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Abstract 

In vehicular edge computing, the low-delay services are invoked by the vehicles from the edge clouds while the vehi-
cles moving on the roads. Because of the insufficiency of computing capacity and storage resource for edge clouds, 
a single edge cloud cannot handle all the services, and thus the efficient service deployment strategy in multi edge 
clouds should be designed according to the service demands. Noticed that the service demands are dynamic 
in temporal, and the inter-relationship between services is a non-negligible factor for service deployment. In order 
to address the new challenges produced by these factors, a collaborative service on-demand dynamic deployment 
approach with deep reinforcement learning is proposed, which is named CODD-DQN. In our approach, the num-
ber of service request of each edge clouds are forecasted by a time-aware service demands prediction algorithm, 
and then the interacting services are discovered through the analysis of service invoking logs. On this basis, the ser-
vice response time models are constructed to formulated the problem, aiming to minimize service response time 
with data transmission delay between services. Furthermore, a collaborative service dynamic deployment algorithm 
with DQN model is proposed to deploy the interacting services. Finally, the real-world dataset based experiments are 
conducted. The results show our approach can achieve lowest service response time than other algorithms for service 
deployment.
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Introduction
Internet of Vehicles (IoV) creates the bridge between the 
vehicles and roadside units (RSUs) through the wireless 
communication technologies [1], which can be regarded 
as a typical IoT network and has been applied in urban 
transportation system. The IoV system can realize the 
data interaction between vehicles and RSUs, and make 
the decision for auto-driving [2].

In intelligent transportation system, the vehicles 
equipped with intelligent devices which are responsible 
for the collection of the vehicles moving status and traffic 
road condition data for analysis and computation [3]. The 
cloud computing based IoV system can address the prob-
lems produced by the computing capacity limitation of 
vehicles [4]. With the data collected by sensors increased, 
the cloud computing may bring the high service delay 
and the network congestion problems, which is difficult 
to satisfy the low-delay requirement for latency sensitive 
services [5]. Besides the low-latency requirement, we also 
noticed the mobility of vehicles is another important fac-
tor, which may bring the difficult to provide all services 
to vehicles relying on a single cloud, which may result 
in a serious performance degradation. To solve such 
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problems, the edge computing has been produced and 
raised widely attentions of researches, which can not only 
provide low-latency service to users efficiently, but can 
also avoid the single cloud provider lock-in and guaran-
tee the service performances [6, 7].

In edge computing, the intelligent devices are respon-
sible for pre-processing raw data and offloading them to 
the edge clouds, which are closer to users, and mainly 
undertake to process the data  [8]. Thus the edge com-
puting can enhance the computing capacity of the edge 
of network [9, 10]. In reality, because of the insufficiency 
of computation capability and storage resource for edge 
clouds, the execution of the IoT services on edge clouds 
require the designing of service deployment strat-
egy  [11, 12]. Most of the studies concentrate on reduc-
ing the service response time and energy consumption 
of the intelligent devices  [13–15]. With the deepening 
of researches, some studies noticed the heterogeneity of 
service requests among multi edge clouds. To address 
the problem of service requests imbalances among 
multi edge clouds, some studies proposed some efficient 
approaches of service deployment with computation 
workload scheduling strategies [16–18]. In sight of these 
studies, most of these schemes are produced based on 
the assumption of the known service demands. Generally 
speaking, the service demands are unknown in practice, 
which may result in the unreasonable deployment strat-
egy and large service delay during the service deployment 
process. Thus, Hao et al. [19] presented a service deploy-
ment with the computation resource allocation strategy 
under the uncertainty of service demands in industrial 
cyber-physical system.

Along with the deepening of vehicular edge computing, 
we noticed the service deployment meet new challenges 
due to the particularity of the IoV environment. First, 
with the dramatic increase of mobile vehicles, the service 
demands are imbalance and highly dynamic in temporal, 
which may greatly influence the service delay to a large 
extent [20]. Thus the services should be deployed accord-
ing to the service demands and the temporal dynamic of 
service demands should be considered for service deploy-
ment. Second, it is demonstrated that with the devel-
opment of IoV, single atomic service cannot satisfy the 
complex business requirements. So the interacting ser-
vices should complete the business goal with collaboration, 
and it exists large amount transmission data between the 
services [21]. Thus, the inter-relationship between services 
is another non-negligible factor for service deployment.

To deal with the above mentioned challenges, a col-
laborative service on-demand dynamic deployment 
approach is proposed to deploy the interacting services 

on multi edge clouds, which is named CODD-DQN. In 
our approach, a time aware service demands predic-
tion algorithm is introduced to forecast the number of 
service request for each edge cloud, and then the inter-
acting services are mined by a parallel algorithm. On 
this basis, the service response time models are formu-
lated. Furthermore, we propose a collaborative service 
dynamic deployment algorithm via deep reinforcement 
learning to deploy the interacting services accord-
ing to the forecasted the number of service request, 
which considers the minimization problem for service 
response time with data transmission delay between 
services. Specifically, the contributions of this paper 
can be threefold as the following descriptions.

•	 The number of service request for each edge cloud 
are forecasted by a time-aware service demands 
prediction algorithm based on the ARIMA model, 
which can investigate the temporal dynamic char-
acteristics of service demands.

•	 Service response time models are formulated 
according to the inter-relationship between inter-
acting services which have been discovered by a 
parallel mining algorithm.

