performance varies apparently in
different search stages, indicating that it is hard for a sin-
gle model to handle all the situations consistently.

Considering the conclusions above, to adapt to differ-
ent search conditions and improve stability, we proposed
a dynamic surrogate model evaluation (DSME) method.
DSME consists of two parts: (1) the construction of the
surrogate model library and (2) the cross-validation
mechanism. By dynamically generating and partitioning
the historical data, we train and evaluate the models in
the library to obtain the best model for every iteration.

Surrogate model library
Gaussian Process and Random Forest are commonly
used surrogate models in Bayesian optimization. Because
to the ability of simulating almost all black-box func-
tions and give both value prediction and uncertainty,
they are widely used in the HPO of neural networks.
Since the scale-up of the model library will result in a
linear increase in computing consumption, in this paper,
we only use the two models above to verify the feasibil-
ity, and the model library can be expanded in practical
applications.

Gaussian process surrogate model
Gaussian Process is the default surrogate model of classi-
cal Bayesian optimization, which is essentially a posterior
model for fitting the objective function. Gaussian Process
uses kernel functions to generate the covariance matrix,
determines which function has more possibility in the
function space containing all possibilities, and approxi-
mately substitutes the objective function with a much
simpler Gaussian Process model. The commonly used
Squared Exponential (SE) kernel function, i.e.,

where l is the distance between x and x′ . Gaussian Pro-
cess is an extension of multivariate Gaussian distribution
to infinite dimension, which consists of a mean function
and a covariance function, namely the objective function
f (x) follows the Gaussian distribution N m(x), k x, x

′ .
Define the detection accuracy yi (usually max AP for tar-
get detection networks) as the observation value of the
network hyperparameter xi , after t experiments, we get t
groups of observation data D1:t =

{(
x1, y1

)
, . . . ,

(
xt , yt

)}
 .

According to Bayes theorem, the posterior probability
model

(
f | D1:t

)
 based on the observation value and the

likelihood estimation of the observation data based on

(1)kse

(
x, x

′
)
= exp

(
−
�x − x

′
�2

2l2

)
,

the prior model P
(
D1:t | f

)
P
(
f
)
 is proportional. Since

ft+1 and the previous points follow a joint Gaussian dis-
tribution, ft+1 can be predicted according to the Gauss-
ian process posterior distribution, and the prediction
contains the mean and variance:

Random forest surrogate model
Random forest is a branch of the decision forest algo-
rithm [25], which has the advantages of concise form
and less prone to over-fitting. A random forest consists
of multiple CART decision trees [26], each of which is
a tree-like weak classifier based on supervised learning.
The data to be classified enters from the root node, trav-
erses different child nodes according to the division rules,
and ends at the leaf node with an output of category or
prediction value.

Random forest uses bagging sampling [27] to resample
the training set with replacement to avoid over-fitting
and to improve anti-interference ability. For a training set
D =

{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)}
 , the j-th variable

x(j) of value s is selected through heuristic methods like
random sampling as the segmentation variable and seg-
mentation point, and the value space is divided into two
regions: R1(j, s) =

{
x | x(j) ≤ s

}
 , R2(j, s) =

{
x | x(j) > s

}
 .

Then solve

where ci represents the mean of the output samples in
region Ri . For a fixed segmentation variable x(j) , we can
find the corresponding optimal segmentation point s(j) .
Traverse x(j) to find the optimal segmentation variable x
and split point s , we can divide the input space into two
sub-regions and determine the output values by

Finally, we iterate the steps above and divide the input
space into M sub-regions R1,R2, . . . ,RM , and generate the
final regression decision tree f (x) =

∑M
m=1ĉmI(x ∈ Rm) .

Classification problems usually take the mode of all the
outputs as the result, while regression problems usually
take the mean and variance as the prediction output.

Cross‑validation mechanism
Since historical data dynamically accumulates during the
process, the partition of the dataset, the validation pol-
icy and the selection standard should adapt accordingly.

(2)P
(
ft+1 | D1:t , xt+1

)
= N

(
m(xt+1), k

(
xt+1, x

′
))

.

(3)

minj,s

[
minc1

∑
xi∈R1(j,s)

(
yi − c1

)2
+minc2

∑
xi∈R2(j,s)

(
yi − c2

)2
]
,

(4)ĉm =
1

Nm

∑
xi∈Rm(j,s)

yi,m = 1, 2.

