
Li et al. Journal of Cloud Computing (2023) 12:114
https://doi.org/10.1186/s13677-023-00490-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

UDL: a cloud task scheduling framework
based on multiple deep neural networks
Qirui Li1, Zhiping Peng1*, Delong Cui1, Jianpeng Lin2 and Hao Zhang3

Abstract

Cloud task scheduling and resource allocation (TSRA) constitute a core issue in cloud computing. Batch submission
is a common user task deployment mode in cloud computing systems. In this mode, it has been a challenge for cloud
systems to balance the quality of user service and the revenue of cloud service provider (CSP). To this end, with multi-
objective optimization (MOO) of minimizing task latency and energy consumption, we propose a cloud TSRA frame-
work based on deep learning (DL). The system solves the TSRA problems of multiple task queues and virtual machine
(VM) clusters by uniting multiple deep neural networks (DNNs) as task scheduler of cloud system. The DNNs are
divided into exploration part and exploitation part. At each scheduling time step, the model saves the best outputs
of all scheduling policies from each DNN to the experienced sample memory pool (SMP), and periodically selects
random training samples from SMP to train each DNN of exploitation part. We designed a united deep learning (UDL)
algorithm based on this framework. Experimental results show that the UDL algorithm can effectively solve the MOO
problem of TSRA for cloud tasks, and performs better than benchmark algorithms such as heterogeneous distributed
deep learning (HDDL) in terms of task scheduling performance.

Keywords Deep neural network, Memory replay, United, Task scheduling, Sample memory pool

Introduction
The information and communications technology (ICT)
has taken a huge leap forward in recent years. Cloud
computing is one of the core sources of power. Unlike
traditional web server platforms, in addition to avail-
ability and convenience, cloud computing can provide
on-demand services by abstracting CPU, memory, net-
work, platform, and software applications into a com-
puting resource pool. On a cloud platform, once the
management mode and policies for resource scheduling,
monitoring, and backup are designed, the CSP no longer

needs to perform excessive online management. The
user can efficiently obtain both on-demand and pay-as-
you-go computing resources through a small amount of
interaction with the CSP. With the powerful computing
and storage capabilities, cloud computing platforms can
provide personalized services for different users. Accord-
ing to the different levels of external services provided,
cloud computing architecture has several service mod-
els, among which Infrastructure as a Service (IaaS) is the
most mature and widely used.

Cloud workloads are increasingly heterogeneous
such that a single Cloud job may encompass one to
several tasks, and tasks belonging to the same job may
behave distinctively during their actual execution [1].
Virtual machines(VM), which are important comput-
ing resources in data center, have heterogeneous pro-
cessor architectures and speeds, hardware features,
memory and disk capacities [2]. Due to heterogeneity
of tasks and resources, variability of service quality, and
huge number of users on cloud computing platform,

*Correspondence:
Zhiping Peng
zhipingpeng@gdupt.edu.cn
1 School of Computer, Guangdong University of Petrochemical
Technology, Maoming 525000, China
2 School of Computer Science and Engineering, South China University
of Technology, Guangzhou 510006, China
3 Shanghai Key Laboratory of Intelligent Information Processing, Fudan
University, Shanghai 200433, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00490-y&domain=pdf

Page 2 of 14Li et al. Journal of Cloud Computing (2023) 12:114

the system has had to process large quantities of tasks
and data. With increasing number of users and tasks,
optimal task scheduling becomes a strenuous process
[3]. In this case, to deploy tasks on a VM alone is prone
to overloading the VM server, resulting in slow task
response and increased risk of a service level agree-
ment (SLA) violation. For this reason, CSPs and users
tend to use a service mode with multiple queues and
VM clusters. Multiple queues refer to the organization
of tasks of different natures or with requirements into
multiple queues for submission. A multiple VM clus-
ter refers to a cluster of VMs belonging to a user that
can communicate and coordinate with each other, and
whose overall performance is substantially improved by
control techniques such as intra-cluster load balancing.
In this service mode, efficient task scheduling, reason-
able resource allocation, and reduced task makespan
and energy consumption of VM clusters directly deter-
mine the service quality level and operational profit of
the cloud platform [4], and TSRA optimization under
multiple queues and clusters is a core problem.

Substantial research has addressed the scheduling
optimization problem of cloud computing. Heuris-
tic algorithms have been tried, but traditional heuris-
tic algorithms require specific conditions to obtain the
optimal solution. Their generality is not strong in the
complex, changeable cloud environment, and they
can easily fall into a local optimal solution of a MOO
problem. Reinforcement learning (RL), as a model-
free method with powerful decision-making capability,
obtains the optimal solution through continuous trial
and error, but it is prone to slow convergence in the
case of a large-scale state space. DNNs have powerful
perceptual capabilities to effectively cope with large-
scale state spaces.

DL has made breakthroughs in natural language pro-
cessing, games, robot control, and other fields. Scholars
have used such models to solve the TSRA problem in
complex cloud environments. There are studies using
multiple DNNs for the MOO problem of TSRA. They
usually treat each DNN equally and use the same samples
for training, so each DNN learns about the same knowl-
edge, and the scheduling is prone to falling into local
optimum. The UDL we proposed improves this multiple
DNNs schudling method. We innovatively divid multiple
DNN networks into two parts: exploration and exploita-
tion, and trains only the exploited DNNs to preserve the
randomness of the scheduling. The improved method
can achieve better scheduling performance than before,
and effectively solve the scheduling problem of multiple
queues and clusters on cloud platforms.

The major contributions and results of this paper are as
follows:

• This work proposes a UDL-based model to solve the
MOO problem for TSRA with multi-task queues and
multi-VM clusters.

• The proposed UDL model divides multiple DNNs
into two parts: exploration and exploitation. The
exploration DNNs have strong randomness to
explore better scheduling strategies, while the
exploitation DNNs are responsible for learning the
explored scheduling strategies, thus improving the
learning efficiency of the model and ensuring conver-
gence stability.

• We assign an adjustable weight to each of the two
optimization objectives, energy consumption and
task latency, so that it can dynamically adjust the bias
of the system optimization objectives.

