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Abstract 

Cloud task scheduling and resource allocation (TSRA) constitute a core issue in cloud computing. Batch submission 
is a common user task deployment mode in cloud computing systems. In this mode, it has been a challenge for cloud 
systems to balance the quality of user service and the revenue of cloud service provider (CSP). To this end, with multi-
objective optimization (MOO) of minimizing task latency and energy consumption, we propose a cloud TSRA frame-
work based on deep learning (DL). The system solves the TSRA problems of multiple task queues and virtual machine 
(VM) clusters by uniting multiple deep neural networks (DNNs) as task scheduler of cloud system. The DNNs are 
divided into exploration part and exploitation part. At each scheduling time step, the model saves the best outputs 
of all scheduling policies from each DNN to the experienced sample memory pool (SMP), and periodically selects 
random training samples from SMP to train each DNN of exploitation part. We designed a united deep learning (UDL) 
algorithm based on this framework. Experimental results show that the UDL algorithm can effectively solve the MOO 
problem of TSRA for cloud tasks, and performs better than benchmark algorithms such as heterogeneous distributed 
deep learning (HDDL) in terms of task scheduling performance.
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Introduction
The information and communications technology (ICT) 
has taken a huge leap forward in recent years. Cloud 
computing is one of the core sources of power. Unlike 
traditional web server platforms, in addition to avail-
ability and convenience, cloud computing can provide 
on-demand services by abstracting CPU, memory, net-
work, platform, and software applications into a com-
puting resource pool. On a cloud platform, once the 
management mode and policies for resource scheduling, 
monitoring, and backup are designed, the CSP no longer 

needs to perform excessive online management. The 
user can efficiently obtain both on-demand and pay-as-
you-go computing resources through a small amount of 
interaction with the CSP. With the powerful computing 
and storage capabilities, cloud computing platforms can 
provide personalized services for different users. Accord-
ing to the different levels of external services provided, 
cloud computing architecture has several service mod-
els, among which Infrastructure as a Service (IaaS) is the 
most mature and widely used.

Cloud workloads are increasingly heterogeneous 
such that a single Cloud job may encompass one to 
several tasks, and tasks belonging to the same job may 
behave distinctively during their actual execution [1]. 
Virtual machines(VM), which are important comput-
ing resources in data center, have heterogeneous pro-
cessor architectures and speeds, hardware features, 
memory and disk capacities [2]. Due to heterogeneity 
of tasks and resources, variability of service quality, and 
huge number of users on cloud computing platform, 
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the system has had to process large quantities of tasks 
and data. With increasing number of users and tasks, 
optimal task scheduling becomes a strenuous process 
[3]. In this case, to deploy tasks on a VM alone is prone 
to overloading the VM server, resulting in slow task 
response and increased risk of a service level agree-
ment (SLA) violation. For this reason, CSPs and users 
tend to use a service mode with multiple queues and 
VM clusters. Multiple queues refer to the organization 
of tasks of different natures or with requirements into 
multiple queues for submission. A multiple VM clus-
ter refers to a cluster of VMs belonging to a user that 
can communicate and coordinate with each other, and 
whose overall performance is substantially improved by 
control techniques such as intra-cluster load balancing. 
In this service mode, efficient task scheduling, reason-
able resource allocation, and reduced task makespan 
and energy consumption of VM clusters directly deter-
mine the service quality level and operational profit of 
the cloud platform [4], and TSRA optimization under 
multiple queues and clusters is a core problem.

Substantial research has addressed the scheduling 
optimization problem of cloud computing. Heuris-
tic algorithms have been tried, but traditional heuris-
tic algorithms require specific conditions to obtain the 
optimal solution. Their generality is not strong in the 
complex, changeable cloud environment, and they 
can easily fall into a local optimal solution of a MOO 
problem. Reinforcement learning (RL), as a model-
free method with powerful decision-making capability, 
obtains the optimal solution through continuous trial 
and error, but it is prone to slow convergence in the 
case of a large-scale state space. DNNs have powerful 
perceptual capabilities to effectively cope with large-
scale state spaces.

DL has made breakthroughs in natural language pro-
cessing, games, robot control, and other fields. Scholars 
have used such models to solve the TSRA problem in 
complex cloud environments. There are studies using 
multiple DNNs for the MOO problem of TSRA. They 
usually treat each DNN equally and use the same samples 
for training, so each DNN learns about the same knowl-
edge, and the scheduling is prone to falling into local 
optimum. The UDL we proposed improves this multiple 
DNNs schudling method. We innovatively divid multiple 
DNN networks into two parts: exploration and exploita-
tion, and trains only the exploited DNNs to preserve the 
randomness of the scheduling. The improved method 
can achieve better scheduling performance than before, 
and effectively solve the scheduling problem of multiple 
queues and clusters on cloud platforms.

The major contributions and results of this paper are as 
follows:

• This work proposes a UDL-based model to solve the 
MOO problem for TSRA with multi-task queues and 
multi-VM clusters.

