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Abstract 

The serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages 
for the deployment of data analytics solutions in IoT environments, such as agile and on‑demand resource provi‑
sioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine‑grained cost model. 
However, in the case of applications with strict latency requirements, the cold start problem in FaaS platforms can 
represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance 
pre‑warming and instance reusing mechanisms, are usually not well adapted to different application profiles and, 
in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre‑warming 
and instance reusing on both application latency (response time) and resource consumption, for a typical data analyt‑
ics use case (a machine learning application for image classification) with different input data patterns. Furthermore, 
we propose extending the classical centralized cloud‑based serverless FaaS platform to a two‑tier distributed edge‑
cloud platform to bring the platform closer to the data source and reduce network latencies.

Keywords Serverless computing, Function as a Service (FaaS), Edge computing, Cloud computing, Data analytics, 
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Introduction
Stream or real-time data analytics in IoT environments 
[1] involves the analysis of large volumes of incoming 
data as soon as they are stored or created. The IoT appli-
cations that generate this kind of data streams can be of 
quite different nature [1, 2], such as e-health, manufac-
turing, traffic control systems, cameras and surveillance 
systems, energy management, smart transportation, 
smart cities, etc. To process these streams efficiently, a 
real-time data analytics platform should exhibit several 
key features [3], namely: low latency, high-availability, 
and horizontal scalability. Considering these features, the 
serverless computing model is a suitable candidate for 
supporting real-time data analytics [4, 5].

Serverless computing [6, 7] aims to abstract infrastruc-
ture management from end users and application devel-
opers. The cloud provider is responsible for allocating, 
deploying, and scaling the resources required to meet the 
needs of the user’s applications, while users are charged 
only for the time their code is running. In a serverless 
environment, the application logic is commonly imple-
mented as a set of stateless functions that are triggered 
by events (e.g., API calls, message queues or scheduled 
tasks), and are executed by containerized or micro-VM 
based runtime environments. The platforms that incar-
nate this serverless model are categorized as Function as 
a Service.

One of the major drawbacks of current FaaS plat-
forms for supporting low-latency applications, includ-
ing stream data analytics, is the cold start problem [8, 
9]. Cold start arises when a function is invoked, but 
there is not any runtime environment ready to exe-
cute this function, so a new instance (usually, a con-
tainer or a micro-VM) must be spun up, along with the 
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appropriate execution environment and the function 
code. There are several techniques for reducing cold 
start times, mainly based on instance pre-warming 
and instance reusing. Despite the potential benefits of 
these techniques, many existing FaaS platforms employ 
simplistic approaches when implementing them. For 
instance, in the case of instance reusing, most com-
mercial FaaS platforms rely on a pre-defined keep-
warm interval that cannot be customized by the user 
[10]. Similarly, when it comes to instance pre-warming, 
many of these platforms place the responsibility of 
selecting the number of pre-warmed instances on the 
user [11]. These mechanisms are not optimized for var-
ying application profiles and may result in unnecessary 
resource consumption, leading to increased costs and 
energy consumption of the underlying infrastructure.

Another problem for these applications is the raw net-
work latency [12], which can be reduced by moving the 
FaaS platform to the edge of the network. Edge comput-
ing platforms can provide computational capacity near 
data generating devices or users. They consist of several 
geo-distributed micro-data centers, with limited resource 
capacity, located at the edge of the network, such as user 
facilities, telecommunications access networks, or ISPs. 
Serverless can complement the edge computing model, 
by providing on-demand resource provisioning for edge 
applications while minimizing resource requirements 
and lowering latency responses to event triggers.

The goal of this paper is twofold. On one hand, we 
carry out an in-depth analysis and fine tuning of the 
instance pre-warming and instance reusing mecha-
nisms for reducing the cold start problem in FaaS plat-
forms. Most existing works only focus on the effect of 
these mechanisms on the application latency (response 
time), but they ignore the extra consumption of resources 
that they can entail. In this work, we analyze the effect 
on both the response time and the resource usage when 
using a different number of pre-warmed instances and 
keep-alive intervals for a machine learning application 
for image recognition [13] with different input data pro-
files. On the second hand, we propose the extension of 
these mechanisms to a two-tier edge-cloud platform, 
where resources can be provisioned on-demand either in 
the edge node or in the cloud site, depending on the edge 
resource availability, and according to several placement 
policies. The experimental results presented in this work 
have been obtained using a trace-driven FaaS platform 
simulator that implements several cold-start and alloca-
tion policies.

The main contributions of this work are the following:

• In this work, we analyze the effect of instance pre-
warming and instance reusing mechanisms, isolated 

or combined, on both response time and resource 
consumption in serverless applications.

• We propose to extend the classical centralized cloud-
based serverless FaaS platform to a two-tier distrib-
uted edge-cloud platform to bring the platform closer 
to the data source and reduce network latencies.

• We propose and compare two different allocation 
heuristics for this two-tier edge-cloud serverless plat-
form, called edge-first and warm-first policies, which 
try to reduce the network latency first or the instance 
initialization time first, respectively.

• We present FaaSim [14], a trace-driven FaaS platform 
simulator that implements the different cold-start 
reduction mechanisms and allocation policies ana-
lyzed in this paper.

The paper is organized as follows: State of the art sec-
tion analyzes the existing serverless computing plat-
forms, the main strategies proposed for cold-start 
reduction, and the extension of the serverless comput-
ing paradigm to edge computing platforms. FaaS execu-
tion model and cold-start reduction mechanisms section 
analyzes the various stages and time components of the 
FaaS execution model and presents the two main mecha-
nisms for cold-start reduction: instance pre-warming 
and instance reuse. The extension of serverless model to 
a two-tier edge-cloud platform is studied in Extending 
serverless platforms to two-tier edge/cloud environments 
section. The use case used in this work and the FaaSim 
simulator are described in the Experimental environment 
section. The section of Results conducts different experi-
ments for performance and efficiency evaluation. Finally, 
the paper is concluded in Conclusions and future work 
section.