•	 The collaborative service on-demand dynamic 
deployment algorithm via DQN model is presented 
to deploy the interacting services according to the 
forecasted value of service demands, which can 
reduce the service response time with data trans-
mission delay between services.

The rest of this paper is organized as follows. we intro-
duce the related work of this research in Related work 
section.  Framework of collaborative service dynamic 
deployment section presents the framework of collabo-
rative service dynamic deployment, and then a ARIMA 
based time-aware algorithm is presented to forecast 
the number of service request in Time-aware service 
demands prediction section. The system response time 
models are constructed to formulate the problem of 
service deployment in System model and problem for-
mulation section. Furthermore, Algorithm for collabo-
rative service dynamic deployment section proposes a 
collaborative service on-demand dynamic deployment 
algorithm with DQN to deploy the interacting services 
according to the service demands, aiming to solve the 
minimization problem of the service response time 
with data transmission delay between services. Finally, 
we evaluate the efficiency of our algorithms in Experi-
mental evaluation section, and then Conclusion section 
concludes this paper.
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Related work
In IoT environments, the data produced by the various 
intelligent devices are experiencing rise, which may lead to 
high latency and network congestion in IoT system. Thus 
the cloud computing cannot provide the low latency ser-
vices for users [9]. To address such problems, edge com-
puting is introduced and applied in wide areas. For edge 
computing, intelligent devices offload the preprocessed 
raw data to the edge clouds which is near to the users. 
While the edge clouds responsible to execute the services, 
and the cloud servers are only undertake to execute data-
intensive services and train the deep neural network [22].

Currently, most studies have concentrated on task 
offloading, which mainly concentrate on how to design 
efficient offloading strategy to offload the tasks on edge 
clouds or remote cloud server  [23]. In sight of these 
works, existing task offloading strategy can be divided 
into 0/1 offloading and partial offloading [24, 25]. Con-
sidering the insufficient computing capacity of intelli-
gent devices and the limitation computation resource 
of edge clouds, the partial offloading is the reason-
able task offloading manner, which can be formulated 
as a minimization problem of service request delay or 
energy consumption of devices [26, 27].

According the prior knowledge of the global infor-
mation, the computing capacity or storage resource of 
a single edge cloud is insufficient, and all services can-
not be executed on single edge cloud. Thus, an effi-
cient services deployment strategy should be designed 
for deploying services on edge clouds or remote cloud 
server. For service deployment, some existing studies 
proposed efficient service deployment algorithms to 
reduce the service response time or allocate computa-
tion resource for edge computing [28–30]. For example, 
a fog configuration is presented to solve the minimiza-
tion problem of energy consumption and request delay 
for industrial IoT [13, 31]. Wang et al.  [14] proposed a 
edge server placement algorithm, which can minimize 
multi optimization objectives and balance the work-
loads between edge clouds. Noticed that the imbalance 
of service demands is another non-negligible factor on 
multi edge clouds, and then the optimization of service 
deployment joint with resource scheduling are inves-
tigated by some researchers. Ma et al.  [17] introduced 
a cooperative schema combined service placement 
and workload scheduling for minimizing the service 
response time. Hao et al. [19] proposed an efficient ser-
vice deployment strategy joint with resource allocation 
through considering the uncertain service demands. In 
summary, the service demands is another factor which 
must be take into consideration for service deployment.

In sight of the existing studies, internet of vehicles has 
been widely used in modern urban traffic system, and 

thus the edge computing based IoV has been widely con-
centrated by some investigations [32]. For vehicular edge 
computing, the vehicles invoke low-delay services from 
edge clouds which are closer to the vehicles. According to 
our prior knowledge, the service demands are uncertain 
and present temporal dynamic characteristics among the 
multi edge clouds. To design a reasonable service deploy-
ment strategy, the service demands uncertainty and tem-
poral dynamic of service request must be considered 
for service deployment [20]. It is demonstrated the sim-
ple atomic service cannot satisfy the complex business 
requirements in reality, therefore the interacting services 
should collaborative work with each other to complete 
the business goal. It exists large amount transmission 
data between the interacting services, which is another 
non-negligible factor for service provisioning [21]. In our 
previous work [33], we studied the collaboration between 
interacting services for service offloading to minimize 
the service request delay and data transmission delay 
between services. Comparing with existing studies, we 
study the temporal dynamic characteristics of service 
demands and reveal the inter-relationship between ser-
vices, aiming to solve the minimization problem of ser-
vice response time with data transmission delay between 
services.

Framework of collaborative service dynamic 
deployment
The architecture of internet of vehicles is presented 
in Fig.  1. Typically, the architecture can be composed 
of three layers, which are remote cloud layer, edge net-
work layer and vehicle user layer. Generally speaking, 
the vehicle user layer contains numerous vehicles, which 
mainly undertake the capacity of sensing the road envi-
ronment and collect the data from vehicles. Due to the 
limited computation of vehicles, the vehicles only pre-
process the raw data and transmit them to the RSUs, 
which often act as edge clouds in IoV. Comparing with 
vehicles devices, the edge clouds have rich communica-
tion, computation and storage resources. Thus the RSUs 
are responsible for the execution of computation-inten-
sive services. By deploying the service on edge clouds, the 
edge clouds are beneficial for processing the strict latency 
requirements and deliver the low-latency service to vehi-
cle users. In IoV, the cloud server with higher computing 
capacity and more storage capacity undertake to provide 
the global management and centralized decisions con-
trol in the system. We investigate the temporal dynamic 
of service demands and reveal the inter-relationship 
between services in this paper. Thus, the interacting ser-
vices are deployed according the forecasted number of 
service request on multi edge clouds. The cloud serv-
ers only responsible for training the deep reinforcement 
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learning based service deployment model, and then 
service deployment strategy will be send to the edge to 
perform for minimizing the service response time in the 
whole system.

