
Moreno‑Vozmediano et al.
Journal of Cloud Computing (2023) 12:108
https://doi.org/10.1186/s13677‑023‑00485‑9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Latency and resource consumption analysis
for serverless edge analytics
Rafael Moreno‑Vozmediano1*, Eduardo Huedo1, Rubén S. Montero1 and Ignacio M. Llorente2

Abstract

The serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages
for the deployment of data analytics solutions in IoT environments, such as agile and on‑demand resource provi‑
sioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine‑grained cost model.
However, in the case of applications with strict latency requirements, the cold start problem in FaaS platforms can
represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance
pre‑warming and instance reusing mechanisms, are usually not well adapted to different application profiles and,
in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre‑warming
and instance reusing on both application latency (response time) and resource consumption, for a typical data analyt‑
ics use case (a machine learning application for image classification) with different input data patterns. Furthermore,
we propose extending the classical centralized cloud‑based serverless FaaS platform to a two‑tier distributed edge‑
cloud platform to bring the platform closer to the data source and reduce network latencies.

Keywords Serverless computing, Function as a Service (FaaS), Edge computing, Cloud computing, Data analytics,
Internet of Things (IoT)

Introduction
Stream or real-time data analytics in IoT environments
[1] involves the analysis of large volumes of incoming
data as soon as they are stored or created. The IoT appli-
cations that generate this kind of data streams can be of
quite different nature [1, 2], such as e-health, manufac-
turing, traffic control systems, cameras and surveillance
systems, energy management, smart transportation,
smart cities, etc. To process these streams efficiently, a
real-time data analytics platform should exhibit several
key features [3], namely: low latency, high-availability,
and horizontal scalability. Considering these features, the
serverless computing model is a suitable candidate for
supporting real-time data analytics [4, 5].

Serverless computing [6, 7] aims to abstract infrastruc-
ture management from end users and application devel-
opers. The cloud provider is responsible for allocating,
deploying, and scaling the resources required to meet the
needs of the user’s applications, while users are charged
only for the time their code is running. In a serverless
environment, the application logic is commonly imple-
mented as a set of stateless functions that are triggered
by events (e.g., API calls, message queues or scheduled
tasks), and are executed by containerized or micro-VM
based runtime environments. The platforms that incar-
nate this serverless model are categorized as Function as
a Service.

One of the major drawbacks of current FaaS plat-
forms for supporting low-latency applications, includ-
ing stream data analytics, is the cold start problem [8,
9]. Cold start arises when a function is invoked, but
there is not any runtime environment ready to exe-
cute this function, so a new instance (usually, a con-
tainer or a micro-VM) must be spun up, along with the

*Correspondence:
Rafael Moreno‑Vozmediano
rmoreno@ucm.es
1 Computer Science School, Complutense University, Madrid, Spain
2 OpenNebula Systems, Madrid, Spain

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00485-9&domain=pdf

Page 2 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

appropriate execution environment and the function
code. There are several techniques for reducing cold
start times, mainly based on instance pre-warming
and instance reusing. Despite the potential benefits of
these techniques, many existing FaaS platforms employ
simplistic approaches when implementing them. For
instance, in the case of instance reusing, most com-
mercial FaaS platforms rely on a pre-defined keep-
warm interval that cannot be customized by the user
[10]. Similarly, when it comes to instance pre-warming,
many of these platforms place the responsibility of
selecting the number of pre-warmed instances on the
user [11]. These mechanisms are not optimized for var-
ying application profiles and may result in unnecessary
resource consumption, leading to increased costs and
energy consumption of the underlying infrastructure.

Another problem for these applications is the raw net-
work latency [12], which can be reduced by moving the
FaaS platform to the edge of the network. Edge comput-
ing platforms can provide computational capacity near
data generating devices or users. They consist of several
geo-distributed micro-data centers, with limited resource
capacity, located at the edge of the network, such as user
facilities, telecommunications access networks, or ISPs.
Serverless can complement the edge computing model,
by providing on-demand resource provisioning for edge
applications while minimizing resource requirements
and lowering latency responses to event triggers.

The goal of this paper is twofold. On one hand, we
carry out an in-depth analysis and fine tuning of the
instance pre-warming and instance reusing mecha-
nisms for reducing the cold start problem in FaaS plat-
forms. Most existing works only focus on the effect of
these mechanisms on the application latency (response
time), but they ignore the extra consumption of resources
that they can entail. In this work, we analyze the effect
on both the response time and the resource usage when
using a different number of pre-warmed instances and
keep-alive intervals for a machine learning application
for image recognition [13] with different input data pro-
files. On the second hand, we propose the extension of
these mechanisms to a two-tier edge-cloud platform,
where resources can be provisioned on-demand either in
the edge node or in the cloud site, depending on the edge
resource availability, and according to several placement
policies. The experimental results presented in this work
have been obtained using a trace-driven FaaS platform
simulator that implements several cold-start and alloca-
tion policies.

The main contributions of this work are the following:

• In this work, we analyze the effect of instance pre-
warming and instance reusing mechanisms, isolated

or combined, on both response time and resource
consumption in serverless applications.

• We propose to extend the classical centralized cloud-
based serverless FaaS platform to a two-tier distrib-
uted edge-cloud platform to bring the platform closer
to the data source and reduce network latencies.

• We propose and compare two different allocation
heuristics for this two-tier edge-cloud serverless plat-
form, called edge-first and warm-first policies, which
try to reduce the network latency first or the instance
initialization time first, respectively.

• We present FaaSim [14], a trace-driven FaaS platform
simulator that implements the different cold-start
reduction mechanisms and allocation policies ana-
lyzed in this paper.

The paper is organized as follows: State of the art sec-
tion analyzes the existing serverless computing plat-
forms, the main strategies proposed for cold-start
reduction, and the extension of the serverless comput-
ing paradigm to edge computing platforms. FaaS execu-
tion model and cold-start reduction mechanisms section
analyzes the various stages and time components of the
FaaS execution model and presents the two main mecha-
nisms for cold-start reduction: instance pre-warming
and instance reuse. The extension of serverless model to
a two-tier edge-cloud platform is studied in Extending
serverless platforms to two-tier edge/cloud environments
section. The use case used in this work and the FaaSim
simulator are described in the Experimental environment
section. The section of Results conducts different experi-
ments for performance and efficiency evaluation. Finally,
the paper is concluded in Conclusions and future work
section.

State of the art
Most of the prominent cloud computing providers are
currently offering serverless computing capabilities.
Amazon’s AWS Lambda [15] was the first serverless plat-
form, which is integrated into the large AWS ecosystem
of services. Lambda functions can be easily created in
several programming languages, such as Node.js, Java,
Python, or C#, and can be associated with a variety of
trigger events including changes to the state of a storage
account, web service invocations, stream events and even
workflow events. Google Cloud Functions [16] also pro-
vide FaaS functionality to run serverless functions written
in different languages (Node.js, Python, Java, and more)
in response to HTTP calls or events from some Google
Cloud services. Microsoft Azure Functions [17] provides
HTTP webhooks and integration with Azure services to
run user provided functions. The platform supports C#,
F#, Node.js, Python, PHP, bash, or any executable.

Page 3 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

There are also some open source serverless initiatives
[18–20]. For example, OpenFaas [21] is a serverless func-
tion engine that is part of the Cloud Native Computing
Foundation (CNCF), which enables developers to pub-
lish, run, and manage functions on Kubernetes clusters.
The main component of the OpenFaas framework is
the API gateway, which provides access to the functions
from outside the Kubernetes cluster, collects metrics
and provides scaling by interacting with the Kubernetes
orchestration engine. Apache OpenWhisk [22] is another
open-source platform that provides event-based server-
less programming with the ability to chain serverless
functions to create composite functions. It supports
Node.js, Java, Swift, Python, as well as arbitrary bina-
ries embedded in a Docker container. Another inter-
esting project is OpenLambda [23], an open-source
implementation of the Lambda model, which provides
faster function startup time for heterogeneous language
runtimes and across a load balanced pool of servers, and
the ability to respond quickly and automatically to load
surges by scaling the number of workers. Kubeless [24]
is a Kubernetes-native [25] serverless framework with a
programming model based on three primitives: func-
tions, triggers, and runtime. A function is a representa-
tion of the code to be executed, and a trigger is an event
source. A trigger can be associated to a single function
or to a group of functions depending on the event source
type. Knative [26] is another framework built on top of
Kubernetes and Istio [27] that support the deployment
of serverless applications and functions, by offering rapid
deployment of serverless containers, automatic scaling
up and down to zero, routing and network program-
ming for Istio components, point-in-time snapshots of
deployed code and configurations and serving resources.