State of the art
Most of the prominent cloud computing providers are 
currently offering serverless computing capabilities. 
Amazon’s AWS Lambda [15] was the first serverless plat-
form, which is integrated into the large AWS ecosystem 
of services. Lambda functions can be easily created in 
several programming languages, such as Node.js, Java, 
Python, or C#, and can be associated with a variety of 
trigger events including changes to the state of a storage 
account, web service invocations, stream events and even 
workflow events. Google Cloud Functions [16] also pro-
vide FaaS functionality to run serverless functions written 
in different languages (Node.js, Python, Java, and more) 
in response to HTTP calls or events from some Google 
Cloud services. Microsoft Azure Functions [17] provides 
HTTP webhooks and integration with Azure services to 
run user provided functions. The platform supports C#, 
F#, Node.js, Python, PHP, bash, or any executable.
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There are also some open source serverless initiatives 
[18–20]. For example, OpenFaas [21] is a serverless func-
tion engine that is part of the Cloud Native Computing 
Foundation (CNCF), which enables developers to pub-
lish, run, and manage functions on Kubernetes clusters. 
The main component of the OpenFaas framework is 
the API gateway, which provides access to the functions 
from outside the Kubernetes cluster, collects metrics 
and provides scaling by interacting with the Kubernetes 
orchestration engine. Apache OpenWhisk [22] is another 
open-source platform that provides event-based server-
less programming with the ability to chain serverless 
functions to create composite functions. It supports 
Node.js, Java, Swift, Python, as well as arbitrary bina-
ries embedded in a Docker container. Another inter-
esting project is OpenLambda [23], an open-source 
implementation of the Lambda model, which provides 
faster function startup time for heterogeneous language 
runtimes and across a load balanced pool of servers, and 
the ability to respond quickly and automatically to load 
surges by scaling the number of workers. Kubeless [24] 
is a Kubernetes-native [25] serverless framework with a 
programming model based on three primitives: func-
tions, triggers, and runtime. A function is a representa-
tion of the code to be executed, and a trigger is an event 
source. A trigger can be associated to a single function 
or to a group of functions depending on the event source 
type. Knative [26] is another framework built on top of 
Kubernetes and Istio [27] that support the deployment 
of serverless applications and functions, by offering rapid 
deployment of serverless containers, automatic scaling 
up and down to zero, routing and network program-
ming for Istio components, point-in-time snapshots of 
deployed code and configurations and serving resources.

Regarding the cold-start problem in serverless plat-
forms, there are several solutions that help to reduce this 
problem. One simple solution is instance reuse, which 
consists of keeping the instance alive for a while after 
the end of the execution of a function call, so that it can 
be reused as a warm instance to execute a new invoca-
tion of the same function. Most commercial FaaS plat-
forms (e.g., AWS Lambda, Microsoft Azure Functions, 
or Google Cloud Functions) use this technique to reduce 
the cold start time. However, the exact keep alive inter-
val used by these providers is a parameter that is not well 
documented, and, in any case, is not configurable. There 
exist also some plugins, such as the Serverless WarmUp 
plugin [28] for AWS Lambda, which creates a scheduled 
lambda that invokes all the selected service’s lambdas 
in a configured time interval (5  min, by default), forc-
ing the lambda function instances to stay warm. Some 
other improvements to the basic keep-alive mechanism 
have been proposed, for example in [29] the keep-alive 

interval is adapted to each particular workload, according 
to its actual invocation frequency and pattern, [30] uses 
caching-based techniques to implement a greedy-dual 
keep-alive policy based on the memory footprint, access 
frequency, initialization cost, and execution latency of 
different functions, and [31] proposes the IceBreaker 
technique, which reduces the service time and the keep-
alive cost by composing a system with heterogeneous 
nodes (costly and cheaper), by dynamically determining 
the cost-effective node type to warm up a function based 
on the function’s time-varying probability of the next 
invocation. Another technique for reducing the cold start 
problem is instance pre-warming, which consists of start-
ing in advance a given number of function instances that 
stay always alive during the serverless application lifecy-
cle and can run different invocations of the same func-
tion. Many FaaS platforms implement this mechanism, 
for example, AWS Lambda offers the provisioned concur-
rency [32] feature to keep a number of containers initial-
ized ready to execute lambda functions with minimum 
delay; similarly, Microsoft Azure offers the Premium Plan 
[33], which allow users to have their code pre-warmed 
on a specified number of instances; Apache OpenWhisk 
[34] also includes the possibility for users to pre-warm 
a given number of containers. There are other research 
proposals for mitigating the cold start problem, for exam-
ple the prebaking functions proposed in [35] that imple-
ments a mechanism that restores snapshots of previously 
created functions processes, or the reinforcement learn-
ing approach proposed in [36], which analyzes some fac-
tors, such as function CPU utilization, to determine the 
function-invocation patterns and reduce the function 
cold start frequency by preparing the function instances 
in advance.

The extension of the serverless computing paradigm 
to edge computing platforms has been also addressed 
in some research works. For example, an analysis of the 
suitability of serverless model for implementing ser-
vices in edge computing platforms handling IoT data 
is achieved in [37]. In this work, the performance of 
the cold and warm start modes offered by OpenFaas is 
compared, for different IoT use cases, and authors con-
clude that, if the application tolerates latencies of few 
seconds, the cold start paradigm can be suitable, with 
the consequent saving of computing resources which 
can be of paramount importance in edge computing 
environments. Another interesting analysis is achieved 
in [38], where authors examine the main advantages of 
bringing serverless to the edge, and identify the main 
obstacles for this accomplishment, such as long laten-
cies caused by cold start; the adaptation from a cost-
efficiency design to a performance-oriented design; the 
unsuitability of serverless platforms for dealing with 



Page 4 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing          (2023) 12:108 

continuous workloads; or the lack of support for dis-
tributed networking, among others. Other works focus 
on proposing different frameworks for serverless func-
tion deployment on edge platforms, for example, in 
[12], authors propose a distributed architecture made 
of self-organizing edge platforms able to collaborate in 
the allocation of resources and provisioning of server-
less functions. Each platform has access to a pool of vir-
tualized resources, which are used to provide the FaaS 
functionality to latency-sensitive and data-intensive 
applications. An extension of this work is presented in 
[39], where they present a new framework, PAPS (Par-
titioning, Allocation, Placement, and Scaling), for the 
efficient, automated, and scalable management of large-
scale edge topologies. Another interesting approach 
is presented in [40], where authors propose a WebAs-
sembly-based framework for serverless execution 
at the edge. This technology provides an alternative 
method for running serverless applications at near-
native speeds, while having a small memory footprint 
and optimized invocation time, so it is suitable for edge 
environments with limited resources. From the point of 
view of networking. An analysis of serverless edge com-
puting from a networking perspective is presented in 
[41], where authors propose a network architecture and 
layered structure to meet the design principles required 
for a serverless edge computing network (heterogene-
ity, scalability, performance, and reliability), and they 
address the main technical challenges such as service 
deployment and lifecycle management, service dis-
covery and resource awareness, service scheduling, or 
incentive mechanism design.