As Fig. 2 shows, the service invoking logs are collected 
as the input of our approach, which contains the service 
request sequence and the number of service request 
on each edge cloud. First, to investigate the temporal 
dynamic characteristic of the service demands, a time-
aware service demands prediction algorithm by ARIMA 
model is introduced to forecast the number of service 
request. Furthermore, we employ a parallel algorithm 
to discover the interacting services [34, 35]. Finally, the 
interacting services are deployed by the DQN-based 
collaborative service dynamic deployment algorithm 
according the forecasted number of service request, 
aiming to optimize the service response time with data 
transmission delay between services. The details can be 
found as follows. 

	Step1.	Service invoking logs are exacted as the input of 
our approach, and then the ARIMA model based 
algorithm is put forward for forecasting the num-
ber of service request for each edge cloud, which 
can investigate the temporal dynamic characteristic 
of service demands.

	Step2.	Service response time models are constructed 
according to the inter-relationship between ser-
vices, which have been discovered by our proposed 
algorithm [34, 35].

	Step3.	A collaborative service on-demand dynamic 
deployment algorithm based on DQN model is 
presented to deploy the interacting services, aiming 
to minimize the service response time with data 
transmission delay between services. This algo-
rithm can obtain the optimal service deployment 
strategy through receiving environment status and 
performing the decision actions through iterative 
computing.

Fig. 1  Architecture of vehicular edge computing
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Time‑aware service demands prediction
In vehicular edge computing, due to the mobility of the 
vehicles, the service demands are imbalance and dynamic 
in temporal. According to the temporal characteristics of 
service demands, we put forward a time-aware algorithm 
to forecast the number of service request based on the 
ARIMA model. Next, we will present the time-aware ser-
vice demands prediction algorithm to forecast the num-
ber of service request of each edge clouds.

In our system, the services s = {1, 2, ..., s} are deployed 
on the edge clouds E = {1, 2, ..., i} . In order to investi-
gate the temporal dynamic of the service demands, the 
number of service request for service k deployed on edge 
cloud i denoted as {c(i, k , t)|t = 0, 1, 2, ..., n} . The number 
of service request can be forecasted by our algorithm. 
The ARIMA integrates autoregressive (AR) and mov-
ing average (MA) model to formulated the time series 
data  [36]. In this model, if the original data is non-sta-
tionary, the data should be transferred into a stationary 

data through d steps differences. Thus the time series 
denoted by ARMA(p, q) can be modeled as follows.

where φ0 is a constant item. θj and φi denote the param-
eter of MA and AR model, respectively. at denotes the 
white noisy. p, q are non-negative integer, which denote 
the order of AR model, MA model, respectively.

To our best knowledge, the most important step for 
ARIMA-based time series forecasting is constructing 
ARIMA model and determining the order of model to fore-
cast the future data. In our algorithm, the pre-condition 
of constructing the ARIMA model is checking the series 
data is white noisy or not. For this step, the Ljung-Box 
test is used for white noisy checking. If the series data sat-
isfy the pre-condition, the ARIMA model can be used for 
time series forecasting, else, we employ the simple moving 

(1)ct = φ0 +

p

i=1

φict−i +

q

j=1

θjat−j + at ,

Fig. 2  Framework of CODD-DQN
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average to forecast the number of service request in this 
algorithm, which can be formulated as

where ĉ(i, k , t + n) represents the n− th forecasted value 
of the number of service request, and c(i, k, t) is the t − th 
observed value.

According to the discusses of time series forecasting, the 
process of ARIMA-based service demands prediction algo-
rithm follows the following six steps.

Step 1: Stationarity Checking. With the white noisy 
checking completed, the stationarity of the number of ser-
vice request series should be determined by the unit root 
test. If the time series data is not stationarity, the original 
data should be calculated through d steps differences, and 
transfer them into the stationary series.

Step 2: Model Identification. Model identification is the 
most important step in time series forecasting. During this 
process, the order of p and q should be determined for con-
structing the ARMA model. In this step, the ACF (auto-
correlation function) and PACF (patrial autocorrelation 
function) are computed to assist the order selection, which 
can be obtained by the following expressions:

where ρk represents the lag k ACF, and the γk represents 
the lag k auto-covariance function. The lag k PACF is 
denoted by φkk.

Since the ACF and PACF are computed by the former 
equations, the order of the ARIMA model is selected 
accordingly. If PACF is truncated at p-order and ACF 
decays, the AR(p) model can be selected to constructed the 
model. If ACF is truncated at q-order and PACF decays, the 
MA(q) model can be used to fit the series data. If ACF and 
PACF decay, the ARMA(p, q) can be adopted as the model 
to fit the series data.

Step 3: Model Estimation. After the model order is 
selected, the parameters of the model should be estimated 
for the ARMA model. In this step, the maximum likelihood 
estimation is adopted to determined the parameters by the 
following expression.