• Multiple sets of experiments with different sizes of
task queues and VM clusters are taken to validate the
performance of the model. The experimental results
show that the proposed model outperforms several
benchmark algorithms for the MOO problem of
cloud TSRA.

The remainder of the paper is organized as follows. The
literature review is described in Section “Literature
review”. The system model framework and its mathe-
matical model are described in Section “System model”.
The united deep network and its training algorithm are
described in Section “United deep network and its train-
ing”. Section “Simulation experiments and results analy-
sis” provides the simulation experiment results and their
analysis, and finally, the paper is concluded in Section
“Conclusion and future work”.

Literature review
Since cloud computing platforms have powerful comput-
ing and storage capabilities, many users begin to replace
cloud service with local service and submit tasks to cloud
for processing. Because the task scheduling strategy
determines both the service quality level and profits of
the cloud platform, the optimization of cloud TSRA has
always been a research focus.

Research has focused on the TSRA problem of cloud
computing [5, 6]. Verma et al. [7] proposed a mixed parti-
cle swarm optimization (PSO) algorithm with non-dom-
inance ranking to handle workflow scheduling problems
on IaaS clouds. Zuo et al. [8] demonstrated a resource-
cost model reflected the relationship between resource
cost and user budget. The proposed scheduling method
was based on an improved ant colony optimization
(ACO) algorithm to achieve MOO of system performance
and cost. Alkayal et al. [9] proposed multi-objective PSO
algorithm based on a new ranking strategy, with the goal
to maximize system throughput and minimize task wait

Page 3 of 14Li et al. Journal of Cloud Computing (2023) 12:114

time during task scheduling to VMs. Duan et al. [10] pro-
posed a VM scheduling method, PreAntPolicy, consisting
of a scheduler based on an improved ACO and a predic-
tive model based on fractal mathematics. The predictive
model attained more reasonable scheduling by predicting
the load trend. A task scheduling algorithm combining
the properties of a genetic algorithm (GA) and bacterial
foraging (BF) algorithm was proposed by Srichandan
et al. [11] to achieve efficient TSRA under the constraints
of a guaranteed SLA. However, traditional heuristic algo-
rithms must obtain the optimal solution under certain
conditions. Their versatility is not strong in a complex,
changeable cloud environment, they easily fall into local
optima when solving a MOO problem, and the global
optimal solution is not obtained.

Some researchers have used RL methods to solve the
above problem. RL is a model-free learning method with
powerful decision-making capability and can effectively
solve multi-constrained MOO problem. Peng et al. [12,
13] utilized RL to find the optimal scheduling strategy
and solve TSRA problem in cloud environments. Cui
et al. [14] proposed a task scheduling scheme based on
RL, which also applies multi-agent and parallel technol-
ogy to balance exploration and exploitation in the learn-
ing process, and achieves the maximum reduction of task
makespan under the constraints of task deadlines and
VM resources. Thein et al. [15] achieved high energy effi-
ciency and prevented SLA violations in data centers by an
RL-based approach. Aiming at the problem for Software
as a Service (SaaS) CSPs of automatically scaling applica-
tions to meet customer needs in dynamically changing
cloud environment, Wei et al. [16] proposed a RL-based
adaptive lease scheme generation algorithm, with adjust-
ing IaaS facility adaptively. Liang et al. [17] modeled the
resource allocation problem in Internet of Vehicles (IoV)
as a semi-Markov decision process and used RL to solve
it. The RL algorithm can get the optimal decision through
constant trial and error, but it converges slowly in a large-
scale state space. DNNs have strong feature percep-
tion capabilities to effectively deal with large-scale state
spaces and make up for the shortcomings of RL.

DL has powerful feature extraction ability, is a popu-
lar research topic in artificial intelligence, and is widely
applied in image processing and pattern recognition.
Some scholars have applied it to resource and task
scheduling in cloud platforms. Guo et al. [18] proposed
DeepRM_Plus, a cloud resource management scheme
based on convolutional neural network (CNN) , which
uses imitation learning to reduce the learning time,
improve convergence speed, and reduce the average cycle
time and weighted turnaround time. Chudasama et al.
[19] used DL and queuing theory in an efficient auto-
scaling technology with a predictive function to solve the

problem that a static threshold method may fail under
high dynamic and unpredictable workloads. The elastic-
ity of cloud system resources is enhanced, and the accu-
racy of SLA violations can be predicted more accurately.
Lakhan ea al. [20] devised a deep neural networks energy
cost-efficient partitioning and task scheduling algorithm
framework to deal with the partitioning and scheduling
of IoT applications in terms of resource management
for mobile workflow applications in enterprise systems.
Rangra et al. [21] proposed a cloud TSRA algorithm
based on multi-task CNNs, achieving a balance between
makespan and cost. The algorithm was used in tweet task
sets and gene workflow task sets, with good results. Lin
et al. [22] proposed a multi-intelligent two-stage TSRA
framework for collaborative scheduling between cloud
task and cloud resource. The task scheduling stage uses a
HDDL model to schedule user tasks to data centers. The
resource scheduling stage uses a deep Q-network model
to deploy VMs to physical servers. The framework glob-
ally optimizes scheduling through local optimization in
each stage.

RL has powerful decision-making ability, while DL has
powerful feature-acquisition ability. Scholars have com-
bined them to form deep RL (DRL), which has made
breakthroughs [23] in fields such as natural language
processing [24], games [25], robot control [26], and cloud
resource scheduling in complex environments, provid-
ing a new solution to TSRA problem of cloud computing.
Peng et al. [27] proposed a framework for TSRA based on
DRL, which synergistically considers the balance of inter-
ests between users and CSPs, and can optimize different
objectives by adjusting the corresponding optimization
weights. Lin et al. [28] made full use of the perception of
CNN and the decision-making ability of RL in a TSRA
model, abstracting the cloud resources and cloud task in
the form of "images" as the input of the CNN, and out-
putting a scheduling strategy. For large-scale TSRA prob-
lems, Bitsakos et al. [29] proposed an elastic resource
supply system based on DRL, which could automatically
and dynamically allocate computer resources according
to users’ fluctuating workload demands, and follow the
optimal resource management policy. Zhang et al. [30]
applied the DQN algorithm to the problem of wireless
LAN task offloading to minimize monetary and energy
costs of mobile users. Huang et al. [31] combined RL
training methods and distributed DL models to solve
the problem of task offloading in mobile edge comput-
ing, reducing energy consumption and ensuring service
quality.

