
Huang et al. Journal of Cloud Computing (2023) 12:119
https://doi.org/10.1186/s13677-023-00488-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Collaborative on‑demand dynamic
deployment via deep reinforcement learning
for IoV service in multi edge clouds
Yuze Huang1*, Beipeng Feng1, Yuhui Cao1, Zhenzhen Guo1, Miao Zhang1 and Boren Zheng1 

Abstract 

In vehicular edge computing, the low-delay services are invoked by the vehicles from the edge clouds while the vehi-
cles moving on the roads. Because of the insufficiency of computing capacity and storage resource for edge clouds,
a single edge cloud cannot handle all the services, and thus the efficient service deployment strategy in multi edge
clouds should be designed according to the service demands. Noticed that the service demands are dynamic
in temporal, and the inter-relationship between services is a non-negligible factor for service deployment. In order
to address the new challenges produced by these factors, a collaborative service on-demand dynamic deployment
approach with deep reinforcement learning is proposed, which is named CODD-DQN. In our approach, the num-
ber of service request of each edge clouds are forecasted by a time-aware service demands prediction algorithm,
and then the interacting services are discovered through the analysis of service invoking logs. On this basis, the ser-
vice response time models are constructed to formulated the problem, aiming to minimize service response time
with data transmission delay between services. Furthermore, a collaborative service dynamic deployment algorithm
with DQN model is proposed to deploy the interacting services. Finally, the real-world dataset based experiments are
conducted. The results show our approach can achieve lowest service response time than other algorithms for service
deployment.

Keywords  Service deployment, Internet of vehicles, Service demands, Deep reinforcement learning, Multi edge
clouds

Introduction
Internet of Vehicles (IoV) creates the bridge between the
vehicles and roadside units (RSUs) through the wireless
communication technologies [1], which can be regarded
as a typical IoT network and has been applied in urban
transportation system. The IoV system can realize the
data interaction between vehicles and RSUs, and make
the decision for auto-driving [2].

In intelligent transportation system, the vehicles
equipped with intelligent devices which are responsible
for the collection of the vehicles moving status and traffic
road condition data for analysis and computation [3]. The
cloud computing based IoV system can address the prob-
lems produced by the computing capacity limitation of
vehicles [4]. With the data collected by sensors increased,
the cloud computing may bring the high service delay
and the network congestion problems, which is difficult
to satisfy the low-delay requirement for latency sensitive
services [5]. Besides the low-latency requirement, we also
noticed the mobility of vehicles is another important fac-
tor, which may bring the difficult to provide all services
to vehicles relying on a single cloud, which may result
in a serious performance degradation. To solve such

*Correspondence:
Yuze Huang
huangyz@cqjtu.edu.cn
1 School of Information Science and Engneering, Chongqing Jiaotong
University, Chongqing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00488-6&domain=pdf

Page 2 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

problems, the edge computing has been produced and
raised widely attentions of researches, which can not only
provide low-latency service to users efficiently, but can
also avoid the single cloud provider lock-in and guaran-
tee the service performances [6, 7].

In edge computing, the intelligent devices are respon-
sible for pre-processing raw data and offloading them to
the edge clouds, which are closer to users, and mainly
undertake to process the data [8]. Thus the edge com-
puting can enhance the computing capacity of the edge
of network [9, 10]. In reality, because of the insufficiency
of computation capability and storage resource for edge
clouds, the execution of the IoT services on edge clouds
require the designing of service deployment strat-
egy [11, 12]. Most of the studies concentrate on reduc-
ing the service response time and energy consumption
of the intelligent devices [13–15]. With the deepening
of researches, some studies noticed the heterogeneity of
service requests among multi edge clouds. To address
the problem of service requests imbalances among
multi edge clouds, some studies proposed some efficient
approaches of service deployment with computation
workload scheduling strategies [16–18]. In sight of these
studies, most of these schemes are produced based on
the assumption of the known service demands. Generally
speaking, the service demands are unknown in practice,
which may result in the unreasonable deployment strat-
egy and large service delay during the service deployment
process. Thus, Hao et al. [19] presented a service deploy-
ment with the computation resource allocation strategy
under the uncertainty of service demands in industrial
cyber-physical system.

Along with the deepening of vehicular edge computing,
we noticed the service deployment meet new challenges
due to the particularity of the IoV environment. First,
with the dramatic increase of mobile vehicles, the service
demands are imbalance and highly dynamic in temporal,
which may greatly influence the service delay to a large
extent [20]. Thus the services should be deployed accord-
ing to the service demands and the temporal dynamic of
service demands should be considered for service deploy-
ment. Second, it is demonstrated that with the devel-
opment of IoV, single atomic service cannot satisfy the
complex business requirements. So the interacting ser-
vices should complete the business goal with collaboration,
and it exists large amount transmission data between the
services [21]. Thus, the inter-relationship between services
is another non-negligible factor for service deployment.

To deal with the above mentioned challenges, a col-
laborative service on-demand dynamic deployment
approach is proposed to deploy the interacting services

on multi edge clouds, which is named CODD-DQN. In
our approach, a time aware service demands predic-
tion algorithm is introduced to forecast the number of
service request for each edge cloud, and then the inter-
acting services are mined by a parallel algorithm. On
this basis, the service response time models are formu-
lated. Furthermore, we propose a collaborative service
dynamic deployment algorithm via deep reinforcement
learning to deploy the interacting services accord-
ing to the forecasted the number of service request,
which considers the minimization problem for service
response time with data transmission delay between
services. Specifically, the contributions of this paper
can be threefold as the following descriptions.

•	 The number of service request for each edge cloud
are forecasted by a time-aware service demands
prediction algorithm based on the ARIMA model,
which can investigate the temporal dynamic char-
acteristics of service demands.

•	 Service response time models are formulated
according to the inter-relationship between inter-
acting services which have been discovered by a
parallel mining algorithm.

•	 The collaborative service on-demand dynamic
deployment algorithm via DQN model is presented
to deploy the interacting services according to the
forecasted value of service demands, which can
reduce the service response time with data trans-
mission delay between services.

The rest of this paper is organized as follows. we intro-
duce the related work of this research in Related work
section. Framework of collaborative service dynamic
deployment section presents the framework of collabo-
rative service dynamic deployment, and then a ARIMA
based time-aware algorithm is presented to forecast
the number of service request in Time-aware service
demands prediction section. The system response time
models are constructed to formulate the problem of
service deployment in System model and problem for-
mulation section. Furthermore, Algorithm for collabo-
rative service dynamic deployment section proposes a
collaborative service on-demand dynamic deployment
algorithm with DQN to deploy the interacting services
according to the service demands, aiming to solve the
minimization problem of the service response time
with data transmission delay between services. Finally,
we evaluate the efficiency of our algorithms in Experi-
mental evaluation section, and then Conclusion section
concludes this paper.