(2)

ĉ(i, k , t + n) =[c(i, k , 1)+ ...+ c(i, k , t)

+ ĉ(i, k , t + 1)+ ĉ(i, k , t + 2)

+ ...+ ĉ(i, k , t + n− 1)]/t + n− 1,

(3)ρk =
γk

σ 2
,

(4)φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1−
∑k−1

j=1 φk−1,jρj
,

(5)l ∝ (σ 2)−
n
2 exp{−

1

2σ 2

n
∑

t=1

(at)
2},

where l represents the likelihood function, and 
at ∼ N (o, σ 2) denotes the white noisy.

Step 4: Model Checking. In this step, the significance 
of models and parameters should be checked. If the sig-
nificance test is satisfied, the model can be adopted to 
forecast the number of service request.

Step 5: Model Selection. Since the model checking is 
completed, the optimal model should be selected from 
all candidate models which have passed the significance 
test. The model selection according to the AIC (Akai-
ke’s Information Criterion) value in this step, the model 
which has the minimum AIC value should be selected 
to forecast the future data.

Step 6: Number of service request forecasting. Since the 
optimal model is selected, the number of service request 
are forecasted by the constructed model. In this algo-
rithm, the (n+ 1)− th value is calculated according to 
the n− th forecasted value. Thus, As the steps increased, 
the forecasted error increases accordingly. The details of 
the algorithm can be found in Algorithm 1. In our sys-
tem, the prediction algorithm is deployed on each edge 
cloud, and the number of service request for each edge 
cloud can be forecasted by this algorithm.

Algorithm 1 Algorithm for Time-aware Service Demands Prediction

System model and problem formulation
In this section, the service response time models are pre-
sented to formulate the service deployment problem of 
our approach in the following contents.
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System model
In reality, a complex service can be composed by a serial 
of sub-services, each of which processes certain data 
and accomplishes one piece of sub-task. In that cases, 
the precursor service should be executed and transmit 
the processed data to the subsequent service, and then 
the subsequent service should process the transmitted 
data to accomplish a certain task. Thus, it may exist the 
data communications between interacting services. In 
such cases, the inter-relationship between the services 
should be considered for service provisioning in edge 
computing.

In this paper, we construct the system model for ser-
vice deployment during the time slots T = {1, 2, ..., t} . 
During the process, the services are deployed on edge 
clouds and the computation resource are allocation 
in each duration. In our system, the finite services are 
deployed on multi edge clouds upon the limited stor-
age and computation resource, and the user requests 
the service from the proximity edge clouds. We assume 
there are a series services denoted as K = {1, 2, ..., k} , 
which are deployed on the multi edge clouds. The edge 
clouds can be denoted by S = {1, 2, ..., s} . We let M(i) and 
D(i) denote the computing and storage capacity of edge 
cloud, respectively. In contrast with previous works  [19, 
20], we study the temporal dynamic of service demands 
and consider the interrelationship between interacting 
services for service deployment, and thus the interact-
ing services are deployed collaborative on the multi edge 
clouds. The remote cloud is only responsible to train the 
deep reinforcement learning model for searching the ser-
vice deployment strategy. In the following contents, we 
present the system model with service response time and 
formulate the service deployment problem. The impor-
tant notations of this paper are shown in Table 1.

As mentioned above, we construct the system model 
for services deployment with computation resource allo-
cation in multi edge clouds. First, we define the service 
deployment function as b(k , i, t) ∈ {0, 1} , whose value is 

a binary variable. Thus, when the service is deployed on 
edge cloud, we let b(k , i, t) = 1 , otherwise b(k , i, t) = 0 . 
Due to the insufficiency of the storage capacity of edge 
cloud, the whole data size of the services cannot exceed 
the storage capacity of edge cloud.

where d(k) represents the data size of the service k.
To improve the utilization of computation resource, 

a primer resource allocation scheme for service 
deployment is designed in multi edge clouds. We use 
l(k , i, t) ∈ [0, 1] denote the proportion of computation 
resource allocation. Accordingly, if the service is not 
deployed on the edge cloud in this time, the l(k , i, t) = 0 . 
Thus the computation resource allocation function is 
defined by L(t) = {l(k , i, t)|i ∈ S, k ∈ K } . Since the com-
puting capacity of edge cloud is insufficient, the allocated 
proportion of computation resource to execute service 
cannot exceed 1, which can be expressed as

Once the service is deployed on the edge cloud, the 
computation resource should be allocated according to 
the following scheme for executing this service. Thus, 
when the services are deployed on the edge cloud, the 
computation resource should be allocated as a certain 
proportion value, otherwise the allocated computa-
tion resource is 0. The relationship between l(k, i, t) and 
b(k, i, t) can be formulated as follows.

where g denotes the proportion value of computation 
resource allocated for executing the service.

To analyze the service response time in this system, 
we let c(k,  i,  t) denote the number of service request, 
which can be forecasted by our proposed service 
demands prediction algorithm. In this paper, once the 
service cannot be deployed on such edge cloud, the ser-
vice should be executed on another edge cloud through 
service scheduling. We notice that the data back haul 
delay for executing the service is much smaller than 
service request delay and data transmission delay, thus 
the delay of data back haul can be ignored in this paper.

