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Abstract 

Hyperparameter optimization (HPO) of deep neural networks plays an important role of performance and efficiency 
of detection networks. Especially for cloud computing, automatic HPO can greatly reduce the network deployment 
cost by taking advantage of the computing power. Benefiting from its global-optimal search ability and simple 
requirements, Bayesian optimization has become the mainstream optimization method in recent years. However, 
in a non-ideal environment, Bayesian method still suffers from the following shortcomings: (1) when search resource 
is limited, it can only achieve inferior suboptimal results; (2) the acquisition mechanism cannot effectively balance 
the exploration of parameter space and the exploitation of historical data in different search stages. In this paper, we 
focused on the limited resources and big data provided by the cloud computing platform, took the anchor boxes 
of target detection networks as the research object, employed search resource as a restraint condition, and designed 
a dynamic Bayesian HPO method based on sliding balance mechanism. The dynamism of our method is mainly 
reflected in two aspects: (1) A dynamic evaluation model is proposed which uses the cross-validation mechanism 
to evaluate the surrogate model library and select the best model in real time; (2) A sliding balance mechanism 
is designed based on resource constraints to seek a balance between exploration and exploitation. We firstly augment 
the recommended samples of probability of improvement acquisition function by using k-nearest neighbor method, 
then introduce Hausdorff distance to measure the exploration value and match sampling strategy with resource 
utilization, which makes it slide smoothly with resource consumption to establish a dynamic balance of explora-
tion to exploitation. The provided experiments show that our method can quickly and stably obtain better results 
under the same resource constraints compared with mature methods like BOHB.
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Graphical Abstract

Introduction
Object detection is a core and hot issue in computer 
vision, which is widely applied in autonomous driving 
[1], intelligent surveillance [2], disaster prediction [3], 
and many other fields. With the rapid development of 
deep learning in recent years, neural networks are tak-
ing the place of traditional feature engineering and pat-
tern recognition, and becoming the mainstream method 
in object detection. The popularity of cloud computing 
including the Internet of Things [4] and edge computing 
[5, 6] helps the practicality of autonomous driving, and 
also puts forward higher requirements on the efficiency 
and adaptability of the detection networks. Most of the 
commonly used target detection networks are anchor 
based, they slide anchor boxes with different scale on the 
image, and try to locate and classify the target objects. 
The parameter of anchor box (anchor for short) mainly 
refers to the length and the width, which has the main 
impact on the detection performance.

Currently, mainstream object detection networks usu-
ally use pre-defined anchors, or adaptively change them 
according to the dataset’s statistical information. For 
example, the RCNN [7] network series generate 9 fixed 
anchors by crossing three aspect ratios with three scaling 
ratios; YOLO [8] network series get the clustering cent-
ers of the sample sizes by K-means clustering in detection 
space, use them as the anchor parameters and update 
them during the search progress. These methods con-
sider less about controlling the computational cost (like 
GPU memory and working time) and making full use of 
the big data, thus they cannot utilize the advantages of 
cloud computing and ensure reasonable anchor settings 
under limited resources.

The hyperparameter optimization (HPO) in neural 
networks is a black box problem; the high-dimensional 
objective functions have complicated structures and 
expensive evaluation costs, which all make the design 
and verification of hyperparameters difficult. The cost 
of manual parameter adjustment restricts the versatility 
of neural networks. As a consequence, early HPO meth-
ods are predominantly theoretical rather than practical. 
However, the advancement of cloud computing has led 
to scalable computing power, enabling the fulfillment of 
various fine-tuning requirements, while big data facili-
tates optimization progress by sharing historical data 
among similar models and tasks. These developments 
have motivated researchers to transform automatic HPO 
into a practical and utilizable technology. Because of the 
difficulty in computing the derivative or finite difference 
of the loss function of neural networks, traditional gradi-
ent optimization can hardly deal with them. The optimi-
zation methods of neural networks can be mainly divided 
into two categories, i.e., heuristic algorithm and non-gra-
dient optimization. Heuristic algorithm imitates natural 
phenomenon, abstracts mathematical rules from them 
to solve the optimization problem, such as SF-HPO [9] 
based on mean regression, MH-TOD based on discrete 
bat algorithm [10], IGA [11] based on genetic algorithm, 
and HMPSO-CNN [12] based on particle swarm optimi-
zation, etc. On the other hand, non-gradient algorithm 
samples the hyperparameter space, uses surrogate mod-
els to fit and replace the complex network, and predicts 
the distribution of optimal parameters, such as Hyp-RL 
based on reinforcement learning [13], and Bayesian opti-
mization based on Bayesian probability distribution [14], 
etc. Among them, Bayesian optimization has become 
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the mainstream baseline of neural network optimization 
in recent years because of its global optimal search abil-
ity, low evaluation consumption and simple requisition 
(only needs the object function to satisfy local smooth 
assumption).