Page 6 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Therefore, we designed a cross-validation mechanism
for the DSME module to manage the increasing data and
handle the dynamic evaluation, as shown in Fig. 3.

Training is difficult at the initial stage where data is
insufficient. Meanwhile, the existence of non-random
sampling rules in the acquisition functions determines
that there are inherent relationships between different
sample batches, which does not satisfy the independence
assumption. In order to avoid the over-fitting caused
by small dataset and the impact of dataset partitioning,
we choose the cross-validation mechanism to evaluate
the surrogate models. The cross-validation mechanism
[28], proposed by Seymour Geisser, divides the histori-
cal data into N equal parts for each validation by resam-
pling, one part is used as the validation set and the rest
is used as the training set, to reduce the impact of data
distribution on the regression results. For the historical
data setD =

{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)}
 , randomly

selecting the i-th group as the validation set, the cross-
validation validation process can be marked as:

(5)ŷi = model[m].train(
∑

D[j]j∈N ,j �=i).val(xi),

where model[m] represents the m-th surrogate model,
train() denotes training the model with the data in the
parentheses, val() denotes predicting the hyperparam-
eters in the parentheses, and ŷi represents the prediction
of the surrogate model for the i-th group of data.

In order to minimize the difference between the
estimated values and the actual values, we choose
the mean square error (MSE) as the measurement for
dynamic evaluation, and select the model with the mini-
mum MSE as the final surrogate model for the current
iteration:

With the real-time dynamic evaluation of the surro-
gate model based on cross-validation, the search path
can be timely adjusted, which improves the accuracy and
robustness, and speeds up the convergence of the regres-
sive prediction model. As the historical data increases,
the effect of the DSME module will gradually improve.
The overall workflow of DSME can be represented by
pseudo code 1.

(6)min

{
MSE

(
ŷi
)
= E

(
ŷi − yi

)2}
.

Algorithm 1. Dynamic Surrogate Model Evaluation

Page 7 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Sliding balance acquisition strategy
In the optimization of target detection networks, Bayes-
ian methods use surrogate models to fit the relationship
between network parameters and detection performance,
and sample the parameter space by the acquisition func-
tions to generate training data for surrogate models. The
sampling strategy should maximize the benefit to the
optimization process, which requires a trade-off between
exploration and exploitation.

Exploration means to sample at the points with high
prediction uncertainty that are generally farther away
from the observed points, and the sampling process
should ensure a better coverage in parameter space. The
better coverage can help the surrogate model to enhance
the fitting ability and jump out of the local optimum, but
the high profit is accompanied by high risk. A typical
exploration sampling is shown by the red dot in Fig. 4a.
Exploitation, on the other hand, means to sample at
points with high prediction confidence. Such points are
usually closer to the sampled point, so we are more likely
to obtain a small but stable improvement every time. A
typical exploitation sampling is shown by the green dot
in Fig. 4a.

The balance strategy between exploration and exploita-
tion should be determined based on sampling function,
data distribution and resource constraints. Traditional
Bayesian optimization applies dense exploration to uni-
formly cover the entire parameter space, but achieving
global optimal results comes at a heavy cost in terms of
sampling and verification. In practical applications, the
search resources are usually limited and it is difficult to
achieve dense coverage of the high-dimensional param-
eter space, resulting in greater randomness and inferior
results. In response to the problems of exploration-ori-
ented strategy, we considered the balance of strategy as a
gradual process, and introduced the resource constraint
to propose a dynamic sliding balance strategy, as shown
in schematic diagram 4b. The sliding balance strat-
egy determines the acquisition tendency, encouraging
exploration when the resource is abundant, and gradu-
ally slides to exploitation as the resource is consumed. A

comparison between this approach and traditional meth-
ods is visually presented in Fig. 4c.

The main principle of the sliding balance strategy is
shown in Fig. 5. Firstly, the K-nearest neighbor (KNN)
algorithm is introduced into the acquisition function to
obtain a candidate parameter set. Secondly Hausdorff
distance is used to sort the parameter set according to
the value of exploration and exploitation. Finally, a sliding
balance acquisition function is established to smoothly
switch the sampling strategy from exploration to exploi-
tation according to the resource utilization progress.