FaaS execution model and cold‑start reduction 
mechanisms
FaaS execution model
When deploying a serverless application, one of the 
main challenges is to minimize the application latency 
by reducing the overall response time of every function 
invocation. This issue is especially relevant when work-
ing with latency sensitive applications. The function 
response time depends on several latency components, 
such as the initialization time of the resource assigned 
to the function invocation (usually, a container or a 
micro-VM, also known as function instance), which 
can be warm or cold, the execution time of the func-
tion code, and the network latency between the func-
tion instance (i.e. the FaaS platform) and the source and 
destination recipients of the input and output data (e.g., 
an end user, an IoT device, a storage system, a database, 
etc.) Formally, given a FaaS function f, the response 

time of the function invocation j which executed by the 
instance R(j) can be computed as follows:

where:
Initf (j) is the initialization time (cold or warm) of the 

instance R(j) to be ready for the execution of function 
invocation j.
Execf (j) is the execution time of the function invoca-

tion j in the instance R(j).
Netf (j) is the network latency for transmitting the 

input and output data between the instance R(j) and the 
data recipient corresponding to the function invocation j.

Therefore, to minimize the latency of a serverless appli-
cation, it is necessary to minimize the average response 
time of every FaaS function f of this application, which 
can be expressed as:

where N is the overall number of invocations of function 
f during the serverless application lifecycle.

The execution time depends on the computing capacity 
of the function instance, the computational nature of the 
function and the input parameters. These issues are out 
of the scope of this work. On the other hand, the network 
latency depends on the proximity between the FaaS plat-
form where the function runs and the source/destination 
recipient of input/output function data. This point will be 
analyzed in a subsequent section by extending the server-
less model to the edge. Finally, the initialization time of 
a function instance involves several stages, as shown in 
Fig. 1. First, there is some event that triggers the function 
call; then, the FaaS platform checks if there is a warm 
instance with the appropriate execution environment 
ready to run this function; in this case (warm start), the 
function handler is invoked and the function code exe-
cuted; if there is not any ready warm instance (cold start), 
a new one is booted and allocated, the function code is 
downloaded to the instance and the corresponding exe-
cution environment is initialized. Finally, the function 
handler is invoked, and the function code executed.

The cold start delay will depend on many varied factors 
[9], such as the size of the code package (in general, the 
larger the code size, the longer the delay), the memory 
size of the instantiated resource (the more memory, the 
shorter the delay), or the runtime (usually scripting lan-
guages, like Python, Ruby or Javascript, perform better 
in startup time than compiled runtimes, like Java, NET, 
or C#). According to some recent empirical analysis 
[42, 43], cold start delays can vary from a few hundred 

(1)RTf j = Initf j + Execf j + Netf j

(2)Avg_RTf =

∑N
j=1RTf

(

j
)

N
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milliseconds to a few seconds, while warm start delays 
are usually about a few tens of milliseconds. There are 
different techniques and proposals for reducing cold 
start delay in serverless environments, as shown in sec-
tion State of the art, however the two most common 
techniques implemented in existing FaaS platforms are 
instance pre-warming and instance reusing, that will be 
analyzed in detail later in this section.

Another important challenge of a FaaS platform is 
to minimize the total instance usage time to respond 
to the different invocations of a given function. Func-
tion instances in a FaaS platform can be in five different 
states, as shown in Fig. 2: Cold-start, Warm-start, Busy, 
Idle, and Terminated. When a new instance is spun up 
to execute a recently invoked function, it goes first to the 
Cold-start state. When the instance starts the execution 
of the function code, it goes to the Busy state. When a 
busy instance finishes the execution of the code, depend-
ing on whether the instance reuse mechanism is disabled 
or enabled, it can be shut down (Terminated state), or it 
can remain as a warm inactive instance (Idle state). When 
a warm instance in the Idle state is selected to execute a 

new invocation of the function it goes to the Warm-start 
state and then to the Busy state. Otherwise, when a warm 
instance in the Idle state is not used for a while (keep-
alive interval), it is automatically shut down (Terminated 
state). Note that, when instance reuse mechanism is ena-
bled, a given instance can execute several invocations of 
the function and go over the Busy, Idle, and Warm-start 
states multiple times.

Therefore, given an instance r that executes one or 
more invocations of a FaaS function f of a serverless 
application, the usage time, UTf (r) , of this instance can 
be computed as follows:

where:
ColdStartf (r) is the cold start time of the instance r.
WarmStartf (r) is the total warm start time of the 

instance r (it may include several invocations of the 
function).
Busyf (r) is the total busy time of the instance r (it may 

include several invocations of the function).
Idlef (r) is the total idle time of the instance r.
Shutdownf (r) is the shutdown time of the instance r.
Therefore, the total instance usage time of a FaaS func-

tion f is given by:

where M is the total number of instances used for exe-
cuting the different invocations of function f during the 
serverless application lifecycle.

We can also compute the total start-up time, the total 
busy time, and the total idle time for all the instances 
used in the execution of a FaaS function f, as follows:

To optimize the total instance usage time, and there-
fore the cost of the infrastructure, it is essential to min-
imize the total idle time of the different instances used. 
Pre-warming and reusing techniques used to minimize 
the cold-start problem can increment this idle time 

(3)

UTf (r) = ColdStartf (r)+WarmStartf (r)+ Busyf (r)

+ Idlef (r)+ Shutdownf (r)

(4)Total_UTf =

∑M

r=1
UTf (r)

(5)
TotalStartf =

∑M

r=1
(ColdStartf (r)+WarmStartf (r))

(6)TotalBusyf =
∑M

r=1
Busyf (r)

(7)TotalIdlef =
∑M

r=1
Idlef (r)

(8)TotalShutdownf =
∑M

r=1
Shutdownf (r)

Fig. 1 FaaS execution stages
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and hence incur an extra expense of resources. Thus, 
it is important to adjust these techniques to reach a 
good trade-off between response time and resource 
consumption.