TPE [15] optimization builds a multi-stage prediction 
model based on tree-like structure, and predicts the value 
of the objective function in the form of classification. 
Not being too greedy for new samples, TPE is less likely 
to be constrained into local optimum, and has made 
certain improvement especially in high-dimensional 
spaces. Considering that the resource allocation strategy 
of Successive Halving is not flexible enough, BOHB [16] 
introduces Hyperband [17] to determine the resource 
allocation according to the search stage and sample value, 
and improves the search performance and efficiency. 
AABO [18] finds that Hyperband and Successive Halving 
might falsely discard potential samples before the optimi-
zation process converges, and proposes a bandit-based 
SMC (Sub-sample Mean Comparisons) down-sampling 
strategy. By combining observation times and recent 
benefits together to determine the final sample point, 
AABO weakens the influence of short-term outliers and 
gets more stable results. DEEP-BO [19] combines sev-
eral enhancement strategies including multiple surrogate 
models, early termination and cost function transforma-
tion together into an integrated optimization framework, 
and proves that enhancing the diversity of the strategies 
may avoid falling into local optimum.

The aforementioned works improved Bayesian opti-
mization from different aspects; however, the following 
problems still limit the usage of Bayesian methods: (1) 
Traditional Bayesian optimization uses fixed surrogate 
models, which has a limited fit ability and may lead to 
large variance and low robustness; (2) Traditional sam-
pling strategies are idealized, which cannot properly bal-
ance the exploration and exploitation in different search 
stages and resource limits. When resource is constrained, 
Bayesian optimization may degenerate to global subopti-
mal search.

As a solution, this paper first introduces multi-model 
and cross-validation to dynamically select the best surro-
gate model, then adjusts the sampling strategy according 
to the resource consumption to find the optimal solu-
tion under resource constraints. Since machine learning 
platforms like Azure can support distributed training, 
the surrogate models can be deployed to parallel nodes, 
and share the historical data by data synchronously, to 
achieve low latency and high efficiency [20]. The main 
contribution of this paper includes: (1) We designed a 
dynamic surrogate model evaluation mechanism, which 
realizes dynamic splitting of the dataset and dynamic 
training and selection of models, and ensure high stability 

and availability by self-adaptive adjustments; (2) We 
established a sliding balance acquisition strategy, which 
binds the sampling strategy with resource consumption 
and improves the balance of exploration and exploitation 
under limited resources.

The chapters of this paper are arranged as follows. 
Chapter II introduces the overall framework of our 
method. Chapter III introduces the dynamic surrogate 
model evaluation. Chapter IV introduces the sliding bal-
ance acquisition strategy. Chapter V verifies the effec-
tiveness through ablation experiments and comparative 
experiments. Chapter VI is the summarization of our 
work.

Overall framework
Bayesian optimization is mainly composed of a surrogate 
model and an acquisition function. As an approximate 
substitution for the complicated objective function, the 
surrogate model evaluates the value and uncertainty at 
any location. The acquisition function determines which 
point to sample and evaluate next, while balancing explo-
ration and exploitation. We summarize the problems of 
Bayesian optimization as follows. (1) The single-surro-
gate-model is unstable in different search stages of differ-
ent tasks. (2) The search strategy does not take account of 
resource consumption, which makes it difficult to obtain 
the optimal solution under resource constraints.

Aiming at the problems above, we proposed a dynamic 
Bayesian HPO method. The principal framework, shown 
in Fig. 1, mainly includes two parts, i.e., a dynamic sur-
rogate model and a sliding balance acquisition func-
tion. First, aiming at improving the prediction accuracy 
of the model, a surrogate model library is built by using 
the hyperparameters verified by the network as histori-
cal data to train, and the cross-validation mechanism to 
dynamically select the surrogate model for each itera-
tion. Then the sliding balance acquisition function uses 
the probability of improvement (PI) acquisition func-
tion to generate a candidate parameter set, then intro-
duces Hausdorff [21] distance to construct a nonlinear 
mapping function, which takes the search resource as 
constraints and resamples the candidate set. This mecha-
nism will shift the sampling preference from exploration 
to exploitation with the consumption of resource, and 
maximize the global search revenue.