Hausdorff distance measure
To achieve the optimal parameter recommendation, we
need to establish a reasonable distance measurement to
evaluate the similarity between candidate samples and the
historical data. Hausdorff distance is a popular distance
measure between collections, and is widely used in image
segmentation, edge matching and many other fields. For
two vector sets A = {a1, . . . , an} and B =

{
b1, . . . , bn

}
 ,

the two-way Hausdorff distance is defined as

h(A,B) and h(B,A) are one-way Hausdorff distances,
defined as

where d(a, b) represents the distance from vector a to
vector b , usually is measured by Euclidean distance. The
Hausdorff distance can be treated as the maximum value
of the minimum distances from all points in set A to set
B. When we sort the Hausdorff distance from the candi-
date sample set to the historical data set, and the order
represents the exploration value of the points. Points
that are farther away from the historical set have higher
exploration value, while points that are nearer have
higher exploitation value. By replacing the max opera-
tion in formula (8) with the sort operation, we degenerate
Hausdorff distance into one-way Hausdorff measure and
keep the order of exploration value of the candidate set
for further resampling.

(7)H(A,B) = max(h(A,B), h(B,A)).

(8)h(A,B) = maxa∈A
{
minb∈Bd(a, b)

}
,

Fig. 3 Flowchart of DSME module

Page 8 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

KNN‑based Hau‑PI acquisition function
To verify the performance of acquisition function on
search task, we fixed the surrogate model and com-
pared it with three common acquisition functions, i.e.,
UCB [29], PI [30] and Expected Improvement (EI) [31].
The experiment setting is consistent with the experi-
ments chapter, and the results, shown in Table 1, suggest
that the PI acquisition function performs better for the
YOLOv3-tiny network, so we choose it as the baseline of
this paper.

The PI acquisition function selects the samples
whose parameter has a higher probability of achiev-
ing a greater value than the maximum value f ∗n
achieved by the observed points according to the pos-
terior model. PI determines the final sample points by
down-sampling the parameter space, and the score is
calculated by

where �(·) is the cumulative distribution function of
the standard normal distribution; µ(x) and σ(x) are the
expectation and variance, respectively, obtained from the
posterior model; ξ ≥ 0 is an adjustable parameter which
balances exploration and exploitation. As the acquisition

(9)PI(x) = �

(
µ(x)− f ∗n − ξ

σ (x)

)
,

Fig. 4 Schematic of acquisition strategy and sliding balance

Fig. 5 Structure diagram of sliding balance acquisition strategy

Table 1 Comparison of Acquisition Functions

Acquisition
function

Gaussian Process (GP) Random Forest (RF)

50 data 100 data 50 data 100 data

UCB 0.466 0.454 0.469 0.463

PI 0.473 0.470 0.469 0.470
EI 0.456 0.461 0.460 0.458

Page 9 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

result is sensitive to ξ, it is usually set to a fixed value.
However, this static sampling policy only considers
one candidate sample with the highest PI score, which
may lead to a neglect of the potential samples in the
neighborhood.

To fully explore the candidate samples, we introduce
the KNN strategy into PI function to maintain the opti-
mal neighborhood. Sampling the parameter space and
taking the best K sample points under the PI measure-
ment, we obtain an ordered set P = {p1, . . . , pi, . . . , pK } ,
namely the neighbor set of the optimal sample. Assum-
ing that there are N groups of historical data, i.e.,
H =

{
h1, . . . , hj , . . . , hN

}
 , the spatial distance between pi

and hj is defined as

where � · �2 represents the Euclidean distance. The one-
way Hausdorff distance from pi to set H can be repre-
sented according to (8) as:

Traversing i ∈ [1, K] , we get set D which contains the
distance of all elements in P to set H , i.e.,

We reorder set P as NP =
{
Np1,Np2, . . . , . . . ,Npk

}

following

where Q means taking the original subscript of the ele-
ment; sortmax means arranging the set elements in
descending order; [t] means taking the t-th element of the
set. In the neighbor set NP , candidate hyperparameters
are arranged in descending order according to the one-
way Hausdorff distance to H . Np1 is the farthest to H and
has the greatest exploration value; Npk is the closest to
H and has the greatest exploitation value. We name the
modified PI function with Hausdorff distance as Hau-PI.

Sliding balance mapping function
Once obtained the neighbor set NP , we need to design
a sliding balance strategy to determine the final sam-
ple points, and control the tendency in different search
stages. Since HPO tasks are usually constrained by com-
putational resource, and the resource consumption is
positively correlated to the accumulation of historical
data, the resource utilization (RU) rate may act as an
effective indicator to quantify the search progress. The
sliding balance mapping function below uses RU rate

(10)dij = �pi − hj�2, 1 ≤ i ≤ K , 1 ≤ j ≤ N ,

(11)d(pi,H) = min
{
dij

}
, 1 ≤ j ≤ N ,

(12)D =
{
d(pi,H)

}
, 1 ≤ i ≤ K .