Page 3 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

Related work
In IoT environments, the data produced by the various
intelligent devices are experiencing rise, which may lead to
high latency and network congestion in IoT system. Thus
the cloud computing cannot provide the low latency ser-
vices for users [9]. To address such problems, edge com-
puting is introduced and applied in wide areas. For edge
computing, intelligent devices offload the preprocessed
raw data to the edge clouds which is near to the users.
While the edge clouds responsible to execute the services,
and the cloud servers are only undertake to execute data-
intensive services and train the deep neural network [22].

Currently, most studies have concentrated on task
offloading, which mainly concentrate on how to design
efficient offloading strategy to offload the tasks on edge
clouds or remote cloud server [23]. In sight of these
works, existing task offloading strategy can be divided
into 0/1 offloading and partial offloading [24, 25]. Con-
sidering the insufficient computing capacity of intelli-
gent devices and the limitation computation resource
of edge clouds, the partial offloading is the reason-
able task offloading manner, which can be formulated
as a minimization problem of service request delay or
energy consumption of devices [26, 27].

According the prior knowledge of the global infor-
mation, the computing capacity or storage resource of
a single edge cloud is insufficient, and all services can-
not be executed on single edge cloud. Thus, an effi-
cient services deployment strategy should be designed
for deploying services on edge clouds or remote cloud
server. For service deployment, some existing studies
proposed efficient service deployment algorithms to
reduce the service response time or allocate computa-
tion resource for edge computing [28–30]. For example,
a fog configuration is presented to solve the minimiza-
tion problem of energy consumption and request delay
for industrial IoT [13, 31]. Wang et al. [14] proposed a
edge server placement algorithm, which can minimize
multi optimization objectives and balance the work-
loads between edge clouds. Noticed that the imbalance
of service demands is another non-negligible factor on
multi edge clouds, and then the optimization of service
deployment joint with resource scheduling are inves-
tigated by some researchers. Ma et al. [17] introduced
a cooperative schema combined service placement
and workload scheduling for minimizing the service
response time. Hao et al. [19] proposed an efficient ser-
vice deployment strategy joint with resource allocation
through considering the uncertain service demands. In
summary, the service demands is another factor which
must be take into consideration for service deployment.

In sight of the existing studies, internet of vehicles has
been widely used in modern urban traffic system, and

thus the edge computing based IoV has been widely con-
centrated by some investigations [32]. For vehicular edge
computing, the vehicles invoke low-delay services from
edge clouds which are closer to the vehicles. According to
our prior knowledge, the service demands are uncertain
and present temporal dynamic characteristics among the
multi edge clouds. To design a reasonable service deploy-
ment strategy, the service demands uncertainty and tem-
poral dynamic of service request must be considered
for service deployment [20]. It is demonstrated the sim-
ple atomic service cannot satisfy the complex business
requirements in reality, therefore the interacting services
should collaborative work with each other to complete
the business goal. It exists large amount transmission
data between the interacting services, which is another
non-negligible factor for service provisioning [21]. In our
previous work [33], we studied the collaboration between
interacting services for service offloading to minimize
the service request delay and data transmission delay
between services. Comparing with existing studies, we
study the temporal dynamic characteristics of service
demands and reveal the inter-relationship between ser-
vices, aiming to solve the minimization problem of ser-
vice response time with data transmission delay between
services.

Framework of collaborative service dynamic
deployment
The architecture of internet of vehicles is presented
in Fig. 1. Typically, the architecture can be composed
of three layers, which are remote cloud layer, edge net-
work layer and vehicle user layer. Generally speaking,
the vehicle user layer contains numerous vehicles, which
mainly undertake the capacity of sensing the road envi-
ronment and collect the data from vehicles. Due to the
limited computation of vehicles, the vehicles only pre-
process the raw data and transmit them to the RSUs,
which often act as edge clouds in IoV. Comparing with
vehicles devices, the edge clouds have rich communica-
tion, computation and storage resources. Thus the RSUs
are responsible for the execution of computation-inten-
sive services. By deploying the service on edge clouds, the
edge clouds are beneficial for processing the strict latency
requirements and deliver the low-latency service to vehi-
cle users. In IoV, the cloud server with higher computing
capacity and more storage capacity undertake to provide
the global management and centralized decisions con-
trol in the system. We investigate the temporal dynamic
of service demands and reveal the inter-relationship
between services in this paper. Thus, the interacting ser-
vices are deployed according the forecasted number of
service request on multi edge clouds. The cloud serv-
ers only responsible for training the deep reinforcement

Page 4 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

learning based service deployment model, and then
service deployment strategy will be send to the edge to
perform for minimizing the service response time in the
whole system.

As Fig. 2 shows, the service invoking logs are collected
as the input of our approach, which contains the service
request sequence and the number of service request
on each edge cloud. First, to investigate the temporal
dynamic characteristic of the service demands, a time-
aware service demands prediction algorithm by ARIMA
model is introduced to forecast the number of service
request. Furthermore, we employ a parallel algorithm
to discover the interacting services [34, 35]. Finally, the
interacting services are deployed by the DQN-based
collaborative service dynamic deployment algorithm
according the forecasted number of service request,
aiming to optimize the service response time with data
transmission delay between services. The details can be
found as follows.

	Step1.	Service invoking logs are exacted as the input of
our approach, and then the ARIMA model based
algorithm is put forward for forecasting the num-
ber of service request for each edge cloud, which
can investigate the temporal dynamic characteristic
of service demands.

	Step2.	Service response time models are constructed
according to the inter-relationship between ser-
vices, which have been discovered by our proposed
algorithm [34, 35].

	Step3.	A collaborative service on-demand dynamic
deployment algorithm based on DQN model is
presented to deploy the interacting services, aiming
to minimize the service response time with data
transmission delay between services. This algo-
rithm can obtain the optimal service deployment
strategy through receiving environment status and
performing the decision actions through iterative
computing.

Fig. 1  Architecture of vehicular edge computing

Page 5 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

Time‑aware service demands prediction
In vehicular edge computing, due to the mobility of the
vehicles, the service demands are imbalance and dynamic
in temporal. According to the temporal characteristics of
service demands, we put forward a time-aware algorithm
to forecast the number of service request based on the
ARIMA model. Next, we will present the time-aware ser-
vice demands prediction algorithm to forecast the num-
ber of service request of each edge clouds.