Dynamic Surrogate Model Evaluation (DSME)
In the Bayesian optimization of neural networks, sur-
rogate models act as an approximate substitute to pre-
dict the result and variance of any point in the network 
parameter space with a much lower computational cost. 
Currently, most mainstream Bayesian methods deploy 
fixed surrogate models. However, due to complex factors 
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such as changes in the detection scenario and optimiza-
tion path, it is difficult for a single model to maintain its 
advantage throughout the entire search process. To ver-
ify the model performance in different search stages, we 
chose two commonly used surrogate models, i.e., Gauss-
ian Process [22] and Random Forest [23], and conducted 
the following comparison experiment.

In order to reduce the experimental costs, we selected 
YOLOv3-tiny [24] as our backbone detection network, 
generated historical data by sampling and verifying the 
parameter space, and trained the two surrogate models 
above. Each pair of historical data consists of a sample 
position and its corresponding detection performance 
(maximum AP). Since the sample position is determined 
by the acquisition function, we fixed the sample posi-
tion and loaded the same data into the models to avoid 
introducing extra randomness. For each surrogate model, 

we conducted 5 replicate experiments each of which 
loads 50/100 pairs of historical data and is trained for 10 
rounds. After each round, the surrogate models gave the 
prediction of optimal parameters and we verified them 
with our backbone. The box plot of the results is shown 
in Fig. 2 where GP and RF denote Gaussian Process and 
Random Forest, respectively.

The boxes indicate data within the upper and lower 
quartiles, while the whiskers indicate data outside the 
quartiles, and the individual points indicates the outliers. 
Taking the non-outlier max AP50 index as the evalua-
tion standard, in Fig. 2a, Random Forest achieved 6 wins, 
3 losses, and 1 tie, while in Fig.  2b, Gaussian Process 
achieved 3 wins, 6 losses, and 1 tie. Moreover, Gaussian 
Process exhibited higher variance when historical data 
was insufficient (round 0), but it had fewer outliers; While 
Random Forest had a more stable overall performance. 

Fig. 1 Principal framework of our method

Fig. 2 Comparison of Gaussian process and random forest
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Both the two surrogate models have their strengths and 
weaknesses, and their performance varies apparently in 
different search stages, indicating that it is hard for a sin-
gle model to handle all the situations consistently.

Considering the conclusions above, to adapt to differ-
ent search conditions and improve stability, we proposed 
a dynamic surrogate model evaluation (DSME) method. 
DSME consists of two parts: (1) the construction of the 
surrogate model library and (2) the cross-validation 
mechanism. By dynamically generating and partitioning 
the historical data, we train and evaluate the models in 
the library to obtain the best model for every iteration.

Surrogate model library
Gaussian Process and Random Forest are commonly 
used surrogate models in Bayesian optimization. Because 
to the ability of simulating almost all black-box func-
tions and give both value prediction and uncertainty, 
they are widely used in the HPO of neural networks. 
Since the scale-up of the model library will result in a 
linear increase in computing consumption, in this paper, 
we only use the two models above to verify the feasibil-
ity, and the model library can be expanded in practical 
applications.

Gaussian process surrogate model
Gaussian Process is the default surrogate model of classi-
cal Bayesian optimization, which is essentially a posterior 
model for fitting the objective function. Gaussian Process 
uses kernel functions to generate the covariance matrix, 
determines which function has more possibility in the 
function space containing all possibilities, and approxi-
mately substitutes the objective function with a much 
simpler Gaussian Process model. The commonly used 
Squared Exponential (SE) kernel function, i.e.,

where l is the distance between x and x′ . Gaussian Pro-
cess is an extension of multivariate Gaussian distribution 
to infinite dimension, which consists of a mean function 
and a covariance function, namely the objective function 
f (x) follows the Gaussian distribution N m(x), k x, x

′  . 
Define the detection accuracy yi (usually max AP for tar-
get detection networks) as the observation value of the 
network hyperparameter xi , after t experiments, we get t 
groups of observation data D1:t =

{(
x1, y1

)
, . . . ,

(
xt , yt

)}
 . 

According to Bayes theorem, the posterior probability 
model 

(
f | D1:t

)
 based on the observation value and the 

likelihood estimation of the observation data based on 

(1)kse

(
x, x

′
)
= exp

(
−
�x − x

′
�2

2l2

)
,

the prior model P
(
D1:t | f

)
P
(
f
)
 is proportional. Since 

ft+1 and the previous points follow a joint Gaussian dis-
tribution, ft+1 can be predicted according to the Gauss-
ian process posterior distribution, and the prediction 
contains the mean and variance:

Random forest surrogate model
Random forest is a branch of the decision forest algo-
rithm [25], which has the advantages of concise form 
and less prone to over-fitting. A random forest consists 
of multiple CART decision trees [26], each of which is 
a tree-like weak classifier based on supervised learning. 
The data to be classified enters from the root node, trav-
erses different child nodes according to the division rules, 
and ends at the leaf node with an output of category or 
prediction value.