We study effective task scheduling to minimize the
overall task completion time and energy consumption
of a data center when submitting batch tasks to several
computing clusters for execution in a cloud task system.

Page 4 of 14Li et al. Journal of Cloud Computing (2023) 12:114

This is essentially an offline task scheduling approach.
We propose a united deep network framework for cloud
task scheduling. By combining multiple deep networks
(DNNs) as task schedulers, and training them with ref-
erence to the trial and memory playback mechanism in
DRL, the framework solves the problem of batch task
submission in cloud systems.

System model
Model framework
When users obtain personalized cloud computing ser-
vices, they submit tasks through the network, and obtain
virtual resources to meet their needs.

The system model is shown in Fig. 1. The tasks to be
executed on cloud are submitted to CSP in batches. The
CSP inputs the tasks to a task scheduler consisting of
multiple trained DNNs. The task scheduler generates a
scheduling strategy according to the status of a submitted
task, and uses this to schedule the task to a computing
cluster for processing. Before the task is submitted, the
CSP must train each DNN network based on the training
task set with the goal to minimize energy consumption
and task completion time.

The system model has the following key parts: (1) The
strategy generation component consists mainly of mul-
tiple deep networks, and generates TSRA strategies to
minimize task latency and system energy consump-
tion according to user tasks. The structure and quantity
of networks can be dynamically adjusted according to
need; (2) Energy consumption calculation components
determine communication and computational energy
consumption; (3) The SLA considers the task completion
time, including latency of task communication and com-
putation; (4) The task scheduler is the core component of
the system, responsible for scheduling tasks in multiple
queues to different computing clusters according to the
scheduling strategy. It must guarantee the SLA and mini-
mum system energy consumption.

The large number of cloud users of various types results
in a diversity of user loads, whose multiple tasks have dif-
ferent dependencies and priorities, and data transmission
between them. Therefore, the task scheduling process
must ensure the execution order and dependencies
between tasks. In the user load layer, our model decou-
ples dependent user loads into child tasks and distributes
them to multiple waiting queues. The model ensures that
parent tasks in the waiting queue have priority in data

Fig. 1 System model

Page 5 of 14Li et al. Journal of Cloud Computing (2023) 12:114

transmission and execution, and each task in the queue
is atomic and can run independently. Each waiting queue
has the same storage space, and the number of queues is
dynamically adjusted according to needs.

A large number of infrastructure devices form a
large-scale data center, which clusters adjacent servers
into computing clusters according to geographic loca-
tions. The communication between multiple VM clus-
ters is carried out through high-speech optical fiber,
so data transmission latency and energy consumption
between them can be ignored. However, the bandwidth
and distance of users connected to different VM clus-
ters are obviously different. Hence both are important
considerations for optimization problems. Moreover,
because of differences in hardware, cluster computing
ability and computing power are also key factors that
affect system scheduling efficiency.

Mathematical modeling
Cloud system task scheduling involves the scheduling
of atomic tasks in multiple queues to multiple clusters.
Assume that the number of computing clusters is K,
which is expressed as {Clu1,Clu2, . . . ,Cluk} . The num-
ber of task queues waiting to be scheduled is N, which
is expressed as {Q1,Q2, . . . ,Qn} . The number of tasks
contained in each queue is M, which is expressed as
{T1,T2, . . . ,Tm} . Therefore, the total number of tasks
is M ∗ N . Task Tnm denotes task m in queue n. The
attributes of task Tnm are expressed as a binary tuple,
(r

cpu
nm , rdatanm) , where rcpunm denotes the number of CPU

cycles required by Tnm , and rdatanm denotes the amount
of data required to be transferred by Tnm . rdatanm is a
random variable that obeys a uniform distribution,
rdatanm ∼ (rdatamin , rdatamax) , where the maximum and mini-
mum amounts of task data are respectively expressed
by rdatamin and rdatamax . In addition, we assume that the CPU
cycles required for each task are linearly related to the
amount of data in the task [32],

where µ is the computation-to-data ratio (CDR), whose
value depends on the type of task.

The attributes of cluster Cluk are represented by the
triplet (CPk ,Pcomm

k ,P
comp
k) , where CPk is the computing

power of the cluster, i.e., the number of cycles of the
CPU; Pcomm

k is the communication power consump-
tion of the cluster; and Pcomp

k is the computing power
consumption of the cluster. The allocation of task Tm in
queue Qn to cluster Cluk for processing is expressed by
action anmk ∈ {0, 1} , 1 ≤ n ≤ N , 1 ≤ m ≤ M , 1 ≤ k ≤ K ,
specified as:

(1)rcpunm = µ× rdatanm ,

The communication bandwidth between the queue and
cluster is expressed as {BW12, . . . ,BWnk} , and BWnk is
the bandwidth allocated between queue Qn and cluster
Cluk.

We consider two key factors of the scheduling process:
task latency and energy consumption. Below, we for-
mally define the communication and calculation models
involved in task scheduling.

(1) Communication model
According to the definition of anmk , in scheduling time

slot t, the number of tasks allocated to cluster Cluk from
queue Qn is:

The communication model includes the transmission
time and energy consumption required to transfer the
task data. When multiple tasks in the same queue are
scheduled to the same cluster at the same time, we use
the principle of equal distribution to allocate the band-
width to these tasks. Therefore, if task Tnm is allocated to
cluster Cluk , the bandwidth it could occupy is:

The communication latency Tcomm
nm is the time consumed

to upload the task data to the server, specified as:

The communication energy consumption is the energy
consumed during task transmission, specified as:

Therefore, the communication energy consumption of all
tasks in queue Qn is:

(2) Computational model
The computational model includes the computational

latency and energy consumption of the tasks. We also
use the principle of equal distribution, by which the com-
putational power of a cluster is divided equally among
all tasks scheduled to it. Similarly, the number of tasks
scheduled to cluster Cluk is:

Therefore, each task receives computational power as:

(2)anmk =
1, if Tnm is asigned to Cluk
0, otherwise

(3)Ank = �1≤m≤Manmk .