In our system, the services s = {1, 2, ..., s} are deployed
on the edge clouds E = {1, 2, ..., i} . In order to investi-
gate the temporal dynamic of the service demands, the
number of service request for service k deployed on edge
cloud i denoted as {c(i, k , t)|t = 0, 1, 2, ..., n} . The number
of service request can be forecasted by our algorithm.
The ARIMA integrates autoregressive (AR) and mov-
ing average (MA) model to formulated the time series
data [36]. In this model, if the original data is non-sta-
tionary, the data should be transferred into a stationary

data through d steps differences. Thus the time series
denoted by ARMA(p, q) can be modeled as follows.

where φ0 is a constant item. θj and φi denote the param-
eter of MA and AR model, respectively. at denotes the
white noisy. p, q are non-negative integer, which denote
the order of AR model, MA model, respectively.

To our best knowledge, the most important step for
ARIMA-based time series forecasting is constructing
ARIMA model and determining the order of model to fore-
cast the future data. In our algorithm, the pre-condition
of constructing the ARIMA model is checking the series
data is white noisy or not. For this step, the Ljung-Box
test is used for white noisy checking. If the series data sat-
isfy the pre-condition, the ARIMA model can be used for
time series forecasting, else, we employ the simple moving

(1)ct = φ0 +

p

i=1

φict−i +

q

j=1

θjat−j + at ,

Fig. 2  Framework of CODD-DQN

Page 6 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

average to forecast the number of service request in this
algorithm, which can be formulated as

where ĉ(i, k , t + n) represents the n− th forecasted value
of the number of service request, and c(i, k, t) is the t − th
observed value.

According to the discusses of time series forecasting, the
process of ARIMA-based service demands prediction algo-
rithm follows the following six steps.

Step 1: Stationarity Checking. With the white noisy
checking completed, the stationarity of the number of ser-
vice request series should be determined by the unit root
test. If the time series data is not stationarity, the original
data should be calculated through d steps differences, and
transfer them into the stationary series.

Step 2: Model Identification. Model identification is the
most important step in time series forecasting. During this
process, the order of p and q should be determined for con-
structing the ARMA model. In this step, the ACF (auto-
correlation function) and PACF (patrial autocorrelation
function) are computed to assist the order selection, which
can be obtained by the following expressions:

where ρk represents the lag k ACF, and the γk represents
the lag k auto-covariance function. The lag k PACF is
denoted by φkk.

Since the ACF and PACF are computed by the former
equations, the order of the ARIMA model is selected
accordingly. If PACF is truncated at p-order and ACF
decays, the AR(p) model can be selected to constructed the
model. If ACF is truncated at q-order and PACF decays, the
MA(q) model can be used to fit the series data. If ACF and
PACF decay, the ARMA(p, q) can be adopted as the model
to fit the series data.

Step 3: Model Estimation. After the model order is
selected, the parameters of the model should be estimated
for the ARMA model. In this step, the maximum likelihood
estimation is adopted to determined the parameters by the
following expression.

(2)

ĉ(i, k , t + n) =[c(i, k , 1)+ ...+ c(i, k , t)

+ ĉ(i, k , t + 1)+ ĉ(i, k , t + 2)

+ ...+ ĉ(i, k , t + n− 1)]/t + n− 1,

(3)ρk =
γk

σ 2
,

(4)φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1−
∑k−1

j=1 φk−1,jρj
,

(5)l ∝ (σ 2)−
n
2 exp{−

1

2σ 2

n
∑

t=1

(at)
2},

where l represents the likelihood function, and
at ∼ N (o, σ 2) denotes the white noisy.

Step 4: Model Checking. In this step, the significance
of models and parameters should be checked. If the sig-
nificance test is satisfied, the model can be adopted to
forecast the number of service request.

Step 5: Model Selection. Since the model checking is
completed, the optimal model should be selected from
all candidate models which have passed the significance
test. The model selection according to the AIC (Akai-
ke’s Information Criterion) value in this step, the model
which has the minimum AIC value should be selected
to forecast the future data.

Step 6: Number of service request forecasting. Since the
optimal model is selected, the number of service request
are forecasted by the constructed model. In this algo-
rithm, the (n+ 1)− th value is calculated according to
the n− th forecasted value. Thus, As the steps increased,
the forecasted error increases accordingly. The details of
the algorithm can be found in Algorithm 1. In our sys-
tem, the prediction algorithm is deployed on each edge
cloud, and the number of service request for each edge
cloud can be forecasted by this algorithm.

Algorithm 1 Algorithm for Time-aware Service Demands Prediction

System model and problem formulation
In this section, the service response time models are pre-
sented to formulate the service deployment problem of
our approach in the following contents.

Page 7 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

System model
In reality, a complex service can be composed by a serial
of sub-services, each of which processes certain data
and accomplishes one piece of sub-task. In that cases,
the precursor service should be executed and transmit
the processed data to the subsequent service, and then
the subsequent service should process the transmitted
data to accomplish a certain task. Thus, it may exist the
data communications between interacting services. In
such cases, the inter-relationship between the services
should be considered for service provisioning in edge
computing.

In this paper, we construct the system model for ser-
vice deployment during the time slots T = {1, 2, ..., t} .
During the process, the services are deployed on edge
clouds and the computation resource are allocation
in each duration. In our system, the finite services are
deployed on multi edge clouds upon the limited stor-
age and computation resource, and the user requests
the service from the proximity edge clouds. We assume
there are a series services denoted as K = {1, 2, ..., k} ,
which are deployed on the multi edge clouds. The edge
clouds can be denoted by S = {1, 2, ..., s} . We let M(i) and
D(i) denote the computing and storage capacity of edge
cloud, respectively. In contrast with previous works [19,
20], we study the temporal dynamic of service demands
and consider the interrelationship between interacting
services for service deployment, and thus the interact-
ing services are deployed collaborative on the multi edge
clouds. The remote cloud is only responsible to train the
deep reinforcement learning model for searching the ser-
vice deployment strategy. In the following contents, we
present the system model with service response time and
formulate the service deployment problem. The impor-
tant notations of this paper are shown in Table 1.