• The proposed UDL model divides multiple DNNs 
into two parts: exploration and exploitation. The 
exploration DNNs have strong randomness to 
explore better scheduling strategies, while the 
exploitation DNNs are responsible for learning the 
explored scheduling strategies, thus improving the 
learning efficiency of the model and ensuring conver-
gence stability.

• We assign an adjustable weight to each of the two 
optimization objectives, energy consumption and 
task latency, so that it can dynamically adjust the bias 
of the system optimization objectives.

• Multiple sets of experiments with different sizes of 
task queues and VM clusters are taken to validate the 
performance of the model. The experimental results 
show that the proposed model outperforms several 
benchmark algorithms for the MOO problem of 
cloud TSRA.

The remainder of the paper is organized as follows. The 
literature review is described in Section “Literature 
review”. The system model framework and its mathe-
matical model are described in Section “System model”. 
The united deep network and its training algorithm are 
described in Section “United deep network and its train-
ing”. Section “Simulation experiments and results analy-
sis” provides the simulation experiment results and their 
analysis, and finally, the paper is concluded in Section 
“Conclusion and future work”.

Literature review
Since cloud computing platforms have powerful comput-
ing and storage capabilities, many users begin to replace 
cloud service with local service and submit tasks to cloud 
for processing. Because the task scheduling strategy 
determines both the service quality level and profits of 
the cloud platform, the optimization of cloud TSRA has 
always been a research focus.

Research has focused on the TSRA problem of cloud 
computing [5, 6]. Verma et al. [7] proposed a mixed parti-
cle swarm optimization (PSO) algorithm with non-dom-
inance ranking to handle workflow scheduling problems 
on IaaS clouds. Zuo et  al. [8] demonstrated a resource-
cost model reflected the relationship between resource 
cost and user budget. The proposed scheduling method 
was based on an improved ant colony optimization 
(ACO) algorithm to achieve MOO of system performance 
and cost. Alkayal et al. [9] proposed multi-objective PSO 
algorithm based on a new ranking strategy, with the goal 
to maximize system throughput and minimize task wait 
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time during task scheduling to VMs. Duan et al. [10] pro-
posed a VM scheduling method, PreAntPolicy, consisting 
of a scheduler based on an improved ACO and a predic-
tive model based on fractal mathematics. The predictive 
model attained more reasonable scheduling by predicting 
the load trend. A task scheduling algorithm combining 
the properties of a genetic algorithm (GA) and bacterial 
foraging (BF) algorithm was proposed by Srichandan 
et al. [11] to achieve efficient TSRA under the constraints 
of a guaranteed SLA. However, traditional heuristic algo-
rithms must obtain the optimal solution under certain 
conditions. Their versatility is not strong in a complex, 
changeable cloud environment, they easily fall into local 
optima when solving a MOO problem, and the global 
optimal solution is not obtained.

Some researchers have used RL methods to solve the 
above problem. RL is a model-free learning method with 
powerful decision-making capability and can effectively 
solve multi-constrained MOO problem. Peng et  al. [12, 
13] utilized RL to find the optimal scheduling strategy 
and solve TSRA problem in cloud environments. Cui 
et  al. [14] proposed a task scheduling scheme based on 
RL, which also applies multi-agent and parallel technol-
ogy to balance exploration and exploitation in the learn-
ing process, and achieves the maximum reduction of task 
makespan under the constraints of task deadlines and 
VM resources. Thein et al. [15] achieved high energy effi-
ciency and prevented SLA violations in data centers by an 
RL-based approach. Aiming at the problem for Software 
as a Service (SaaS) CSPs of automatically scaling applica-
tions to meet customer needs in dynamically changing 
cloud environment, Wei et al. [16] proposed a RL-based 
adaptive lease scheme generation algorithm, with adjust-
ing IaaS facility adaptively. Liang et al. [17] modeled the 
resource allocation problem in Internet of Vehicles (IoV) 
as a semi-Markov decision process and used RL to solve 
it. The RL algorithm can get the optimal decision through 
constant trial and error, but it converges slowly in a large-
scale state space. DNNs have strong feature percep-
tion capabilities to effectively deal with large-scale state 
spaces and make up for the shortcomings of RL.

DL has powerful feature extraction ability, is a popu-
lar research topic in artificial intelligence, and is widely 
applied in image processing and pattern recognition. 
Some scholars have applied it to resource and task 
scheduling in cloud platforms. Guo et  al. [18] proposed 
DeepRM_Plus, a cloud resource management scheme 
based on convolutional neural network (CNN) , which 
uses imitation learning to reduce the learning time, 
improve convergence speed, and reduce the average cycle 
time and weighted turnaround time. Chudasama et  al. 
[19] used DL and queuing theory in an efficient auto-
scaling technology with a predictive function to solve the 