Pre‑warming
Pre-warming techniques consist of starting in advance a 
given number of function instances (e.g., containers or 
micro-VMs) that stay always alive during the serverless 
application lifecycle and can run different invocations of 
the same function (several instance pre-warming mecha-
nisms are discussed in section State of the art). Obvi-
ously, these pre-warming techniques can alleviate the 
cold start problem, however, it is important to be aware 
of the function workload profile (i.e., the number of 
simultaneous invocations of the function over the time), 
to choose the correct number of pre-warmed instances. 
If this number is insufficient, we will incur a deteriora-
tion of the average response time. On the other hand, if 
the number of pre-warmed instances is too high, we will 
cause an extra expense of resources, and consequently a 
higher cost without any significant reduction on the aver-
age execution time.

To probe this, we have conducted a real experiment in 
AWS Lambda by running a simple NodeJS-based func-
tion that takes 100 ms to execute. We launched 100 invo-
cations of the function in a period of one second, and 

we used the provisioned concurrency feature of AWS 
Lambda to pre-warm various instances. Figure  3 dis-
plays the results of this experiment, showing the average 
response time, and the total number of instances used 
(both pre-warmed and on-demand) for different num-
bers of pre-warmed instances (between 0 and 50). As we 
can observe, between 0 and 30 pre-warmed instances, the 
average response time exhibits an important reduction, 
and the total number of instances is also improved. How-
ever, if we use a provisioned concurrency higher than 30, 
the average response time is not improved, incurring an 
unnecessary increase in resource consumption.

Instance reusing
Another complementary technique to reduce cold-start 
time is the reuse of function instances. When a FaaS 
function ends its execution, instead of shutting down 
the instance, it can be kept alive for a given interval, so 
that it can be reused as a warm instance to execute a 
new invocation of the same function (several instance 
reusing mechanisms are discussed in section State 
of the art). Obviously, this mechanism can alleviate 
the cold start problem, but at the expense of keeping a 
series of instances idle, thus causing extra consumption 
of resources on the FaaS platform. In most commercial 
serverless platforms, the cost of these extra resources 
is assumed by the provider and not charged to the user. 

Fig. 2 Life‑cycle state diagram of a function instance
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However, if resources are limited (e.g., in the case of edge 
micro-data centers), it is important to choose an appro-
priate keep alive interval that minimizes the average 
response time, while reducing the expense of resources. 
The optimal keep alive interval will depend on several 
factors, such as the execution time of the function code, 
the cold start delay, and the invocation frequency of the 
function. However, to the best of our knowledge, there 
does not exist any study about the optimal selection of 
this parameter and its impact on the response time and 
the resource consumption in a serverless environment. 
In this work (see section Results) we will analyze this 
impact.

Extending serverless platforms to two‑tier edge/cloud 
environments
Most FaaS platforms are implemented by large cloud 
infrastructure providers with enough resources to sup-
port a large number of users deploying FaaS func-
tions. Although the number of simultaneous executions 
for a specific function is often limited by the platform 
(for example, in AWS Lambda this parameter, called 
unserved concurrency, is limited to 1,000 instances per 
function), usually this limit can be negotiated. How-
ever, in order to support applications with low-latency 
requirements, such as real-time, IoT, or stream data ana-
lytics applications, these large centralized FaaS platforms 
exhibit an important drawback regarding the network 
latency between the devices where data is generated and 
the serverless computing infrastructure where this data is 
processed.

A solution to this problem is to move the FaaS plat-
form to the edge [8, 35, 38] by means of serverless edge 
infrastructures that provide computational capacity in 
close proximity to data generation sources. There are 
some commercial solutions that fit this model, such 
as AWS IoT Greengrass or Azure IoT Edge. The main 
challenge of these solutions, when compared to cloud 
FaaS platforms, is that these edge platforms are usu-
ally resource constrained. To overcome this problem, 
in this work we propose a two-tier edge-cloud FaaS 
platform, as shown in Fig.  4, where instances used to 
execute the different invocations of a function can be 
provisioned either by the edge infrastructure or by the 
cloud site, depending on the resource availability at the 
edge infrastructure, and according to several place-
ment policies. This provision model is like those used 
in hybrid clouds [44, 45] where the on-premises cloud 
infrastructure (usually a private cloud) can be com-
plemented with remote resources from one or more 
public clouds to provide extra capacity to satisfy peak 
demand periods.

This edge-cloud serverless model supports several 
geographically distributed edge FaaS platforms to sat-
isfy the demands of users/devices in different locations. 
Every edge FaaS platform can manage a limited local 
resource pool and an almost unlimited remote resource 
pool located on the cloud provider. The edge platform 
manages the function invocations of nearby users, 
so that instances to execute these functions can be 
deployed in the local edge infrastructure or in a remote 
cloud, according to the selected placement policy.

Fig. 3 Average response time and resource consumption for different numbers of pre‑warmed instances in AWS Lambda
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In this work, we propose and evaluate two different 
placement policies:

• Edge-first policy: Try to execute the function in the 
edge platform first if enough resources are available. 
Otherwise, execute the function in the remote cloud. 
In both cases, try to reuse a warm instance first, if 
available.

• Warm-first policy: Try to execute the function where 
there is some warm instance available for this func-
tion first. If there are warm instances available in 
both locations, first use the edge instance to execute 
the function. If there are no warm instances, either 
on the edge or in the cloud, first try to deploy a new 
instance on the edge platform, if enough resources 

are available. Otherwise, deploy a new instance in the 
remote cloud.

The goal of the edge-first policy is to reduce the net-
work latency first, and then the instance initialization 
time, while the goal of the warm-first policy is to reduce 
the instance initialization time first, and then the net-
work latency. Table  1 summarizes the behavior of both 
policies when a new function invocation is executed, 
assuming sufficient resources in both cloud and edge 
to start a new cold instance if required. The placement 
policy determines whether the function should run on a 
warm or cold instance, either on the cloud or on the edge 
infrastructure. As we can see, the primary distinction 
between the two policies lies in the second scenario. In 

Fig. 4 Two‑tier edge‑cloud FaaS platform

Table 1 Behavior of the placement policies

Warm instance available 
at the edge

Warm instance available 
at the cloud

Edge‑first policy placement decision Warm‑first policy placement decision

No No Use an edge cold instance Use an edge cold instance

No Yes Use an edge cold instance Use a cloud warm instance

Yes Yes/No Use an edge warm instance Use an edge warm instance
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the edge-first policy, an edge cold instance is utilized to 
execute the function, whereas the warm-first policy opts 
for a cloud warm instance.