(13)
{
i = Q(sortmax(D)[t]), 1 ≤ t ≤ K

Npt = pi
,

as the medium, and establishes a non-linear matching
between neighbor set NP and the search stage according
to the order of exploration and exploitation value

where cur means the consumed resource and sum means
the total resource; K means the amount of candidate
parameters in each iteration.⌈⌉ is the ceiling function,
and NP[i] means taking the i-th object of set NP . With
⌈K cur

sum⌉ matching the search progress from 1 ~ sum to
1 ~ K, the acquisition strategy will smoothly transit from
exploration to exploitation as the search progresses, and
the final selected hyperparameters will accordingly slide
from Np1 to Npk . Parameter K adjusts the switching
granularity, especially when K = 1, the acquisition func-
tion in this section degenerates into the original PI acqui-
sition function.

Experiments
Experimental setup
We select the light-weight YOLOv3-tiny detection net-
work as our backbone that is pretrained on the MS
COCO dataset, and verify our method on the image clas-
sification and detection dataset Pascal VOC 2007 [32].
All experiments are performed under the same hardware
configuration: Core (TM) i7-7820X CPU @ 3.60 GHz,
Nvidia GTX 3090, Ubuntu18.04, python3.7, pytorch1.8.

Ablation experiment
In order to prove the effectiveness of each component
in our method, we took classical Bayesian optimization
(GP for short, consisting of Gaussian process and PI
acquisition function) as the baseline, and set up the fol-
lowing groups of ablation experiments: (1) GP baseline;
(2) only enabled the dynamic surrogate model evalua-
tion (marked as Dynamic); (3) only enabled the sliding
balance acquisition strategy (marked as Hausdorff); (4)
enabled both component at the same time (marked as
Dynamic + Hausdorff). Each group performed 5 repeat
experiments, and each experiment used 600 epochs of
computing resource. Since every iteration used 10 epochs
for verification, the total iteration time was 60. The value
K in KNN was set to 3.

We take AP 50 index as the evaluation standard, and
plot the sorted optimization curves in Fig. 6 where the
solid lines represent the mean results; the shaded areas
represent 0.5 times the variance; Maxv and mean rep-
resent the maximum and average value of the results,
respectively. In Fig. 6, It can be observed that the
dynamic group has a smaller cross-sectional area on the
horizontal axis, indicating greater stability in the results.
Furthermore, the Hau-PI group outperforms the original

(14)para = NP
[⌈

K
cur

sum

⌉]
, 1 ≤ cur ≤ sum,

Page 10 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

GP, validating the improvement made to the acquisition
function. The two components have synergistic effect on
model performance, when they are combined, the intro-
duction of uncertainty through DSME and the early-
stage exploration tendency of sliding balance increases
the variability, resulting in both positive and negative
effects: the former half of the ranked optimization curve
decreases, but a clear breakthrough can be observed in
the latter period. As HPO methods prioritize the best
result over the average result, we deem the overall change
beneficial. The results are supportive to our idea that
early-stage exploration is necessary as it prompts the
algorithm to simulate the target network more effectively
and optimize its parameters.

In order to observe the performance at different stages,
we counted the results after consuming every 1/4 search
resource into Table 2. It can be seen that in the earlier 3/4 of
progress, Hau-PI group obtained better results for its active
exploration mechanism, but in the last 1/4 of progress,
due to the saturation of exploration and insufficient use
of historical experience, the results increased slowly and
had obvious fluctuation. DSME and Hau-PI further opti-
mize the mining of historical data based on the extensive

exploration in the early stage, get 1.2% in the AP 50 index
than the control group, and reduced the variance to 0.4
times. The mutual promotion effect between DSME and
Hau-PI can significantly improve the result and stability.

Comparative experiment
In order to verify the overall performance of our method,
we selected 3 successful optimization methods to carry
out comparative experiments including classical Bayesian
optimization (GP for short), TPE and BOHB. The experi-
mental settings were consistent with the ablation section,
and the sorted optimization curves were plotted in Fig. 7.