problem that a static threshold method may fail under 
high dynamic and unpredictable workloads. The elastic-
ity of cloud system resources is enhanced, and the accu-
racy of SLA violations can be predicted more accurately. 
Lakhan ea al. [20] devised a deep neural networks energy 
cost-efficient partitioning and task scheduling algorithm 
framework to deal with the partitioning and scheduling 
of IoT applications in terms of resource management 
for mobile workflow applications in enterprise systems. 
Rangra et  al. [21] proposed a cloud TSRA algorithm 
based on multi-task CNNs, achieving a balance between 
makespan and cost. The algorithm was used in tweet task 
sets and gene workflow task sets, with good results. Lin 
et  al. [22] proposed a multi-intelligent two-stage TSRA 
framework for collaborative scheduling between cloud 
task and cloud resource. The task scheduling stage uses a 
HDDL model to schedule user tasks to data centers. The 
resource scheduling stage uses a deep Q-network model 
to deploy VMs to physical servers. The framework glob-
ally optimizes scheduling through local optimization in 
each stage.

RL has powerful decision-making ability, while DL has 
powerful feature-acquisition ability. Scholars have com-
bined them to form deep RL (DRL), which has made 
breakthroughs [23] in fields such as natural language 
processing [24], games [25], robot control [26], and cloud 
resource scheduling in complex environments, provid-
ing a new solution to TSRA problem of cloud computing. 
Peng et al. [27] proposed a framework for TSRA based on 
DRL, which synergistically considers the balance of inter-
ests between users and CSPs, and can optimize different 
objectives by adjusting the corresponding optimization 
weights. Lin et al. [28] made full use of the perception of 
CNN and the decision-making ability of RL in a TSRA 
model, abstracting the cloud resources and cloud task in 
the form of "images" as the input of the CNN, and out-
putting a scheduling strategy. For large-scale TSRA prob-
lems, Bitsakos et  al. [29] proposed an elastic resource 
supply system based on DRL, which could automatically 
and dynamically allocate computer resources according 
to users’ fluctuating workload demands, and follow the 
optimal resource management policy. Zhang et  al. [30] 
applied the DQN algorithm to the problem of wireless 
LAN task offloading to minimize monetary and energy 
costs of mobile users. Huang et  al. [31] combined RL 
training methods and distributed DL models to solve 
the problem of task offloading in mobile edge comput-
ing, reducing energy consumption and ensuring service 
quality.

We study effective task scheduling to minimize the 
overall task completion time and energy consumption 
of a data center when submitting batch tasks to several 
computing clusters for execution in a cloud task system. 
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This is essentially an offline task scheduling approach. 
We propose a united deep network framework for cloud 
task scheduling. By combining multiple deep networks 
(DNNs) as task schedulers, and training them with ref-
erence to the trial and memory playback mechanism in 
DRL, the framework solves the problem of batch task 
submission in cloud systems.

System model
Model framework
When users obtain personalized cloud computing ser-
vices, they submit tasks through the network, and obtain 
virtual resources to meet their needs.

The system model is shown in Fig.  1. The tasks to be 
executed on cloud are submitted to CSP in batches. The 
CSP inputs the tasks to a task scheduler consisting of 
multiple trained DNNs. The task scheduler generates a 
scheduling strategy according to the status of a submitted 
task, and uses this to schedule the task to a computing 
cluster for processing. Before the task is submitted, the 
CSP must train each DNN network based on the training 
task set with the goal to minimize energy consumption 
and task completion time.

The system model has the following key parts: (1) The 
strategy generation component consists mainly of mul-
tiple deep networks, and generates TSRA strategies to 
minimize task latency and system energy consump-
tion according to user tasks. The structure and quantity 
of networks can be dynamically adjusted according to 
need; (2) Energy consumption calculation components 
determine communication and computational energy 
consumption; (3) The SLA considers the task completion 
time, including latency of task communication and com-
putation; (4) The task scheduler is the core component of 
the system, responsible for scheduling tasks in multiple 
queues to different computing clusters according to the 
scheduling strategy. It must guarantee the SLA and mini-
mum system energy consumption.

The large number of cloud users of various types results 
in a diversity of user loads, whose multiple tasks have dif-
ferent dependencies and priorities, and data transmission 
between them. Therefore, the task scheduling process 
must ensure the execution order and dependencies 
between tasks. In the user load layer, our model decou-
ples dependent user loads into child tasks and distributes 
them to multiple waiting queues. The model ensures that 
parent tasks in the waiting queue have priority in data 

Fig. 1 System model
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transmission and execution, and each task in the queue 
is atomic and can run independently. Each waiting queue 
has the same storage space, and the number of queues is 
dynamically adjusted according to needs.

A large number of infrastructure devices form a 
large-scale data center, which clusters adjacent servers 
into computing clusters according to geographic loca-
tions. The communication between multiple VM clus-
ters is carried out through high-speech optical fiber, 
so data transmission latency and energy consumption 
between them can be ignored. However, the bandwidth 
and distance of users connected to different VM clus-
ters are obviously different. Hence both are important 
considerations for optimization problems. Moreover, 
because of differences in hardware, cluster computing 
ability and computing power are also key factors that 
affect system scheduling efficiency.