Random forest uses bagging sampling [27] to resample 
the training set with replacement to avoid over-fitting 
and to improve anti-interference ability. For a training set 
D =

{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)}
 , the j-th variable 

x(j) of value s is selected through heuristic methods like 
random sampling as the segmentation variable and seg-
mentation point, and the value space is divided into two 
regions: R1(j, s) =

{
x | x(j) ≤ s

}
 , R2(j, s) =

{
x | x(j) > s

}
 . 

Then solve

where ci represents the mean of the output samples in 
region Ri . For a fixed segmentation variable x(j) , we can 
find the corresponding optimal segmentation point s(j) . 
Traverse x(j) to find the optimal segmentation variable x 
and split point s , we can divide the input space into two 
sub-regions and determine the output values by

Finally, we iterate the steps above and divide the input 
space into M sub-regions R1,R2, . . . ,RM , and generate the 
final regression decision tree f (x) =

∑M
m=1ĉmI(x ∈ Rm) . 

Classification problems usually take the mode of all the 
outputs as the result, while regression problems usually 
take the mean and variance as the prediction output.

Cross‑validation mechanism
Since historical data dynamically accumulates during the 
process, the partition of the dataset, the validation pol-
icy and the selection standard should adapt accordingly. 

(2)P
(
ft+1 | D1:t , xt+1

)
= N

(
m(xt+1), k

(
xt+1, x

′
))

.

(3)

minj,s

[
minc1

∑
xi∈R1(j,s)

(
yi − c1

)2
+minc2

∑
xi∈R2(j,s)

(
yi − c2

)2
]
,

(4)ĉm =
1

Nm

∑
xi∈Rm(j,s)

yi,m = 1, 2.
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Therefore, we designed a cross-validation mechanism 
for the DSME module to manage the increasing data and 
handle the dynamic evaluation, as shown in Fig. 3.

Training is difficult at the initial stage where data is 
insufficient. Meanwhile, the existence of non-random 
sampling rules in the acquisition functions determines 
that there are inherent relationships between different 
sample batches, which does not satisfy the independence 
assumption. In order to avoid the over-fitting caused 
by small dataset and the impact of dataset partitioning, 
we choose the cross-validation mechanism to evaluate 
the surrogate models. The cross-validation mechanism 
[28], proposed by Seymour Geisser, divides the histori-
cal data into N  equal parts for each validation by resam-
pling, one part is used as the validation set and the rest 
is used as the training set, to reduce the impact of data 
distribution on the regression results. For the historical 
data setD =

{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)}
 , randomly 

selecting the i-th group as the validation set, the cross-
validation validation process can be marked as:

(5)ŷi = model[m].train(
∑

D[j]j∈N ,j �=i).val(xi),

where model[m] represents the m-th surrogate model, 
train() denotes training the model with the data in the 
parentheses, val() denotes predicting the hyperparam-
eters in the parentheses, and ŷi represents the prediction 
of the surrogate model for the i-th group of data.

In order to minimize the difference between the 
estimated values and the actual values, we choose 
the mean square error (MSE) as the measurement for 
dynamic evaluation, and select the model with the mini-
mum MSE as the final surrogate model for the current 
iteration:

With the real-time dynamic evaluation of the surro-
gate model based on cross-validation, the search path 
can be timely adjusted, which improves the accuracy and 
robustness, and speeds up the convergence of the regres-
sive prediction model. As the historical data increases, 
the effect of the DSME module will gradually improve. 
The overall workflow of DSME can be represented by 
pseudo code 1.

(6)min

{
MSE

(
ŷi
)
= E

(
ŷi − yi

)2}
.

Algorithm 1. Dynamic Surrogate Model Evaluation
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Sliding balance acquisition strategy
In the optimization of target detection networks, Bayes-
ian methods use surrogate models to fit the relationship 
between network parameters and detection performance, 
and sample the parameter space by the acquisition func-
tions to generate training data for surrogate models. The 
sampling strategy should maximize the benefit to the 
optimization process, which requires a trade-off between 
exploration and exploitation.

Exploration means to sample at the points with high 
prediction uncertainty that are generally farther away 
from the observed points, and the sampling process 
should ensure a better coverage in parameter space. The 
better coverage can help the surrogate model to enhance 
the fitting ability and jump out of the local optimum, but 
the high profit is accompanied by high risk. A typical 
exploration sampling is shown by the red dot in Fig. 4a. 
Exploitation, on the other hand, means to sample at 
points with high prediction confidence. Such points are 
usually closer to the sampled point, so we are more likely 
to obtain a small but stable improvement every time. A 
typical exploitation sampling is shown by the green dot 
in Fig. 4a.