Although it was more stable and had better optimiza-
tion curves, BOHB could not fully approach to the global
optimal before the resource was exhausted. GP and TPE
got similar results, but their average performance and
stability were inferior. As for our method, although in
the early stage it had many low-index and large-variance
searches, the final search results were apparently ahead.
Especially in the vicinity of the optimal parameters in the
right figure, the cross-sectional area of our method was
very small, indicating that the optimal results can be sta-
bly obtained in each repeat experiment.

Fig. 6 Sorted optimization curves of ablation experiment

Table 2 Results of Ablation Experiment

Optimization
Method

Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

GP (baseline) 0.454 ± 0.010 0.459 ± 0.008 0.463 ± 0.004 0.468 ± 0.005

Dynamic 0.449 ± 0.006 0.461 ± 0.003 0.465 ± 0.007 0.470 ± 0.005

Hausdorff 0.458 ± 0.005 0.462 ± 0.003 0.467 ± 0.005 0.471 ± 0.007

Dynamic + Hausdorff 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002

Page 11 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Similar to the ablation experiments, we counted the
search results after consuming every 1/4 search resource
in Table 3. It can be seen that our method was always
in the leading position except for the first 1/4, where it
lagged behind BOHB due to its focus on exploration.
Especially in the last quarter, due to the combination of
early exploration and later exploitation, the search per-
formance was improved to 1.4% above BOHB.

Supplementary experiments
Influence of parameter K
To analyze the influence of the parameter K in the KNN
algorithm, we kept other conditions consistent with the
ablation experiments, set K to 1, 3, 5, and 10, respec-
tively, and carried out additional experiments. Especially,
when K = 1 , Hau-PI degenerates back into traditional
PI acquisition function (i.e., Dynamic group in Table 2).
Each control experiment is repeated for five times, and
the results are shown in Table 4.

It can be seen from Table 4 that the K = 5 and K = 10
groups achieved better results in the early stage, but
the performance decreased severely as the exploration

proceeds. In the end, the K = 3 group achieved a 1.4%
better result in accuracy, and the variance was also opti-
mal. We can learn from formula (14) and the principle
of sliding balance that, parameter K and the resource
consumption rate sum act together on the selection of
the candidate parameters. A greater K will make the
algorithm tend to explore, although the profit is higher
in the early stage; it is not conducive to utilization when
the historical data is sufficient. Similarly, the K = 1 group
showed a disadvantage due to insufficient exploration in
the early stage, so we finally set K = 3 as the default value
in the KNN algorithm.

Fig. 7 Sorted optimization curves of comparative experiment

Table 3 Comparation of search efficiency

Optimization Method Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

GP (baseline) 0.454 ± 0.010 0.459 ± 0.008 0.463 ± 0.004 0.468 ± 0.005

TPE 0.453 ± 0.002 0.460 ± 0.006 0.463 ± 0.005 0.469 ± 0.004

BOHB 0.459 ± 0.003 0.460 ± 0.004 0.464 ± 0.005 0.470 ± 0.002

Dynamic + Hau-PI 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002

Table 4 Comparison of different K value

K
parameter

Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

K = 1 0.449 ± 0.006 0.461 ± 0.003 0.465 ± 0.007 0.470 ± 0.005

K = 3 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002
K = 5 0.459 ± 0.008 0.459 ± 0.008 0.463 ± 0.005 0.468 ± 0.004

K = 10 0.458 ± 0.007 0.460 ± 0.004 0.462 ± 0.002 0.463 ± 0.002

Page 12 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Influence of different resource limits
To verify the performance of the optimization meth-
ods under different resource limits, we kept other con-
figurations unchanged, relaxed the resource limit to 800
epochs and 1000 epochs, and extended the comparison
experiments. Each control experiment was repeated for 5
times, and the results are shown in Table 5.

Table 5 shows that the four methods had all reached the
convergence within 800 epochs, and the improvement in
800 ~ 1000 epoch stage was relatively weak. When the
resource limit was 1000 epochs, the AP50 index of our
method was 1% ahead of BOHB which was the best per-
forming method in the control group, and the variance of
our method was only 0.5 times. The gap was even more
obvious when the resource was limited to 600 and 800
epochs, which indicated that the lower the resource limit,
the better our method performs.

Influence of different sliding balance strategies
To study the effect of sliding mapping strategies, we
designed a non-linear mapping function and conducted
comparative experiments. The function is represented as:

Figure 8 illustrates the graphical representation of
function (14) and (15), denoted as Linear and NonLin-
ear, respectively. The experimental outcomes are pre-
sented in Fig. 9, where the Dynamic + Hausdorff group
corresponds to mapping function (14) and NonLinear
corresponds to (15). The results indicate that the non-
linear function exhibits less exploratory tendencies and
performs better in the first half of Fig. 9a when compared
to the linear group. However, in the partial enlargement,
the highest result obtained is inferior to the linear group,
suggesting that although adventurous exploration is
adventurous, it is necessary to achieve optimal results.