In this paper, the edge clouds receive the service 
request and the data should be transmitted from vehi-
cles to edge clouds, thus the data transmission delay 
between vehicles and edge clouds can be calculated by 
the following expression.

(6)
K
∑

k=1

b(k , i, t)d(k) ≤ D(k),∀t,

(7)
K
∑

k=1

l(k , i, t) ≤ 1, ∀t.

(8)l(k , i, t) =

{

0 b(k , i, t) = 0

g b(k , i, t) = 1
, g ∈ (0, 1], ∀t,

Table 1  List of important notations

Notations Description

D(i) Storage capacity of edge cloud i

M(i) Computing capacity of edge cloud i

d(k) Data size of service k

m(k) Computing capacity for executing the service k

Vv2e Network transmission rate between vehicles and edge 
clouds

Ve2e Network transmission rate among edge clouds

c(k, i, t) Number of service request for service

d(kk∗) Data transmission size between interacting services
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where C(k,  t) denotes the total value of the number of 
service request for service k on all edge clouds, which can 
be computed through C(k , t) =

∑S
i=1 c(k , i, t) . The Vv2e 

denotes the network transmission rate between vehicles 
and edge clouds.

As mentioned above, the services should be executed 
through service scheduling in some cases. Therefore, 
the data transmission delay between edge clouds can be 
computed as

where C(k , t)− c(k , i, t) is the number of service request 
handled on other edge clouds, and Ve2e denotes the net-
work transmission rate between edge clouds.

When the service is executed on the edge cloud, the 
computation delay can be calculated by the following 
expression.

where m(k) is the computation resource requirement of 
service k.

Comparing with other studies, we investigate the data 
transmission delay between services. Assuming it exists 
some interacting services, which can be divided to the pre-
service k and successor service k∗ . In that case, the num-
ber of service request for service k handled on edge cloud i 
can be denoted as ccomp(k , i, t) , and the total value of the 
number of service request for service k handled at time 
slot t can be computed by Ccomp =

∑S
i=1 ccomp(k , i, t) . 

Thus, the data transmission delay between services can 
be calculated by

where d(kk∗) denotes the data transmission size between 
interacting services. In that case, the computation delay 
for executing the successor service k∗ can be calculated 
by the following expression.

where m(k∗) is the computation resource requirement of 
successor service k∗.

(9)Wtran
v2e =

C(k , t)d(k)

Vv2e
,

(10)Wtran
e2e = b(k , i, t)

(C(k , t)− c(k , i, t))d(k)

Ve2e
,

(11)Wcomp = b(k , i, t)
C(k , t)m(k)

l(k , i, t)M(i)
,

(12)
Wtran

s2s (kk∗, i, t) =[b(k , i, t)(Ccomp(k , t)

− ccomp(k , i, t))d(kk
∗)]/Ve2e,

(13)Wcomp
suc (k∗, i, t) = b(k∗, i, t)

Ccomp(k , t)m(k∗)

l(k , i, t)M(i)
,

Problem formulation
With the system models are constructed, the response time 
for handling the interacting services can be obtained as 
follows.

In addition, the service response time for handling the 
single atomic services can be obtained by the following 
expression.

In summary, the total delay for handling all services can 
be obtained as

In this paper, our purpose is minimizing the service 
response time for service deployment based on the service 
demands prediction. So we formulate the service deploy-
ment problem as

As mentioned above, the service deployment problem 
is formulated as a mixed integer nonlinear program-
ming, which is an NP-hard problem. We noticed that 
deep reinforcement learning algorithms have its natural 

(14)

Wsum(kk∗, t) =

S
∑

i=1

[Wtran
v2e (k , i, t)

+Wtran
e2e (k , i, t)

+Wcomp(k , i, t)

+Wtran
s2s (kk∗, i, t)

+Wcomp
suc (k∗, i, t)].

(15)

Wsum
single(k , t) =

S
∑

i=1

[

Wtran
v2e (k , i, t)+Wtran

e2e (k , i, t)

+Wcomp(k , i, t)
]

.

(16)Wsum(k , t) = Wsum(kk∗, t)+Wsum
single(k , t).

(17)min
B,L

=
1

T

T
∑

t=1

K
∑

k=1

Wsum(k , t),

(18a)s.t. C1 :

K
∑

k=1

b(k , i, t)d(k) ≤ D(i),∀t,

(18b)C2 :

K
∑

k=1

l(k , i, t) ≤ 1, ∀t,

(18c)C3 : b(k , i, t) ∈ {0, 1}, k ∈ K , i ∈ S,

(18d)C4 : l(k , i, t) ∈ [0, 1], k ∈ K , i ∈ S.
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advantages on solving this kind of problem  [37], so a 
DQN-based algorithm is designed to address this prob-
lem, which will be described in the next content.

Algorithm for collaborative service dynamic 
deployment
In this section, the interacting services is deployed by a 
collaborative service dynamic deployment algorithm 
with DQN model. The detailed information of this algo-
rithm can be found as follows.

DQN algorithm is a typical deep reinforcement learn-
ing algorithm which is produced from the Q-learning 
algorithm  [38]. As Fig.  3 shows, the DQN model con-
tains two Q-networks with the same structure and the 
same initial parameters, which are current value net-
work and target value network. In DQN algorithm, 
two neural networks are updated with the different 
frequency through a iterative computation process. 
During the training process, the model obtain the ini-
tial state and the initial action which are selected based 
on the greedy policy at first, and then the next state 
is obtained by calculating the rewards. Secondly, the 
(s∗t , at ,Rt , s

∗
t+1

) is stored in the replay memory. With the 
training steps increased, the parameters of the Q-net-
work are updated and the action value can be calcu-
lated to be performed. The details of DQN model can 
be found in [38].