Mathematical modeling
Cloud system task scheduling involves the scheduling 
of atomic tasks in multiple queues to multiple clusters. 
Assume that the number of computing clusters is K, 
which is expressed as {Clu1,Clu2, . . . ,Cluk} . The num-
ber of task queues waiting to be scheduled is N, which 
is expressed as {Q1,Q2, . . . ,Qn} . The number of tasks 
contained in each queue is M, which is expressed as 
{T1,T2, . . . ,Tm} . Therefore, the total number of tasks 
is M ∗ N  . Task Tnm denotes task m in queue n. The 
attributes of task Tnm are expressed as a binary tuple, 
(r

cpu
nm , rdatanm ) , where rcpunm  denotes the number of CPU 

cycles required by Tnm , and rdatanm  denotes the amount 
of data required to be transferred by Tnm . rdatanm  is a 
random variable that obeys a uniform distribution, 
rdatanm ∼ (rdatamin , rdatamax ) , where the maximum and mini-
mum amounts of task data are respectively expressed 
by rdatamin  and rdatamax  . In addition, we assume that the CPU 
cycles required for each task are linearly related to the 
amount of data in the task [32],

where µ is the computation-to-data ratio (CDR), whose 
value depends on the type of task.

The attributes of cluster Cluk are represented by the 
triplet (CPk ,Pcomm

k ,P
comp
k ) , where CPk is the computing 

power of the cluster, i.e., the number of cycles of the 
CPU; Pcomm

k  is the communication power consump-
tion of the cluster; and Pcomp

k  is the computing power 
consumption of the cluster. The allocation of task Tm in 
queue Qn to cluster Cluk for processing is expressed by 
action anmk ∈ {0, 1} , 1 ≤ n ≤ N  , 1 ≤ m ≤ M , 1 ≤ k ≤ K  , 
specified as:

(1)rcpunm = µ× rdatanm ,

The communication bandwidth between the queue and 
cluster is expressed as {BW12, . . . ,BWnk} , and BWnk is 
the bandwidth allocated between queue Qn and cluster 
Cluk.

We consider two key factors of the scheduling process: 
task latency and energy consumption. Below, we for-
mally define the communication and calculation models 
involved in task scheduling.

(1) Communication model
According to the definition of anmk , in scheduling time 

slot t, the number of tasks allocated to cluster Cluk from 
queue Qn is:

The communication model includes the transmission 
time and energy consumption required to transfer the 
task data. When multiple tasks in the same queue are 
scheduled to the same cluster at the same time, we use 
the principle of equal distribution to allocate the band-
width to these tasks. Therefore, if task Tnm is allocated to 
cluster Cluk , the bandwidth it could occupy is:

The communication latency Tcomm
nm  is the time consumed 

to upload the task data to the server, specified as:

The communication energy consumption is the energy 
consumed during task transmission, specified as:

Therefore, the communication energy consumption of all 
tasks in queue Qn is:

(2) Computational model
The computational model includes the computational 

latency and energy consumption of the tasks. We also 
use the principle of equal distribution, by which the com-
putational power of a cluster is divided equally among 
all tasks scheduled to it. Similarly, the number of tasks 
scheduled to cluster Cluk is:

Therefore, each task receives computational power as:

(2)anmk =
1, if Tnm is asigned to Cluk
0, otherwise

(3)Ank = �1≤m≤Manmk .

(4)Rbw
nm =

BWnk

Ank
.

(5)TDcomm
nm =

rdatamn

Rbw
nm

.

(6)ECcomm
nm = Pcomm

k × TDcomm
nm .

(7)ECcomn
n = �M

m=1EC
comm
nm .

(8)Bk = �N
n=1�

M
m=1anmk .
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Computational latency is the time consumed by a task to 
complete the computation, specified as:

Computational energy consumption is the energy con-
sumed by a task during computation, specified as:

The computational energy consumption of all tasks in 
queue Qn is

(3) Optimization objectives
At some scheduling time slot t, the scheduled tasks are 

executed in parallel in the cluster, so that the total time 
latency required for the batch of tasks is:

However, the total energy consumption in executing the 
batch of tasks is the sum of the energy consumption of 
each task, i.e.,

The optimization objectives of the research problem in 
this section is to minimize the task latency and energy 
consumption, which is a MOO problem. We assign a 
weight factor to each objective to characterize its bias in 
the total optimization objective. If the scheduling strat-
egy adopted by task set s is d, then the payoff function of 
the system is defined as follows:

where � ∈ [0, 1] is the weight of task latency in the total 
optimization objective, and (1− �) is the optimization 
weight of energy consumption. The larger the value of � , 
the greater the weight of time latency in the total optimi-
zation objective and the smaller the energy consumption. 
If � = 0 , then the optimization objective only considers 
the energy consumption factor, and if � = 1 , then the 
optimization objective only considers the time latency 
factor.

The objective of the system is to obtain the optimal 
scheduling strategy, i.e., to minimize the task latency and 
energy consumption. Let D denote all scheduling strate-
gies for task set s. Then the system optimization objective 
can be expressed as:

(9)Rcpu
nm =

CPk

Bk
.