The balance strategy between exploration and exploita-
tion should be determined based on sampling function, 
data distribution and resource constraints. Traditional 
Bayesian optimization applies dense exploration to uni-
formly cover the entire parameter space, but achieving 
global optimal results comes at a heavy cost in terms of 
sampling and verification. In practical applications, the 
search resources are usually limited and it is difficult to 
achieve dense coverage of the high-dimensional param-
eter space, resulting in greater randomness and inferior 
results. In response to the problems of exploration-ori-
ented strategy, we considered the balance of strategy as a 
gradual process, and introduced the resource constraint 
to propose a dynamic sliding balance strategy, as shown 
in schematic diagram  4b. The sliding balance strat-
egy determines the acquisition tendency, encouraging 
exploration when the resource is abundant, and gradu-
ally slides to exploitation as the resource is consumed. A 

comparison between this approach and traditional meth-
ods is visually presented in Fig. 4c.

The main principle of the sliding balance strategy is 
shown in Fig.  5. Firstly, the K-nearest neighbor (KNN) 
algorithm is introduced into the acquisition function to 
obtain a candidate parameter set. Secondly Hausdorff 
distance is used to sort the parameter set according to 
the value of exploration and exploitation. Finally, a sliding 
balance acquisition function is established to smoothly 
switch the sampling strategy from exploration to exploi-
tation according to the resource utilization progress.

Hausdorff distance measure
To achieve the optimal parameter recommendation, we 
need to establish a reasonable distance measurement to 
evaluate the similarity between candidate samples and the 
historical data. Hausdorff distance is a popular distance 
measure between collections, and is widely used in image 
segmentation, edge matching and many other fields. For 
two vector sets A = {a1, . . . , an} and B =

{
b1, . . . , bn

}
 , 

the two-way Hausdorff distance is defined as

h(A,B) and h(B,A) are one-way Hausdorff distances, 
defined as

where d(a, b) represents the distance from vector a to 
vector b , usually is measured by Euclidean distance. The 
Hausdorff distance can be treated as the maximum value 
of the minimum distances from all points in set A to set 
B. When we sort the Hausdorff distance from the candi-
date sample set to the historical data set, and the order 
represents the exploration value of the points. Points 
that are farther away from the historical set have higher 
exploration value, while points that are nearer have 
higher exploitation value. By replacing the max opera-
tion in formula (8) with the sort operation, we degenerate 
Hausdorff distance into one-way Hausdorff measure and 
keep the order of exploration value of the candidate set 
for further resampling.

(7)H(A,B) = max(h(A,B), h(B,A)).

(8)h(A,B) = maxa∈A
{
minb∈Bd(a, b)

}
,

Fig. 3 Flowchart of DSME module
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KNN‑based Hau‑PI acquisition function
To verify the performance of acquisition function on 
search task, we fixed the surrogate model and com-
pared it with three common acquisition functions, i.e., 
UCB [29], PI [30] and Expected Improvement (EI) [31]. 
The experiment setting is consistent with the experi-
ments chapter, and the results, shown in Table 1, suggest 
that the PI acquisition function performs better for the 
YOLOv3-tiny network, so we choose it as the baseline of 
this paper.

The PI acquisition function selects the samples 
whose parameter has a higher probability of achiev-
ing a greater value than the maximum value f ∗n  
achieved by the observed points according to the pos-
terior model. PI determines the final sample points by 
down-sampling the parameter space, and the score is 
calculated by

where �(·) is the cumulative distribution function of 
the standard normal distribution; µ(x) and σ(x) are the 
expectation and variance, respectively, obtained from the 
posterior model; ξ ≥ 0 is an adjustable parameter which 
balances exploration and exploitation. As the acquisition 

(9)PI(x) = �

(
µ(x)− f ∗n − ξ

σ (x)

)
,

Fig. 4 Schematic of acquisition strategy and sliding balance

Fig. 5 Structure diagram of sliding balance acquisition strategy

Table 1 Comparison of Acquisition Functions

Acquisition 
function

Gaussian Process (GP) Random Forest (RF)

50 data 100 data 50 data 100 data

UCB 0.466 0.454 0.469 0.463

PI 0.473 0.470 0.469 0.470
EI 0.456 0.461 0.460 0.458
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result is sensitive to ξ, it is usually set to a fixed value. 
However, this static sampling policy only considers 
one candidate sample with the highest PI score, which 
may lead to a neglect of the potential samples in the 
neighborhood.