As the description of DQN model in the above content, 
we construct state space and action space, and then the 
reward function is formulated for MDP process. Next we 
will describe these three elements as below.

State space: In our vehicular edge computing system, 
the DQN model on cloud servers receives the state of 
edge clouds at each time slot. Thus, the state space can be 
expressed as

Action space: Assuming there are K services 
deployed on S edge clouds. As mentioned in System 
model section, we defined the service deployment 
function b(k , i, t) ∈ {0, 1} . Therefore, the action space 
of services deployment is 2S∗K  . Besides the services 
deployment, we also considered the computation 
resource allocation during the services deployment 
progress. In this vehicular edge computing system, we 
defined the minimum allocation unit is �l(k , i, t) , thus 
the schema of computation resource allocation follows 
the below expression.

Therefore, the action space of edge cloud i at time slot t 
can be formulated as

(19)s∗(i, t) = {c(k , i, t),M(i),D(i), l(k , i, t)}.

(20)l(k , i, t) = {�l(k , i, t), ...m�l(k , i, t), ...1}.

(21)Ai(t) = {b(k , i, t),�l(k , i, t), k ∈ K }.

Fig. 3  DQN model
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Reward: The purpose of this paper is searching the 
optimal deployment strategy and solving the minimiza-
tion problem of service response time with data trans-
mission delay between interacting services. We let 
P =

∑T
t=1

∑K
k=1W

sum(k , t) . Thus, the reward function 
can be obtained as

In this model, the action At is performed, and then 
the state of next time slot s∗t+1

 is obtained. We use �w 
denote the difference of response time between two 
states, which can be calculated as

where a is a constant item.
As the Equation. 22 shows, our purpose can be trans-

ferred into the optimization for maximizing the reward 
function. So the action value function Q(s∗, a) can be cal-
culated as

where γ denotes the discount factor, and γ ∈ [0, 1] . Thus, 
the action of searching the optimal service deployment a∗ 
can be expressed as the optimization for maximizing the 
action value.

During this progress, the loss function L(θt) can be 
obtained by

The gradient descent method is employed to update 
the parameter θ , which can be expressed as

where η denotes the learning rate, and the parameter θ 
can be updated through C steps.

With the MDP process described, the interact-
ing services are deployed by CODD-DQN algorithm, 
which is a iterative process. The details can be found in 
Algorithm 2.

(22)R(t) =
�w

T
.

(23)�w =
1

a
[P(s∗t+1 | s

∗
t ,At)− P(s∗t )],

(24)Q(s∗, a) = E(

T
∑

t=1

γ tRt | s
∗
t = s∗,At = a),

(25)a∗ = arg max
a∈A

Q(s∗, a).

(26)
L(θt) =

1

|J |

|J |
∑

j=1

[Rj + γ max
a
′

Q(s∗i+1, a
′

; θ̄ )

− Q(s∗i , ai; θt)]
2
.

(27)θt+1 = θt − η∇L(θt),

Algorithm 2 Algorithm for Collaborative Dynamic Service Deployment 
with DQN

Experimental evaluation
Next, we evaluate the efficacy of proposed algorithms, 
including service demands algorithm and CODD-DQN 
algorithm. First, the accuracy of service demands pre-
diction algorithm is evaluated by real-world dataset, and 
then the simulation experiments are conducted to evalu-
ate the efficiency of CODD-DQN by comparing with 
other baseline algorithms.

Experiment setting
In this paper, a real-life ISP dataset in China is employed 
to evaluated the accuracy of service demands prediction, 
which records more than 480,000 records of mobile users 
invoking about 16,000 base stations in three cities [39]. We 
random select continuous 80 hours records from the data-
set to record the service demands from these base stations. 
We conduct the experiments with four metrics to evalu-
ate the accuracy of service demands prediction algorithm, 
which are root mean square error (RMSE), mean square 
error (MSE), mean absolute percentage error (MAPE) and 
mean absolute error (MAE). We vary the proportion of 
observation data from 50% to 90% to forecast the remain 
data values and compared with other common predic-
tion algorithms, which are simple exponential smoothing 
(SES), move average (MA) and autoregressive (AR).
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Besides the accuracy of our service demands prediction 
approach, we also conduct the CODD-DQN algorithm 
with simulation experiments and compare the average 
response time with following algorithms.

•	 Random: Deploying the services randomly under the 
constraint of the data size of services and the storage 
capacity of edge clouds.

•	 Greedy: Deploying the services and allocating the 
computation resource according to the computa-
tion requirement for executing the service. Thus 
the service with high computation requirement are 
deployed on the edge cloud with priority.

•	 Frequency: Deploying the services and allocating the 
computing resource according to the frequency of 
the service request.

•	 Q-Learning: Q-Leaning based service deploying 
algorithm [40].

•	 DQN w.o. collaboration: DQN-based service deploy-
ing algorithm without considering the interrelation-
ship between interacting services.