Regarding the cold-start problem in serverless plat-
forms, there are several solutions that help to reduce this
problem. One simple solution is instance reuse, which
consists of keeping the instance alive for a while after
the end of the execution of a function call, so that it can
be reused as a warm instance to execute a new invoca-
tion of the same function. Most commercial FaaS plat-
forms (e.g., AWS Lambda, Microsoft Azure Functions,
or Google Cloud Functions) use this technique to reduce
the cold start time. However, the exact keep alive inter-
val used by these providers is a parameter that is not well
documented, and, in any case, is not configurable. There
exist also some plugins, such as the Serverless WarmUp
plugin [28] for AWS Lambda, which creates a scheduled
lambda that invokes all the selected service’s lambdas
in a configured time interval (5 min, by default), forc-
ing the lambda function instances to stay warm. Some
other improvements to the basic keep-alive mechanism
have been proposed, for example in [29] the keep-alive

interval is adapted to each particular workload, according
to its actual invocation frequency and pattern, [30] uses
caching-based techniques to implement a greedy-dual
keep-alive policy based on the memory footprint, access
frequency, initialization cost, and execution latency of
different functions, and [31] proposes the IceBreaker
technique, which reduces the service time and the keep-
alive cost by composing a system with heterogeneous
nodes (costly and cheaper), by dynamically determining
the cost-effective node type to warm up a function based
on the function’s time-varying probability of the next
invocation. Another technique for reducing the cold start
problem is instance pre-warming, which consists of start-
ing in advance a given number of function instances that
stay always alive during the serverless application lifecy-
cle and can run different invocations of the same func-
tion. Many FaaS platforms implement this mechanism,
for example, AWS Lambda offers the provisioned concur-
rency [32] feature to keep a number of containers initial-
ized ready to execute lambda functions with minimum
delay; similarly, Microsoft Azure offers the Premium Plan
[33], which allow users to have their code pre-warmed
on a specified number of instances; Apache OpenWhisk
[34] also includes the possibility for users to pre-warm
a given number of containers. There are other research
proposals for mitigating the cold start problem, for exam-
ple the prebaking functions proposed in [35] that imple-
ments a mechanism that restores snapshots of previously
created functions processes, or the reinforcement learn-
ing approach proposed in [36], which analyzes some fac-
tors, such as function CPU utilization, to determine the
function-invocation patterns and reduce the function
cold start frequency by preparing the function instances
in advance.

The extension of the serverless computing paradigm
to edge computing platforms has been also addressed
in some research works. For example, an analysis of the
suitability of serverless model for implementing ser-
vices in edge computing platforms handling IoT data
is achieved in [37]. In this work, the performance of
the cold and warm start modes offered by OpenFaas is
compared, for different IoT use cases, and authors con-
clude that, if the application tolerates latencies of few
seconds, the cold start paradigm can be suitable, with
the consequent saving of computing resources which
can be of paramount importance in edge computing
environments. Another interesting analysis is achieved
in [38], where authors examine the main advantages of
bringing serverless to the edge, and identify the main
obstacles for this accomplishment, such as long laten-
cies caused by cold start; the adaptation from a cost-
efficiency design to a performance-oriented design; the
unsuitability of serverless platforms for dealing with

Page 4 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

continuous workloads; or the lack of support for dis-
tributed networking, among others. Other works focus
on proposing different frameworks for serverless func-
tion deployment on edge platforms, for example, in
[12], authors propose a distributed architecture made
of self-organizing edge platforms able to collaborate in
the allocation of resources and provisioning of server-
less functions. Each platform has access to a pool of vir-
tualized resources, which are used to provide the FaaS
functionality to latency-sensitive and data-intensive
applications. An extension of this work is presented in
[39], where they present a new framework, PAPS (Par-
titioning, Allocation, Placement, and Scaling), for the
efficient, automated, and scalable management of large-
scale edge topologies. Another interesting approach
is presented in [40], where authors propose a WebAs-
sembly-based framework for serverless execution
at the edge. This technology provides an alternative
method for running serverless applications at near-
native speeds, while having a small memory footprint
and optimized invocation time, so it is suitable for edge
environments with limited resources. From the point of
view of networking. An analysis of serverless edge com-
puting from a networking perspective is presented in
[41], where authors propose a network architecture and
layered structure to meet the design principles required
for a serverless edge computing network (heterogene-
ity, scalability, performance, and reliability), and they
address the main technical challenges such as service
deployment and lifecycle management, service dis-
covery and resource awareness, service scheduling, or
incentive mechanism design.

FaaS execution model and cold‑start reduction
mechanisms
FaaS execution model
When deploying a serverless application, one of the
main challenges is to minimize the application latency
by reducing the overall response time of every function
invocation. This issue is especially relevant when work-
ing with latency sensitive applications. The function
response time depends on several latency components,
such as the initialization time of the resource assigned
to the function invocation (usually, a container or a
micro-VM, also known as function instance), which
can be warm or cold, the execution time of the func-
tion code, and the network latency between the func-
tion instance (i.e. the FaaS platform) and the source and
destination recipients of the input and output data (e.g.,
an end user, an IoT device, a storage system, a database,
etc.) Formally, given a FaaS function f, the response

time of the function invocation j which executed by the
instance R(j) can be computed as follows:

where:
Initf (j) is the initialization time (cold or warm) of the

instance R(j) to be ready for the execution of function
invocation j.
Execf (j) is the execution time of the function invoca-

tion j in the instance R(j).
Netf (j) is the network latency for transmitting the

input and output data between the instance R(j) and the
data recipient corresponding to the function invocation j.

Therefore, to minimize the latency of a serverless appli-
cation, it is necessary to minimize the average response
time of every FaaS function f of this application, which
can be expressed as:

where N is the overall number of invocations of function
f during the serverless application lifecycle.

The execution time depends on the computing capacity
of the function instance, the computational nature of the
function and the input parameters. These issues are out
of the scope of this work. On the other hand, the network
latency depends on the proximity between the FaaS plat-
form where the function runs and the source/destination
recipient of input/output function data. This point will be
analyzed in a subsequent section by extending the server-
less model to the edge. Finally, the initialization time of
a function instance involves several stages, as shown in
Fig. 1. First, there is some event that triggers the function
call; then, the FaaS platform checks if there is a warm
instance with the appropriate execution environment
ready to run this function; in this case (warm start), the
function handler is invoked and the function code exe-
cuted; if there is not any ready warm instance (cold start),
a new one is booted and allocated, the function code is
downloaded to the instance and the corresponding exe-
cution environment is initialized. Finally, the function
handler is invoked, and the function code executed.

The cold start delay will depend on many varied factors
[9], such as the size of the code package (in general, the
larger the code size, the longer the delay), the memory
size of the instantiated resource (the more memory, the
shorter the delay), or the runtime (usually scripting lan-
guages, like Python, Ruby or Javascript, perform better
in startup time than compiled runtimes, like Java, NET,
or C#). According to some recent empirical analysis
[42, 43], cold start delays can vary from a few hundred

(1)RTf j = Initf j + Execf j + Netf j

(2)Avg_RTf =

∑N
j=1RTf

(

j
)

N

Page 5 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

milliseconds to a few seconds, while warm start delays
are usually about a few tens of milliseconds. There are
different techniques and proposals for reducing cold
start delay in serverless environments, as shown in sec-
tion State of the art, however the two most common
techniques implemented in existing FaaS platforms are
instance pre-warming and instance reusing, that will be
analyzed in detail later in this section.

Another important challenge of a FaaS platform is
to minimize the total instance usage time to respond
to the different invocations of a given function. Func-
tion instances in a FaaS platform can be in five different
states, as shown in Fig. 2: Cold-start, Warm-start, Busy,
Idle, and Terminated. When a new instance is spun up
to execute a recently invoked function, it goes first to the
Cold-start state. When the instance starts the execution
of the function code, it goes to the Busy state. When a
busy instance finishes the execution of the code, depend-
ing on whether the instance reuse mechanism is disabled
or enabled, it can be shut down (Terminated state), or it
can remain as a warm inactive instance (Idle state). When
a warm instance in the Idle state is selected to execute a

new invocation of the function it goes to the Warm-start
state and then to the Busy state. Otherwise, when a warm
instance in the Idle state is not used for a while (keep-
alive interval), it is automatically shut down (Terminated
state). Note that, when instance reuse mechanism is ena-
bled, a given instance can execute several invocations of
the function and go over the Busy, Idle, and Warm-start
states multiple times.