(10)TDcomp
nm =

r
cpu
nm

R
cpu
nm

.

(11)ECcomp
nm = P

comp
k × TDcomp

nm .

(12)ECcomp
n = �M

m=1EC
comp
nm .

(13)TD = max
1≤n≤N ,1≤m≤M

(TDcomm
nm + TDcomp

nm ).

(14)EC = �N
n=1(EC

comm
n + ECcomp

n ).

(15)Cost(s, d) = �× TD + (1− �)× EC ,

The scheduling of cloud tasks is an NP-complete problem 
that has never been fully solved [22]. In the case of the 
multi-queue multi-cluster (MQMC) scheduling model 
studied in this section, there are as many as KM∗N pos-
sibilities for scheduling, which is an exponential level 
of problem space. When the problem size scales up, the 
traditional exact and approximate methods will require 
huge computational effort and time. In recent years, DL 
has broken the barriers of traditional methods in many 
fields and made remarkable breakthroughs, with its pow-
erful learning ability. Therefore, scholars are trying to 
solve combinatorial optimization problems by DL [33]. 
We next study the use of DL to solve the above cloud task 
scheduling problem.

United deep network and its training
United deep network
A DNN is a neural network (NN) composed of many hid-
den layers. A UDL model unites multiple DNNs as the 
fitting function. In each DNN of UDL model, the number 
of network layers is the same, and the number of hidden 
layer nodes is different, but the overall scale of network 
parameters is comparable, as shown in Fig.  2. Similar 
to the experience replay mechanism of DRL, the model 
stores the samples generated by itself in SMP for use as 
a public training sample set. When the number of sam-
ples reaches the predetermined threshold, small batches 
of samples in SMP are randomly choice periodically for 
each DNN training. In this way, it improves both the 
agent’s ability to explore the optimal strategy.

During the model’s training, the input of 
X DNNs is the state st , which is expressed as 
{r

cpu
11 , rdata11 , r

cpu
12 , rdata12 , . . . , r

cpu
nm , rdatanm } , consisting of mul-

tiple task attributes in multiple queues. Since each DNN 
works independently, they would output different action 
decisions, which are expressed as (d1t , d2t , . . . , dXt ) . In 
scheduling time slot t, st is used as input, and the out-
put action decision dxt , 1 ≤ x ≤ X , of each DNN can be 
expressed as:

where fθxt  is a function denoting the x-th DNN network 
parameter.

In Eq. (17), dxt  is denoted as dxt = {a111, a121, . . . , anmk} , 
where anmk is defined in Eq. (2). If anmk = 1 , then Tm in 
Qn is scheduled into Cluk . The Eq. (15) is then used to cal-
culate the cost value of each action decision. The action 

(16)

mind∈D Cost(s, d)
s.t.

C1 : �M
m=1R

bw
nm = BWnk

C2 : �M
m=1R

cpu
nm = CPk

C3 : 1 ≤ n ≤ N , 1 ≤ k ≤ k .

(17)fθxt : st → dxt ,



Page 7 of 14Li et al. Journal of Cloud Computing          (2023) 12:114  

decision that obtains the smallest Cost is selected as best 
for the group of tasks:

where st is the current task set state and doptt  is the best 
decision action.

In a scheduling time slot, (st , d
opt
t ) is stored as sample 

in SMP. The model would randomly select miniBatch 
samples for training as the number of samples reaches a 
predetermined threshold. The training process uses a gra-
dient descent algorithm to minimize the cross-entropy 
loss to optimize the parameter values θxt  of each DNN.

The above is a common training method, that is, each 
DNN uses the same training samples for learning at the 
same time. It is necessary for each DNN to train to learn 
the optimal scheduling strategy. In this way, all DNNs can 
learn the scheduling experience, and the convergence 
speed of the UDL model is faster. The HDDL algorithm 
proposed in [22] uses this training method. However, this 
method is easy to get stuck at locally optimal value. This 
is because when all tasks in the training set are executed 
for the first time, the current optimal strategy generated 
by the UDL model is put into SMP. According to the 
way that all DNNs learn at the same time, after the first 

(18)d
opt
t = arg min

x∈X
Cost(st , d

x
t ),

(19)
L(θxt ) = −dTt log fθx (st)− (1− dt)

T log(1− fθx (st)).

episode of training, all DNNs have learned the current 
optimal strategy. In the next episode of training, facing 
the same training set, all DNNs will output the corre-
sponding scheduling strategies according to the learned 
experience. Since these DNNs learn the same experience, 
their output strategies are basically the same when faced 
with the same task. Therefore, through such training, the 
DNNs are difficult to be improved.

The fundamental reason for this situation is that 
these DNNs have all learned the same strategies, that 
is, all DNNs are exploited, and there is no possibility of 
further exploring other strategies. Therefore, we made 
corresponding improvement to the training method. 
We divided DNNs into two parts: one is responsible for 
exploration, and the other is responsible for exploita-
tion, as shown in Fig. 3.