In this paper, we set the network transmission rate 
between the edge clouds Ve2e and the network transmis-
sion rate between the vehicles and edge clouds Vv2e are 
100Mbps. The data size of the services follow the random 
value from 2GB to 8GB, and the value of computation 
requirements for executing services are randomly from 
1gigacycles to 5gigacycles. To indicate the heterogeneity 
of the edge clouds, the storage capacity of edge clouds 
are set as the random value from 10GB to 30GB, and the 
computing capacity of edge clouds follows the random 
value from 5GHz to 10GHz. In DQN algorithm, we set 
the size of experience pool as 3000 and construct neu-
ral network with a single hidden layer, whose number of 
nodes is 128. In our algorithm, the ε-greedy strategy is 
used, where the initial value of ε is 0.9, and decreases with 
0.0005 decrement. After several test, we set batch-size 

is 64. All of the simulation parameters can be found in 
Table 2.

Results analysis
First, we evaluate the accuracy of the service demands 
prediction using the real-life dataset, and vary the pro-
portion of observation data from 50% to 90% to forecast 
the future  number of service request. In this paper, our 
algorithm are compared with other baseline algorithms. 
From Fig.  4, we find the accuracy of our algorithm is 
higher than other baseline algorithms. As Fig. 4a shows, 
with the training set increases from 50% to 90% , the MSE 
decreases from 4489 to 100. When the training set is 90% , 
the MSE value remain 100, which indicate the higher 
accuracy can be obtained by our service demand predic-
tion algorithm, therefore we have rich time to caching the 
service beforehand. Besides the MSE, we also conduct 
the experiments by other metrics. In Fig.  4b, we know 
the RMSE value decreases from 67 to 12 rapidly, when 
the proportion increases from 50% to 70% . The RMSE 
remains 10 when the proportion is 90% . As Fig. 4c and d 
show that with the proportion increases, the accuracy of 
prediction increases following. From Fig. 4c we can find, 
with the proportion increases from 50% to 70% , the MAE 
of our algorithm decreases rapidly, and achieves at 11.1 
when the proportion is 70% . As the proportion increases 
from 70% to 90% , the MAE decreases slowly, and achieves 
at 8.83 when the proportion is 90% . As Fig. 4d shows, as 
the proportion increases from 50% to 70% , the MAPE 
of our algorithm decreases from 19.8% to 3.64% , and 
achieves at 3.27% when the proportion is 90%.

With the accuracy of the service demands predic-
tion evaluated, we also evaluate the efficiency of service 
dynamic deployment algorithm with simulation experi-
ments. In DQN model, we set the initial value of the 
greedy strategy parameter ε is 0.9 and decrement value 
is 0.0005. First, the hyper-parameters in our algorithm 
are determined through the training progress. As Fig. 5 

Table 2  Simulation parameters

Parameters Value

Data size of service, d(k) [2, 8]GB

Computing capacity for executing service, m(k) [1, 5]gigacyles

Storage capacity of edge cloud, D(i) [10, 30]GB

Computing capacity of edge cloud, M(i) [5, 10]GHz

Network transmission rate between multi edge clouds, ve2e 100Mbps

Network transmission rate between vehicles and edge clouds, vv2e 100Mbps

Initial value of greedy strategy parameter, ε 0.9

Decrement value of ε 0.0005

Number of nodes in hidden layer 128

Size of experience pool 3000

Batch size 64
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shows, the algorithm can obtain the best performance 
when the discount factor γ is 0.9, The average response 
time can reach about 0.65s when the episode decreases at 
400. So the optimal discount factor is set as 0.9.

Furthermore, we determine the learning rate by several 
experiments. Figure 6 shows the convergence performance 
comparison of the algorithm with different learning rates 
η . From this Figure, we notice the CODD-DQN performs 
best performance when η = 0.0001 , while the algorithm is 
not convergence when η = 0.001 and η = 0.0005 . There-
fore, we set the value of learning rate as 0.0001.

Since the hyper-parameters are determined, we evalu-
ate the performance of our algorithm to compare with 
other algorithms. Figure  7 shows the average response 
time of different algorithms. We can see that our 

CODD-DQN algorithm can achieve the lowest average 
response time than the four algorithms. As Fig. 7 shows, 
with the number of episode increases, the Q-learning 
algorithm is not convergence, while our CODD-DQN 
algorithm can obtain the average response time about 
0.65s when the episode is 400. Compared with DQN 
w.o. collaboration algorithm, our algorithm achieves the 
lower average response time than DON w.o. collabora-
tion algorithm, and converges at 400 episodes, while the 
DQN w.o. collaboration algorithm converges at about 
600 episodes. Because the DQN w.o. collaboration algo-
rithm deploys the services without considering the 
relationships between interacting services, which may 
increase the data communication delay between interact-
ing services.