Therefore, given an instance r that executes one or
more invocations of a FaaS function f of a serverless
application, the usage time, UTf (r) , of this instance can
be computed as follows:

where:
ColdStartf (r) is the cold start time of the instance r.
WarmStartf (r) is the total warm start time of the

instance r (it may include several invocations of the
function).
Busyf (r) is the total busy time of the instance r (it may

include several invocations of the function).
Idlef (r) is the total idle time of the instance r.
Shutdownf (r) is the shutdown time of the instance r.
Therefore, the total instance usage time of a FaaS func-

tion f is given by:

where M is the total number of instances used for exe-
cuting the different invocations of function f during the
serverless application lifecycle.

We can also compute the total start-up time, the total
busy time, and the total idle time for all the instances
used in the execution of a FaaS function f, as follows:

To optimize the total instance usage time, and there-
fore the cost of the infrastructure, it is essential to min-
imize the total idle time of the different instances used.
Pre-warming and reusing techniques used to minimize
the cold-start problem can increment this idle time

(3)

UTf (r) = ColdStartf (r)+WarmStartf (r)+ Busyf (r)

+ Idlef (r)+ Shutdownf (r)

(4)Total_UTf =

∑M

r=1
UTf (r)

(5)
TotalStartf =

∑M

r=1
(ColdStartf (r)+WarmStartf (r))

(6)TotalBusyf =
∑M

r=1
Busyf (r)

(7)TotalIdlef =
∑M

r=1
Idlef (r)

(8)TotalShutdownf =
∑M

r=1
Shutdownf (r)

Fig. 1 FaaS execution stages

Page 6 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

and hence incur an extra expense of resources. Thus,
it is important to adjust these techniques to reach a
good trade-off between response time and resource
consumption.

Pre‑warming
Pre-warming techniques consist of starting in advance a
given number of function instances (e.g., containers or
micro-VMs) that stay always alive during the serverless
application lifecycle and can run different invocations of
the same function (several instance pre-warming mecha-
nisms are discussed in section State of the art). Obvi-
ously, these pre-warming techniques can alleviate the
cold start problem, however, it is important to be aware
of the function workload profile (i.e., the number of
simultaneous invocations of the function over the time),
to choose the correct number of pre-warmed instances.
If this number is insufficient, we will incur a deteriora-
tion of the average response time. On the other hand, if
the number of pre-warmed instances is too high, we will
cause an extra expense of resources, and consequently a
higher cost without any significant reduction on the aver-
age execution time.

To probe this, we have conducted a real experiment in
AWS Lambda by running a simple NodeJS-based func-
tion that takes 100 ms to execute. We launched 100 invo-
cations of the function in a period of one second, and

we used the provisioned concurrency feature of AWS
Lambda to pre-warm various instances. Figure 3 dis-
plays the results of this experiment, showing the average
response time, and the total number of instances used
(both pre-warmed and on-demand) for different num-
bers of pre-warmed instances (between 0 and 50). As we
can observe, between 0 and 30 pre-warmed instances, the
average response time exhibits an important reduction,
and the total number of instances is also improved. How-
ever, if we use a provisioned concurrency higher than 30,
the average response time is not improved, incurring an
unnecessary increase in resource consumption.

Instance reusing
Another complementary technique to reduce cold-start
time is the reuse of function instances. When a FaaS
function ends its execution, instead of shutting down
the instance, it can be kept alive for a given interval, so
that it can be reused as a warm instance to execute a
new invocation of the same function (several instance
reusing mechanisms are discussed in section State
of the art). Obviously, this mechanism can alleviate
the cold start problem, but at the expense of keeping a
series of instances idle, thus causing extra consumption
of resources on the FaaS platform. In most commercial
serverless platforms, the cost of these extra resources
is assumed by the provider and not charged to the user.

Fig. 2 Life‑cycle state diagram of a function instance

Page 7 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

However, if resources are limited (e.g., in the case of edge
micro-data centers), it is important to choose an appro-
priate keep alive interval that minimizes the average
response time, while reducing the expense of resources.
The optimal keep alive interval will depend on several
factors, such as the execution time of the function code,
the cold start delay, and the invocation frequency of the
function. However, to the best of our knowledge, there
does not exist any study about the optimal selection of
this parameter and its impact on the response time and
the resource consumption in a serverless environment.
In this work (see section Results) we will analyze this
impact.

Extending serverless platforms to two‑tier edge/cloud
environments
Most FaaS platforms are implemented by large cloud
infrastructure providers with enough resources to sup-
port a large number of users deploying FaaS func-
tions. Although the number of simultaneous executions
for a specific function is often limited by the platform
(for example, in AWS Lambda this parameter, called
unserved concurrency, is limited to 1,000 instances per
function), usually this limit can be negotiated. How-
ever, in order to support applications with low-latency
requirements, such as real-time, IoT, or stream data ana-
lytics applications, these large centralized FaaS platforms
exhibit an important drawback regarding the network
latency between the devices where data is generated and
the serverless computing infrastructure where this data is
processed.

A solution to this problem is to move the FaaS plat-
form to the edge [8, 35, 38] by means of serverless edge
infrastructures that provide computational capacity in
close proximity to data generation sources. There are
some commercial solutions that fit this model, such
as AWS IoT Greengrass or Azure IoT Edge. The main
challenge of these solutions, when compared to cloud
FaaS platforms, is that these edge platforms are usu-
ally resource constrained. To overcome this problem,
in this work we propose a two-tier edge-cloud FaaS
platform, as shown in Fig. 4, where instances used to
execute the different invocations of a function can be
provisioned either by the edge infrastructure or by the
cloud site, depending on the resource availability at the
edge infrastructure, and according to several place-
ment policies. This provision model is like those used
in hybrid clouds [44, 45] where the on-premises cloud
infrastructure (usually a private cloud) can be com-
plemented with remote resources from one or more
public clouds to provide extra capacity to satisfy peak
demand periods.

This edge-cloud serverless model supports several
geographically distributed edge FaaS platforms to sat-
isfy the demands of users/devices in different locations.
Every edge FaaS platform can manage a limited local
resource pool and an almost unlimited remote resource
pool located on the cloud provider. The edge platform
manages the function invocations of nearby users,
so that instances to execute these functions can be
deployed in the local edge infrastructure or in a remote
cloud, according to the selected placement policy.

Fig. 3 Average response time and resource consumption for different numbers of pre‑warmed instances in AWS Lambda

Page 8 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

In this work, we propose and evaluate two different
placement policies:

• Edge-first policy: Try to execute the function in the
edge platform first if enough resources are available.
Otherwise, execute the function in the remote cloud.
In both cases, try to reuse a warm instance first, if
available.

• Warm-first policy: Try to execute the function where
there is some warm instance available for this func-
tion first. If there are warm instances available in
both locations, first use the edge instance to execute
the function. If there are no warm instances, either
on the edge or in the cloud, first try to deploy a new
instance on the edge platform, if enough resources

are available. Otherwise, deploy a new instance in the
remote cloud.

The goal of the edge-first policy is to reduce the net-
work latency first, and then the instance initialization
time, while the goal of the warm-first policy is to reduce
the instance initialization time first, and then the net-
work latency. Table 1 summarizes the behavior of both
policies when a new function invocation is executed,
assuming sufficient resources in both cloud and edge
to start a new cold instance if required. The placement
policy determines whether the function should run on a
warm or cold instance, either on the cloud or on the edge
infrastructure. As we can see, the primary distinction
between the two policies lies in the second scenario. In

Fig. 4 Two‑tier edge‑cloud FaaS platform

Table 1 Behavior of the placement policies

Warm instance available
at the edge

Warm instance available
at the cloud

Edge‑first policy placement decision Warm‑first policy placement decision

No No Use an edge cold instance Use an edge cold instance

No Yes Use an edge cold instance Use a cloud warm instance

Yes Yes/No Use an edge warm instance Use an edge warm instance

Page 9 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

the edge-first policy, an edge cold instance is utilized to
execute the function, whereas the warm-first policy opts
for a cloud warm instance.