(4)Rbw
nm =

BWnk

Ank
.

(5)TDcomm
nm =

rdatamn

Rbw
nm

.

(6)ECcomm
nm = Pcomm

k × TDcomm
nm .

(7)ECcomn
n = �M

m=1EC
comm
nm .

(8)Bk = �N
n=1�

M
m=1anmk .

Page 6 of 14Li et al. Journal of Cloud Computing (2023) 12:114

Computational latency is the time consumed by a task to
complete the computation, specified as:

Computational energy consumption is the energy con-
sumed by a task during computation, specified as:

The computational energy consumption of all tasks in
queue Qn is

(3) Optimization objectives
At some scheduling time slot t, the scheduled tasks are

executed in parallel in the cluster, so that the total time
latency required for the batch of tasks is:

However, the total energy consumption in executing the
batch of tasks is the sum of the energy consumption of
each task, i.e.,

The optimization objectives of the research problem in
this section is to minimize the task latency and energy
consumption, which is a MOO problem. We assign a
weight factor to each objective to characterize its bias in
the total optimization objective. If the scheduling strat-
egy adopted by task set s is d, then the payoff function of
the system is defined as follows:

where � ∈ [0, 1] is the weight of task latency in the total
optimization objective, and (1− �) is the optimization
weight of energy consumption. The larger the value of � ,
the greater the weight of time latency in the total optimi-
zation objective and the smaller the energy consumption.
If � = 0 , then the optimization objective only considers
the energy consumption factor, and if � = 1 , then the
optimization objective only considers the time latency
factor.

The objective of the system is to obtain the optimal
scheduling strategy, i.e., to minimize the task latency and
energy consumption. Let D denote all scheduling strate-
gies for task set s. Then the system optimization objective
can be expressed as:

(9)Rcpu
nm =

CPk

Bk
.

(10)TDcomp
nm =

r
cpu
nm

R
cpu
nm

.

(11)ECcomp
nm = P

comp
k × TDcomp

nm .

(12)ECcomp
n = �M

m=1EC
comp
nm .

(13)TD = max
1≤n≤N ,1≤m≤M

(TDcomm
nm + TDcomp

nm).

(14)EC = �N
n=1(EC

comm
n + ECcomp

n).

(15)Cost(s, d) = �× TD + (1− �)× EC ,

The scheduling of cloud tasks is an NP-complete problem
that has never been fully solved [22]. In the case of the
multi-queue multi-cluster (MQMC) scheduling model
studied in this section, there are as many as KM∗N pos-
sibilities for scheduling, which is an exponential level
of problem space. When the problem size scales up, the
traditional exact and approximate methods will require
huge computational effort and time. In recent years, DL
has broken the barriers of traditional methods in many
fields and made remarkable breakthroughs, with its pow-
erful learning ability. Therefore, scholars are trying to
solve combinatorial optimization problems by DL [33].
We next study the use of DL to solve the above cloud task
scheduling problem.

United deep network and its training
United deep network
A DNN is a neural network (NN) composed of many hid-
den layers. A UDL model unites multiple DNNs as the
fitting function. In each DNN of UDL model, the number
of network layers is the same, and the number of hidden
layer nodes is different, but the overall scale of network
parameters is comparable, as shown in Fig. 2. Similar
to the experience replay mechanism of DRL, the model
stores the samples generated by itself in SMP for use as
a public training sample set. When the number of sam-
ples reaches the predetermined threshold, small batches
of samples in SMP are randomly choice periodically for
each DNN training. In this way, it improves both the
agent’s ability to explore the optimal strategy.

During the model’s training, the input of
X DNNs is the state st , which is expressed as
{r

cpu
11 , rdata11 , r

cpu
12 , rdata12 , . . . , r

cpu
nm , rdatanm } , consisting of mul-

tiple task attributes in multiple queues. Since each DNN
works independently, they would output different action
decisions, which are expressed as (d1t , d2t , . . . , dXt) . In
scheduling time slot t, st is used as input, and the out-
put action decision dxt , 1 ≤ x ≤ X , of each DNN can be
expressed as:

where fθxt is a function denoting the x-th DNN network
parameter.

In Eq. (17), dxt is denoted as dxt = {a111, a121, . . . , anmk} ,
where anmk is defined in Eq. (2). If anmk = 1 , then Tm in
Qn is scheduled into Cluk . The Eq. (15) is then used to cal-
culate the cost value of each action decision. The action

(16)

mind∈D Cost(s, d)
s.t.

C1 : �M
m=1R

bw
nm = BWnk

C2 : �M
m=1R

cpu
nm = CPk

C3 : 1 ≤ n ≤ N , 1 ≤ k ≤ k .

(17)fθxt : st → dxt ,

Page 7 of 14Li et al. Journal of Cloud Computing (2023) 12:114

decision that obtains the smallest Cost is selected as best
for the group of tasks:

where st is the current task set state and doptt is the best
decision action.

In a scheduling time slot, (st , d
opt
t) is stored as sample

in SMP. The model would randomly select miniBatch
samples for training as the number of samples reaches a
predetermined threshold. The training process uses a gra-
dient descent algorithm to minimize the cross-entropy
loss to optimize the parameter values θxt of each DNN.

The above is a common training method, that is, each
DNN uses the same training samples for learning at the
same time. It is necessary for each DNN to train to learn
the optimal scheduling strategy. In this way, all DNNs can
learn the scheduling experience, and the convergence
speed of the UDL model is faster. The HDDL algorithm
proposed in [22] uses this training method. However, this
method is easy to get stuck at locally optimal value. This
is because when all tasks in the training set are executed
for the first time, the current optimal strategy generated
by the UDL model is put into SMP. According to the
way that all DNNs learn at the same time, after the first

(18)d
opt
t = arg min

x∈X
Cost(st , d

x
t),

(19)
L(θxt) = −dTt log fθx (st)− (1− dt)

T log(1− fθx (st)).

episode of training, all DNNs have learned the current
optimal strategy. In the next episode of training, facing
the same training set, all DNNs will output the corre-
sponding scheduling strategies according to the learned
experience. Since these DNNs learn the same experience,
their output strategies are basically the same when faced
with the same task. Therefore, through such training, the
DNNs are difficult to be improved.