Fig. 4  Comparison between different service demands prediction algorithms
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We also conduct the experiments under different 
system simulation parameters. Since the Q-learning 
algorithm cannot converge, we only compare the aver-
age response time of our algorithm with other baseline 
algorithms. First, we evaluate the service response time 
with different values of storage capacity. Figure 8 show 
the convergence performance and service response 

time comparison under different storage capacity. The 
performance of CODD-DQN algorithm and DQN w.o. 
collaboration algorithm can be found in Fig.  8a. We 
notice that the smaller the storage capacity of edge 
clouds, the higher response time of the algorithm. 
The CODD-DQN algorithm can achieve the lower 
response time than DQN w.o. collaboration algorithm, 

Fig. 5  Convergence performance of CODD-DQN algorithm with different discount factors

Fig. 6  Convergence performance of CODD-DQN algorithm with different learning rates
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and converges about at 0.7s when the storage capac-
ity is 20GB. Figure  8b shows the service response 
time comparison between CODD-DQN algorithm 
and other baseline algorithms under different stor-
age capacity of edge clouds. From the Figure, we can 
see the CODD-DQN algorithm can obtain the lowest 
response time than other algorithms. With the storage 
capacity increased from 10GB to 30GB, the response 
time decreases following, and the response time of our 
CODD-DQN algorithm remains at about 0.67s when 
the storage capacity increases at 30GB.

Figure  9 show the convergence performance and ser-
vice response time comparison of the algorithms under 
different values of the number of services. From the 
Fig. 9a we know the service response time of two DRL-
based algorithms with the number of services is 10 are 
higher than that when the number of services is 8. Thus, 
the more services, the higher response time in our sys-
tem. We also found that the CODD-DQN algorithm 
can obtain the lower response time than DQN w.o. col-
laboration algorithm, and Converges at about 0.59s 
when the number of services is 8. Figure  9b shows the 
service response time comparison between CODD-
DQN algorithm and other baseline algorithms under 
different values of the number of services. With the 
number of services increased from 4 to 12, the response 
time of CODD-DQN algorithm increases from 0.31s to 
1.28s, and achieves the lowest response time than other 
algorithms.

Besides these experiments, we also conduct the experi-
ments under other different system parameters. we vary 
the computing capacities of the edge clouds and conduct 
the performance of different algorithms. Figure 10 show 
the group results of convergence performance and ser-
vice response time comparison of the algorithms under 
different computing capacities of edge clouds. From the 
Fig. 10a we know the service response time of two DRL-
based algorithms with the computing capacity of edge 
clouds is 6 GHZ are higher than that when the comput-
ing capacity of edge clouds is 8  GHZ. Thus, the higher 
computing capacity of edge clouds , the lower response 
time in our system. We also found that the CODD-DQN 
algorithm can obtain the lower response time than DQN 
w.o. collaboration algorithm. Figure  10b shows the ser-
vice response time comparison between CODD-DQN 
algorithm and other baseline algorithms under differ-
ent computing capacities. With the computing capaci-
ties increased from 6  GHZ to 10  GHZ, the response 
time of CODD-DQN algorithm decreases from 0.85s to 
0.74s, and achieves the lowest response time than other 
algorithms.

In order to indicate the performance of algorithms 
under different number of edge clouds, we also vary the 
number of edge clouds and compare the performances 
of different algorithms. Figure 11 show the group results 
of convergence performance and service response time 
comparison of the algorithms under different number 
of edge clouds. From the Fig.  11a we know the service 

Fig. 7  Convergence performance comparison of different algorithms
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response time of two DRL-based algorithms with the 
number of edge clouds is 3 are higher than that when the 
number of edge clouds is 5. Thus, the more edge clouds, 
the lower response time in our system. We also found 
that the CODD-DQN algorithm can obtain the lower 
response time than DQN w.o. collaboration algorithm. 
Figure  11b shows the service response time compari-
son between CODD-DQN algorithm and other base-
line algorithms under different values of the number of 
edge clouds. With the number of edge clouds increased 
from 3 to 7, the response time of CODD-DQN algorithm 
decreases from 0.81s to 0.68s, and achieves the lowest 
response time than other algorithms.

Conclusion
In this paper, A collaborative service on-demand dynamic 
deployment approach via DQN model is proposed in 
vehicular edge computing, which is named CODD-DQN. 
To investigate the temporal dynamic characteristics of 
service request, a time-aware service demands prediction 
algorithm by ARIMA model is produced to forecast the 
number of service request for each edge cloud, and then 
the interacting services are discovered through the analy-
sis of the service invoking logs. Furthermore, the service 
response time models are constructed to formulate the 
service deployment as an optimization problem, and the 
collaborative service deployment algorithm is presented 

Fig. 8  a Convergence performance of different algorithms 
with different storage capacity of edge clouds. b Comparison 
between different algorithms

Fig. 9  a Convergence performance of different algorithms 
with different number of services. b Comparison between different 
algorithms
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by DQN model to deploy the interacting services, which 
can solve the minimization problem of service response 
time with data transmission delay. Finally, the real-life 
dataset based experiments are conducted to evaluate 
the efficiency of the algorithms. The results show pro-
posed CODD-DQN algorithm can achieve lowest service 
response time than other algorithms on deploying the 
interacting services.

Noticed that our purpose is to design approach for ser-
vice dynamic deployment by forecasting the number of 
service request with efficiency. To improve the utiliza-
tion of the computation resource, we also design a primer 
resource allocation function during service deployment. 
Note that the resource allocation is a complex problem 
which is need to be studied, and thus the detail schema 
of resource should be designed. In the future, we plane 

to design a detail resource allocation strategy to improve 
the utilization of the resource. Besides this, we also notice 
the efficacy of our algorithms are only evaluated by simu-
lation experiment in laboratory environments due to the 
limitation of hardware. We will construct the real vehicu-
lar edge computing environment to evaluate efficiency 
and improve the performance of the algorithms.
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