Experimental environment
Use case description
The data analytics use case used for experimental pur-
poses in this work is based on a deep learning model for
image classification. In particular, we use a pre-trained
model of the Inception-v3 [46] convolutional neural
network [13] for assisting in image analysis and object
detection, which uses the ImageNet Large Visual Rec-
ognition Challenge [47] as image classification train-
ing dataset. This Inception-v3 model can classify entire
images into 1,000 different classes [48] with a 3.36%
error rate. It is programmed in Python and is based on
the TensorFlow-Slim image classification model library.
According to its authors [13], the computational cost of
Inception is much lower than other neural networks-
based models for image classification, which makes it
feasible to utilize in data analytics scenarios where a
huge amount of different images is needed to be pro-
cessed at a reasonable cost, or scenarios where memory
or computational capacity is limited.

The experimental scenario we propose, see Fig. 5, is
made up of several geographically distributed cameras
that take pictures/images following a given pattern
(e.g., images generated at fixed intervals, at random
intervals, following a burst pattern, etc.) and send them
for classification to a serverless infrastructure. Every
time the FaaS platform receives a new image, it triggers
the invocation of the FaaS function that runs the Incep-
tion-v3 model for image classification. The communi-
cation between the device and the FaaS platform can
be done using an API gateway (e.g., a REST or a HTTP
API), or using some intermediate data store (e.g., a
bucket in Amazon S3).

The three major requirements for this scenario are: (i)
to be highly scalable to support an increasing number
of cameras from various locations (hundreds or even
thousands); (ii) to offer the lowest possible response
time for each function invocation; and (iii) to minimize
the number of instances used to execute the different
function invocations in order to reduce both the cost
for the end users, and the resource expenses at the
infrastructure provider.

The FaaSim simulator
The experimental results presented in this work are
mostly based on simulations. Using a simulator offers
several advantages for our research purposes compared
to a real platform. First, it enables large-scale, multiple
experiments to be run with significant savings in execu-
tion time and infrastructure costs. Second, a simulator
allows to easily tune different platform parameters (e.g.,
number of pre-warmed instances, instance reuse inter-
val, instance limits, etc.), even those that are not avail-
able on real platforms. Third, it enables the analysis of
new resource management mechanisms or resource allo-
cation policies in FaaS platforms. Finally, it allows us to
extend the classical cloud-based Faas platforms to edge-
based platforms.

For this purpose, we have developed a trace-driven
simulator, called FaaSim, which reproduces the behav-
ior of a FaaS platform executing a single FaaS function.
FaaSim uses as input a list of events ordered by arrival
time, and each event triggers a new invocation of the
FaaS function. The simulator uses two different pools of
resources, a pool of warm instances, and a pool of allo-
cated instances. When a new function invocation is trig-
gered, the system first looks for a free instance in the
warm pool, if none is available, then a new (cold) instance
is provisioned. In both cases, the selected instance passes
to the pool of allocated instances. When the execution of

Fig. 5 Experimental scenario

Page 10 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

a function finishes, if the instance reusing mechanism is
disabled, the allocated instance is shut down. Otherwise,
the instance is moved to the warm pool for a specific
keep-alive interval, so if the instance is not reused during
this interval, it is shut down.

FaaSim can be configured using the following
parameters:

• Simulation interval: this parameter specifies the
duration of the simulation time interval. By default,
it will be equal to the arrival time of the last event in
the input event list.

• Pre-warmed instances: this is the number of pre-
warmed instances we use for the simulation (similar
to the provisioned concurrency in AWS Lambda). If
this parameter is equal to zero, then no pre-warmed
instances are used.

• Keep-alive interval: this is to implement the reusing
mechanism in the simulation. When the execution of
a function ends, the allocated instance is kept warm
for this interval. If this parameter is equal to zero,
then the reusing mechanism is not used.

• Maximum number of instances: this parameter lim-
its the number of simultaneous instances that can be
used for executing the function (like unreserved con-
currency in AWS Lambda).

• Cold start time: time that a cold instance takes to be
ready to start the execution.

• Warm start time: time that a warm instance takes to
be ready to start the execution.

• Execution time: time that the allocated instance takes
to execute the function.

• Network latency: time it takes the input data to be
transferred from the generating device to the FaaS
platform (input bucket), and the output data to be
sent back to the output data recipient.

The last four times are experimentally obtained from
a real environment (AWS Lambda, as shown in the
next sub-section). For each simulation run these values
are randomly generated following a standard normal
distribution.

Once the simulation ends, FaaSim provides the follow-
ing output:

• Response time per every function invocation (Eq. (1))
• Average response time (Eq. (2))
• Usage time per resource (Eq. (3))
• Total resource usage time (Eq. (4))
• Total resource start-up time (Eq. (5))
• Total resource busy time (Eq. (6))
• Total resource idle time (Eq. (7))
• Total resource shutdown time (Eq. (8))

• Average number of instances used per second
• Total number of cold starts

FaaSim parameters tuning and validation
To adjust the input time parameters of the simulator,
we have measured the cold, warm and execution times
for the image classification application in a real FaaS
platform. In particular, the platform chosen is the AWS
Lambda serverless compute service and the demo bundle
provided by Amazon [49] for the Inception-v3 convolu-
tional neural network model. This deployment uses AWS
S3 to trigger the invocation of the Lambda function every
time the user uploads an image file in a given S3 input
bucket.

To feed this experiment, we emulate a single camera
generating one image per second, for a period of 100 s.
We use 100 JPG image files selected from Kaggle Ani-
mals-10 dataset [50] as inputs, with sizes between 16 and
183 KB and an average size of 80 KB. These image files
are sent to the AWS S3 input data bucket, at a rate of one
file per second. We run the experiment five times, with
enough spacing between different runs to ensure that, at
the beginning of each run, there are no warm instances
kept alive from the previous one in the AWS Lambda
platform. Instance pre-warming (provisioned concur-
rency) was not used in this experiment.

We use the AWS X-Ray monitoring tool to analyze the
traces of the different runs of the serverless application in
the AWS Lambda platform. Figure 6 shows, for one of the
runs of the experiment, the duration (i.e., the response
time) for the 100 function invocations obtained with
AWS X-Ray. These response times do not include the
network delays between the data origin (the camera) and
the AWS S3 bucket. As we can observe, the first 9 invoca-
tions exhibit much higher response time (about 8 s) than
the remaining invocations (about 2 s). This is because of
the first invocations are using cold instances, while the
rest are using warm instances, thanks to the instance
reusing mechanism implemented in AWS Lambda.

From the data provided by AWS X-Ray we can obtain
an estimation of the average values of the response time,
the execution time, the cold start time, the warm start
time, and the overall number of instances used for each of
the five runs of this experiment, as shown in Table 2. The
last column shows the average value (AVG) of the five
runs along with the relative standard deviation (RSD).

To validate our FaaSim simulator, we tuned it with
the average and standard deviation values for the exe-
cution time, the cold start time, and the warm start
time, shown in the last column of Table 2. Then we
performed several runs of FaaSim using a workload
similar to the real AWS Lambda experiment described

Page 11 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

Fig. 6 Response time of the different function invocations for the run #1 of the AWS Lambda experiment

Table 2 Results of running the use case in AWS lambda

Run #1 Run #2 Run #3 Run #4 Run #5 AVG (± RSD)

Response time (ms) 2,708.4 2,674.3 2,729,3 2,669.4 2,659.7 2,688.2 (± 1.1%)

Cold start time (ms) 6,190,8 6,072.0 6,115.1 6,042.0 6,028.0 6,089.5 (± 1.1%)

Warm start time (ms) 68.7 68.5 75.2 72.4 69.2 70.8 (± 4.1%)

Execution time (ms) 2,077.5 2,037.1 2,069.6 2,043.1 2,037.6 2,053.0 (± 0.9%)

No. instances used 9 9 9 9 9 9

Fig. 7 Comparison of response time of the different function invocations for run #1 of the AWS Lambda experiment and the simulator

Page 12 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

above. We also activated the instance reusing mecha-
nisms in the simulator, with a keep-alive interval equal
to the overall simulation interval. Figure 7 shows the
response time of the different function invocations for
run #1 of the AWS Lambda experiment and one run of
the simulator. We can observe that the profile of both
runs is remarkably similar, and the number of instances
used is the same (9 instances). Figure 8 shows the aver-
age response time of the serverless function for the 5
runs of the AWS Lambda experiment compared to 5
runs of the simulator. On average, the simulator gets
a response time of 2,600 ms versus 2,688 ms for real
experiments, with the same number of instances used.
We can conclude that the results obtained with FaaSim
closely reproduce the results obtained in a real envi-
ronment, which proves the validity of the simulator.
Observe, however, that the response times obtained by
the simulator in the different runs show a more con-
stant pattern than in the case of AWS Lambda. This
is because, although standard deviations have been
introduced in the simulator model, the data used,
being statistically generated, present smoother fluc-
tuations with respect to the mean than in real-world
scenarios.