Experimental environment
Use case description
The data analytics use case used for experimental pur-
poses in this work is based on a deep learning model for 
image classification. In particular, we use a pre-trained 
model of the Inception-v3 [46] convolutional neural 
network [13] for assisting in image analysis and object 
detection, which uses the ImageNet Large Visual Rec-
ognition Challenge [47] as image classification train-
ing dataset. This Inception-v3 model can classify entire 
images into 1,000 different classes [48] with a 3.36% 
error rate. It is programmed in Python and is based on 
the TensorFlow-Slim image classification model library. 
According to its authors [13], the computational cost of 
Inception is much lower than other neural networks-
based models for image classification, which makes it 
feasible to utilize in data analytics scenarios where a 
huge amount of different images is needed to be pro-
cessed at a reasonable cost, or scenarios where memory 
or computational capacity is limited.

The experimental scenario we propose, see Fig.  5, is 
made up of several geographically distributed cameras 
that take pictures/images following a given pattern 
(e.g., images generated at fixed intervals, at random 
intervals, following a burst pattern, etc.) and send them 
for classification to a serverless infrastructure. Every 
time the FaaS platform receives a new image, it triggers 
the invocation of the FaaS function that runs the Incep-
tion-v3 model for image classification. The communi-
cation between the device and the FaaS platform can 
be done using an API gateway (e.g., a REST or a HTTP 
API), or using some intermediate data store (e.g., a 
bucket in Amazon S3).

The three major requirements for this scenario are: (i) 
to be highly scalable to support an increasing number 
of cameras from various locations (hundreds or even 
thousands); (ii) to offer the lowest possible response 
time for each function invocation; and (iii) to minimize 
the number of instances used to execute the different 
function invocations in order to reduce both the cost 
for the end users, and the resource expenses at the 
infrastructure provider.

The FaaSim simulator
The experimental results presented in this work are 
mostly based on simulations. Using a simulator offers 
several advantages for our research purposes compared 
to a real platform. First, it enables large-scale, multiple 
experiments to be run with significant savings in execu-
tion time and infrastructure costs. Second, a simulator 
allows to easily tune different platform parameters (e.g., 
number of pre-warmed instances, instance reuse inter-
val, instance limits, etc.), even those that are not avail-
able on real platforms. Third, it enables the analysis of 
new resource management mechanisms or resource allo-
cation policies in FaaS platforms. Finally, it allows us to 
extend the classical cloud-based Faas platforms to edge-
based platforms.

For this purpose, we have developed a trace-driven 
simulator, called FaaSim, which reproduces the behav-
ior of a FaaS platform executing a single FaaS function. 
FaaSim uses as input a list of events ordered by arrival 
time, and each event triggers a new invocation of the 
FaaS function. The simulator uses two different pools of 
resources, a pool of warm instances, and a pool of allo-
cated instances. When a new function invocation is trig-
gered, the system first looks for a free instance in the 
warm pool, if none is available, then a new (cold) instance 
is provisioned. In both cases, the selected instance passes 
to the pool of allocated instances. When the execution of 

Fig. 5 Experimental scenario
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a function finishes, if the instance reusing mechanism is 
disabled, the allocated instance is shut down. Otherwise, 
the instance is moved to the warm pool for a specific 
keep-alive interval, so if the instance is not reused during 
this interval, it is shut down.

FaaSim can be configured using the following 
parameters:

• Simulation interval: this parameter specifies the 
duration of the simulation time interval. By default, 
it will be equal to the arrival time of the last event in 
the input event list.

• Pre-warmed instances: this is the number of pre-
warmed instances we use for the simulation (similar 
to the provisioned concurrency in AWS Lambda). If 
this parameter is equal to zero, then no pre-warmed 
instances are used.

• Keep-alive interval: this is to implement the reusing 
mechanism in the simulation. When the execution of 
a function ends, the allocated instance is kept warm 
for this interval. If this parameter is equal to zero, 
then the reusing mechanism is not used.

• Maximum number of instances: this parameter lim-
its the number of simultaneous instances that can be 
used for executing the function (like unreserved con-
currency in AWS Lambda).

• Cold start time: time that a cold instance takes to be 
ready to start the execution.

• Warm start time: time that a warm instance takes to 
be ready to start the execution.

• Execution time: time that the allocated instance takes 
to execute the function.

• Network latency: time it takes the input data to be 
transferred from the generating device to the FaaS 
platform (input bucket), and the output data to be 
sent back to the output data recipient.

The last four times are experimentally obtained from 
a real environment (AWS Lambda, as shown in the 
next sub-section). For each simulation run these values 
are randomly generated following a standard normal 
distribution.

Once the simulation ends, FaaSim provides the follow-
ing output:

• Response time per every function invocation (Eq. (1))
• Average response time (Eq. (2))
• Usage time per resource (Eq. (3))
• Total resource usage time (Eq. (4))
• Total resource start-up time (Eq. (5))
• Total resource busy time (Eq. (6))
• Total resource idle time (Eq. (7))
• Total resource shutdown time (Eq. (8))

• Average number of instances used per second
• Total number of cold starts

FaaSim parameters tuning and validation
To adjust the input time parameters of the simulator, 
we have measured the cold, warm and execution times 
for the image classification application in a real FaaS 
platform. In particular, the platform chosen is the AWS 
Lambda serverless compute service and the demo bundle 
provided by Amazon [49] for the Inception-v3 convolu-
tional neural network model. This deployment uses AWS 
S3 to trigger the invocation of the Lambda function every 
time the user uploads an image file in a given S3 input 
bucket.

To feed this experiment, we emulate a single camera 
generating one image per second, for a period of 100  s. 
We use 100 JPG image files selected from Kaggle Ani-
mals-10 dataset [50] as inputs, with sizes between 16 and 
183 KB and an average size of 80 KB. These image files 
are sent to the AWS S3 input data bucket, at a rate of one 
file per second. We run the experiment five times, with 
enough spacing between different runs to ensure that, at 
the beginning of each run, there are no warm instances 
kept alive from the previous one in the AWS Lambda 
platform. Instance pre-warming (provisioned concur-
rency) was not used in this experiment.