In Fig.  3, the multiple DNNs have been divided into 
two parts exploitation and exploration. Because of the 
diversity of tasks and the heterogeneity of resources, the 
number and size of the two partial DNNs are not strictly 
defined and need to be determined according to the 
training effect of different task sets. However, no matter 
how they are divided, only DNNs in the part of exploi-
tation train, and DNNs in the part of exploration do not 
train, so that the model retains the possibility of random 
scheduling strategies. Through the combination of explo-
ration and exploitation, the UDL model can go out of the 
local optimum and move towards the global optimum.

Fig. 2 United DNN model
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Training of united deep network
After building the DNN network, SMP is generated 
according to the given task training set by the experience 
playback mechanism. Then a batch of samples is ran-
domly selected from SMP to train the DNNs in the part 
of exploitation. We call the learning model based on mul-
tiple DNNs a UDL model, and a TSRA algorithm based 
on this is called a UDL algorithm. The pseudo-code of the 
UDL model training process is shown as Algorithm 1.

Algorithm 1 UDL model training algorithmWhen these 
DNNs of exploitation part are trained, they are packaged 
into an executable scheduler or package to be deployed in 
a realistic scheduling environment. When a new batch of 

tasks arrives, the new tasks are put in the trained model 
and the model will output the corresponding schedul-
ing policy. The specific scheduling algorithm is shown in 
Algorithm 2.

Algorithm 2 UDL model scheduling 
algorithmSimulation experiments and results 
analysis
Experimental design and parameters
We designed a two-part simulation experiment to ver-
ify the effectiveness and performance of the proposed 
model. The first part verifies the convergence of the 
UDL model with different queue numbers and clusters. 
The second part compares the task scheduling perfor-
mance of the proposed algorithm to that of benchmark 
algorithms, including random, round robin (RR), multi-
objective particle swarm (PSO), deep Q network(DQN) 
and heterogeneous distributed deep learning (HDDL) 
[22]. Random algorithm schedules tasks to the clusters 
randomly. RR algorithm schedules tasks to the ordered 
clusters in turn. PSO algorithm is a random search 

Fig. 3 United DNN model with division of exploitation and exploration
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algorithm based on group collaboration, which is one 
type of swarm intelligence (SI). DQN is classical deep 
reinforcement learning algorithm. HDDL algorithm 
also uses multiple DNNs as scheduler, but doesn’t 
divide them into two parts of exploration and exploita-
tion, and uses all of them as exploitation.

In the simulation experiment, the number of tasks in 
the queue was set to 4, the minimum value of task data 
rdatamin  was 100, and the maximum value of task data rdatamax  
was 500. There are four types of task settings, and the 
ratio between the required CPU cycles and the amount 
of data µ(CDR) is shown in Table  1 [32]. During the 
experiment, the generated task types were randomly 
obtained from Table  1 with the same probability. The 
learning rate was set to 0.01, the training interval to 10, 
the sample batch to 128, and the SMP size to 1024.

In the simulation experiment, a total of 12 clusters 
were designed for selection, with configurations as 
shown in Table 2.

Eight heterogeneous DNN networks were designed as 
decision generators, each with one input layer, three hid-
den layers, and one output layer. The number of neurons 
in each layer is shown in Table 3. We divided these eight 
DNNs into exploration part and exploitation part. The 
exploration part includes odd-numbered DNNs, and the 
exploitation part includes even-numbered DNNs.

The simulation experiment platform was developed 
based on the Python language and a TensorFlow frame-
work, running on a Windows 10 OS, with an Intel core 
i7-8550U dual-core CPU at 1.80 GHz and 16 GB memory.

Network model verification experiment
We experimentally verified the convergence of the model 
with different numbers of queues and clusters.

(1) Convergence under different numbers of queues 
and a fixed number of clusters

The convergence of the UDL algorithm was examined 
when the number of clusters (CN) was 5, � was 0.9, and 
the number of queues (QN) was set to 4, 6, 8, and 10. The 
experimental results are shown in Fig. 4.

From Fig. 4, it is obvious that the proposed UDL algo-
rithm basically reached a state of convergence in all cases. 
In the first round of training (the first 1000 iterations), the 
algorithm converges the fastest and then gradually slows 

down. After about 60 to 80 rounds, the convergence state 
is basically reached. Moreover, the experimental results 
shows that the Cost of the UDL algorithm increased with 
the number of queues for a given number of clusters. This 
is mainly because, as the number of queues increases, the 
number of tasks to be executed increases, the competi-
tion for resources becomes more intense, the compu-
tational and bandwidth resources available to each task 
decrease accordingly, and the computation and commu-
nication times increase, with a corresponding increase in 
overall latency and energy consumption.

Tasks in the dataset were randomly generated by the 
task generator. The task computation and data volume 
satisfied Eq. (1). A total of 1000 sets of training tasks and 
100 sets of testing tasks were generated.