The previous experiments used for the validation
of the FaaSim simulator do not consider the network
latencies between the data source and the FaaS plat-
form. However, in the next section we will demonstrate
that these delays are very relevant when extending the
FaaS platform to an edge environment. For this pur-
pose, we have also performed several experiments on
AWS Lambda to estimate the network latency in two
different scenarios: a cloud scenario where a device

sends the image files to an AWS Lambda function
deployed in a remote Amazon region; and an edge sce-
nario where the device sends the files from the same
region where the Lambda function is deployed (for
example, sending the files from an AWS EC2 instance
located in the same Amazon region). In particular, we
sent three files of different sizes—maximum (183 KB),
minimum (16 KB), and average size (80 KB) -, and we
repeated the experiment 10 times. Table 3 shows the
results of these experiments.

Results
As we stated before, most FaaS platforms use pre-warm-
ing and reusing techniques used to minimize the cold-
start problem. However, these mechanisms should be
adapted to the particular application profile, in order to
reduce the response time of the serverless application,
while minimizing the number of instances used during
execution. It is not easy to obtain a mathematical model
that fits with different platforms and application pro-
files, so here we propose to use FaaSim simulations for
the optimal tuning of these mechanisms. First, we study
the case of a centralized cloud FaaS platform, and then

Fig. 8 Average response time obtained for the five runs of the AWS Lambda experiment and five runs of the simulator

Table 3 File transfer times for cloud and edge scenarios

File transfer time for
cloud scenario

File transfer time for
edge scenario

AVG (ms) RSD AVG (ms) RSD

Max. file size 1,510 2.9% 110 20.9%

Min. file size 422 5.0% 62 16.1%

Avg. file size 851 4.9% 73 15.1%

Page 13 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

we extend the study to a two-tier distributed edge/cloud
FaaS platform.

The experiments in this section are based on the exper-
imental scenario shown in Fig. 5, where several cameras
send images to the FaaS platform, and a FaaS function
classifies them using the Inception-3 convolutional neu-
ral network algorithm.

All the experiments use a testbed consisting of 100
cameras sending a total of 100 image files per camera,
so that the serverless application must process 10,000
images. To emulate different input data streams, we con-
sider three different image transmission patterns, repre-
sented in Fig. 9. In the first pattern (Fig. 9a), each camera
transmits at a rate of one image per second, so the FaaS
platform receives a continuous data stream of 100 images
per second. In the second pattern, each camera transmits
at a rate of one image every 30 seconds, resulting in a
burst pattern (Fig. 9b) with 100 images per burst. Assum-
ing that all cameras are in sync with an accuracy of about

1 second, and that transmission delays are, on average,
about 1 second, we assume that the length of each burst
of images is about 2 seconds, separated by 30 seconds
between consecutive bursts. The third pattern considered
is a random pattern (Fig. 9c) where each camera gener-
ates images at random intervals (e.g., triggered by motion
detection), which can vary between 0 and a maximum of
1 minute between consecutive images. Table 4 summa-
rizes the parameters of these three patterns. Note that
the simulation interval varies for each transmission pat-
tern because the number of images to be processed is
constant (10,000 images in all cases), but the arrival rate
of images differs for each pattern.

Centralized cloud FaaS platforms
First, we analyze the instance reuse mechanism in order
to adjust the optimal keep-alive interval for the applica-
tion profile we are considering. If the keep-alive interval
is too short, there will be more cold starts, so the average

Fig. 9 Different image transmission patterns (the graphs represent the traffic from 10 cameras)

Table 4 Summary of image transmission patterns

Transmission pattern Image transmission rate No. Cams Images per
cam

Total images Simul. interval

Stream pattern 1 image per second per cam 100 100 10 K 100 s

Burst pattern 1 image every 30 s per cam 100 100 10 K 2970 s

Random pattern 1 image at random intervals
(between 0–1 min.) per cam

100 100 10 K 3600 s

Page 14 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

response time will increase. On the other hand, if the
keep-alive interval is too long, the system can incur an
extra expense of resources (instances), with the conse-
quent increment of the infrastructure cost. To determine
the optimal value of this parameter, we have analyzed
three scenarios corresponding to the three transmission
patterns explained above: stream, burst, and random
patterns. For each scenario, we have achieved different
simulations with different values of the keep-alive inter-
val, and we have analyzed both the average response
time and the total resource usage time, broken down in
the four main components: startup, busy, idle and shut-
down resource time. The FaaSim simulator is tuned with
the input parameters (cold start, warm start, and execu-
tion time) obtained from the real AWS Lambda experi-
ments shown in the previous section (see last column of
Table 2), without considering the network delays, and
with no pre-warmed instances (these two factors will be
analyzed later). Additionally, the shutdown time for each
terminated instance has been set to 2 seconds, which is
the maximum duration of the entire shutdown phase for
runtime environments in AWS Lambda [51].

Graphs in Fig. 10 show the average response time
and total resource usage results for the three scenarios

(stream, burst, and random transmission patterns,
respectively). As we can observe, when the keep-alive
interval is 0 (no instance reuse) or very low, the aver-
age response time is noticeably higher due to the high
number of cold starts, which increase the total resource
start-up time. The average response time decreases when
the keep-alive interval increases, and the minimum aver-
age response time value is reached for keep-alive inter-
vals of about 0.3 s in the first scenario (stream pattern),
30 s in the second scenario (burst pattern), and 10 s in
the last scenario (random pattern), achieving an overall
reduction in the average response time of 65.8%, 73.2%
and 73.2%, respectively. Using longer keep-alive intervals
does not improve the average response time, but in some
cases (especially in the first scenario), it can increase the
total resource usage time, due to the larger number of
warm instances that remain idle.

Next, we analyze the instance pre-warming mechanism
in order to adjust the optimal number of pre-warmed
instances for the application profile we are consider-
ing. As we explained before, instance pre-warming can
reduce the number of cold starts, and hence the average
response time. However, if the number of pre-warmed
instances is higher than needed, it will result in a useless

Fig. 10 Influence of keep‑alive interval over average response time and resource usage time (charts a) and c) uses a logarithmic scale
in the horizontal axis)

Page 15 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

extra expense of resources, and consequently a higher
cost. It is important to note that pre-warmed instances
are assumed to be booted and ready before starting the
execution of the function, so they do not contribute to
the total start-up resource time. The instance pre-warm-
ing mechanism can be used alone or combined with the
instance reuse mechanism, so we will analyze both cases.
As in the previous experiments, we consider three dif-
ferent scenarios corresponding to the stream, burst, and
random transmission patterns.

Graphs in Fig. 11 show the average response time
and total resource usage results, for the three scenarios,
for different numbers of pre-warmed instances and a
keep-alive interval of 0 (no instance reuse). As we can
observe, the optimal number of pre-warmed instances
that minimizes the average response time is quite differ-
ent depending on the transmission pattern: about 250
instances for the stream pattern, about 100 instances for
the burst pattern, and about 14 instances for the random
pattern. The overall reduction in the average response
time is 73.9% in all the three cases. Increasing the num-
ber of pre-warmed instances over these values does not

improve the average response time, but results in a use-
less increase in the total resource usage time.

Similarly, graphs in Fig. 12 show the average response
time and total resource usage results, for the three sce-
narios, for different numbers of pre-warmed instances
but now combined with the instance reuse mechanism.
The keep-alive interval is set, in each case, to its optimal
value according to the results shown in Fig. 10 (i.e., 0.3 s
for the stream pattern, 30 s for the burst pattern, and 10 s
for the random pattern). As we can observe, the instance
reuse mechanism already reduces by itself the average
response time significantly, so the improvement obtained
with the pre-warming mechanism is not so noticeable
(18.9%, 2.8%, and 0.9% reduction in the average response
time for the stream pattern, the burst pattern, and the
random pattern, respectively).