Influence of different distance measurements
To examine the influence of different distance measure-
ments, we conducted additional experiments by replac-
ing Hausdorff distance with mean Euclidean distance.

(15)para = NP
[⌈

Ke(
cur
sum−1)

⌉]
, 1 ≤ cur ≤ sum

Similar to formula (8), the mean Euclidean distance from
every sample in candidate set A to the historical dataset B
can be represented as:

The experiment results are presented in Fig. 10, where
MeanEuclidean denotes the new distance measure. As
the measurement is used to calculate the exploration and
exploitation value, its effect is similar to the sliding bal-
ance strategy. Hausdorff distance focuses on the near-
est points to avoid repetitive exploration, while mean
Euclidean distance involves all points, making it a more
stable measure. For the same reasons as the previous sec-
tion, we chose Hausdorff distance as our final distance
measurement.

Conclusion
Taking the anchor HPO of target detection networks
as an example, we proposed a dynamic Bayesian HPO
method based on a sliding balance mechanism to solve
the problems of weak robustness, large variance and
inadaptability of traditional methods under resource-
constrained scenarios. Firstly, we constructed a surrogate
model library and used cross-validation to dynamically
select surrogate models, to avoid the prior bias brought
by the model selection and improve the prediction abil-
ity. Secondly, we built a Hau-PI acquisition function that
combines the KNN and Hausdorff measure and sorts
the neighbor sample space by exploration value, and
treated the balance of exploration and exploitation as a
dynamic adjustment problem of the acquisition strategy
under resource constraints. Finally, we used a sliding bal-
ance mapping strategy to associate resource utilization
with the exploration tendency, which realized a smooth
transition from early exploration to later exploitation.
The experiments showed that each module in this paper

(16)m(A,B) = sorta∈A
{
mean

(∑
b∈Bd(a, b)

)}

Table 5 Comparison of different resources limits

Optimization Method Results in different search progress
(AP50 ± Variance)

600 epochs 800 epochs 1000 epochs

GP (baseline) 0.468 ± 0.005 0.469 ± 0.004 0.470 ± 0.003

TPE 0.469 ± 0.004 0.473 ± 0.003 0.473 ± 0.003

BOHB 0.470 ± 0.002 0.472 ± 0.004 0.474 ± 0.002

Dynamic + Hau-PI 0.477 ± 0.002 0.479 ± 0.001 0.479 ± 0.001

Fig. 8 Different sliding balance mapping functions

Page 13 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

can offer corresponding improvement and promote each
other in synergy. Compared with mainstream methods
including TPE and BOHB, our method obtained better
optimization results with obvious advantages in speed
and stability.

Abbreviations
HPO Hyperparameter optimization
PI Probability of improvement
EI Expected Improvement
KNN K-nearest neighbor
DSME Dynamic Surrogate Model Evaluation
GP Bayesian optimization that consists of Gaussian process and PI

acquisition function
RU Resource utilization

Authors’ contributions
Jianlong Zhang, Tianhong Wang, Bin Wang, Chen Chen, and Gang Wang are
equal in the work they have done in the development process. All authors
have read and agreed to the published version of the manuscript.

Funding
This work was supported by the Key Research and Development Pro-
gram of Shaanxi (No. 2023-ZDLGY-54, 2023-GHZD-44, 2021ZDLGY02-09,
2019ZDLGY13-07, 2019ZDLGY13-04), the National Natural Science Foun-
dation of China (62072360, 61902292, 61971331, 62001357, 62072359,
62172438), the Natural Science Foundation of Guangdong Province of China
(2022A1515010988), the Xi’an Science and Technology Plan (20RGZN0005)
and the Key Project on Artificial Intelligence of Xi’an Science and Technology
Plan (2022JH-RGZN-0003, 2022JH-RGZN-0103, 2022JH-CLCJ-0053).

Availability of data and materials
VOC 2007 dataset can be found at http:// host. robots. ox. ac. uk/ pascal/ VOC/
voc20 12/

Fig. 9 Sorted optimization curves of different mapping functions

Fig. 10 Sorted optimization curves of different distance measurements

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Page 14 of 14Zhang et al. Journal of Cloud Computing (2023) 12:109

Declarations

Ethics approval and consent to participate
This declaration is not applicable because this paper is not relevant to human
or animal studies.