As mentioned above, we construct the system model
for services deployment with computation resource allo-
cation in multi edge clouds. First, we define the service
deployment function as b(k , i, t) ∈ {0, 1} , whose value is

a binary variable. Thus, when the service is deployed on
edge cloud, we let b(k , i, t) = 1 , otherwise b(k , i, t) = 0 .
Due to the insufficiency of the storage capacity of edge
cloud, the whole data size of the services cannot exceed
the storage capacity of edge cloud.

where d(k) represents the data size of the service k.
To improve the utilization of computation resource,

a primer resource allocation scheme for service
deployment is designed in multi edge clouds. We use
l(k , i, t) ∈ [0, 1] denote the proportion of computation
resource allocation. Accordingly, if the service is not
deployed on the edge cloud in this time, the l(k , i, t) = 0 .
Thus the computation resource allocation function is
defined by L(t) = {l(k , i, t)|i ∈ S, k ∈ K } . Since the com-
puting capacity of edge cloud is insufficient, the allocated
proportion of computation resource to execute service
cannot exceed 1, which can be expressed as

Once the service is deployed on the edge cloud, the
computation resource should be allocated according to
the following scheme for executing this service. Thus,
when the services are deployed on the edge cloud, the
computation resource should be allocated as a certain
proportion value, otherwise the allocated computa-
tion resource is 0. The relationship between l(k, i, t) and
b(k, i, t) can be formulated as follows.

where g denotes the proportion value of computation
resource allocated for executing the service.

To analyze the service response time in this system,
we let c(k, i, t) denote the number of service request,
which can be forecasted by our proposed service
demands prediction algorithm. In this paper, once the
service cannot be deployed on such edge cloud, the ser-
vice should be executed on another edge cloud through
service scheduling. We notice that the data back haul
delay for executing the service is much smaller than
service request delay and data transmission delay, thus
the delay of data back haul can be ignored in this paper.

In this paper, the edge clouds receive the service
request and the data should be transmitted from vehi-
cles to edge clouds, thus the data transmission delay
between vehicles and edge clouds can be calculated by
the following expression.

(6)
K
∑

k=1

b(k , i, t)d(k) ≤ D(k),∀t,

(7)
K
∑

k=1

l(k , i, t) ≤ 1, ∀t.

(8)l(k , i, t) =

{

0 b(k , i, t) = 0

g b(k , i, t) = 1
, g ∈ (0, 1], ∀t,

Table 1  List of important notations

Notations Description

D(i) Storage capacity of edge cloud i

M(i) Computing capacity of edge cloud i

d(k) Data size of service k

m(k) Computing capacity for executing the service k

Vv2e Network transmission rate between vehicles and edge
clouds

Ve2e Network transmission rate among edge clouds

c(k, i, t) Number of service request for service

d(kk∗) Data transmission size between interacting services

Page 8 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

where C(k, t) denotes the total value of the number of
service request for service k on all edge clouds, which can
be computed through C(k , t) =

∑S
i=1 c(k , i, t) . The Vv2e

denotes the network transmission rate between vehicles
and edge clouds.

As mentioned above, the services should be executed
through service scheduling in some cases. Therefore,
the data transmission delay between edge clouds can be
computed as

where C(k , t)− c(k , i, t) is the number of service request
handled on other edge clouds, and Ve2e denotes the net-
work transmission rate between edge clouds.

When the service is executed on the edge cloud, the
computation delay can be calculated by the following
expression.

where m(k) is the computation resource requirement of
service k.

Comparing with other studies, we investigate the data
transmission delay between services. Assuming it exists
some interacting services, which can be divided to the pre-
service k and successor service k∗ . In that case, the num-
ber of service request for service k handled on edge cloud i
can be denoted as ccomp(k , i, t) , and the total value of the
number of service request for service k handled at time
slot t can be computed by Ccomp =

∑S
i=1 ccomp(k , i, t) .

Thus, the data transmission delay between services can
be calculated by

where d(kk∗) denotes the data transmission size between
interacting services. In that case, the computation delay
for executing the successor service k∗ can be calculated
by the following expression.

where m(k∗) is the computation resource requirement of
successor service k∗.

(9)Wtran
v2e =

C(k , t)d(k)

Vv2e
,

(10)Wtran
e2e = b(k , i, t)

(C(k , t)− c(k , i, t))d(k)

Ve2e
,

(11)Wcomp = b(k , i, t)
C(k , t)m(k)

l(k , i, t)M(i)
,

(12)
Wtran

s2s (kk∗, i, t) =[b(k , i, t)(Ccomp(k , t)

− ccomp(k , i, t))d(kk
∗)]/Ve2e,

(13)Wcomp
suc (k∗, i, t) = b(k∗, i, t)

Ccomp(k , t)m(k∗)

l(k , i, t)M(i)
,

Problem formulation
With the system models are constructed, the response time
for handling the interacting services can be obtained as
follows.

In addition, the service response time for handling the
single atomic services can be obtained by the following
expression.

In summary, the total delay for handling all services can
be obtained as

In this paper, our purpose is minimizing the service
response time for service deployment based on the service
demands prediction. So we formulate the service deploy-
ment problem as

As mentioned above, the service deployment problem
is formulated as a mixed integer nonlinear program-
ming, which is an NP-hard problem. We noticed that
deep reinforcement learning algorithms have its natural

(14)

Wsum(kk∗, t) =

S
∑

i=1

[Wtran
v2e (k , i, t)

+Wtran
e2e (k , i, t)

+Wcomp(k , i, t)

+Wtran
s2s (kk∗, i, t)

+Wcomp
suc (k∗, i, t)].

(15)

Wsum
single(k , t) =

S
∑

i=1

[

Wtran
v2e (k , i, t)+Wtran

e2e (k , i, t)

+Wcomp(k , i, t)
]

.

(16)Wsum(k , t) = Wsum(kk∗, t)+Wsum
single(k , t).

(17)min
B,L

=
1

T

T
∑

t=1

K
∑

k=1

Wsum(k , t),

(18a)s.t. C1 :

K
∑

k=1

b(k , i, t)d(k) ≤ D(i),∀t,

(18b)C2 :

K
∑

k=1

l(k , i, t) ≤ 1, ∀t,

(18c)C3 : b(k , i, t) ∈ {0, 1}, k ∈ K , i ∈ S,

(18d)C4 : l(k , i, t) ∈ [0, 1], k ∈ K , i ∈ S.

Page 9 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

advantages on solving this kind of problem [37], so a
DQN-based algorithm is designed to address this prob-
lem, which will be described in the next content.

Algorithm for collaborative service dynamic
deployment
In this section, the interacting services is deployed by a
collaborative service dynamic deployment algorithm
with DQN model. The detailed information of this algo-
rithm can be found as follows.

DQN algorithm is a typical deep reinforcement learn-
ing algorithm which is produced from the Q-learning
algorithm [38]. As Fig. 3 shows, the DQN model con-
tains two Q-networks with the same structure and the
same initial parameters, which are current value net-
work and target value network. In DQN algorithm,
two neural networks are updated with the different
frequency through a iterative computation process.
During the training process, the model obtain the ini-
tial state and the initial action which are selected based
on the greedy policy at first, and then the next state
is obtained by calculating the rewards. Secondly, the
(s∗t , at ,Rt , s

∗
t+1

) is stored in the replay memory. With the
training steps increased, the parameters of the Q-net-
work are updated and the action value can be calcu-
lated to be performed. The details of DQN model can
be found in [38].