To fully explore the candidate samples, we introduce 
the KNN strategy into PI function to maintain the opti-
mal neighborhood. Sampling the parameter space and 
taking the best K sample points under the PI measure-
ment, we obtain an ordered set P = {p1, . . . , pi, . . . , pK } , 
namely the neighbor set of the optimal sample. Assum-
ing that there are N groups of historical data, i.e., 
H =

{
h1, . . . , hj , . . . , hN

}
 , the spatial distance between pi 

and hj is defined as

where � · �2 represents the Euclidean distance. The one-
way Hausdorff distance from pi to set H can be repre-
sented according to (8) as:

Traversing i ∈ [1, K] , we get set D which contains the 
distance of all elements in P to set H , i.e.,

We reorder set P as NP =
{
Np1,Np2, . . . , . . . ,Npk

}
 

following

where Q means taking the original subscript of the ele-
ment; sortmax means arranging the set elements in 
descending order; [t] means taking the t-th element of the 
set. In the neighbor set NP , candidate hyperparameters 
are arranged in descending order according to the one-
way Hausdorff distance to H . Np1 is the farthest to H and 
has the greatest exploration value; Npk is the closest to 
H and has the greatest exploitation value. We name the 
modified PI function with Hausdorff distance as Hau-PI.

Sliding balance mapping function
Once obtained the neighbor set NP , we need to design 
a sliding balance strategy to determine the final sam-
ple points, and control the tendency in different search 
stages. Since HPO tasks are usually constrained by com-
putational resource, and the resource consumption is 
positively correlated to the accumulation of historical 
data, the resource utilization (RU) rate may act as an 
effective indicator to quantify the search progress. The 
sliding balance mapping function below uses RU rate 

(10)dij = �pi − hj�2, 1 ≤ i ≤ K , 1 ≤ j ≤ N ,

(11)d(pi,H) = min
{
dij

}
, 1 ≤ j ≤ N ,

(12)D =
{
d(pi,H)

}
, 1 ≤ i ≤ K .

(13)
{
i = Q(sortmax(D)[t]), 1 ≤ t ≤ K

Npt = pi
,

as the medium, and establishes a non-linear matching 
between neighbor set NP and the search stage according 
to the order of exploration and exploitation value

where cur means the consumed resource and sum means 
the total resource; K  means the amount of candidate 
parameters in each iteration.⌈⌉ is the ceiling function, 
and NP[i] means taking the i-th object of set NP . With 
⌈K cur

sum⌉ matching the search progress from 1 ~ sum to 
1 ~ K, the acquisition strategy will smoothly transit from 
exploration to exploitation as the search progresses, and 
the final selected hyperparameters will accordingly slide 
from Np1 to Npk . Parameter K adjusts the switching 
granularity, especially when K = 1, the acquisition func-
tion in this section degenerates into the original PI acqui-
sition function.

Experiments
Experimental setup
We select the light-weight YOLOv3-tiny detection net-
work as our backbone that is pretrained on the MS 
COCO dataset, and verify our method on the image clas-
sification and detection dataset Pascal VOC 2007 [32]. 
All experiments are performed under the same hardware 
configuration: Core (TM) i7-7820X CPU @ 3.60  GHz, 
Nvidia GTX 3090, Ubuntu18.04, python3.7, pytorch1.8.

Ablation experiment
In order to prove the effectiveness of each component 
in our method, we took classical Bayesian optimization 
(GP for short, consisting of Gaussian process and PI 
acquisition function) as the baseline, and set up the fol-
lowing groups of ablation experiments: (1) GP baseline; 
(2) only enabled the dynamic surrogate model evalua-
tion (marked as Dynamic); (3) only enabled the sliding 
balance acquisition strategy (marked as Hausdorff); (4) 
enabled both component at the same time (marked as 
Dynamic + Hausdorff). Each group performed 5 repeat 
experiments, and each experiment used 600 epochs of 
computing resource. Since every iteration used 10 epochs 
for verification, the total iteration time was 60. The value 
K  in KNN was set to 3.

We take AP 50 index as the evaluation standard, and 
plot the sorted optimization curves in Fig.  6 where the 
solid lines represent the mean results; the shaded areas 
represent 0.5 times the variance; Maxv and mean rep-
resent the maximum and average value of the results, 
respectively. In Fig.  6, It can be observed that the 
dynamic group has a smaller cross-sectional area on the 
horizontal axis, indicating greater stability in the results. 
Furthermore, the Hau-PI group outperforms the original 

(14)para = NP
[⌈

K
cur

sum

⌉]
, 1 ≤ cur ≤ sum,
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GP, validating the improvement made to the acquisition 
function. The two components have synergistic effect on 
model performance, when they are combined, the intro-
duction of uncertainty through DSME and the early-
stage exploration tendency of sliding balance increases 
the variability, resulting in both positive and negative 
effects: the former half of the ranked optimization curve 
decreases, but a clear breakthrough can be observed in 
the latter period. As HPO methods prioritize the best 
result over the average result, we deem the overall change 
beneficial. The results are supportive to our idea that 
early-stage exploration is necessary as it prompts the 
algorithm to simulate the target network more effectively 
and optimize its parameters.