Competing interests
The authors declare no competing interests.

Author details
1 School of Electronic Engineering, Xidian University, Xi’an, China. 2 State Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an, China.
3 Department of Mechanical Engineering, Tsinghua University, Beijing, China.

Received: 30 January 2023 Accepted: 1 July 2023

References
 1. Chen C, Chenyu W, Bin L, Ci He, Li C, Shaohua W (2023) Edge Intelligence

Empowered Vehicle Detection and Image Segmentation for Autono-
mous Vehicles. IEEE Trans Intell Transp Syst. https:// doi. org/ 10. 1109/ TITS.
2022. 32321 53. pp1- 12

 2. Chen C, Rufei Fu, Ai X, Huang C, Cong Li, Li X, Jiang J, Pei Q (2022) An
Integrated Method for River Water Level Recognition from Surveillance
Images Using Convolution Neural Networks. Remote Sensing 14(23):6023

 3. Chen C, Jiange J, Zhan L, Yang Z, Hao W, Qingqi P (2022) A short-term
flood prediction based on spatial deep learning network: A case study for
Xi County, China. J Hydrol 607:127535

 4. Fang J, Chen C, Jiajun Li, Lanlan C, Na Li (2022) A BUS-aided RSU access
scheme based on SDN and evolutionary game in the Internet of Vehicle.
Int J Commun Syst 35:3932

 5. Chen C, Yao G, Wang C, Goudos S, Wan S (2022) Enhancing the robust-
ness of object detection via 6G vehicular edge computing. Digital Com-
mun Networks 8:923–931

 6. Yuru Z, Chen C, Lei L, Dapeng L, Hongbo J, Shaohua W (2023) Aerial Edge
Computing on Orbit: A Task Offloading and Allocation Scheme. IEEE
Transactions Network Sci Eng 10:275–285

 7. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. IEEE Conference
Comput Vis Pattern Recognit. https:// doi. org/ 10. 1109/ CVPR. 2014. 81.
pp580- 587

 8. J. Redmon, S. Divvala, R. Girshick, A. Farhadi (2016) You Only Look Once:
Unified, Real-Time Object Detection. IEEE Conf Comput Vis Pattern Rec-
ognit 779–788. https:// doi. org/ 10. 1109/ CVPR. 2016. 91.

 9. Zhang J, Wang T, Wang B, Chen C (2022) A Subspace Fusion of Hyper-
parameter Optimization Method Based on Mean Regression. IEEE Int
Conf Smart Internet Things. https:// doi. org/ 10. 1109/ Smart IoT55 134. 2022.
00035. pp169- 174

 10. Chen C, Yini Z, Huan Li, Yangyang L, Shaohua W (2022) A Multi-hop Task
Offloading Decision Model in MEC-enabled Internet of Vehicles. IEEE
Internet Things J. https:// doi. org/ 10. 1109/ JIOT. 2022. 31435 29

 11. Rattanavorragant R, Jewajinda Y (2019) A Hyper-parameter Optimiza-
tion for Deep Neural Network using an Island-based Genetic Algorithm.
Int Conf Electrical Eng Electron Comput Telecommun Inform Technol.
https:// doi. org/ 10. 1109/ ECTI- CON47 248. 2019. 89552 88. pp73- 76

 12. Singh Pratibha, Chaudhury Santanu, Panigrahi BijayaKetan (2021) Hybrid
MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of
Convolutional Neural Network. Swarm Evol Comput 63(10):100863.
https:// doi. org/ 10. 1016/j. swevo. 2021. 100863. (ISSN 2210-6502)

 13. Jomaa, Hadi, Grabocka, Josif, Schmidt-Thieme, Lars (2019) Hyp-RL: Hyper-
parameter Optimization by Reinforcement Learning. arXiv preprint arXiv:
1906. 11527.