As the description of DQN model in the above content,
we construct state space and action space, and then the
reward function is formulated for MDP process. Next we
will describe these three elements as below.

State space: In our vehicular edge computing system,
the DQN model on cloud servers receives the state of
edge clouds at each time slot. Thus, the state space can be
expressed as

Action space: Assuming there are K services
deployed on S edge clouds. As mentioned in System
model section, we defined the service deployment
function b(k , i, t) ∈ {0, 1} . Therefore, the action space
of services deployment is 2S∗K  . Besides the services
deployment, we also considered the computation
resource allocation during the services deployment
progress. In this vehicular edge computing system, we
defined the minimum allocation unit is �l(k , i, t) , thus
the schema of computation resource allocation follows
the below expression.

Therefore, the action space of edge cloud i at time slot t
can be formulated as

(19)s∗(i, t) = {c(k , i, t),M(i),D(i), l(k , i, t)}.

(20)l(k , i, t) = {�l(k , i, t), ...m�l(k , i, t), ...1}.

(21)Ai(t) = {b(k , i, t),�l(k , i, t), k ∈ K }.

Fig. 3  DQN model

Page 10 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

Reward: The purpose of this paper is searching the
optimal deployment strategy and solving the minimiza-
tion problem of service response time with data trans-
mission delay between interacting services. We let
P =

∑T
t=1

∑K
k=1W

sum(k , t) . Thus, the reward function
can be obtained as

In this model, the action At is performed, and then
the state of next time slot s∗t+1

 is obtained. We use �w
denote the difference of response time between two
states, which can be calculated as

where a is a constant item.
As the Equation. 22 shows, our purpose can be trans-

ferred into the optimization for maximizing the reward
function. So the action value function Q(s∗, a) can be cal-
culated as

where γ denotes the discount factor, and γ ∈ [0, 1] . Thus,
the action of searching the optimal service deployment a∗
can be expressed as the optimization for maximizing the
action value.

During this progress, the loss function L(θt) can be
obtained by

The gradient descent method is employed to update
the parameter θ , which can be expressed as

where η denotes the learning rate, and the parameter θ
can be updated through C steps.

With the MDP process described, the interact-
ing services are deployed by CODD-DQN algorithm,
which is a iterative process. The details can be found in
Algorithm 2.

(22)R(t) =
�w

T
.

(23)�w =
1

a
[P(s∗t+1 | s

∗
t ,At)− P(s∗t)],

(24)Q(s∗, a) = E(

T
∑

t=1

γ tRt | s
∗
t = s∗,At = a),

(25)a∗ = arg max
a∈A

Q(s∗, a).

(26)
L(θt) =

1

|J |

|J |
∑

j=1

[Rj + γ max
a
′

Q(s∗i+1, a
′

; θ̄)

− Q(s∗i , ai; θt)]
2
.

(27)θt+1 = θt − η∇L(θt),

Algorithm 2 Algorithm for Collaborative Dynamic Service Deployment
with DQN

Experimental evaluation
Next, we evaluate the efficacy of proposed algorithms,
including service demands algorithm and CODD-DQN
algorithm. First, the accuracy of service demands pre-
diction algorithm is evaluated by real-world dataset, and
then the simulation experiments are conducted to evalu-
ate the efficiency of CODD-DQN by comparing with
other baseline algorithms.

Experiment setting
In this paper, a real-life ISP dataset in China is employed
to evaluated the accuracy of service demands prediction,
which records more than 480,000 records of mobile users
invoking about 16,000 base stations in three cities [39]. We
random select continuous 80 hours records from the data-
set to record the service demands from these base stations.
We conduct the experiments with four metrics to evalu-
ate the accuracy of service demands prediction algorithm,
which are root mean square error (RMSE), mean square
error (MSE), mean absolute percentage error (MAPE) and
mean absolute error (MAE). We vary the proportion of
observation data from 50% to 90% to forecast the remain
data values and compared with other common predic-
tion algorithms, which are simple exponential smoothing
(SES), move average (MA) and autoregressive (AR).

Page 11 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

Besides the accuracy of our service demands prediction
approach, we also conduct the CODD-DQN algorithm
with simulation experiments and compare the average
response time with following algorithms.

•	 Random: Deploying the services randomly under the
constraint of the data size of services and the storage
capacity of edge clouds.

•	 Greedy: Deploying the services and allocating the
computation resource according to the computa-
tion requirement for executing the service. Thus
the service with high computation requirement are
deployed on the edge cloud with priority.

•	 Frequency: Deploying the services and allocating the
computing resource according to the frequency of
the service request.

•	 Q-Learning: Q-Leaning based service deploying
algorithm [40].

•	 DQN w.o. collaboration: DQN-based service deploy-
ing algorithm without considering the interrelation-
ship between interacting services.

In this paper, we set the network transmission rate
between the edge clouds Ve2e and the network transmis-
sion rate between the vehicles and edge clouds Vv2e are
100Mbps. The data size of the services follow the random
value from 2GB to 8GB, and the value of computation
requirements for executing services are randomly from
1gigacycles to 5gigacycles. To indicate the heterogeneity
of the edge clouds, the storage capacity of edge clouds
are set as the random value from 10GB to 30GB, and the
computing capacity of edge clouds follows the random
value from 5GHz to 10GHz. In DQN algorithm, we set
the size of experience pool as 3000 and construct neu-
ral network with a single hidden layer, whose number of
nodes is 128. In our algorithm, the ε-greedy strategy is
used, where the initial value of ε is 0.9, and decreases with
0.0005 decrement. After several test, we set batch-size

is 64. All of the simulation parameters can be found in
Table 2.

Results analysis
First, we evaluate the accuracy of the service demands
prediction using the real-life dataset, and vary the pro-
portion of observation data from 50% to 90% to forecast
the future number of service request. In this paper, our
algorithm are compared with other baseline algorithms.
From Fig. 4, we find the accuracy of our algorithm is
higher than other baseline algorithms. As Fig. 4a shows,
with the training set increases from 50% to 90% , the MSE
decreases from 4489 to 100. When the training set is 90% ,
the MSE value remain 100, which indicate the higher
accuracy can be obtained by our service demand predic-
tion algorithm, therefore we have rich time to caching the
service beforehand. Besides the MSE, we also conduct
the experiments by other metrics. In Fig. 4b, we know
the RMSE value decreases from 67 to 12 rapidly, when
the proportion increases from 50% to 70% . The RMSE
remains 10 when the proportion is 90% . As Fig. 4c and d
show that with the proportion increases, the accuracy of
prediction increases following. From Fig. 4c we can find,
with the proportion increases from 50% to 70% , the MAE
of our algorithm decreases rapidly, and achieves at 11.1
when the proportion is 70% . As the proportion increases
from 70% to 90% , the MAE decreases slowly, and achieves
at 8.83 when the proportion is 90% . As Fig. 4d shows, as
the proportion increases from 50% to 70% , the MAPE
of our algorithm decreases from 19.8% to 3.64% , and
achieves at 3.27% when the proportion is 90%.