We use the AWS X-Ray monitoring tool to analyze the 
traces of the different runs of the serverless application in 
the AWS Lambda platform. Figure 6 shows, for one of the 
runs of the experiment, the duration (i.e., the response 
time) for the 100 function invocations obtained with 
AWS X-Ray. These response times do not include the 
network delays between the data origin (the camera) and 
the AWS S3 bucket. As we can observe, the first 9 invoca-
tions exhibit much higher response time (about 8 s) than 
the remaining invocations (about 2 s). This is because of 
the first invocations are using cold instances, while the 
rest are using warm instances, thanks to the instance 
reusing mechanism implemented in AWS Lambda.

From the data provided by AWS X-Ray we can obtain 
an estimation of the average values of the response time, 
the execution time, the cold start time, the warm start 
time, and the overall number of instances used for each of 
the five runs of this experiment, as shown in Table 2. The 
last column shows the average value (AVG) of the five 
runs along with the relative standard deviation (RSD).

To validate our FaaSim simulator, we tuned it with 
the average and standard deviation values for the exe-
cution time, the cold start time, and the warm start 
time, shown in the last column of Table  2. Then we 
performed several runs of FaaSim using a workload 
similar to the real AWS Lambda experiment described 
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Fig. 6 Response time of the different function invocations for the run #1 of the AWS Lambda experiment

Table 2 Results of running the use case in AWS lambda

Run #1 Run #2 Run #3 Run #4 Run #5 AVG (± RSD)

Response time (ms) 2,708.4 2,674.3 2,729,3 2,669.4 2,659.7 2,688.2 (± 1.1%)

Cold start time (ms) 6,190,8 6,072.0 6,115.1 6,042.0 6,028.0 6,089.5 (± 1.1%)

Warm start time (ms) 68.7 68.5 75.2 72.4 69.2 70.8 (± 4.1%)

Execution time (ms) 2,077.5 2,037.1 2,069.6 2,043.1 2,037.6 2,053.0 (± 0.9%)

No. instances used 9 9 9 9 9 9

Fig. 7 Comparison of response time of the different function invocations for run #1 of the AWS Lambda experiment and the simulator
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above. We also activated the instance reusing mecha-
nisms in the simulator, with a keep-alive interval equal 
to the overall simulation interval. Figure  7 shows the 
response time of the different function invocations for 
run #1 of the AWS Lambda experiment and one run of 
the simulator. We can observe that the profile of both 
runs is remarkably similar, and the number of instances 
used is the same (9 instances). Figure 8 shows the aver-
age response time of the serverless function for the 5 
runs of the AWS Lambda experiment compared to 5 
runs of the simulator. On average, the simulator gets 
a response time of 2,600  ms versus 2,688  ms for real 
experiments, with the same number of instances used. 
We can conclude that the results obtained with FaaSim 
closely reproduce the results obtained in a real envi-
ronment, which proves the validity of the simulator. 
Observe, however, that the response times obtained by 
the simulator in the different runs show a more con-
stant pattern than in the case of AWS Lambda. This 
is because, although standard deviations have been 
introduced in the simulator model, the data used, 
being statistically generated, present smoother fluc-
tuations with respect to the mean than in real-world 
scenarios.

The previous experiments used for the validation 
of the FaaSim simulator do not consider the network 
latencies between the data source and the FaaS plat-
form. However, in the next section we will demonstrate 
that these delays are very relevant when extending the 
FaaS platform to an edge environment. For this pur-
pose, we have also performed several experiments on 
AWS Lambda to estimate the network latency in two 
different scenarios: a cloud scenario where a device 

sends the image files to an AWS Lambda function 
deployed in a remote Amazon region; and an edge sce-
nario where the device sends the files from the same 
region where the Lambda function is deployed (for 
example, sending the files from an AWS EC2 instance 
located in the same Amazon region). In particular, we 
sent three files of different sizes—maximum (183 KB), 
minimum (16 KB), and average size (80 KB) -, and we 
repeated the experiment 10 times. Table  3 shows the 
results of these experiments.

Results
As we stated before, most FaaS platforms use pre-warm-
ing and reusing techniques used to minimize the cold-
start problem. However, these mechanisms should be 
adapted to the particular application profile, in order to 
reduce the response time of the serverless application, 
while minimizing the number of instances used during 
execution. It is not easy to obtain a mathematical model 
that fits with different platforms and application pro-
files, so here we propose to use FaaSim simulations for 
the optimal tuning of these mechanisms. First, we study 
the case of a centralized cloud FaaS platform, and then 

Fig. 8 Average response time obtained for the five runs of the AWS Lambda experiment and five runs of the simulator

Table 3 File transfer times for cloud and edge scenarios

File transfer time for 
cloud scenario

File transfer time for 
edge scenario

AVG (ms) RSD AVG (ms) RSD

Max. file size 1,510 2.9% 110 20.9%

Min. file size 422 5.0% 62 16.1%

Avg. file size 851 4.9% 73 15.1%
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we extend the study to a two-tier distributed edge/cloud 
FaaS platform.

The experiments in this section are based on the exper-
imental scenario shown in Fig. 5, where several cameras 
send images to the FaaS platform, and a FaaS function 
classifies them using the Inception-3 convolutional neu-
ral network algorithm.

All the experiments use a testbed consisting of 100 
cameras sending a total of 100 image files per camera, 
so that the serverless application must process 10,000 
images. To emulate different input data streams, we con-
sider three different image transmission patterns, repre-
sented in Fig. 9. In the first pattern (Fig. 9a), each camera 
transmits at a rate of one image per second, so the FaaS 
platform receives a continuous data stream of 100 images 
per second. In the second pattern, each camera transmits 
at a rate of one image every 30 seconds, resulting in a 
burst pattern (Fig. 9b) with 100 images per burst. Assum-
ing that all cameras are in sync with an accuracy of about 

1 second, and that transmission delays are, on average, 
about 1 second, we assume that the length of each burst 
of images is about 2 seconds, separated by 30 seconds 
between consecutive bursts. The third pattern considered 
is a random pattern (Fig. 9c) where each camera gener-
ates images at random intervals (e.g., triggered by motion 
detection), which can vary between 0 and a maximum of 
1 minute between consecutive images. Table  4 summa-
rizes the parameters of these three patterns. Note that 
the simulation interval varies for each transmission pat-
tern because the number of images to be processed is 
constant (10,000 images in all cases), but the arrival rate 
of images differs for each pattern.