Distributed edge/cloud FaaS platforms
In this subsection we analyze the results of deploying
our experimental scenario in a two-tier distributed edge/
cloud FaaS platform. For this purpose, we include the
network latencies in the computation of the response
time. In the following experiments, we assume that this

Fig. 11 Influence of pre‑warmed instances (without instance reuse) over average response time and resource usage time

Page 16 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

latency is equal to the transfer time of an image file of
average size, see Table 3. The testbed for these experi-
ments consists of 100 cameras distributed in five differ-
ent geographical regions, with 20 cameras per region,
as shown in Fig. 13. The edge FaaS platforms, one per
region, are responsible for processing the image files
generated by the cameras belonging to that region. The
different function invocations on a given region can be
allocated to a local edge instance, or to a remote cloud
instance, depending on the instance availability on the
edge FaaS platform, and the placement policy used,
implemented by the scheduler. We will also consider the
same three image transmission patterns (stream, burst,
and random patterns) summarized in Table 4.

First, we will study the instance reuse mechanism by
analyzing the average response time results obtained for
different keep-alive intervals when deploying our server-
less application in this distributed edge FaaS platform,
compared to the results obtained in a centralized cloud
FaaS platform, shown in Fig. 14. In these graphs, the aver-
age response time has been broken down into the three
components as defined in equation (1): the initialization
time (cold or warm) of the instances in the FaaS platform,
the execution time of the different function invocations,

and the network latency. In the case of the edge FaaS
platform, we assume that all the function invocations of
a given region are executed in the local edge platform,
using the edge-first allocation policy. The comparison
of different allocation policies will be discussed later in
this section. In analyzing these results, we note that for
certain patterns (stream and random), the cloud FaaS
platform achieves better response times than the edge
FaaS platform when keep-alive intervals are short. This is
due to the inability of the edge platform to share warm
instances across different regions, resulting in more fre-
quent cold starts and, consequently, higher instance
initialization times. However, with longer keep-alive
intervals, the edge FaaS platform consistently outper-
forms the cloud FaaS platform due to its lower network
latency.

Next, we analyze the influence of the pre-warming
technique over the average response time, comparing the
results obtained in a distributed edge FaaS platform and
a centralized cloud FaaS platform. Figure 15 shows the
results for different numbers of pre-warmed instances
without instance reuse (keep-alive interval = 0, in graphs
15.a, 15.b, and 15.c) and combined with the instance
reuse mechanism (keep-alive interval > 0, in graphs 15.d,

Fig. 12 Influence of pre‑warmed instances (combined with instance reuse) over average response time and resource usage time

Page 17 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

15.e, and 15.f). As in the previous case, in the edge FaaS
platform deployment we assume that all the function
invocations of a given region are executed in the local
edge platform, using the edge-first allocation policy. It is
also important to notice that, in the case of the distrib-
uted edge platform, the pre-warmed instances shown in
Fig. 15 are evenly distributed among the FaaS platforms
in each of the regions. As we can observe, in most cases,
the edge FaaS platform provides faster response times
than the cloud platform, because of the lower network
latencies supported at the edge.

Finally, we analyze the two allocation policies proposed
for the two-tier distributed edge/cloud FaaS platform.

These policies are the edge-first policy, which prioritizes
executing functions on the edge platform when resources
are sufficient, and the warm-first policy, which prioritizes
executing functions on warm instances if they are avail-
able. For these experiments we assume that we have a
different number of pre-warmed instances in the cloud
platform, not in the edge platform. So, the edge-first
policy will always execute all the function invocations
in the corresponding edge platform, but the warm-first
policy can execute some function invocations in the
cloud platform if there are warm instances available. We
analyze two different scenarios, shown in Fig. 16. In the

Edge FaaS platform (Region 1)

jpg
images

Inception-v3
image class.

Region 1

Triggers

API

Cloud FaaS platform

Inception-v3
image class.

Inception-v3
image class.

Inception-v3
image class.

Function instances

CAM

CAM

CAM CAM

CAM

Scheduler

Function instances

Edge FaaS platform (Region 2)

jpg
images

Inception-v3
image class.

Region 2

Triggers

API
CAM

CAM

CAM CAM

CAM

Scheduler

Function instances

Edge FaaS platform (Region 3)

jpg
images

Inception-v3
image class.

Region 3

Triggers

API
CAM

CAM

CAM CAM

CAM

Scheduler

Function instances

Fig. 13 Two tier distributed edge/cloud FaaS platform experimental scenario

Page 18 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

first scenario the instance reuse mechanism is not used
(keep-alive interval = 0, in graphs 16.a, 16.b, and 16.c),
and in the second one, the cloud instance pre-warming is
combined with the instance reuse mechanism (keep-alive
interval > 0, in graphs 16.d, 16.e, and 16.f).

As we can observe, if no instance reuse mechanism
is used (graphs 16.a, 16.b, and 16.c) the warm-first
policy always obtains better response time results than
edge-first policy. This is because, with no instance
reuse, the number of cold starts is remarkably high
and the initialization time is the predominant term
in the response time calculation, so as the num-
ber of pre-warmed instances in the cloud grows, the
warm-first policy significantly reduces this initializa-
tion with the consequent improvement of the average
response time. On the other hand, when the instance
reuse mechanism is used, the number of cold starts
is significantly lower, and then the network latency
becomes a factor with greater weight in the calculation
of the response time. Consequently, in two scenarios

(burst and random patterns, as shown in graphs 16.e
and 16.f), the edge-first policy delivers better aver-
age response time results than the warm-first policy.
This is because, under the warm-first policy, when
the number of pre-warmed cloud resources increases,
more invocations are processed in the cloud plat-
form, resulting in higher network latency. In the case
of a stream pattern with keep-alive mechanism (graph
16.d) both policies yield very similar results in terms
of average response time, with the warm-first policy
being slightly better in almost all cases.

Conclusions and future work
The aim of this study is to investigate methods for
reducing latency in serverless applications. Two pri-
mary approaches to mitigate the cold-start problem,
instance reuse and instance pre-warming, were ana-
lyzed to assess their effect on application response
time and resource consumption. The results show that
instance reuse mechanisms can significantly reduce

Fig. 14 Comparison of edge and cloud FaaS platforms: influence of keep‑alive interval over average response time (charts a) and c) uses
a logarithmic scale in the horizontal axis)

Page 19 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

cold-starts and improve response time. However,
selecting an appropriate keep-alive period specific
to each application and input data profile is crucial
to achieve optimal response time without increas-
ing resource expenses. Similarly, while instance

pre-warming can also reduce response time, exceed-
ing a certain threshold of pre-warmed instances for a
given application or input data profile may not improve
response time further and may unnecessarily increase
resource consumption. By combining both mechanisms

Fig. 15 Comparison of edge and cloud FaaS platforms: influence of pre‑warming over average response time without instance reuse (left)
and combined with instance reuse (right)

Page 20 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

and selecting the appropriate parameters, such as keep-
alive interval and number of pre-warmed instances,
an optimal response time can be achieved with lim-
ited resource usage. However, determining the suit-
able values for these parameters can be challenging as
it is highly dependent on the application profile and

workload pattern. Users may need to perform several
iterations to adjust these values to find the optimal set-
tings for their specific use case. Simulation tools, such
as the one presented in this study, can be valuable in
this context to adjust optimal parameters, such as

Fig. 16 Comparison of edge‑first and warm‑first policies without instance reuse (left) and with instance reuse (rigth)

Page 21 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

keep-alive interval, number of pre-warmed instances,
and allocation policy, for each application or input data
profile before deployment.

Expanding the serverless platform to the edge can also
improve response time by reducing network latency. Two
allocation policies, the edge-first and warm-first policies,
have been analyzed to reduce either network latency or
instance initialization time first. The warm-first policy is
generally more effective without instance reuse mecha-
nisms; however, with instance reuse enabled, the winning
allocation policy depends on the input data pattern.

As future work, we plan to integrate all the analyzed
mechanisms into an actual FaaS platform. We also plan to
explore and implement advanced instance pre-warming
and reuse mechanisms, such as predictive mechanisms
that use historical application profiles and machine-
learning based forecasting to predict optimal deployment
parameters.