With the accuracy of the service demands predic-
tion evaluated, we also evaluate the efficiency of service
dynamic deployment algorithm with simulation experi-
ments. In DQN model, we set the initial value of the
greedy strategy parameter ε is 0.9 and decrement value
is 0.0005. First, the hyper-parameters in our algorithm
are determined through the training progress. As Fig. 5

Table 2  Simulation parameters

Parameters Value

Data size of service, d(k) [2, 8]GB

Computing capacity for executing service, m(k) [1, 5]gigacyles

Storage capacity of edge cloud, D(i) [10, 30]GB

Computing capacity of edge cloud, M(i) [5, 10]GHz

Network transmission rate between multi edge clouds, ve2e 100Mbps

Network transmission rate between vehicles and edge clouds, vv2e 100Mbps

Initial value of greedy strategy parameter, ε 0.9

Decrement value of ε 0.0005

Number of nodes in hidden layer 128

Size of experience pool 3000

Batch size 64

Page 12 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

shows, the algorithm can obtain the best performance
when the discount factor γ is 0.9, The average response
time can reach about 0.65s when the episode decreases at
400. So the optimal discount factor is set as 0.9.

Furthermore, we determine the learning rate by several
experiments. Figure 6 shows the convergence performance
comparison of the algorithm with different learning rates
η . From this Figure, we notice the CODD-DQN performs
best performance when η = 0.0001 , while the algorithm is
not convergence when η = 0.001 and η = 0.0005 . There-
fore, we set the value of learning rate as 0.0001.

Since the hyper-parameters are determined, we evalu-
ate the performance of our algorithm to compare with
other algorithms. Figure 7 shows the average response
time of different algorithms. We can see that our

CODD-DQN algorithm can achieve the lowest average
response time than the four algorithms. As Fig. 7 shows,
with the number of episode increases, the Q-learning
algorithm is not convergence, while our CODD-DQN
algorithm can obtain the average response time about
0.65s when the episode is 400. Compared with DQN
w.o. collaboration algorithm, our algorithm achieves the
lower average response time than DON w.o. collabora-
tion algorithm, and converges at 400 episodes, while the
DQN w.o. collaboration algorithm converges at about
600 episodes. Because the DQN w.o. collaboration algo-
rithm deploys the services without considering the
relationships between interacting services, which may
increase the data communication delay between interact-
ing services.

Fig. 4  Comparison between different service demands prediction algorithms

Page 13 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

We also conduct the experiments under different
system simulation parameters. Since the Q-learning
algorithm cannot converge, we only compare the aver-
age response time of our algorithm with other baseline
algorithms. First, we evaluate the service response time
with different values of storage capacity. Figure 8 show
the convergence performance and service response

time comparison under different storage capacity. The
performance of CODD-DQN algorithm and DQN w.o.
collaboration algorithm can be found in Fig. 8a. We
notice that the smaller the storage capacity of edge
clouds, the higher response time of the algorithm.
The CODD-DQN algorithm can achieve the lower
response time than DQN w.o. collaboration algorithm,

Fig. 5  Convergence performance of CODD-DQN algorithm with different discount factors

Fig. 6  Convergence performance of CODD-DQN algorithm with different learning rates

Page 14 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

and converges about at 0.7s when the storage capac-
ity is 20GB. Figure 8b shows the service response
time comparison between CODD-DQN algorithm
and other baseline algorithms under different stor-
age capacity of edge clouds. From the Figure, we can
see the CODD-DQN algorithm can obtain the lowest
response time than other algorithms. With the storage
capacity increased from 10GB to 30GB, the response
time decreases following, and the response time of our
CODD-DQN algorithm remains at about 0.67s when
the storage capacity increases at 30GB.

Figure 9 show the convergence performance and ser-
vice response time comparison of the algorithms under
different values of the number of services. From the
Fig. 9a we know the service response time of two DRL-
based algorithms with the number of services is 10 are
higher than that when the number of services is 8. Thus,
the more services, the higher response time in our sys-
tem. We also found that the CODD-DQN algorithm
can obtain the lower response time than DQN w.o. col-
laboration algorithm, and Converges at about 0.59s
when the number of services is 8. Figure 9b shows the
service response time comparison between CODD-
DQN algorithm and other baseline algorithms under
different values of the number of services. With the
number of services increased from 4 to 12, the response
time of CODD-DQN algorithm increases from 0.31s to
1.28s, and achieves the lowest response time than other
algorithms.

Besides these experiments, we also conduct the experi-
ments under other different system parameters. we vary
the computing capacities of the edge clouds and conduct
the performance of different algorithms. Figure 10 show
the group results of convergence performance and ser-
vice response time comparison of the algorithms under
different computing capacities of edge clouds. From the
Fig. 10a we know the service response time of two DRL-
based algorithms with the computing capacity of edge
clouds is 6 GHZ are higher than that when the comput-
ing capacity of edge clouds is 8 GHZ. Thus, the higher
computing capacity of edge clouds , the lower response
time in our system. We also found that the CODD-DQN
algorithm can obtain the lower response time than DQN
w.o. collaboration algorithm. Figure 10b shows the ser-
vice response time comparison between CODD-DQN
algorithm and other baseline algorithms under differ-
ent computing capacities. With the computing capaci-
ties increased from 6 GHZ to 10 GHZ, the response
time of CODD-DQN algorithm decreases from 0.85s to
0.74s, and achieves the lowest response time than other
algorithms.

In order to indicate the performance of algorithms
under different number of edge clouds, we also vary the
number of edge clouds and compare the performances
of different algorithms. Figure 11 show the group results
of convergence performance and service response time
comparison of the algorithms under different number
of edge clouds. From the Fig. 11a we know the service

Fig. 7  Convergence performance comparison of different algorithms

Page 15 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

response time of two DRL-based algorithms with the
number of edge clouds is 3 are higher than that when the
number of edge clouds is 5. Thus, the more edge clouds,
the lower response time in our system. We also found
that the CODD-DQN algorithm can obtain the lower
response time than DQN w.o. collaboration algorithm.
Figure 11b shows the service response time compari-
son between CODD-DQN algorithm and other base-
line algorithms under different values of the number of
edge clouds. With the number of edge clouds increased
from 3 to 7, the response time of CODD-DQN algorithm
decreases from 0.81s to 0.68s, and achieves the lowest
response time than other algorithms.