The fundamental reason for this situation is that
these DNNs have all learned the same strategies, that
is, all DNNs are exploited, and there is no possibility of
further exploring other strategies. Therefore, we made
corresponding improvement to the training method.
We divided DNNs into two parts: one is responsible for
exploration, and the other is responsible for exploita-
tion, as shown in Fig. 3.

In Fig. 3, the multiple DNNs have been divided into
two parts exploitation and exploration. Because of the
diversity of tasks and the heterogeneity of resources, the
number and size of the two partial DNNs are not strictly
defined and need to be determined according to the
training effect of different task sets. However, no matter
how they are divided, only DNNs in the part of exploi-
tation train, and DNNs in the part of exploration do not
train, so that the model retains the possibility of random
scheduling strategies. Through the combination of explo-
ration and exploitation, the UDL model can go out of the
local optimum and move towards the global optimum.

Fig. 2 United DNN model

Page 8 of 14Li et al. Journal of Cloud Computing (2023) 12:114

Training of united deep network
After building the DNN network, SMP is generated
according to the given task training set by the experience
playback mechanism. Then a batch of samples is ran-
domly selected from SMP to train the DNNs in the part
of exploitation. We call the learning model based on mul-
tiple DNNs a UDL model, and a TSRA algorithm based
on this is called a UDL algorithm. The pseudo-code of the
UDL model training process is shown as Algorithm 1.

Algorithm 1 UDL model training algorithmWhen these
DNNs of exploitation part are trained, they are packaged
into an executable scheduler or package to be deployed in
a realistic scheduling environment. When a new batch of

tasks arrives, the new tasks are put in the trained model
and the model will output the corresponding schedul-
ing policy. The specific scheduling algorithm is shown in
Algorithm 2.

Algorithm 2 UDL model scheduling
algorithmSimulation experiments and results
analysis
Experimental design and parameters
We designed a two-part simulation experiment to ver-
ify the effectiveness and performance of the proposed
model. The first part verifies the convergence of the
UDL model with different queue numbers and clusters.
The second part compares the task scheduling perfor-
mance of the proposed algorithm to that of benchmark
algorithms, including random, round robin (RR), multi-
objective particle swarm (PSO), deep Q network(DQN)
and heterogeneous distributed deep learning (HDDL)
[22]. Random algorithm schedules tasks to the clusters
randomly. RR algorithm schedules tasks to the ordered
clusters in turn. PSO algorithm is a random search

Fig. 3 United DNN model with division of exploitation and exploration

Page 9 of 14Li et al. Journal of Cloud Computing (2023) 12:114

algorithm based on group collaboration, which is one
type of swarm intelligence (SI). DQN is classical deep
reinforcement learning algorithm. HDDL algorithm
also uses multiple DNNs as scheduler, but doesn’t
divide them into two parts of exploration and exploita-
tion, and uses all of them as exploitation.

In the simulation experiment, the number of tasks in
the queue was set to 4, the minimum value of task data
rdatamin was 100, and the maximum value of task data rdatamax
was 500. There are four types of task settings, and the
ratio between the required CPU cycles and the amount
of data µ(CDR) is shown in Table 1 [32]. During the
experiment, the generated task types were randomly
obtained from Table 1 with the same probability. The
learning rate was set to 0.01, the training interval to 10,
the sample batch to 128, and the SMP size to 1024.

In the simulation experiment, a total of 12 clusters
were designed for selection, with configurations as
shown in Table 2.

Eight heterogeneous DNN networks were designed as
decision generators, each with one input layer, three hid-
den layers, and one output layer. The number of neurons
in each layer is shown in Table 3. We divided these eight
DNNs into exploration part and exploitation part. The
exploration part includes odd-numbered DNNs, and the
exploitation part includes even-numbered DNNs.

The simulation experiment platform was developed
based on the Python language and a TensorFlow frame-
work, running on a Windows 10 OS, with an Intel core
i7-8550U dual-core CPU at 1.80 GHz and 16 GB memory.

Network model verification experiment
We experimentally verified the convergence of the model
with different numbers of queues and clusters.

(1) Convergence under different numbers of queues
and a fixed number of clusters

The convergence of the UDL algorithm was examined
when the number of clusters (CN) was 5, � was 0.9, and
the number of queues (QN) was set to 4, 6, 8, and 10. The
experimental results are shown in Fig. 4.

From Fig. 4, it is obvious that the proposed UDL algo-
rithm basically reached a state of convergence in all cases.
In the first round of training (the first 1000 iterations), the
algorithm converges the fastest and then gradually slows

down. After about 60 to 80 rounds, the convergence state
is basically reached. Moreover, the experimental results
shows that the Cost of the UDL algorithm increased with
the number of queues for a given number of clusters. This
is mainly because, as the number of queues increases, the
number of tasks to be executed increases, the competi-
tion for resources becomes more intense, the compu-
tational and bandwidth resources available to each task
decrease accordingly, and the computation and commu-
nication times increase, with a corresponding increase in
overall latency and energy consumption.

Tasks in the dataset were randomly generated by the
task generator. The task computation and data volume
satisfied Eq. (1). A total of 1000 sets of training tasks and
100 sets of testing tasks were generated.

(2) Convergence under different numbers of clusters
and the same number of queues

The convergence of the UDL algorithm was examined
when the number of queues (CN) was 5, � was 0.9, and
the number of clusters (QN) was set to 3, 6, 9, and 12.
The experimental results are shown in Fig. 5.