Centralized cloud FaaS platforms
First, we analyze the instance reuse mechanism in order 
to adjust the optimal keep-alive interval for the applica-
tion profile we are considering. If the keep-alive interval 
is too short, there will be more cold starts, so the average 

Fig. 9 Different image transmission patterns (the graphs represent the traffic from 10 cameras)

Table 4 Summary of image transmission patterns

Transmission pattern Image transmission rate No. Cams Images per 
cam

Total images Simul. interval

Stream pattern 1 image per second per cam 100 100 10 K 100 s

Burst pattern 1 image every 30 s per cam 100 100 10 K 2970 s

Random pattern 1 image at random intervals 
(between 0–1 min.) per cam

100 100 10 K 3600 s
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response time will increase. On the other hand, if the 
keep-alive interval is too long, the system can incur an 
extra expense of resources (instances), with the conse-
quent increment of the infrastructure cost. To determine 
the optimal value of this parameter, we have analyzed 
three scenarios corresponding to the three transmission 
patterns explained above: stream, burst, and random 
patterns. For each scenario, we have achieved different 
simulations with different values of the keep-alive inter-
val, and we have analyzed both the average response 
time and the total resource usage time, broken down in 
the four main components: startup, busy, idle and shut-
down resource time. The FaaSim simulator is tuned with 
the input parameters (cold start, warm start, and execu-
tion time) obtained from the real AWS Lambda experi-
ments shown in the previous section (see last column of 
Table  2), without considering the network delays, and 
with no pre-warmed instances (these two factors will be 
analyzed later). Additionally, the shutdown time for each 
terminated instance has been set to 2 seconds, which is 
the maximum duration of the entire shutdown phase for 
runtime environments in AWS Lambda [51].

Graphs in Fig.  10 show the average response time 
and total resource usage results for the three scenarios 

(stream, burst, and random transmission patterns, 
respectively). As we can observe, when the keep-alive 
interval is 0 (no instance reuse) or very low, the aver-
age response time is noticeably higher due to the high 
number of cold starts, which increase the total resource 
start-up time. The average response time decreases when 
the keep-alive interval increases, and the minimum aver-
age response time value is reached for keep-alive inter-
vals of about 0.3 s in the first scenario (stream pattern), 
30 s in the second scenario (burst pattern), and 10 s in 
the last scenario (random pattern), achieving an overall 
reduction in the average response time of 65.8%, 73.2% 
and 73.2%, respectively. Using longer keep-alive intervals 
does not improve the average response time, but in some 
cases (especially in the first scenario), it can increase the 
total resource usage time, due to the larger number of 
warm instances that remain idle.

Next, we analyze the instance pre-warming mechanism 
in order to adjust the optimal number of pre-warmed 
instances for the application profile we are consider-
ing. As we explained before, instance pre-warming can 
reduce the number of cold starts, and hence the average 
response time. However, if the number of pre-warmed 
instances is higher than needed, it will result in a useless 

Fig. 10 Influence of keep‑alive interval over average response time and resource usage time (charts a) and c) uses a logarithmic scale 
in the horizontal axis)
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extra expense of resources, and consequently a higher 
cost. It is important to note that pre-warmed instances 
are assumed to be booted and ready before starting the 
execution of the function, so they do not contribute to 
the total start-up resource time. The instance pre-warm-
ing mechanism can be used alone or combined with the 
instance reuse mechanism, so we will analyze both cases. 
As in the previous experiments, we consider three dif-
ferent scenarios corresponding to the stream, burst, and 
random transmission patterns.

Graphs in Fig.  11 show the average response time 
and total resource usage results, for the three scenarios, 
for different numbers of pre-warmed instances and a 
keep-alive interval of 0 (no instance reuse). As we can 
observe, the optimal number of pre-warmed instances 
that minimizes the average response time is quite differ-
ent depending on the transmission pattern: about 250 
instances for the stream pattern, about 100 instances for 
the burst pattern, and about 14 instances for the random 
pattern. The overall reduction in the average response 
time is 73.9% in all the three cases. Increasing the num-
ber of pre-warmed instances over these values does not 

improve the average response time, but results in a use-
less increase in the total resource usage time.

Similarly, graphs in Fig. 12 show the average response 
time and total resource usage results, for the three sce-
narios, for different numbers of pre-warmed instances 
but now combined with the instance reuse mechanism. 
The keep-alive interval is set, in each case, to its optimal 
value according to the results shown in Fig. 10 (i.e., 0.3 s 
for the stream pattern, 30 s for the burst pattern, and 10 s 
for the random pattern). As we can observe, the instance 
reuse mechanism already reduces by itself the average 
response time significantly, so the improvement obtained 
with the pre-warming mechanism is not so noticeable 
(18.9%, 2.8%, and 0.9% reduction in the average response 
time for the stream pattern, the burst pattern, and the 
random pattern, respectively).

Distributed edge/cloud FaaS platforms
In this subsection we analyze the results of deploying 
our experimental scenario in a two-tier distributed edge/
cloud FaaS platform. For this purpose, we include the 
network latencies in the computation of the response 
time. In the following experiments, we assume that this 

Fig. 11 Influence of pre‑warmed instances (without instance reuse) over average response time and resource usage time



Page 16 of 22Moreno‑Vozmediano et al. Journal of Cloud Computing          (2023) 12:108 

latency is equal to the transfer time of an image file of 
average size, see Table  3. The testbed for these experi-
ments consists of 100 cameras distributed in five differ-
ent geographical regions, with 20 cameras per region, 
as shown in Fig.  13. The edge FaaS platforms, one per 
region, are responsible for processing the image files 
generated by the cameras belonging to that region. The 
different function invocations on a given region can be 
allocated to a local edge instance, or to a remote cloud 
instance, depending on the instance availability on the 
edge FaaS platform, and the placement policy used, 
implemented by the scheduler. We will also consider the 
same three image transmission patterns (stream, burst, 
and random patterns) summarized in Table 4.