Conclusion
In this paper, A collaborative service on-demand dynamic
deployment approach via DQN model is proposed in
vehicular edge computing, which is named CODD-DQN.
To investigate the temporal dynamic characteristics of
service request, a time-aware service demands prediction
algorithm by ARIMA model is produced to forecast the
number of service request for each edge cloud, and then
the interacting services are discovered through the analy-
sis of the service invoking logs. Furthermore, the service
response time models are constructed to formulate the
service deployment as an optimization problem, and the
collaborative service deployment algorithm is presented

Fig. 8  a Convergence performance of different algorithms
with different storage capacity of edge clouds. b Comparison
between different algorithms

Fig. 9  a Convergence performance of different algorithms
with different number of services. b Comparison between different
algorithms

Page 16 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

by DQN model to deploy the interacting services, which
can solve the minimization problem of service response
time with data transmission delay. Finally, the real-life
dataset based experiments are conducted to evaluate
the efficiency of the algorithms. The results show pro-
posed CODD-DQN algorithm can achieve lowest service
response time than other algorithms on deploying the
interacting services.

Noticed that our purpose is to design approach for ser-
vice dynamic deployment by forecasting the number of
service request with efficiency. To improve the utiliza-
tion of the computation resource, we also design a primer
resource allocation function during service deployment.
Note that the resource allocation is a complex problem
which is need to be studied, and thus the detail schema
of resource should be designed. In the future, we plane

to design a detail resource allocation strategy to improve
the utilization of the resource. Besides this, we also notice
the efficacy of our algorithms are only evaluated by simu-
lation experiment in laboratory environments due to the
limitation of hardware. We will construct the real vehicu-
lar edge computing environment to evaluate efficiency
and improve the performance of the algorithms.

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions on improving this paper.

Authors’ contributions
Yuze Huang conceived the initial ideal and designed the algorithms, and
wrote the paper. Beipeng Feng designed system model and carried out the
experiments. Yuhui Cao analyzed the experimental data. Zhenzhen Guo con-
tributed to data collection and analysis. Miao Zhang and Boren Zheng proof-
read the manuscript. The authors read and approved the final manuscript.

Fig. 10  a Convergence performance of different algorithms
with different computing capacities of edge clouds. b Comparison
between different algorithms

Fig. 11  a Convergence performance of different algorithms
with different number of edge clouds. b Comparison
between different algorithms

Page 17 of 18Huang et al. Journal of Cloud Computing (2023) 12:119 	

Funding
This work is sponsored by Natural Science Foundation of Chongqing, China
(No. CSTB2022NSCQ-MSX0368), and Young Project of Science and Technol-
ogy Research Program of Chongqing Education Commission of China (No.
KJQN202200702, No. KJQN201900708).

Availability of data and materials
The datasets used during the current study are available from the correspond-
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 28 December 2022 Accepted: 16 July 2023

References
	1.	 Contreras-Castillo J, Zeadally S, Ibáñez JAG (2018) Internet of Vehi-

cles: Architecture, Protocols, and Security. IEEE Internet Things J.
5(5):3701–3709

	2.	 Wang X, Ning Z, Hu X, Wang L, Hu B, Cheng J et al (2019) Optimizing
Content Dissemination for Real-Time Traffic Management in Large-Scale
Internet of Vehicle Systems. IEEE Trans Veh Technol. 68(2):1093–1105

	3.	 Singh D, Singh M (2015) Internet of vehicles for smart and safe driving.
International Conference on Connected Vehicles and Expo, ICCVE 2015,
October 19-23, 2015. IEEE, Shenzhen, pp 328–329

	4.	 Hussain R, Kim D, Son J, Lee J, Kerrache CA, Benslimane A et al (2018)
Secure and Privacy-Aware Incentives-Based Witness Service in Social
Internet of Vehicles Clouds. IEEE Internet Things J. 5(4):2441–2448

	5.	 Zhang M, Wang S, Gao Q (2020) A joint optimization scheme of content
caching and resource allocation for internet of vehicles in mobile edge
computing. J Cloud Comput. 9:33

	6.	 Wu L, Zhang R, Li Q, Ma C, Shi X (2022) A mobile edge computing-based
applications execution framework for Internet of Vehicles. Frontiers
Comput Sci. 16(5):165506

	7.	 Zhang J, Letaief KB (2020) Mobile Edge Intelligence and Computing for
the Internet of Vehicles. Proc IEEE. 108(2):246–261

	8.	 Chen Y, Zhao J, Zhou X et al (2023) A Distributed Game Theoretical
Approach for Credibility-guaranteed Multimedia Data Offloading in MEC.
Inf Sci. 644:119306. https://​doi.​org/​10.​1016/j.​ins.​2023.​119306

	9.	 Zhang Y (2022) Mobile Edge Computing, vol 9. Springer, Cham
	10.	 Ning Z, Huang J, Wang X, Rodrigues JJPC, Guo L (2019) Mobile Edge

Computing-Enabled Internet of Vehicles: Toward Energy-Efficient Sched-
uling. IEEE Netw. 33(5):198–205

	11.	 Wang S, Urgaonkar R, He T, Chan K, Zafer M, Leung KK (2017) Dynamic
Service Placement for Mobile Micro-Clouds with Predicted Future Costs.
IEEE Trans Parallel Distrib Syst. 28(4):1002–1016

	12.	 Hao Y, Chen M, Cao D, Zhao W, Petrov I, Antonenko VA et al (2020)
Cognitive-Caching: Cognitive Wireless Mobile Caching by Learning Fine-
Grained Caching-Aware Indicators. IEEE Wirel Commun. 27(1):100–106

	13.	 Chen L, Zhou P, Gao L, Xu J (2018) Adaptive Fog Configuration for the
Industrial Internet of Things. IEEE Trans Ind Inform. 14(10):4656–4664

	14.	 Wang L, Jiao L, He T, Li J, Mühlhäuser M (2018) Service Entity Placement
for Social Virtual Reality Applications in Edge Computing. 2018 IEEE
Conference on Computer Communications, INFOCOM 2018, April 16-19,
2018. IEEE, Honolulu, pp 468–476

	15.	 Aït-Salaht F, Desprez F, Lebre A (2021) An Overview of Service Placement
Problem in Fog and Edge Computing. ACM Comput Surv 53(3):65:1-65:35

	16.	 Poularakis K, Llorca J, Tulino AM, Taylor IJ, Tassiulas L (2019) Joint Service
Placement and Request Routing in Multi-cell Mobile Edge Computing
Networks. 2019 IEEE Conference on Computer Communications, INFO-
COM 2019, April 29 - May 2, 2019. IEEE, Paris, pp 10–18