Table 1 Task Types and its CDR

Workload CDR

gzip ASCII compress 330

x264 VBR encode 1300

x264 CBR encode 1900

html2text wikipedia.org 2100

Table 2 Main parameters of clusters

No. Computation
Ability(cycles/s)

Bandwidth
(MB/s)

Computation
Power(w)

Communication
Power(w)

1 1.5× 10
15 250/8 1.0× 10

5 0.20

2 2.5× 10
15 250/8 2.5× 10

5 0.20

3 3.5× 10
15 500/8 4.0× 10

5 0.40

4 5.0× 10
15 500/8 6.0× 10

5 0.40

5 6.0× 10
15 750/8 7.0× 10

5 0.50

6 7.0× 10
15 750/8 8.0× 10

5 0.50

7 6.5× 10
15 800/8 7.5× 10

5 0.60

8 7.2× 10
15 800/8 8.6× 10

5 0.60

9 6.8× 10
15 850/8 7.8× 10

5 0.65

10 7.5× 10
15 850/8 8.8× 10

5 0.65

11 8.0× 10
15 900/8 9.0× 10

5 0.80

12 10.0× 10
15 900/8 10.5× 10

5 0.80

Table 3 Main parameters of DNNs

No. Input Layer Hidden Layer 1 Hidden
Layer 2

Hidden
Layer 3

Output Layer

1 N ×M× 2 150 30 10 N ×M× K

2 N ×M× 2 160 40 10 N ×M× K

3 N ×M× 2 150 50 10 N ×M× K

4 N ×M× 2 170 40 10 N ×M× K

5 N ×M× 2 180 30 10 N ×M× K

6 N ×M× 2 190 50 10 N ×M× K

7 N ×M× 2 100 40 10 N ×M× K

8 N ×M× 2 200 40 10 N ×M× K

Page 10 of 14Li et al. Journal of Cloud Computing (2023) 12:114

From Fig. 5, it is obvious that the proposed UDL algo-
rithm reaches a state of convergence in all cases, too.
The experimental results show that with the number of
queues fixed, Cost as obtained by the UDL algorithm
decreases as the number of clusters increases. This is
because, with a fixed number of tasks, as the number of
clusters increases, the computational and bandwidth
resources available to each task increase accordingly, and
the computation and communication time decrease, with
a corresponding decrease in overall latency and energy
consumption.

Simulation experiment for algorithm comparison
We verified the optimization performance of the UDL
algorithm for different numbers of queues and clusters,
using the random, RR, PSO, DQN and HDDL algorithms
as benchmarks.

(1) Performance comparison with different numbers of
queues and a fixed number of clusters

We compared each algorithm for different numbers
of queues with a fixed number of clusters. In the experi-
ments, the number of clusters was fixed at 5, � was set
to 0.9, and the number of queues increased from 3 to 12.
The experimental results are shown in Fig. 6.

From Fig. 6, it can be seen that as the number of task
queues increases, the system load increases, and the
return values of all algorithm models show an upward

trend. The growth rates of the return values of the RR
and random algorithms are relatively fast, while those
of PSO, and UDL are relatively slow. When the num-
ber of task queues is relatively small, the costs of PSO,
DQN, HDDL and UDL are closer. However, when the
number of task queues is 5 or more, the optimization
effect of the UDL algorithm is better than that of the
heuristic algorithm PSO, the reinforcement learning
algorithm DQN and the similar algorithm HDDL. In
this experiment, the number of computing clusters is
fixed. When the number of task queues increases, the
competition between queues for limited computational
resources becomes more intense. In this case, the UDL
algorithm shows better task scheduling performance
than the PSO, DQN and HDDL algorithm.

(2) Performance comparison with different numbers of
clusters and a fixed number of queues

We compared each algorithm for different numbers of
clusters and a fixed number of queues. The number of
task queues was fixed at 10, � was set to 0.9, and the num-
ber of clusters increased from 3 to 12. The experimental
results are shown in Fig. 7.

The experimental results in Fig. 7 show that as the num-
ber of clusters increases, and the costs of all algorithms
decrease. That is because the available resources of the
system increase as the number of clusters increases.
Similar to the previous experiment, with a fixed number

Fig. 4 Convergence of UDL algorithm under different numbers of queues and a fixed number of clusters

Page 11 of 14Li et al. Journal of Cloud Computing (2023) 12:114

of task queues, when the number of clusters is small, the
tasks compete more fiercely for computational resources,
and the performance of the UDL and HDDL algorithm
is better than that of algorithms such as PSO and DQN.
However, when the number of clusters exceeds 8, the

computational resources are relatively sufficient, and
UDL, HDDL, DQN and PSO algorithms show basically
comparable performance. But in most cases, the optimi-
zation performance of UDL algorithm is better than the
benchmark algorithms.

Fig. 5 Convergence of UDL algorithm under different numbers of clusters and a fixed number of queues

Fig. 6 Algorithm performance comparison under different numbers of queues and a fixed number of clusters

Page 12 of 14Li et al. Journal of Cloud Computing (2023) 12:114

It can be observed from Figs. 6 and 7 that the DQN
model can achieve similar optimization results to UDL
and HDDL for small queue and cluster numbers, but as
the number of queues and clusters increases, the explo-
ration space size of the scheduling problem grows expo-
nentially, so it becomes increasingly difficult for DQN to
explore to the optimal or suboptimal scheduling policy,
and the optimization effect decreases significantly.

(3) Scheduling time comparison with PSO
Because RR and random algorithm do not involve

complex computations, their decision times are very
fast. The UDL, HDDL, DQN are machine learning algo-
rithms, and their decision times are about the same. We
compared the time required for the UDL and PSO to
make task scheduling decisions in the same environ-
ment. We ran the test set 100 times and averaged the
results, with results as shown in Table 4. The operat-
ing environment in the table is characterized by num-
bers of queues and clusters, denoted by QnCm, which
means that there are n queues and m clusters.

From Table 4, it can be seen that the decision time of the
UDL algorithm is much less than that of the PSO algorithm
in the same environment. As the queue and cluster sizes
increase, the decision times of both algorithms increase
accordingly, but much more so for PSO than for UDL.