(2) Convergence under different numbers of clusters 
and the same number of queues

The convergence of the UDL algorithm was examined 
when the number of queues (CN) was 5, � was 0.9, and 
the number of clusters (QN) was set to 3, 6, 9, and 12. 
The experimental results are shown in Fig. 5.

Table 1 Task Types and its CDR

Workload CDR

gzip ASCII compress 330

x264 VBR encode 1300

x264 CBR encode 1900

html2text wikipedia.org 2100

Table 2 Main parameters of clusters

No. Computation 
Ability(cycles/s)

Bandwidth 
(MB/s)

Computation 
Power(w)

Communication 
Power(w)

1 1.5× 10
15 250/8 1.0× 10

5 0.20

2 2.5× 10
15 250/8 2.5× 10

5 0.20

3 3.5× 10
15 500/8 4.0× 10

5 0.40

4 5.0× 10
15 500/8 6.0× 10

5 0.40

5 6.0× 10
15 750/8 7.0× 10

5 0.50

6 7.0× 10
15 750/8 8.0× 10

5 0.50

7 6.5× 10
15 800/8 7.5× 10

5 0.60

8 7.2× 10
15 800/8 8.6× 10

5 0.60

9 6.8× 10
15 850/8 7.8× 10

5 0.65

10 7.5× 10
15 850/8 8.8× 10

5 0.65

11 8.0× 10
15 900/8 9.0× 10

5 0.80

12 10.0× 10
15 900/8 10.5× 10

5 0.80

Table 3 Main parameters of DNNs

No. Input Layer Hidden Layer 1 Hidden 
Layer 2

Hidden 
Layer 3

Output Layer

1 N ×M× 2 150 30 10 N ×M× K

2 N ×M× 2 160 40 10 N ×M× K

3 N ×M× 2 150 50 10 N ×M× K

4 N ×M× 2 170 40 10 N ×M× K

5 N ×M× 2 180 30 10 N ×M× K

6 N ×M× 2 190 50 10 N ×M× K

7 N ×M× 2 100 40 10 N ×M× K

8 N ×M× 2 200 40 10 N ×M× K
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From Fig. 5, it is obvious that the proposed UDL algo-
rithm reaches a state of convergence in all cases, too. 
The experimental results show that with the number of 
queues fixed, Cost as obtained by the UDL algorithm 
decreases as the number of clusters increases. This is 
because, with a fixed number of tasks, as the number of 
clusters increases, the computational and bandwidth 
resources available to each task increase accordingly, and 
the computation and communication time decrease, with 
a corresponding decrease in overall latency and energy 
consumption.

Simulation experiment for algorithm comparison
We verified the optimization performance of the UDL 
algorithm for different numbers of queues and clusters, 
using the random, RR, PSO, DQN and HDDL algorithms 
as benchmarks.

(1) Performance comparison with different numbers of 
queues and a fixed number of clusters

We compared each algorithm for different numbers 
of queues with a fixed number of clusters. In the experi-
ments, the number of clusters was fixed at 5, � was set 
to 0.9, and the number of queues increased from 3 to 12. 
The experimental results are shown in Fig. 6.

From Fig. 6, it can be seen that as the number of task 
queues increases, the system load increases, and the 
return values of all algorithm models show an upward 

trend. The growth rates of the return values of the RR 
and random algorithms are relatively fast, while those 
of PSO, and UDL are relatively slow. When the num-
ber of task queues is relatively small, the costs of PSO, 
DQN, HDDL and UDL are closer. However, when the 
number of task queues is 5 or more, the optimization 
effect of the UDL algorithm is better than that of the 
heuristic algorithm PSO, the reinforcement learning 
algorithm DQN and the similar algorithm HDDL. In 
this experiment, the number of computing clusters is 
fixed. When the number of task queues increases, the 
competition between queues for limited computational 
resources becomes more intense. In this case, the UDL 
algorithm shows better task scheduling performance 
than the PSO, DQN and HDDL algorithm.

(2) Performance comparison with different numbers of 
clusters and a fixed number of queues

We compared each algorithm for different numbers of 
clusters and a fixed number of queues. The number of 
task queues was fixed at 10, � was set to 0.9, and the num-
ber of clusters increased from 3 to 12. The experimental 
results are shown in Fig. 7.

The experimental results in Fig. 7 show that as the num-
ber of clusters increases, and the costs of all algorithms 
decrease. That is because the available resources of the 
system increase as the number of clusters increases. 
Similar to the previous experiment, with a fixed number 

Fig. 4 Convergence of UDL algorithm under different numbers of queues and a fixed number of clusters
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of task queues, when the number of clusters is small, the 
tasks compete more fiercely for computational resources, 
and the performance of the UDL and HDDL algorithm 
is better than that of algorithms such as PSO and DQN. 
However, when the number of clusters exceeds 8, the 

computational resources are relatively sufficient, and 
UDL, HDDL, DQN and PSO algorithms show basically 
comparable performance. But in most cases, the optimi-
zation performance of UDL algorithm is better than the 
benchmark algorithms.