First, we will study the instance reuse mechanism by 
analyzing the average response time results obtained for 
different keep-alive intervals when deploying our server-
less application in this distributed edge FaaS platform, 
compared to the results obtained in a centralized cloud 
FaaS platform, shown in Fig. 14. In these graphs, the aver-
age response time has been broken down into the three 
components as defined in equation (1): the initialization 
time (cold or warm) of the instances in the FaaS platform, 
the execution time of the different function invocations, 

and the network latency. In the case of the edge FaaS 
platform, we assume that all the function invocations of 
a given region are executed in the local edge platform, 
using the edge-first allocation policy. The comparison 
of different allocation policies will be discussed later in 
this section. In analyzing these results, we note that for 
certain patterns (stream and random), the cloud FaaS 
platform achieves better response times than the edge 
FaaS platform when keep-alive intervals are short. This is 
due to the inability of the edge platform to share warm 
instances across different regions, resulting in more fre-
quent cold starts and, consequently, higher instance 
initialization times. However, with longer keep-alive 
intervals, the edge FaaS platform consistently outper-
forms the cloud FaaS platform due to its lower network 
latency.

Next, we analyze the influence of the pre-warming 
technique over the average response time, comparing the 
results obtained in a distributed edge FaaS platform and 
a centralized cloud FaaS platform. Figure  15 shows the 
results for different numbers of pre-warmed instances 
without instance reuse (keep-alive interval = 0, in graphs 
15.a, 15.b, and 15.c) and combined with the instance 
reuse mechanism (keep-alive interval > 0, in graphs 15.d, 

Fig. 12 Influence of pre‑warmed instances (combined with instance reuse) over average response time and resource usage time
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15.e, and 15.f ). As in the previous case, in the edge FaaS 
platform deployment we assume that all the function 
invocations of a given region are executed in the local 
edge platform, using the edge-first allocation policy. It is 
also important to notice that, in the case of the distrib-
uted edge platform, the pre-warmed instances shown in 
Fig. 15 are evenly distributed among the FaaS platforms 
in each of the regions. As we can observe, in most cases, 
the edge FaaS platform provides faster response times 
than the cloud platform, because of the lower network 
latencies supported at the edge.

Finally, we analyze the two allocation policies proposed 
for the two-tier distributed edge/cloud FaaS platform. 

These policies are the edge-first policy, which prioritizes 
executing functions on the edge platform when resources 
are sufficient, and the warm-first policy, which prioritizes 
executing functions on warm instances if they are avail-
able. For these experiments we assume that we have a 
different number of pre-warmed instances in the cloud 
platform, not in the edge platform. So, the edge-first 
policy will always execute all the function invocations 
in the corresponding edge platform, but the warm-first 
policy can execute some function invocations in the 
cloud platform if there are warm instances available. We 
analyze two different scenarios, shown in Fig. 16. In the 
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first scenario the instance reuse mechanism is not used 
(keep-alive interval = 0, in graphs 16.a, 16.b, and 16.c), 
and in the second one, the cloud instance pre-warming is 
combined with the instance reuse mechanism (keep-alive 
interval > 0, in graphs 16.d, 16.e, and 16.f ).

As we can observe, if no instance reuse mechanism 
is used (graphs 16.a, 16.b, and 16.c) the warm-first 
policy always obtains better response time results than 
edge-first policy. This is because, with no instance 
reuse, the number of cold starts is remarkably high 
and the initialization time is the predominant term 
in the response time calculation, so as the num-
ber of pre-warmed instances in the cloud grows, the 
warm-first policy significantly reduces this initializa-
tion with the consequent improvement of the average 
response time. On the other hand, when the instance 
reuse mechanism is used, the number of cold starts 
is significantly lower, and then the network latency 
becomes a factor with greater weight in the calculation 
of the response time. Consequently, in two scenarios 

(burst and random patterns, as shown in graphs 16.e 
and 16.f ), the edge-first policy delivers better aver-
age response time results than the warm-first policy. 
This is because, under the warm-first policy, when 
the number of pre-warmed cloud resources increases, 
more invocations are processed in the cloud plat-
form, resulting in higher network latency. In the case 
of a stream pattern with keep-alive mechanism (graph 
16.d) both policies yield very similar results in terms 
of average response time, with the warm-first policy 
being slightly better in almost all cases.

Conclusions and future work
The aim of this study is to investigate methods for 
reducing latency in serverless applications. Two pri-
mary approaches to mitigate the cold-start problem, 
instance reuse and instance pre-warming, were ana-
lyzed to assess their effect on application response 
time and resource consumption. The results show that 
instance reuse mechanisms can significantly reduce 

Fig. 14 Comparison of edge and cloud FaaS platforms: influence of keep‑alive interval over average response time (charts a) and c) uses 
a logarithmic scale in the horizontal axis)
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cold-starts and improve response time. However, 
selecting an appropriate keep-alive period specific 
to each application and input data profile is crucial 
to achieve optimal response time without increas-
ing resource expenses. Similarly, while instance 

pre-warming can also reduce response time, exceed-
ing a certain threshold of pre-warmed instances for a 
given application or input data profile may not improve 
response time further and may unnecessarily increase 
resource consumption. By combining both mechanisms 

Fig. 15 Comparison of edge and cloud FaaS platforms: influence of pre‑warming over average response time without instance reuse (left) 
and combined with instance reuse (right)
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and selecting the appropriate parameters, such as keep-
alive interval and number of pre-warmed instances, 
an optimal response time can be achieved with lim-
ited resource usage. However, determining the suit-
able values for these parameters can be challenging as 
it is highly dependent on the application profile and 

workload pattern. Users may need to perform several 
iterations to adjust these values to find the optimal set-
tings for their specific use case. Simulation tools, such 
as the one presented in this study, can be valuable in 
this context to adjust optimal parameters, such as 

Fig. 16 Comparison of edge‑first and warm‑first policies without instance reuse (left) and with instance reuse (rigth)
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keep-alive interval, number of pre-warmed instances, 
and allocation policy, for each application or input data 
profile before deployment.

Expanding the serverless platform to the edge can also 
improve response time by reducing network latency. Two 
allocation policies, the edge-first and warm-first policies, 
have been analyzed to reduce either network latency or 
instance initialization time first. The warm-first policy is 
generally more effective without instance reuse mecha-
nisms; however, with instance reuse enabled, the winning 
allocation policy depends on the input data pattern.

As future work, we plan to integrate all the analyzed 
mechanisms into an actual FaaS platform. We also plan to 
explore and implement advanced instance pre-warming 
and reuse mechanisms, such as predictive mechanisms 
that use historical application profiles and machine-
learning based forecasting to predict optimal deployment 
parameters.
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