 14. Peter I. Frazier (2018) A tutorial on bayesian optimization. arXiv preprint
arXiv: 1807. 02811.

 15. Bergstra J, Bardenet R, Bengio Y, K’egl B (2011) Algorithms for
hyper-parameter optimization. Int Conf Neural Inform Process Syst
2011:2546–2554

 16. Falkner S, Klein A, Hutter F (2018) Bohb: Robust and efficient hyperparam-
eter optimization at scale. Int Conf Machine Learning PMLR 80:1437–1446

 17. Li L, Jamieson K, Desalvo G et al (2017) Hyperband: A novel bandit-based
approach to hyperparameter optimization. J Machine Learning Res
18(1):6765–6816

 18. Wenshuo M, Tingzhong T, Hang X (2020) AABO: Adaptive anchor box
optimization for object detection via bayesian sub-sampling. Eur Conf
Comput Vis: vol 12350. pp 560–575

 19. Cho H, Kim Y, Lee E et al (2019) DEEP-BO for Hyperparameter Optimiza-
tion of Deep Networks. arXiv preprint arXiv: 1905. 09680.

 20. M. P. Ranjit, G. Ganapathy, K. Sridhar, V. Arumugham (2019) Efficient Deep
Learning Hyperparameter Tuning Using Cloud Infrastructure: Intelligent
Distributed Hyperparameter Tuning with Bayesian Optimization in the
Cloud. 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). pp 520–522. https:// doi. org/ 10. 1109/ CLOUD. 2019. 00097

 21. Felix Hausdorff (1914) Grundzüge der Mengenlehre
 22. Williams CK, Rasmussen CE (2006) Gaussian processes for machine learn-

ing: volume 2. MIT press, Cambridge
 23. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
 24. Adarsh P, Rathi P, Kumar M (2020) YOLO v3-Tiny: Object Detection and

Recognition using one stage improved model. Int Conf Adv Comput
Commun Syst. https:// doi. org/ 10. 1109/ ICACC S48705. 2020. 90743 15.
pp687- 694

 25. Tin Kam Ho (1995) Random decision forests. Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition. pp 278–282

 26. Mathan K, Kumar PM, Panchatcharam P et al (2018) A novel gini index
decision tree data mining method with neural network classifiers for
prediction of heart disease. Des Autom Embed Syst 22(3):225–242

 27. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
 28. Stone M (1974) Cross-Validatory Choice and Assessment of Statistical

Predictions. J Roy Stat Soc 36(2):111–147
 29. Srinivas N, Krause A, Kakade S M, et al (2009) Gaussian process optimiza-

tion in the bandit setting: No regret and experimental design. arXiv
preprint arXiv: 0912. 3995.

 30. Kushner HJ (1964) A New Method of Locating the Maximum Point
of an Arbitrary Multipeak Curve in the Presence of Noise. J Basic Eng
86:97–106

 31. Snoek J, Larochelle H, Adams R P (2012) Practical bayesian optimization of
machine learning algorithms. Adv Neural Inform Process Syst 25. pp 2951–2959

 32. Everingham M, Van Gool L, Williams CKI et al (2010) The pascal visual
object classes (voc) challenge[J]. Int J Comput Vision 88(2):303–338

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TITS.2022.3232153.pp1-12
https://doi.org/10.1109/TITS.2022.3232153.pp1-12
https://doi.org/10.1109/CVPR.2014.81.pp580-587
https://doi.org/10.1109/CVPR.2014.81.pp580-587
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/SmartIoT55134.2022.00035.pp169-174
https://doi.org/10.1109/SmartIoT55134.2022.00035.pp169-174
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.1109/ECTI-CON47248.2019.8955288.pp73-76
https://doi.org/10.1016/j.swevo.2021.100863
http://arxiv.org/abs/1906.11527
http://arxiv.org/abs/1906.11527
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1905.09680
https://doi.org/10.1109/CLOUD.2019.00097
https://doi.org/10.1109/ICACCS48705.2020.9074315.pp687-694
https://doi.org/10.1109/ICACCS48705.2020.9074315.pp687-694
http://arxiv.org/abs/0912.3995

	Hyperparameter optimization method based on dynamic Bayesian with sliding balance mechanism in neural network for cloud computing
	Abstract
	Introduction
	Overall framework
	Dynamic Surrogate Model Evaluation (DSME)
	Surrogate model library
	Gaussian process surrogate model
	Random forest surrogate model

	Cross-validation mechanism

	Sliding balance acquisition strategy
	Hausdorff distance measure
	KNN-based Hau-PI acquisition function
	Sliding balance mapping function

	Experiments
	Experimental setup
	Ablation experiment
	Comparative experiment
	Supplementary experiments
	Influence of parameter
	Influence of different resource limits
	Influence of different sliding balance strategies
	Influence of different distance measurements

	Conclusion
	References