Abbreviations
API Application Programming Interface
AVG Average
AWS Amazon Web Services
FaaS Function as a Service
HTTP Hypertext Transfer Protocol
IoT Internet of Things
ISP Internet Service Provider
REST Representational State Transfer
RSD Relative Standard Deviation
UT Usage Time
VM Virtual Machine

Acknowledgements
Not applicable.

Authors’ contributions
RMV conceived the study, coordinated the research, defined the FaaS execu‑
tion model, developed the FaaSim simulator, conducted the experimental
section, and drafted the manuscript. EH participated in the definition of the
FaaS execution model and the use case and helped to refine the manuscript.
RSM and IML participated in the definition of the experimental scenarios
and helped to refine the manuscript. All authors read and approved the final
manuscript.

Authors’ information
Not applicable.

Funding
This work was supported by Ministerio de Ciencia, Innovación y Universidades
under the research project RTI2018‑096465‑B‑I00 (EdgeCloud), by Comu‑
nidad de Madrid under the research program P2018/TCS4499 (EdgeData),
and by the European Union under grant agreements 880412 (ONEedge) and
101092711 (SovereignEdge.Cognit).

Availability of data and materials
An experimental prototype of the FaaSim simulator, and the input files of the
three data patterns used in this work (stream, burst and random patterns) are
available at https:// github. com/ rmorv oz/ FaaSim.
Images used in the experiments were selected from Kaggle Animals‑10
dataset, available at https:// www. kaggle. com/ datas ets/ aless iocor rado99/
anima ls10.

Declarations

Competing interests
The authors declare no competing interests.

Received: 16 March 2022 Accepted: 10 July 2023

References
 1. Yu T, Wang X (2020) Real‑time data analytics in internet of things systems.

In: Tian Y, Levy D (eds) Handbook of real‑time computing. Springer, Singa‑
pore. https:// doi. org/ 10. 1007/ 978‑ 981‑ 4585‑ 87‑3_ 38‑1

 2. Atitallah S, Driss M, Boulila W, Ghézala H (2020) Leveraging deep learning
and IoT big data analytics to support the smart cities development:
review and future directions. Comput Sci Rev 38. https:// doi. org/ 10.
1016/j. cosrev. 2020. 100303

 3. Ellis B (2014) Real‑time analytics: techniques to analyze and visualize
streaming data. Indianapolis: Wiley; 2014.

 4. Nastic S et al (2017) A serverless real‑time data analytics platform for
edge computing. IEEE Internet Comput 21(4):64–71. https:// doi. org/ 10.
1109/ MIC. 2017. 29114 30

 5. López P et al. (2019) ServerMix: tradeoffs and challenges of serverless
data analytics. arXiv: 1907.11465v1. doi:https:// doi. org/ 10. 48550/ arXiv.
1907. 11465

 6. Castro P, Ishakian V, Muthusamy V, Slominski A (2019) The rise of serverless
computing. Comm of the ACM 62(12):44–54. https:// doi. org/ 10. 1145/
33684 54

 7. Jonas E et al. (2019) Cloud programming simplified: a Berkeley view on
serverless computing. arXiv:1902.03383v1. https:// doi. org/ 10. 48550/ arXiv.
1902. 03383

 8. Baldini I et al (2017) Serverless computing: current trends and open
problems. In: Chaudhary S, Somani G, Buyya R (eds) Research advances
in cloud computing. Springer, Singapore. https:// doi. org/ 10. 1007/
978‑ 981‑ 10‑ 5026‑8_1

 9. Manner J, Endreß M, Heckel T, Wirtz G (2018) Cold Start Influencing Fac‑
tors in Function as a Service. In: IEEE/ACM Int. Conf. on Utility and Cloud
Computing Companion 2018 (UCC Companion), 181–188. doi:https://
doi. org/ 10. 1109/ UCC‑ Compa nion. 2018. 00054

 10. Bajpai A (2021) Serverless Cold Starts ‑ Mitigation Techniques. https://
www. techt alksb yanvi ta. com/ post/ serve rless‑ cold‑ starts‑ can‑ we‑ mitig
ate‑ these. Accessed 1 Mar 2023

 11. Raza A, Matta I, Akhtar N, Kalavri V, Isahagian V (2021) SoK: Function‑As‑
A‑Service: From An Application Developer’s Perspective. J Syst Res. 1(1).
https:// doi. org/ 10. 5070/ SR311 54815.

 12. Baresi L and Filgueira Mendonça D (2019) Towards a Serverless Platform
for Edge Computing. In: IEEE Int. Conf. on Fog Computing 2019 (ICFC’19),
1–10. https:// doi. org/ 10. 1109/ ICFC. 2019. 00008

 13. Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z (2016) Rethinking
the Inception Architecture for Computer Vision. In: IEEE Conf. on Com‑
puter Vision and Pattern Recognition 2016, 2818–2826. https:// doi. org/
10. 1109/ CVPR. 2016. 308

 14. Moreno‑Vozmediano R. https:// github. com/ rmorv oz/ FaaSim. Accessed 1
Mar 2023

 15. Amazon Web Services, Inc. https:// aws. amazon. com/ lambda. Accessed 1
Mar 2023

 16. Google. https:// cloud. google. com/ funct ions. Accessed 1 Mar 2023
 17. Microsoft. https:// azure. micro soft. com/ servi ces/ funct ions/. Accessed 1

Mar 2023
 18. Palade A, Kazmi A, Clarke S (2019) An Evaluation of Open Source Server‑

less Computing Frameworks Support at the Edge. In: IEEE World Congress
on Services 2019, 206‑211. https:// doi. org/ 10. 1109/ SERVI CES. 2019. 00057

 19. Li J, Kulkarni S, Ramakrishnan K, Li D (2019) Understanding Open Source
Serverless Platforms: Design Considerations and Performance. In: 5th Int.
Workshop on Serverless Computing 2019 (WOSC ’19), 37–42. https:// doi.
org/ 10. 1145/ 33666 23. 33681 39

 20. Mohanty S, Premsankar G, di Francesco M (2018) An Evaluation of
Open Source Serverless Computing Frameworks. In: IEEE Int. Conf. on

https://github.com/rmorvoz/FaaSim
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://doi.org/10.1007/978-981-4585-87-3_38-1
https://doi.org/10.1016/j.cosrev.2020.100303
https://doi.org/10.1016/j.cosrev.2020.100303
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.48550/arXiv.1907.11465
https://doi.org/10.48550/arXiv.1907.11465
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/UCC-Companion.2018.00054
https://www.techtalksbyanvita.com/post/serverless-cold-starts-can-we-mitigate-these
https://www.techtalksbyanvita.com/post/serverless-cold-starts-can-we-mitigate-these
https://www.techtalksbyanvita.com/post/serverless-cold-starts-can-we-mitigate-these
https://doi.org/10.5070/SR31154815.
https://doi.org/10.1109/ICFC.2019.00008
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://github.com/rmorvoz/FaaSim
https://aws.amazon.com/lambda
https://cloud.google.com/functions
https://azure.microsoft.com/services/functions/
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1145/3366623.3368139

Page 22 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing (2023) 12:108

Cloud Computing Technology and Science 2018 (CloudCom), 115–120.
doi:https:// doi. org/ 10. 1109/ Cloud Com20 18. 2018. 00033

 21. Ellis A. https:// www. openf aas. com/. Accessed 1 Mar 2023
 22. The Apache Software Foundation. https:// openw hisk. apache. org/.

Accessed 1 Mar 2023
 23. Hendrickson S, Sturdevant S, Harter T, Venkataramani V, Arpaci‑Dusseau

A, Arpaci‑Dusseau R (2016) Serverless computation with openLambda.
In: 8th USENIX Conference on Hot Topics in Cloud Computing (Hot‑
Cloud’16), USENIX Association, 33–39. https://dl.acm.org/doi/https:// doi.
org/ 10. 5555/ 30270 41. 30270 47

 24. Kubeless (VMware Archive). https:// github. com/ vmware‑ archi ve/ kubel
ess. Accessed 1 Mar 2023

 25. The Kubernetes Authors. https:// kuber netes. io/. Accessed 1 Mar 2023
 26. The Knative Authors. https:// knati ve. dev/. Accessed 1 Mar 2023
 27. The Istio Authors. https:// istio. io/. Accessed 1 Mar 2023
 28. Díaz J. https:// www. npmjs. com/ packa ge/ serve rless‑ plugin‑ warmup.