Weight factor change experiment
In Eq. (15), � is the weight of time latency in the total
optimization objective, and (1− �) is the weight of energy
consumption. We examined how the time latency, energy
consumption, and total optimization objective changed
as � varied from 0.1 to 0.9. The number of queues was set

to 10, and the number of clusters to 6. The experimental
results are shown in Fig. 8.

Figure 8(a) shows the variation of the total task
latency as the weight factor � varies between 0.1 ∼ 0.9 .
It can be seen that the total task latency decreases
as � increases. This is because our goal is to minimize
task latency, and the increase of � means that the time
latency weighs more in the total optimization objec-
tive; hence the algorithm is biased toward the optimiza-
tion of time latency. Figure 8(b) shows how the energy
consumption varies with � . Since � is the time latency
weight and 1− � is the energy consumption weight, to
increase � will reduce the energy consumption weight;
hence the algorithm will pay more attention to optimiz-
ing time latency, and energy consumption will increase
accordingly. Figure 8(c) shows how the total optimiza-
tion objective follows the change in � . We can find that
our proposed UDL algorithm optimizes better than the
benchmark algorithms, no matter the case. That is, UDL
can improve system performance regardless of whether
the optimization objective is biased toward time latency

Fig. 7 Algorithm performance comparison with different numbers of clusters and a fixed number of queues

Table 4 Decision time comparison between UDL and
PSO(Unit:s)

Number Running Environment UDL PSO

1 Q3C3 0.3054 8.1511

2 Q5C5 0.3703 13.3691

3 Q8C8 0.4828 21.8820

4 Q10C10 0.5724 28.1806

5 Q12C12 0.6770 34.9222

Page 13 of 14Li et al. Journal of Cloud Computing (2023) 12:114

or energy consumption. When � takes values from 0.1
to 0.9, the cost value of UDL are reduced by 1.08%,
1.24%, 1.33%, 2.10%, 1.03%, 1.06%, 2.06%, 1.15% and
2.35%, respectively, compared to the HDDL. Although
the reduction is not very large, considering the relatively
large value of the cost and the large amount of tasks in
data center, the overall cost savings are still significant.

The weight factor in the valuation function is dynami-
cally adjustable according to the actual demand. And with
different weight settings, the proposed UDL can all find a
better scheduling policy compared to other benchmarks.
This also indicates that UDL has better explorability.

Conclusion and future work
We proposed a cloud TSRA framework model based on
UDL to solve the MOO problem of MQMC scheduling
in cloud computing. The framework effectively improves
algorithm performance by joining multiple DNNs model
and employing a DRL experience replay mechanism to
train the scheduling model. In order to further improve

the performance of the framework, we improved the mul-
tiple DNNs model and divided the DNNs into two parts:
exploration and exploitation. The part of exploration is
responsible for exploring unknown scheduling strategies
and the part exploitation is responsible for exploiting the
known scheduling strategies. This improved method not
only speeds up the convergence of the algorithm, but also
avoids falling into a local optimal solution. Experimental
results show that the UDL algorithm is better adapted
than the random, RR, PSO and HDDL algorithms to
MOO problems, especially in the case of intense resource
competition. The proposed UDL algorithm is essentially
an offline task scheduling algorithm, which is suitable for
batch submission task scheduling methods.

There are many online task scheduling scenarios in an
actual cloud environment. The characteristics of online
task scheduling are different from those of offline. Online
tasks are more variable and complicated. Our next direc-
tion of study will be how to implement online task sched-
uling using DRL.

Fig. 8 Algorithm performance comparison with different �

Page 14 of 14Li et al. Journal of Cloud Computing (2023) 12:114

Acknowledgements
The authors thank the reviewers for their insightful comments and suggestions
to improve the quality of the paper. Zhiping Peng is corresponding author.

Authors’ contributions
All authors contributed to the study conception and design. Material prepara-
tion and data collection were performed by Delong Cui and Hao Zhang.
Investigation, formal analysis and validationwere performed by Zhiping Peng
and Jianpeng Lin. The first draft of the manuscript was written by Qirui Li and
all authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

Funding
This work was sponsored by Guangdong basic and applied basic research
foundation(2022A1515012022, 2021A1515012252, 2020A1515010727);
Maoming Science and Technology Project(mmkj2020008); Projects of PhDs’
Start-up Research of GDUPT (XJ2022000301).

Availability of data and materials
Data will be made available upon reasonable request to the corresponding author.

Declarations

Ethics approval and consent to participate
This material is the authors’ own original work, which has not been previously
published elsewhere. The paper is not currently being considered for publica-
tion elsewhere.

Competing interests
The authors declare no competing interests.

Received: 15 February 2023 Accepted: 20 July 2023

References
 1. Panneerselvam J, Liu L, Antonopoulos N (2020) An approach to optimise

resource provision with energy-awareness in datacentres by combating
task heterogeneity. IEEE Trans Emerg Top Comput 8(3):762–780

 2. Zhang Q, Zhani MF, Boutaba R, Hellerstein JL (2014) Dynamic heterogeneity-
aware resource provisioning in the cloud. IEEE Trans Cloud Comput 2(1):14–28

 3. Mansouri N, Javidi MM (2020) Cost-based job scheduling strategy in
cloud computing environments. Distrib Parallel Databases 38(2):365–400

 4. Madni SHH, Latiff MSAA, Coulibaly Y, Abdulhamid SM (2016) Recent
advancements in resource allocation techniques for cloud computing
environment: a systematic review. Clust Comput 20:2489–2533

 5. Mathew T, Sekaran KC, Jose J (2014) Study and analysis of various task
scheduling algorithms in the cloud computing environment. 2014 Inter-
national Conference on Advances in Computing, Communications and
Informatics(ICACCI), Pune, India, pp 658-664

 6. Patil N, Aeloor D (2017) A review - different scheduling algorithms in
cloud computing environment. 2017 11th International Conference on
Intelligent Systems and Control(ISCO), Coimbatore, India, pp 182-185

 7. Verma A, Kaushal S (2017) A hybrid multi-objective Particle Swarm Opti-
mization for scientific workflow scheduling. Parallel Comput 62:1–19