In order to observe the performance at different stages, 
we counted the results after consuming every 1/4 search 
resource into Table 2. It can be seen that in the earlier 3/4 of 
progress, Hau-PI group obtained better results for its active 
exploration mechanism, but in the last 1/4 of progress, 
due to the saturation of exploration and insufficient use 
of historical experience, the results increased slowly and 
had obvious fluctuation. DSME and Hau-PI further opti-
mize the mining of historical data based on the extensive 

exploration in the early stage, get 1.2% in the AP 50 index 
than the control group, and reduced the variance to 0.4 
times. The mutual promotion effect between DSME and 
Hau-PI can significantly improve the result and stability.

Comparative experiment
In order to verify the overall performance of our method, 
we selected 3 successful optimization methods to carry 
out comparative experiments including classical Bayesian 
optimization (GP for short), TPE and BOHB. The experi-
mental settings were consistent with the ablation section, 
and the sorted optimization curves were plotted in Fig. 7.

Although it was more stable and had better optimiza-
tion curves, BOHB could not fully approach to the global 
optimal before the resource was exhausted. GP and TPE 
got similar results, but their average performance and 
stability were inferior. As for our method, although in 
the early stage it had many low-index and large-variance 
searches, the final search results were apparently ahead. 
Especially in the vicinity of the optimal parameters in the 
right figure, the cross-sectional area of our method was 
very small, indicating that the optimal results can be sta-
bly obtained in each repeat experiment.

Fig. 6 Sorted optimization curves of ablation experiment

Table 2 Results of Ablation Experiment

Optimization
Method

Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

GP (baseline) 0.454 ± 0.010 0.459 ± 0.008 0.463 ± 0.004 0.468 ± 0.005

Dynamic 0.449 ± 0.006 0.461 ± 0.003 0.465 ± 0.007 0.470 ± 0.005

Hausdorff 0.458 ± 0.005 0.462 ± 0.003 0.467 ± 0.005 0.471 ± 0.007

Dynamic + Hausdorff 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002
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Similar to the ablation experiments, we counted the 
search results after consuming every 1/4 search resource 
in Table  3. It can be seen that our method was always 
in the leading position except for the first 1/4, where it 
lagged behind BOHB due to its focus on exploration. 
Especially in the last quarter, due to the combination of 
early exploration and later exploitation, the search per-
formance was improved to 1.4% above BOHB.

Supplementary experiments
Influence of parameter K
To analyze the influence of the parameter K  in the KNN 
algorithm, we kept other conditions consistent with the 
ablation experiments, set K  to 1, 3, 5, and 10, respec-
tively, and carried out additional experiments. Especially, 
when K = 1 , Hau-PI degenerates back into traditional 
PI acquisition function (i.e., Dynamic group in Table 2). 
Each control experiment is repeated for five times, and 
the results are shown in Table 4.

It can be seen from Table 4 that the K = 5 and K = 10 
groups achieved better results in the early stage, but 
the performance decreased severely as the exploration 

proceeds. In the end, the K = 3 group achieved a 1.4% 
better result in accuracy, and the variance was also opti-
mal. We can learn from formula (14) and the principle 
of sliding balance that, parameter K  and the resource 
consumption rate sum act together on the selection of 
the candidate parameters. A greater K  will make the 
algorithm tend to explore, although the profit is higher 
in the early stage; it is not conducive to utilization when 
the historical data is sufficient. Similarly, the K = 1 group 
showed a disadvantage due to insufficient exploration in 
the early stage, so we finally set K = 3 as the default value 
in the KNN algorithm.

Fig. 7 Sorted optimization curves of comparative experiment

Table 3 Comparation of search efficiency

Optimization Method Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

GP (baseline) 0.454 ± 0.010 0.459 ± 0.008 0.463 ± 0.004 0.468 ± 0.005

TPE 0.453 ± 0.002 0.460 ± 0.006 0.463 ± 0.005 0.469 ± 0.004

BOHB 0.459 ± 0.003 0.460 ± 0.004 0.464 ± 0.005 0.470 ± 0.002

Dynamic + Hau-PI 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002

Table 4 Comparison of different K value

K 
parameter

Results in different search progress (AP50 ± Variance)