	17.	 Ma X, Zhou A, Zhang S, Wang S (2020) Cooperative Service Caching and
Workload Scheduling in Mobile Edge Computing. 39th IEEE Conference
on Computer Communications, INFOCOM 2020, July 6-9, 2020. IEEE,
Toronto, pp 2076–2085

	18.	 Chen Y, Zhao J, Hu J et al (2023) Distributed Task Offloading and Resource
Purchasing in NOMA-enabled Mobile Edge Computing: Hierarchical
Game Theoretical Approaches. ACM Trans Embed Comput Syst. early
access. https://​doi.​org/​10.​1145/​35970​23

	19.	 Hao Y, Chen M, Gharavi H, Zhang Y, Hwang K (2021) Deep Reinforcement
Learning for Edge Service Placement in Softwarized Industrial Cyber-
Physical System. IEEE Trans Ind Informatics. 17(8):5552–5561

	20.	 Wang R, Kan Z, Cui Y, Wu D, Zhen Y (2021) Cooperative Caching Strategy
With Content Request Prediction in Internet of Vehicles. IEEE Internet
Things J. 8(11):8964–8975

	21.	 Hui Y, Ma X, Su Z, Cheng N, Yin Z, Luan TH et al (2022) Collaboration as a
Service: Digital-Twin-Enabled Collaborative and Distributed Autonomous
Driving. IEEE Internet Things J. 9(19):18607–18619

	22.	 Chen H, Qin W, Wang L (2022) Task partitioning and offloading in IoT
cloud-edge collaborative computing framework: a survey. J Cloud Com-
put. 11:86

	23.	 Huang J, Gao H, Wan S et al (2023) AoI-aware energy control and compu-
tation offloading for industrial IoT. Futur Gener Comput Syst. 139:29–37

	24.	 Chen Y, Zhao J, Wu Y et al (2022) QoE-aware Decentralized Task Offload-
ing and Resource Allocation for End-Edge-Cloud Systems: A Game-
Theoretical Approach. IEEE Trans Mob Comput. early access.1–17. https://​
doi.​org/​10.​1109/​TMC.​2022.​32231​19

	25.	 Chen Y, Hu J, Zhao J, Min G (2023) QoS-Aware Computation Offloading
in LEO Satellite Edge Computing for IoT: A Game-Theoretical Approach.
Chin J Electron. early access. https://​doi.​org/​10.​23919/​cje.​2022.​00.​412

	26.	 LiWang M, Gao Z, Hosseinalipour S, Dai H (2020) Multi-Task Offloading
over Vehicular Clouds under Graph-based Representation. 2020 IEEE
International Conference on Communications, ICC 2020, June 7-11, 2020.
IEEE, Dublin, pp 1–7

	27.	 Chen Y, Gu W, Xu J et al (2022) Dynamic Task Offloading for Digital Twin-
empowered Mobile Edge Computing via Deep Reinforcement Learning.
Chin Commun. early access. 1–12. https://​doi.​org/​10.​23919/​JCC.​ea.​2022-​
0372.​202302

	28.	 Hegyi P (2022) Service deployment design in latency-critical multi-cloud
environment. Comput Netw. 213:108975

	29.	 Lima D, Miranda H (2022) A geographical-aware state deployment
service for Fog Computing. Comput Netw. 216:109208

	30.	 Huang J, Lv B, Wu Y et al (2022) Dynamic Admission Control and Resource
Allocation for Mobile Edge Computing Enabled Small Cell Network. IEEE
Trans Veh Technol. 71(2):1964–1973

	31.	 Chen Y, Xing H, Ma Z, et al (2022) Cost-Efficient Edge Caching for NOMA-
enabled IoT Services. Chin Commun

	32.	 Huang J, Wan J, Lv B, Ye Q et al (2023) Joint Computation Offloading and
Resource Allocation for Edge-Cloud Collaboration in Internet of Vehicles
via Deep Reinforcement Learning. IEEE Syst J. 17(2):2500–2511. https://​
doi.​org/​10.​1109/​JSYST.​2023.​32492​17

	33.	 Huang Y, Cao Y, Zhang M, Feng B, Guo Z (2022) CSO-DRL: A Collabora-
tive Service Offloading Approach with Deep Reinforcement Learning in
Vehicular Edge Computing. Sci Prog. 2022:1163177. https://​doi.​org/​10.​
1155/​2022/​11631​77

	34.	 Huang Y, Huang J, Cheng B, Yao T, Chen J (2017) Poster: Interacting
Data-Intensive Services Mining and Placement in Mobile Edge Clouds.
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom 2017, October 16 - 20, 2017.
ACM, Snowbird, pp 558–560

	35.	 Huang Y, Huang J, Liu C, Zhang C (2020) PFPMine: A parallel approach for
discovering interacting data entities in data-intensive cloud workflows.
Future Gener Comput Syst. 113:474–487

https://doi.org/10.1016/j.ins.2023.119306
https://doi.org/10.1145/3597023
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.23919/cje.2022.00.412
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1155/2022/1163177
https://doi.org/10.1155/2022/1163177

Page 18 of 18Huang et al. Journal of Cloud Computing (2023) 12:119

	36.	 Box GEP, Jenkins GM (2015) Time Series Analysis: Forecasting and Control,
5th edn. Wiley, Hoboken

	37.	 Chen W, Qiu X, Cai T, Dai H, Zheng Z, Zhang Y (2021) Deep Reinforcement
Learning for Internet of Things: A Comprehensive Survey. IEEE Commun
Surv Tutorials. 23(3):1659–1692

	38.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG et al
(2015) Human-level control through deep reinforcement learning. Nat.
518(7540):529–533

	39.	 Liu H, Li Y, Wang S (2022) Request Scheduling Combined with Load Bal-
ancing in Mobile Edge Computing. IEEE Internet of Things. 9(21):20841–
20852. https://​doi.​org/​10.​1109/​JIOT.​2022.​31766​31

	40.	 Suton RS, Barto AG (2018) Reinforcement Learning, 2nd edn. MIT Press,
Cambridge

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/JIOT.2022.3176631

	Collaborative on-demand dynamic deployment via deep reinforcement learning for IoV service in multi edge clouds
	Abstract
	Introduction
	Related work
	Framework of collaborative service dynamic deployment
	Time-aware service demands prediction
	System model and problem formulation
	System model
	Problem formulation

	Algorithm for collaborative service dynamic deployment
	Experimental evaluation
	Experiment setting
	Results analysis

	Conclusion
	Acknowledgements
	References