 8. Zuo L, Shu L, Dong S, Zhu C, Hara T (2015) A multi-objective optimization
scheduling method based on the ant colony algorithm in cloud comput-
ing. IEEE Access 3:2687–2699

 9. Alkayal ES, Jennings NR, Abulkhair MF (2016) Efficient task scheduling
multi-objective particle swarm optimization in cloud computing. 2016
IEEE 41st Conference on Local Computer Networks Workshops(LCN
Workshops), Dubai, United Arab Emirates, pp 17-24

 10. Duan H, Chen C, Min G, Wu Y (2017) Energy-aware scheduling of virtual
machines in heterogeneous cloud computing systems. Futur Gener
Comput Syst 74:142–150

 11. Srichandan S, Kumar TA, Bibhudatta S (2018) Task scheduling for cloud
computing using multi-objective hybrid bacteria foraging algorithm.
Futur Comput Inf J 3(2):210–23

 12. Peng Z, Cui D, Zuo J, Li Q, Xu B (2015) Random task scheduling scheme based
on reinforcement learning in cloud computing. Clust Comput 18:1595–1607

 13. Peng Z, Cui D, Zuo J, Lin W (2015) Research on cloud computing resources
provisioning based on reinforcement learning. Math Probl Eng 2015:1–12

 14. Cui D, Peng Z, Xiong J, Xu B, Lin W (2020) A reinforcement learning-based
mixed job scheduler scheme for Grid or IaaS cloud. IEEE Trans Cloud
Comput 4:1030–1039

 15. Thein T, Myo MM, Parvin S, Gawanmeh A (2020) Reinforcement learning
based methodology for energy-efficient resource allocation in cloud data
centers. J King Saud Univ - Comput Inf Sci 32(10):1319–1578

 16. Wei Y, Daniel K, Liu S, Li P, WU L, Meng X, (2019) A reinforcement learning
based auto-scaling approach for SaaS providers in dynamic cloud envi-
ronment. Math Probl Eng 2019:1–11

 17. Liang H, Zhang X, Hong X, Zhang Z, Li M, Hu G, Hou F (2021) Reinforce-
ment learning enabled dynamic resource allocation in the internet of
vehicles. IEEE Trans Ind Inform 17(7):4957–4967

 18. Guo W, Tian W, Ye Y, Xu L, Wu K (2021) Cloud resource scheduling with
deep reinforcement learning and imitation learning. IEEE Internet Things
J 8(5):3576–3586

 19. Chudasama V, Bhavsar M (2020) A dynamic prediction for elastic resource
allocation in hybrid cloud environment. Scalable Comput: Pract Experi-
ence 21(4 SI):661-672

 20. Lakhan A, Mastoi Q, Elhoseny M, Memon MS, Mohammed MA (2022)
Deep neural network-based application partitioning and scheduling for
hospitals and medical enterprises using IoT assisted mobile fog cloud.
Enterp Inf Syst 16(7):1883122

 21. Rangra A, Sehgal VK, Shukla S (2019)A novel approach of cloud based
scheduling using deep-learning approach in E-Commerce domain. Int J
Inf Syst Model Des 10(3 SI):59-75

 22. Lin J, Cui D, Peng Z, Li Q, He J (2020) A two-stage framework for the
multi-user multi-data center job scheduling and resource allocation. IEEE
Access 8:197863–197874

 23. Liu Q, Zhai J, Zhang Z, Zhong S, Zhou Q, Zhang P, Xu J (2018) A survey on
deep reinforcement learning. Jisuanji Xuebao/Chin J Comput 41(1):1–27

 24. Sharma AR, Kaushik P (2017) Literature survey of statistical, deep and rein-
forcement learning in natural language processing. 2017 International
Conference on Computing, Communication and Automation (ICCCA),
Greater Noida, India, pp 350-354

 25. Mnih V, Kavukcuoglu K, Silver D, Veness J (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–33

 26. Phaniteja S, Dewangan P, Guhan P, Sarkar A, Krishna KM (2017) A deep
reinforcement learning approach for dynamically stable inverse kinemat-
ics of humanoid robots. 2017 IEEE International Conference on Robotics
and Biomimetics(ROBIO), Macau, Macao, pp 1818-1823

 27. Peng Z, Lin J, Cui D, Li Q, He J (2020) A multi-objective trade-off frame-
work for cloud resource scheduling based on the Deep Q-network
algorithm. Clust Comput 23(4):2753–2767

 28. Lin J, Peng Z, Cui D (2018) Deep reinforcement learning for multi-
resource cloud job scheduling. 2018 25th International Conference on
Neural Information Processing, Siem Reap, Cambodia, pp 289-302

 29. Bitsakos C, Konstantinou I, Koziris N (2018) DERP: a deep reinforce-
ment learning cloud system for elastic resource provisioning. 2018
IEEE International Conference on Cloud Computing Technology and
Science(CloudCom), Nicosia, Cyprus, 21-29

 30. Zhang C, Liu Z, Gu B, Yamori K, Tanaka Y (2018) A deep reinforcement
learning based approach for cost- and energy-aware multi-flow mobile
data offloading. IEICE Trans Commun E101.B:1625-1634

 31. Liang H, Feng L, Zhang L, Qian Y (2019) Multi-server multi-user multi-task
computation offloading for mobile edge computing networks. Sensors
19(6):1446

 32. Li Q, Peng Z, Cui D, Lin J, He J (2022) Two-stage selection of distributed data
centers based on deep reinforcement learning. Clust Comput 25:2699–2714

 33. Li K, Zhang T, Wang R, Qin W, He Hi, Huang H (2021) Research reviews
of combinatorial optimization methods based on deep reinforcement
learning. Acta Automatica Sinica 47(11):2521–2537

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	UDL: a cloud task scheduling framework based on multiple deep neural networks
	Abstract
	Introduction
	Literature review
	System model
	Model framework
	Mathematical modeling

	United deep network and its training
	United deep network
	Training of united deep network

	Simulation experiments and results analysis
	Experimental design and parameters
	Network model verification experiment
	Simulation experiment for algorithm comparison
	Weight factor change experiment

	Conclusion and future work
	Acknowledgements
	References