1/4 2/4 3/4 1

K = 1 0.449 ± 0.006 0.461 ± 0.003 0.465 ± 0.007 0.470 ± 0.005

K = 3 0.453 ± 0.003 0.461 ± 0.005 0.465 ± 0.002 0.477 ± 0.002
K = 5 0.459 ± 0.008 0.459 ± 0.008 0.463 ± 0.005 0.468 ± 0.004

K = 10 0.458 ± 0.007 0.460 ± 0.004 0.462 ± 0.002 0.463 ± 0.002
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Influence of different resource limits
To verify the performance of the optimization meth-
ods under different resource limits, we kept other con-
figurations unchanged, relaxed the resource limit to 800 
epochs and 1000 epochs, and extended the comparison 
experiments. Each control experiment was repeated for 5 
times, and the results are shown in Table 5.

Table 5 shows that the four methods had all reached the 
convergence within 800 epochs, and the improvement in 
800 ~ 1000 epoch stage was relatively weak. When the 
resource limit was 1000 epochs, the AP50 index of our 
method was 1% ahead of BOHB which was the best per-
forming method in the control group, and the variance of 
our method was only 0.5 times. The gap was even more 
obvious when the resource was limited to 600 and 800 
epochs, which indicated that the lower the resource limit, 
the better our method performs.

Influence of different sliding balance strategies
To study the effect of sliding mapping strategies, we 
designed a non-linear mapping function and conducted 
comparative experiments. The function is represented as:

Figure  8 illustrates the graphical representation of 
function (14) and (15), denoted as Linear and NonLin-
ear, respectively. The experimental outcomes are pre-
sented in Fig.  9, where the Dynamic + Hausdorff group 
corresponds to mapping function (14) and NonLinear 
corresponds to (15). The results indicate that the non-
linear function exhibits less exploratory tendencies and 
performs better in the first half of Fig. 9a when compared 
to the linear group. However, in the partial enlargement, 
the highest result obtained is inferior to the linear group, 
suggesting that although adventurous exploration is 
adventurous, it is necessary to achieve optimal results.

Influence of different distance measurements
To examine the influence of different distance measure-
ments, we conducted additional experiments by replac-
ing Hausdorff distance with mean Euclidean distance. 

(15)para = NP
[⌈

Ke(
cur
sum−1)

⌉]
, 1 ≤ cur ≤ sum

Similar to formula (8), the mean Euclidean distance from 
every sample in candidate set A to the historical dataset B 
can be represented as:

The experiment results are presented in Fig. 10, where 
MeanEuclidean denotes the new distance measure. As 
the measurement is used to calculate the exploration and 
exploitation value, its effect is similar to the sliding bal-
ance strategy. Hausdorff distance focuses on the near-
est points to avoid repetitive exploration, while mean 
Euclidean distance involves all points, making it a more 
stable measure. For the same reasons as the previous sec-
tion, we chose Hausdorff distance as our final distance 
measurement.

Conclusion
Taking the anchor HPO of target detection networks 
as an example, we proposed a dynamic Bayesian HPO 
method based on a sliding balance mechanism to solve 
the problems of weak robustness, large variance and 
inadaptability of traditional methods under resource-
constrained scenarios. Firstly, we constructed a surrogate 
model library and used cross-validation to dynamically 
select surrogate models, to avoid the prior bias brought 
by the model selection and improve the prediction abil-
ity. Secondly, we built a Hau-PI acquisition function that 
combines the KNN and Hausdorff measure and sorts 
the neighbor sample space by exploration value, and 
treated the balance of exploration and exploitation as a 
dynamic adjustment problem of the acquisition strategy 
under resource constraints. Finally, we used a sliding bal-
ance mapping strategy to associate resource utilization 
with the exploration tendency, which realized a smooth 
transition from early exploration to later exploitation. 
The experiments showed that each module in this paper 

(16)m(A,B) = sorta∈A
{
mean

(∑
b∈Bd(a, b)

)}

Table 5 Comparison of different resources limits

Optimization Method Results in different search progress 
(AP50 ± Variance)

600 epochs 800 epochs 1000 epochs

GP (baseline) 0.468 ± 0.005 0.469 ± 0.004 0.470 ± 0.003

TPE 0.469 ± 0.004 0.473 ± 0.003 0.473 ± 0.003

BOHB 0.470 ± 0.002 0.472 ± 0.004 0.474 ± 0.002

Dynamic + Hau-PI 0.477 ± 0.002 0.479 ± 0.001 0.479 ± 0.001

Fig. 8 Different sliding balance mapping functions
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can offer corresponding improvement and promote each 
other in synergy. Compared with mainstream methods 
including TPE and BOHB, our method obtained better 
optimization results with obvious advantages in speed 
and stability.
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