Fig. 5 Convergence of UDL algorithm under different numbers of clusters and a fixed number of queues

Fig. 6 Algorithm performance comparison under different numbers of queues and a fixed number of clusters
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It can be observed from Figs.  6 and 7 that the DQN 
model can achieve similar optimization results to UDL 
and HDDL for small queue and cluster numbers, but as 
the number of queues and clusters increases, the explo-
ration space size of the scheduling problem grows expo-
nentially, so it becomes increasingly difficult for DQN to 
explore to the optimal or suboptimal scheduling policy, 
and the optimization effect decreases significantly.

(3) Scheduling time comparison with PSO
Because RR and random algorithm do not involve 

complex computations, their decision times are very 
fast. The UDL, HDDL, DQN are machine learning algo-
rithms, and their decision times are about the same. We 
compared the time required for the UDL and PSO to 
make task scheduling decisions in the same environ-
ment. We ran the test set 100 times and averaged the 
results, with results as shown in Table  4. The operat-
ing environment in the table is characterized by num-
bers of queues and clusters, denoted by QnCm, which 
means that there are n queues and m clusters.

From Table 4, it can be seen that the decision time of the 
UDL algorithm is much less than that of the PSO algorithm 
in the same environment. As the queue and cluster sizes 
increase, the decision times of both algorithms increase 
accordingly, but much more so for PSO than for UDL.

Weight factor change experiment
In Eq. (15), � is the weight of time latency in the total 
optimization objective, and (1− �) is the weight of energy 
consumption. We examined how the time latency, energy 
consumption, and total optimization objective changed 
as � varied from 0.1 to 0.9. The number of queues was set 

to 10, and the number of clusters to 6. The experimental 
results are shown in Fig. 8.

Figure  8(a) shows the variation of the total task 
latency as the weight factor � varies between 0.1 ∼ 0.9 . 
It can be seen that the total task latency decreases 
as � increases. This is because our goal is to minimize 
task latency, and the increase of � means that the time 
latency weighs more in the total optimization objec-
tive; hence the algorithm is biased toward the optimiza-
tion of time latency. Figure 8(b) shows how the energy 
consumption varies with � . Since � is the time latency 
weight and 1− � is the energy consumption weight, to 
increase � will reduce the energy consumption weight; 
hence the algorithm will pay more attention to optimiz-
ing time latency, and energy consumption will increase 
accordingly. Figure  8(c) shows how the total optimiza-
tion objective follows the change in � . We can find that 
our proposed UDL algorithm optimizes better than the 
benchmark algorithms, no matter the case. That is, UDL 
can improve system performance regardless of whether 
the optimization objective is biased toward time latency 

Fig. 7 Algorithm performance comparison with different numbers of clusters and a fixed number of queues

Table 4 Decision time comparison between UDL and 
PSO(Unit:s)

Number Running Environment UDL PSO

1 Q3C3 0.3054 8.1511

2 Q5C5 0.3703 13.3691

3 Q8C8 0.4828 21.8820

4 Q10C10 0.5724 28.1806

5 Q12C12 0.6770 34.9222
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or energy consumption. When � takes values from 0.1 
to 0.9, the cost value of UDL are reduced by 1.08%, 
1.24%, 1.33%, 2.10%, 1.03%, 1.06%, 2.06%, 1.15% and 
2.35%, respectively, compared to the HDDL. Although 
the reduction is not very large, considering the relatively 
large value of the cost and the large amount of tasks in 
data center, the overall cost savings are still significant.

The weight factor in the valuation function is dynami-
cally adjustable according to the actual demand. And with 
different weight settings, the proposed UDL can all find a 
better scheduling policy compared to other benchmarks. 
This also indicates that UDL has better explorability.

Conclusion and future work
We proposed a cloud TSRA framework model based on 
UDL to solve the MOO problem of MQMC scheduling 
in cloud computing. The framework effectively improves 
algorithm performance by joining multiple DNNs model 
and employing a DRL experience replay mechanism to 
train the scheduling model. In order to further improve 

the performance of the framework, we improved the mul-
tiple DNNs model and divided the DNNs into two parts: 
exploration and exploitation. The part of exploration is 
responsible for exploring unknown scheduling strategies 
and the part exploitation is responsible for exploiting the 
known scheduling strategies. This improved method not 
only speeds up the convergence of the algorithm, but also 
avoids falling into a local optimal solution. Experimental 
results show that the UDL algorithm is better adapted 
than the random, RR, PSO and HDDL algorithms to 
MOO problems, especially in the case of intense resource 
competition. The proposed UDL algorithm is essentially 
an offline task scheduling algorithm, which is suitable for 
batch submission task scheduling methods.

There are many online task scheduling scenarios in an 
actual cloud environment. The characteristics of online 
task scheduling are different from those of offline. Online 
tasks are more variable and complicated. Our next direc-
tion of study will be how to implement online task sched-
uling using DRL.

Fig. 8 Algorithm performance comparison with different �
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