Accessed 1 Mar 2023
 29. Shahrad M et al (2020) Serverless in the wild: characterizing and optimiz‑

ing the serverless workload at a large cloud provider. In: USENIX Annual
Technical Conference 2020, 205–128. https:// doi. org/ 10. 5555/ 34891 46.
34891 60

 30. Fuerst A, Sharma P (2021) FaasCache: keeping serverless computing
alive with greedy‑dual caching. In: 26th ACM Int. Conf. on Architectural
Support for Programming Languages and Operating Systems 2021(ASP‑
LOS’21), 386–400. doi:https:// doi. org/ 10. 1145/ 34458 14. 34467 57

 31. Roy R, Patel T, Tiwari D (2022) IceBreaker: warming serverless functions
better with heterogeneity. In: 27th ACM Int. Conf. on Architectural Sup‑
port for Programming Languages and Operating Systems 2022 (ASPLOS
2022), 753–767. doi:https:// doi. org/ 10. 1145/ 35032 22. 35077 50

 32. Amazon Web Services, Inc, “Configuring provisioned concurrency,”
https:// docs. aws. amazon. com/ lambda/ latest/ dg/ provi sioned‑ concu
rrency. html. Accessed 1 Mar 2023

 33. Microsoft Azure, “Azure Functions Premium Plan”, https:// learn. micro soft.
com/ en‑ us/ azure/ azure‑ funct ions/ funct ions‑ premi um‑ plan. Accessed 1
Mar 2023

 34. The Apache Software Foundation, “OpenWhisk Actions”, https:// apache.
googl esour ce. com/ openw hisk/+/ HEAD/ docs/ actio ns. md. Accessed 1
Mar 2023

 35. Silva P, Fireman D, Emmanuel Pereira T (2020) Prebaking Functions to
Warm the Serverless Cold Start. In: 21st Int. Middleware Conference 2020,
pp. 1–13. doi:https:// doi. org/ 10. 1145/ 34232 11. 34256 82

 36. Agarwal S, Rodriguez M, Buyya R (2021) A Reinforcement Learning
Approach to Reduce Serverless Function Cold Start Frequency. I: 21st
International Symposium on Cluster, Cloud and Internet Computing 2021
(CCGrid), 797–803. doi:https:// doi. org/ 10. 1109/ CCGri d51090. 2021. 00097

 37. Benedetti P, Femminella M, Reali G, Steenhaut K (2021) Experimental
Analysis of the Application of Serverless Computing to IoT Platforms. Sen‑
sors, 21(3). https:// doi. org/ 10. 3390/ s2103 0928

 38. Aslanpour M et al. (2021) Serverless Edge Computing: Vision and Chal‑
lenges. In: Australasian Computer Science Week Multiconference 2021
(ACSW ’21), 1–10. https:// doi. org/ 10. 1145/ 34373 78. 34443 67

 39. Baresi L, Quattrocchi G (2021) PAPS: A Serverless Platform for Edge Com‑
puting Infrastructures. Frontiers in Sustainable Cities 3. https:// doi. org/ 10.
3389/ frsc. 2021. 690660

 40. Gadepalli P, Peach G, Cherkasova L, Aitken R, Parmer G (2019) Challenges
and Opportunities for Efficient Serverless Computing at the Edge. In:
38th Symposium on Reliable Distributed Systems 2019 (SRDS), 261–266.
https:// doi. org/ 10. 1109/ SRDS4 7363. 2019. 00036

 41. Xie Q, Tang S, Qiao H, Zhu F, Yu R, Huang T (2021) When Serverless
Computing Meets Edge Computing: Architecture, Challenges, and Open
Issues. IEEE Wireless Commun 28(5):126–133. https:// doi. org/ 10. 1109/
MWC. 001. 20004 66

 42. Malishev N (2019) AWS Lambda Cold Start Language Comparisons, 2019
edition. https:// level up. gitco nnect ed. com/ aws‑ lambda‑ cold‑ start‑ langu
age‑ compa risons‑ 2019‑ editi on‑% EF% B8% 8F‑ 1946d 32a02 44. Accessed 1
Mar 2023

 43. Roberts M (2020) Analyzing Cold Start latency of AWS Lambda. https://
blog. symph onia. io/ posts/ 2020‑ 06‑ 30_ analy zing_ cold_ start_ laten cy_ of_
aws_ lambda. Accessed 1 Mar 2023

 44. Moreno‑Vozmediano R, Montero R, Llorente I (2012) IaaS Cloud Archi‑
tecture: From Virtualized Datacenters to Federated Cloud Infrastructures.
Computer 45(12):65–72. https:// doi. org/ 10. 1109/ MC. 2012. 76

 45. Moreno‑Vozmediano R et al (2016) BEACON: A Cloud Network Federation
Framework. In: Celesti A, Leitner P (eds) Advances in Service‑Oriented
and Cloud Computing. ESOCC 2015. Communications in Computer and
Information Science, vol 567. Springer, Cham. https:// doi. org/ 10. 1007/
978‑3‑ 319‑ 33313‑7_ 25

 46. Silberman N, Guadarrama S (2016) TensorFlow‑Slim image classification
model library. https:// github. com/ tenso rflow/ models/ tree/ master/ resea
rch/ slim. Accessed 1 Mar 2023

 47. Russakovsky O et al (2015) ImageNet Large Scale Visual Recognition
Challenge. Int J Comput Vision 115:211–252. https:// doi. org/ 10. 1007/
s11263‑ 015‑ 0816‑y

 48. WekaDeeplearning4j (2019) IMAGENET 1000 Class List. https:// deepl earni
ng. cms. waika to. ac. nz/ user‑ guide/ class‑ maps/ IMAGE NET/. Accessed 1
Mar 2023

 49. Ivanovic B, Ivanovic Z (2017) How to Deploy Deep Learning Models with
AWS Lambda and Tensorflow. https:// aws. amazon. com/ blogs/ machi ne‑
learn ing/ how‑ to‑ deploy‑ deep‑ learn ing‑ models‑ with‑ aws‑ lambda‑ and‑
tenso rflow. Accessed 1 Mar 2023

 50. Corrado A (2020) Kaggle Animals‑10 dataset. https:// www. kaggle. com/
datas ets/ aless iocor rado99/ anima ls10. Accessed 1 Mar 2023

 51. Amazon Web Services, Inc, Lambda execution environment. https:// docs.
aws. amazon. com/ lambda/ latest/ dg/ lambda‑ runti me‑ envir onment. html.
Accessed 1 Mar 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1109/CloudCom2018.2018.00033
https://www.openfaas.com/
https://openwhisk.apache.org/
https://doi.org/10.5555/3027041.3027047
https://doi.org/10.5555/3027041.3027047
https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless
https://kubernetes.io/
https://knative.dev/
https://istio.io/
https://www.npmjs.com/package/serverless-plugin-warmup
https://doi.org/10.5555/3489146.3489160
https://doi.org/10.5555/3489146.3489160
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3503222.3507750
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://apache.googlesource.com/openwhisk/+/HEAD/docs/actions.md
https://apache.googlesource.com/openwhisk/+/HEAD/docs/actions.md
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1109/CCGrid51090.2021.00097
https://doi.org/10.3390/s21030928
https://doi.org/10.1145/3437378.3444367
https://doi.org/10.3389/frsc.2021.690660
https://doi.org/10.3389/frsc.2021.690660
https://doi.org/10.1109/SRDS47363.2019.00036
https://doi.org/10.1109/MWC.001.2000466
https://doi.org/10.1109/MWC.001.2000466
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://blog.symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_aws_lambda
https://blog.symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_aws_lambda
https://blog.symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_aws_lambda
https://doi.org/10.1109/MC.2012.76
https://doi.org/10.1007/978-3-319-33313-7_25
https://doi.org/10.1007/978-3-319-33313-7_25
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/
https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://www.kaggle.com/datasets/alessiocorrado99/animals10
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html

	Latency and resource consumption analysis for serverless edge analytics
	Abstract
	Introduction
	State of the art
	FaaS execution model and cold-start reduction mechanisms
	FaaS execution model
	Pre-warming
	Instance reusing

	Extending serverless platforms to two-tier edgecloud environments
	Experimental environment
	Use case description
	The FaaSim simulator
	FaaSim parameters tuning and validation

	Results
	Centralized cloud FaaS platforms
	Distributed edgecloud FaaS platforms

	Conclusions and future work
	Acknowledgements
	References

